JP2004131657A - Composite organic polymer material containing inorganic fine particle and method for producing the same - Google Patents

Composite organic polymer material containing inorganic fine particle and method for producing the same Download PDF

Info

Publication number
JP2004131657A
JP2004131657A JP2002299446A JP2002299446A JP2004131657A JP 2004131657 A JP2004131657 A JP 2004131657A JP 2002299446 A JP2002299446 A JP 2002299446A JP 2002299446 A JP2002299446 A JP 2002299446A JP 2004131657 A JP2004131657 A JP 2004131657A
Authority
JP
Japan
Prior art keywords
organic polymer
polymer material
precursor
fine particles
inorganic fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002299446A
Other languages
Japanese (ja)
Other versions
JP4324360B2 (en
Inventor
Tsutomu Nakanishi
中西 勉
Hiroshi Inomata
猪股 宏
Hiromichi Hayashi
林 拓道
Katsuto Otake
大竹 勝人
Takaomi Taira
平 隆臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAWA INDUSTRY SUPPORT FOUND
Kagawa Industry Support Foundation
Original Assignee
KAGAWA INDUSTRY SUPPORT FOUND
Kagawa Industry Support Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAWA INDUSTRY SUPPORT FOUND, Kagawa Industry Support Foundation filed Critical KAGAWA INDUSTRY SUPPORT FOUND
Priority to JP2002299446A priority Critical patent/JP4324360B2/en
Publication of JP2004131657A publication Critical patent/JP2004131657A/en
Application granted granted Critical
Publication of JP4324360B2 publication Critical patent/JP4324360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material resistant to the falling off of inorganic fine particles from an organic polymer material to keep the function by uniformly dispersing the inorganic fine particles of nano-meter size in the inner side of the organic polymer material. <P>SOLUTION: The composite organic polymer material containing the inorganic fine particles is produced by introducing a precursor of the inorganic fine polymer to be converted into the inorganic particle into the organic polymer material by bringing the organic polymer material into contact with a high-pressure fluid containing the precursor in dissolved state, washing the organic polymer material containing the precursor by bringing the material into contact with a high-pressure fluid to remove the precursor present in the range of 10 nm depth from the surface of the organic polymer material, and converting the precursor into the inorganic fine particles to obtain the composite material containing the inorganic fine particles introduced and dispersed in a range deeper than 10 nm from the surface of the organic polymer material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、汎用プラスチック、汎用エンジニアリングプラスチック、特殊エンジニアリングプラスチック等の有機高分子材料の機能を向上させ、或いは有機高分子材料への新しい機能の付与を目的として、有機高分子材料に無機物質の微粒子を注入、分散させた無機微粒子複合化有機高分子材料、及びその製造方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、有機高分子材料に無機物質を複合化させる技術としては、金属や金属酸化物の微粉体を機械的に混練する混練法や、有機モノマー中で金属アルコキシドをゾル・ゲル分解した後に重合するキャスティング法などがある。しかし、混練法は、微粉体の凝集を防ぎ均一に混合することが困難であるという問題点があり、キャスティング法は、溶媒に溶解する高分子あるいは重合できる金属や金属酸化物の量に制限があるという問題点がある。
【0003】
また、金属のイオンをガラスやプラスチックなどの固体の表面に高電圧で注入した後に熱処理して金属微粒子を形成するイオン注入法が、光素子の創製の方法として研究されている。しかしこの方法は、平滑な面の改質を主とするものがほとんどであり、微細な構造部分へ均一に微粒子を分散させることは困難である。
【0004】
最近では、有機高分子材料の可塑化効果を有する超臨界流体を利用して、材料内部に有機金属化合物を浸透させ、続いて後処理をして有機金属化合物を金属に変換することによって、金属の微粒子を分散させる技術が発表されている。
【0005】
例えば、下記非特許文献1、2、3に示されているように、J. J. Watkinsらは、ポリ(4−メチル−1−ペンテン)に対して白金錯体を注入した後、水素還元を行い、十数nm径の白金微粒子の分散層を形成した。
【0006】
【非特許文献1】
J. J. Watkins and T. J. McCarthy, Polym.Mater.Sci.Eng., 74, 402(1996)
【非特許文献2】
J. J. Watkins and T. J. McCarthy, Polym.Mater.Sci.Eng., 73, 158(1995)
【非特許文献3】
J. J. Watkins and T. J. McCarthy, Chem.Mater., 7, 1991(1995)
【0007】
また、下記非特許文献4、5のように、J. Rosolovsky らは、ポリイミド樹脂の薄膜表面に鏡面を形成するため、超臨界二酸化炭素を用いて銀錯体を注入後、熱処理を行っている。その結果、サンプル表面から数百nmの深さに、数十nm径のAgのクラスター分散層が形成された。
【0008】
【非特許文献4】
J. Rosolovsky, R. K. Boggess, A. F. Rubira, L. T. Taylor, D. M. Stoakley and A. K. St. Clair, J.Mater.Res., Vol.12, No.11, 3127(1997)
【非特許文献5】
R. K. Boggess , L. T. Taylor, D. M. Stoakley and A. K. St.Clair, J. Appl. Polym. Sci.,64, 1309(1997)
【0009】
さらに、下記非特許文献6のように、N.Nazemらは、J. Rosolovsky らの方法と同様の方法でポリエーテルエーテルケトン樹脂に対してAg鏡面を形成した。
【非特許文献6】
N. Nazem, L. T. Taylor and A. F. Rubira, J.Supercritical Fluids, 23,43(2002)
【0010】
しかしながら、このような超臨界流体を利用した方法は、平板形状の材料の表面に対して、鏡面を形成するために有機高分子材料の表面近傍に無機物の粒子を沈着させた結果についての報告がほとんどであり、表面から内部に渡って微粒子の分散のメカニズムを明確にした上で、特定の機能を付与すること等については明確にしていない。さらに、複雑な形状を有する材料に対する加工方法や、分散層の強度的安定性についても提示していない。また、このような超臨界流体を利用した方法は、ナノメートルサイズの微粒子を表面の近傍に集中して分散させた場合には、材料の使用条件や周囲の環境によっては、微粒子が有機性高分子の表面から離脱し、微粒子分散層が物理的に破損して損なわれるおそれがあるという新たな問題点を有している。
【0011】
本発明者等は、上記非特許文献1乃至6とは異なる機能性付与を目的とし、超臨界二酸化炭素を用いてポリメチルメタクリレート(PMMA)中にチタンイソプロポキシドを注入し、含水酸化チタンのクラスターを形成する技術を開発し、下記非特許文献7に発表したが、特定の機能の付与について立証するには至っていない。また「表面のみに無機微粒子を集中して形成した場合、微粒子が有機性高分子の表面から離脱するおそれがある」という問題点を確実に解消しうるには至っていない。
【0012】
【非特許文献7】
高分子論文集(高分子学会編),Volume 58 Number 12 2001
「超臨界二酸化炭素を用いた高分子材料への有機金属化合物の注入(中西勉)」
【0013】
本発明は、上述のような問題点を解決するためになされたもので、複雑な形状の有機高分子材料に対してもナノメートルサイズの無機物質の微粒子を全表面に均一に注入、分散させることができ、しかも無機物質の微粒子を有機高分子材料の表面より内部に分散させることによって、無機物質の微粒子が有機高分子材料から脱離する事がなく、また機能に持続性を有する複合材料を提供することを課題とする。
【0014】
【課題を解決するための手段】
本発明は、このような課題を解決するために、無機微粒子複合化有機高分子材料とその製造方法としてなされたもので、無機微粒子複合化有機高分子材料の特徴は、有機高分子材料の表面から10nmより深い部位に、無機物質の微粒子を注入、分散させていることである。
【0015】
「表面から10nmより深い部位」としたのは、注入される無機微粒子の平均粒子径として10nm程度を想定し、想定された平均粒子径の数値より深い部位に注入されていれば、無機微粒子が有機高分子材料の表面から突出する可能性が少ないからである。
【0016】
無機物質の微粒子の有機高分子材料に対する体積含有率は、0.001%以上10%以下であることが好ましい。0.001%未満、或いは10%を越えると、たとえば曲げ弾性や、特定の波長領域の光の吸収性という機能の付与ができなくなる可能性があるからである。ここで、「無機物質の微粒子の有機高分子材料に対する体積含有率」とは、無機物質の微粒子が分散している部分のみの有機高分子材料(有機高分子材料における一定の厚みを有する部分を想定している)の体積をV1 とし、その部分における無機物質の微粒子が占める全体積をV2 とした場合に、V2 /V1 ×100 (%)で表されるものをいう。
【0017】
無機微粒子の径は、1nm以上100nm以下であることが好ましい。無機微粒子が有機高分子材料の補強材であるという観点からすると、無機微粒子の径は小さい程、有機高分子材料との相互作用が強くなり、そのために有機高分子材料の流動性が少なくなり、結果として複合材料として強固な材料となる。一般に100nm以下の粒径のものがナノ粒子と称されており、ナノ粒子は、上記のような補強材としての観点からも優れた特性を有している。
【0018】
また、ナノ粒子には、表面プラズモン効果が発現することが知られている。表面プラズモンとは、金属微粒子が異種材料内部に分散した場合、金属と母材との間に発生する電子のエネルギーを伝搬する電子の疎密波のことをいう。その特性は境界面の幾何学的特性に強く依存し、ナノサイズの微粒子の表面にプラズモン効果が発現し、特定の波長の光を吸収することが知られている。無機微粒子の径が100nm以下であることが好ましいのは上記のような理由による。
【0019】
また、無機物質の微粒子の材質としては、たとえば金属、金属酸化物、ガラスのようなものが用いられる。金属を無機微粒子とした場合には、その金属微粒子で複合化された有機高分子材料は電磁波遮蔽効果が良好となる。またガラスの微粒子で複合化された有機高分子材料は、透明度が良好となる。
【0020】
さらに、無機微粒子複合化有機高分子材料の製造方法としての特徴は、有機高分子材料と、無機物質の微粒子に変換される無機微粒子の前駆体を溶解した高圧流体とを接触させて前記前駆体を有機高分子材料に注入し、次に前駆体が注入された有機高分子材料と高圧流体とを接触させて、前記有機高分子材料の表面から10nmの範囲内の前駆体を除去すべく洗浄し、その後、前駆体を無機物質の微粒子に変換して、有機高分子材料の表面から10nmより深い部位に無機物質の微粒子が注入、分散された無機微粒子複合化有機高分子材料を製造することである。
【0021】
さらに、他の無機微粒子複合化有機高分子材料の製造方法としての特徴は、
無機物質の微粒子に変換される無機微粒子の前駆体と有機高分子材料とを別々の高圧セルに収容し、前駆体が収容された高圧セルに高圧流体を供給して該前駆体を高圧流体中に溶解し、次に前駆体を溶解した高圧流体を、有機高分子材料が収容された高圧セルに供給し、該有機高分子材料に前記前駆体を溶解した高圧流体を接触させて前記前駆体を有機高分子材料に注入し、次に高圧流体のみを前記有機高分子材料が収容された高圧セルに供給し、前駆体が注入された有機高分子材料と高圧流体とを接触させて、前記有機高分子材料の表面から10nmの深さまでの部分の前駆体を除去すべく洗浄し、その後、前駆体を無機物質の微粒子に変換して、有機高分子材料の表面から10nmより深い部位に無機物質の微粒子が注入、分散された無機微粒子複合化有機高分子材料を製造することである。
【0022】
無機微粒子の前駆体を有機高分子材料に注入する際に、高圧流体とともに、有機高分子材料又は前駆体の少なくともいずれかを溶解させうる溶剤を補助溶媒として添加することも可能である。補助溶媒が前駆体の良溶媒であれば、高圧流体中の前駆体の濃度を高めることによって好適に有機高分子材料に前駆体を注入することができ、また補助溶媒が有機高分子材料の良溶媒であれば、有機高分子材料の可塑化がより好適に進行することとなり、その結果、前駆体が有機高分子材料に注入され易くなるのである。従って、補助溶媒は有機高分子材料又は前駆体の少なくともいずれかに対する良溶媒であればよいが、双方に対する良溶媒であってもよい。
【0023】
また、無機微粒子の前駆体を有機高分子材料に注入した後、有機高分子材料の表面から10nmの範囲に注入された前駆体を洗浄して除去する前に、注入時の処理温度より低い温度まで有機高分子材料を冷却することも可能である。冷却することによって、有機高分子材料の可塑化がある程度抑制され、その後の洗浄時に、すでに注入された無機微粒子前駆体が有機高分子材料から不用意に離脱するのが防止されることとなる。
【0024】
無機微粒子の前駆体を無機物質の微粒子に変化させる手段としては、たとえば有機高分子材料の温度を上昇させて前駆体を熱分解する手段や、水を補助溶剤として高圧流体に添加し、水と高圧流体との混合流体と、有機高分子材料とを接触させるような手段が採用される。前者の手段を採用する場合には、前駆体としてたとえば金属錯体が用いられ、後者の手段を採用する場合には、前駆体としてたとえば金属アルコキシドが用いられる。
【0025】
母材となる有機高分子材料としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリスチレン(PS)、ABS樹脂、ポリメタクリル酸メチル(PMMA)、ポリビニルアルコール(PVA)、ポリ塩化ビニリデン(PVDC)、ポリエチレンテレフタレート(PET)等の汎用プラスチック、ナイロン、ポリアセタール(POM)、ポリカーボネート(PC)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等の汎用エンジニアリングプラスチック、ポリスルホン(PSU)、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド(PPS)、ポリアリレート(PAR)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、ポリイミド(PI)、フッ素樹脂(PTFE、PCTFE、PVDFなど)などの、特殊エンジニアリングプラスチックを利用できるが、これらの混合物であるブレンドポリマーも使用できる。
【0026】
注入すべき無機物質の微粒子としては、たとえば金属、金属酸化物、ガラスなどがあり、それらの前駆体としては、金属アルコキシド、あるいは金属錯体などの炭素−金属間の結合を分子内に有する有機金属化合物を利用できる。金属の種類としては、銀(Ag)、金(Au)、銅(Cu)、チタン(Ti)、シリコン(Si)、亜鉛(Zn)、ニッケル(Ni)、アルミニウム(Al)、パラジウム(Pd)、白金(Pt)、鉄(Fe)、マンガン(Mn)などが利用できる。
【0027】
高圧流体としては、種々のものが利用できるが、有機高分子材料に対して浸透性の優れた、亜臨界流体や超臨界流体を用いるのが好ましい。流体の種類としては、例えば二酸化炭素(臨界温度:31.1℃、臨界圧力:7.38MPa)、亜酸化窒素(臨界温度:36.4℃、臨界圧力:7.24MPa)、トリフルオロメタン(臨界温度:25.9℃、臨界圧力:4.84MPa)、窒素(臨界温度:―147℃、臨界圧力:3.39MPa)、又はそれらの内の二種類以上の混合物を利用できる。
【0028】
【発明の実施の形態】
以下、本発明の実施形態について、図面に従って説明する。
【0029】
(実施形態1)
図1は、一実施形態としての無機微粒子複合化有機高分子材料の製造に用いる装置の概略ブロック図である。本実施形態の装置は、高圧ポンプ2、圧力計3、恒温槽4、背圧弁5、及び高圧セル6を具備している。
【0030】
高圧ポンプ2は、高圧流体を高圧セル6へ供給するためのポンプである。本実施形態では、日本分光社製のプランジャー式の高圧ポンプを用いたが、これ以外にも例えば日本精密機器社製、日機装社製、富士ポンプ社製等の、プランジャー式或いはダイヤフラム式の高圧ポンプを一般的に使用することができる。また高圧ポンプ2には、高圧流体供給用のボンベ1が接続されている。本実施形態では高圧流体として二酸化炭素が用いられる。
【0031】
圧力計3は、操作時の系内の圧力を検出し、表示するためのもので、計器内部の汚染を防止するために、高圧セル6の前段に設置するのが好ましい。例えば、長野計器社製、山崎計器社製などの圧力計が使用できる。なお、形式としては、ダイヤフラム式、ブルドン管式のものを使用できるが、汚染防止のためにはダイヤフラム式が好ましい。
【0032】
恒温槽4は、高圧セル6の温度を精密に調整するためのもので、熱伝導用の媒体は、空気、水、オイル、エチレングリコール、砂、その他これらの混合物が使用可能である。オイル、砂は100℃以上の高温条件で有効であり、水、エチレングリコール、それらの混合物は100℃以下の低温条件に有効である。空気は、両方の範囲に有効に適用可能である。本実施形態では、精密な温度制御が可能なGL−サイエンス社製の空気循環式恒温槽を用いた。
【0033】
背圧弁5は、高圧セル6内の圧力を一定に保つための弁であり、手動、あるいは自動の背圧弁が使用できる。例えば、AKICO社製、東洋高圧社製、日本分光社製などの背圧弁が使用できるが、減圧速度の微細な調整、圧力変動の低減などの観点から、自動制御式の背圧弁が好ましい。
【0034】
高圧セル6は、材料8に無機微粒子の前駆体9を注入するための容器である。高圧セル内部には、材料を固定するための架台と、セル内の流体を攪拌するための攪拌設備が具備されている。攪拌設備は、攪拌翼式、流体循環式の何れも使用できる。また、図示はされていないが、高圧セル6内部の状況を観察し易くするために、内部観察用の可視窓を取り付けても良い。
【0035】
その他、本実施形態の装置では、各装置が耐圧性の配管で接続され、さらに、配管の経路の途中部分には、流体の流量調整や、流路の開閉のために耐圧バルブが適宜具備されている(耐圧バルブは図面上は省略している。)。例えば、スェッジロック社製や、オートクレーブ社製の耐圧バルブが使用できる。また耐圧性の構成機器の材質は特に限定されないが、SUS314、SUS316、SUS316L、ハステロイ、インコネル、モネル鋼等の耐圧、及び耐腐食性の材質であることが望ましい。
【0036】
次に、この様な装置を用いて、無機微粒子複合化有機高分子材料を製造する方法の実施形態について説明する。
【0037】
先ず、無機微粒子を注入、分散させるための有機高分子材料(以下、単に材料ともいう)8を高圧セル6内の材料固定用架台に固定し、無機微粒子の前駆体9と、攪拌用の攪拌子7とともに高圧セル6に封入する。本実施形態では、材料8として、汎用プラスチックであり光機能性材料として重要なポリメチルメタアクリレート(PMMA)を用いた。無機微粒子としては、生体に対する影響が少なくかつ電磁波遮蔽性及び導電性の付与が期待できる銀を選んだ。その銀の前駆体8として、銀の錯体である(6,6,7,7,8,8,8−ヘプタフルオロ−2,2−ジメチル−3,5−オクタネジアネート)銀を用いた(略号AgFOD)。
【0038】
次に、ボンベ1から二酸化炭素を高圧セル6に供給し、高圧セル6内の残存空気をパージした後、高圧ポンプ2を用いて二酸化炭素を高圧セル6に供給するとともに、温度と圧力を調整した。温度は恒温槽4で調整し、圧力は背圧弁5で調整した。温度と圧力は、使用する高圧流体が、亜臨界流体、もしくは超臨界流体になる条件であれば良い。本実施形態では高圧流体として二酸化炭素(臨界温度31.1℃、臨界圧力7.38MPa)を利用するため、温度範囲は25℃から80℃、圧力は6MPaから50MPaが好ましい。
【0039】
所定の温度と圧力の条件に到達した後、高圧ポンプ1を停止し、攪拌子7によって高圧セル6内の攪拌を開始し、二酸化炭素と前駆体9を混合した。なお、攪拌子7の回転には、図示しないが、マグネット式の撹拌装置を使用した。攪拌の開始後、所定時間のあいだ注入処理を行った。
【0040】
二酸化炭素の超臨界流体が材料8に接触すると、材料8の内部に二酸化炭素が浸透する。そのため、材料8は膨潤・可塑化し、ガラス転移温度の低下、粘度の低下が起こり、材料8の内部での物質の移動特性が著しく向上する。さらに、前駆体9は超臨界流体の二酸化炭素に溶解するため、二酸化炭素を媒体にして、前駆体9を、材料8の内部に浸透させることができる。このときの処理時間は、0.5時間から4時間が好ましい。
【0041】
注入処理後、高圧ポンプ6を作動して二酸化炭素を連続的に流通させ、材料8の表面に余剰に付着している前駆体9を除去した。
二酸化炭素を連続的に流通させると、先ず前駆体9が高圧セル6の外部に流出し、続いて材料8の表面に二酸化炭素が接触することによって、材料8に余剰に付着している前駆体9を洗い流すことができる。このとき、材料8の内部に浸透している前駆体9は材料8の内部に固定されているため、外部に流出することはない。また、二酸化炭素を流通させる前に、一旦、温度を25℃以下の低温に冷却することによって材料8の内部の前駆体の移動度を小さくした後、二酸化炭素を流通させても良い。
【0042】
その後、背圧弁5を開いて高圧セル6内の圧力を大気圧まで減圧する。このとき、0.1MPa/minより速い速度で減圧すると、材料8の内部に残存する二酸化炭素によって材料8が発泡する。材料8を発泡させずに減圧する場合は、0.1MPa/minより遅い速度で減圧することが好ましい。
【0043】
さらに、高圧セル6の内部に材料8を保持したまま、恒温槽4によって加熱処理することによって、材料8の内部の前駆体9を金属微粒子に還元し、無機微粒子複合化有機高分子材料を製造した。
【0044】
恒温槽4の操作条件は、前駆体9であるAgFODの分解温度である160℃とし、処理時間は2時間で行った。前駆体9を熱分解することによって、有機物から無機物質へ変換することができるが、このとき、前駆体9の種類によって熱分解温度が異なるため、その種類に合わせて適宜、処理温度を選択することができる。例えば、銀のアセチルアセトン錯体は100℃、銅のアセチルアセトン錯体は286℃、ニッケルのアセチルアセトン錯体は240℃、白金のアセチルアセトン錯体は251℃、パラジウムのアセチルアセトン錯体は260℃、などである。
【0045】
(実施形態2)
本実施形態の設備では、図2に示すように、高圧ポンプ2、圧力計3、恒温槽4、背圧弁5、高圧セル6の他に溶剤ポンプ10が具備され、その溶剤ポンプ10に、溶剤貯留槽11が接続されている。すなわち、本実施形態では流体として二酸化炭素を使用し、補助溶媒として溶剤が使用される。
【0046】
次に、操作手順について実施形態1との比較の上で、異なる部分のみ示す。
【0047】
材料8と、前駆体9とを高圧セル6に封入し、残存空気をパージした後、二酸化炭素を流通させて所定の温度と圧力に設定し、続いて、溶剤としてのアセトンを溶剤ポンプ10を用いて、所定量を高圧セル6に投入する。アセトンの投入後、高圧ポンプ6及び溶剤ポンプ10を停止し、所定時間、注入処理する。アセトンの投入量は、所定の温度と圧力条件での二酸化炭素の投入量に対し、モル比で0.5%から10%までが好ましい。
【0048】
注入処理後、高圧ポンプ6を作動して二酸化炭素を連続的に流通させ、材料8の表面に余剰に付着している前駆体9を除去する際、洗浄効果を高めるため、アセトンを投入しながら、二酸化炭素を流すこともできる。前駆体9の注入処理、余剰の前駆体9の洗浄除去処理以外の操作手順は、前記実施形態1と同じであるためここでは説明を省略する。
【0049】
本実施形態では、補助溶媒として有機高分子材料8と、前駆体9の両方の良溶媒であるアセトンを用いるため、材料8をより可塑化させ易くなり、また材料8の内部に前駆体9をより浸透し易くなるという効果がある。また、二酸化炭素に対する前駆体9の溶解度を増加させることによって、材料8内部に浸透する前駆体9の量を増加させることができ、さらに洗浄工程において補助溶媒を用いるため、材料8の表面に付着した余剰の前駆体9の洗浄効果をより向上させることができるという効果がある。
【0050】
このような効果を奏させる観点から、溶剤を選択する基準としては、材料8の良溶媒、無機微粒子の前駆体9の良溶媒であることが望ましい。本実施形態では、溶剤としてアセトンを使用したが、補助溶媒と、前駆体9や材料8との相互作用を事前に調べ、前駆体9に対する良溶媒か、材料8に対する良溶媒か、或いは前駆体9と材料8の両方の良溶媒かを確認しておくことによって、アセトン以外の溶剤も適宜選択することができる。たとえばメタノール、エタノール、n−プロパノール、イソプロパノールなどの低級アルコールを使用することができる。
【0051】
(実施形態3)
本実施形態では、図3に示すように、無機微粒子の前駆体9の溶解・抽出専用の高圧セル6aと、材料8の処理専用の高圧セル6bとの2つの高圧セルを設け、それぞれの高圧セルに恒温槽4a,4bをそれぞれ設置し、さらに、系内の攪拌のために、循環ポンプ12とその循環ライン22が設置されている。
【0052】
上記実施形態1及び2では、1つの高圧セル内で前駆体9の溶解と、材料8の可塑化処理を行ったが、本実施形態では高圧セル6a内での前駆体9の溶解,抽出の処理と、高圧セル6b内での材料8の可塑化処理を行うこととした。
【0053】
より具体的に説明すると、先ず、高圧ポンプ2側のバルブ13と、高圧セル6aと高圧セル6bとの入口部と出口部のバルブ14,15,16,17を開の状態とし、他のバルブ18,19,20,21を閉の状態として、高圧セル6a,6b内の残存空気をパージした後、所定の温度、圧力になるまで高圧ポンプ2を用いてボンベ1から二酸化炭素を高圧セル6a,6bに供給する。
【0054】
所定の圧力になった後、高圧ポンプ2を停止し、その高圧ポンプ2側のバルブ13を閉の状態とし、循環ライン22中のバルブ20,21を開の状態にして、循環ポンプ12を作動させる。これによって、高圧流体は循環ライン22を循環するとともに高圧セル6a,6bに供給され、その高圧流体が前駆体9を効率的に溶解するとともに、効率的に材料8に接触し、余剰の前駆体9が材料8に不用意に接触し、付着するのを防止することができる。
【0055】
このようにして、前駆体9が材料8に注入された後、高圧セル6aの入口部と出口部のバルブ14,15を閉の状態とし、その間のバルブ18を開の状態にすることにより、前駆体9は高圧セル6aに供給されることがなく、高圧流体のみが高圧セル6bに供給されることとなる。この結果、材料8が上記各実施形態と同様に洗浄されることとなる。この洗浄工程において、高圧セル6a内に残存する前駆体9は、高圧セル6aの外部へ排出する必要がなく、高圧セル6bのみに二酸化炭素を連続的に流通させることによって、より短時間に材料8の洗浄を行うことができる。
【0056】
上記のような注入及び洗浄の処理が終了した後、背圧弁5を開いて高圧セル6b内の二酸化炭素を除去し、高圧セル6bを開き、新たな材料8を高圧セル6b内に入れて設置し、同様に処理を行う。この場合において、前駆体9は、材料8が収容された高圧セル6bと別の高圧セル6aに収容されているので、高圧セル6b内部の材料8のみを取り替えることによって、高圧セル6aの内部の前駆体9は、最初に仕込んだものを次の新たな材料の処理にも有効に使用することができる。
【0057】
以上のように、本実施形態では、溶解・抽出専用の高圧セル6aと、材料8の処理専用の高圧セル6bとの2つの高圧セルを設け、系内の攪拌を循環ポンプ7により行うことによって、高圧セル6a内部で、高圧流体に溶解した前駆体9が効率的に材料8に接触し、余剰の前駆体9が材料8に不用意に接触して付着するのを防止することができ、次の洗浄工程では、高圧セル6a内に残存する前駆体9を予め高圧セル6a外へ除去せずに高圧セル6bのみに二酸化炭素を連続的に通すことによって、より短時間に材料8の洗浄を行うことができ、しかも高圧セル6b内部の材料8のみを取り替えることによって、最初に仕込んだ前駆体9を、次工程で有効に使用することができるのである。
【0058】
(実施形態4)
本実施形態の装置では、図4に示すように実施形態3の構成要素の他に溶剤貯留槽10及び溶剤ポンプ11を具備させている。従って、本実施形態では、流体として二酸化炭素を、補助溶媒として溶剤を使用する。二酸化炭素の他に溶剤を用いたことによる作用効果は、上記実施形態2と同じである。
【0059】
次に、操作手順について実施形態3との比較の上で、異なる部分のみ示す。すなわち、材料8と、無機微粒子の前駆体9とをそれぞれ高圧セル6aと6bに封入し、残存空気をパージした後、二酸化炭素を流通させて所定の温度と圧力に設定し、続いて、溶剤としてのアセトンを溶剤ポンプ11を用いて、所定量を高圧セル6a及び高圧セル6bに供給する。アセトンの供給後、高圧ポンプ2を停止し、所定時間、注入処理する。この際、循環ポンプ12を作動させ、系内の流体を均一に攪拌することができる。アセトンの供給量は、前記実施形態2と同じく、所定の温度と圧力条件での二酸化炭素の投入量に対し、モル比で0.5から10%までが好ましい。
【0060】
注入処理後、高圧ポンプ2を作動して二酸化炭素を連続的に流通させ、材料8の表面に余剰に付着している前駆体9を除去する。この際、洗浄効果を高めるため、アセトンを投入しながら二酸化炭素を流すこともできる。さらに、洗浄工程の際、高圧セル6aの入口と出口のバルブ14,15を閉にし、その間のバルブ18を開にしておけば、二酸化炭素は高圧セル6b側のみに供給されるので、高圧セル6aに残存する前駆体9を予め除去する工程を行う必要がなく、より効果的に洗浄作業を行うことが可能である。本実施形態では高圧ポンプ2側のみならず、溶剤ポンプ10側にもバルブ23を設けている。その他の工程は、前記実施形態1乃至3と同じであるためここでは説明を省略する。
【0061】
(実施形態5)
本実施形態では、無機微粒子の前駆体9として、上記実施形態1乃至4の銀の有機金属錯体に代えて金属アルコキシドを用いた。より具体的には、チタンイソプロポキシドを用いた。そして、この前駆体9を材料8に注入した後、二酸化炭素とともに水を流通させる。これによって、チタンイソプロポキシドは加水分解されて酸化チタンとなり、結果的に酸化チタンの微粒子が材料内に注入、分散されることとなった。
【0062】
使用した装置や材料は実施形態1乃至4と同様のものであり、さらに、実施形態1乃至4と同様の操作手順によって、酸化チタンの微粒子を注入、分散させた材料を得た。
【0063】
(実施形態6)
本実施形態では、有機高分子材料として、上記実施形態1乃至4のポリメチルメタアクリレート(PMMA)に代えてポリエチレンテレフタレート(PET)を用いた。無機微粒子の前駆体9は実施形態1乃至4と同様の銀の錯体を用い、実施形態1乃至4と同様の装置を使用し、同様の操作手順によって、銀の微粒子を分散させた材料を得ることができた。
【0064】
(その他の実施形態)
尚、配管の途中に位置する高圧バルブの形式は、ニードル式、ダイヤフラム式、ボール弁式などの形式のものを使用することができる。圧力調整用にはニードル式のものを用い、流路の効率的な開閉にはボール弁式のものを用いることが好ましい。また、バルブ内部への不純物の流入を防止するためにはダイヤフラム式が好ましい。
【0065】
さらに、高圧セルについては、内部の材料8あるいは流体の変化を観察するため、可視窓を具備していることが好ましい。また、高圧セル内部の反応物が可視窓の内面に付着することを防止するために、可視窓の内面に雲母などの保護カバーを取り付けることが好ましい。さらに、本発明の無機微粒子複合化有機高分子材料の用途は問うものではないが、たとえば電磁波の遮蔽効果を利用した電磁波シールド材料、紫外線を吸収する効果を利用したレンズ等の光関連材料等に適用することができる。
【0066】
【実施例】
以下、本発明の実施例について説明する。
【0067】
(実施例1)
本実施例では、上記実施形態2の装置を用いた。操作手順は、次の通りである。先ず、材料としてPMMAの試験片(15mm×18mm×1mm)を準備して試料架台に固定し、前駆体として試験片の重量に対してAgで15wt%分の、AgFOD(アルドリッチ社製)を、攪拌子と共に高圧セル内に封入した。
【0068】
続いて、二酸化炭素で高圧セル内の残存空気をパージした後、温度を50℃、圧力を20MPaに調整した。所定の条件に到達した後、高圧ポンプでアセトンを投入した。アセトンの投入量は、二酸化炭素のモル数に対して10%とした。アセトンの投入後、高圧セル内の攪拌を開始し、2時間、注入処理を行った。
【0069】
注入処理後、圧力一定で25℃に冷却し、1ml/minの速度で二酸化炭素を流通することによって30分間、試料表面を洗浄した。続いて0.1MPa/minの速度で減圧し、大気圧に到達後、160℃で2時間、熱分解することによって、AgFODを金属のAgに変換した。尚、160℃を分解温度として選定したのは、予め熱分析(TG−DTA)の結果から、前駆体のAgFODは、140℃以上で分解による発熱ピークと重量減少が観察され160℃でほぼ完全に分解することを確認していたためである。
【0070】
次に、試料中のAgの化学形態をX線回折測定装置で分析した。装置はリガク製、RINT2500型のX線回折測定装置を用い、管電圧40kV、管電流200mA、走査速度5°/minの条件で分析した。また、無機微粒子の分散状況は、試料片の断面の透過電子顕微鏡観察を行うことによって観察した。装置は、日立製H−7100型透過電子顕微鏡を用い、加速電圧125kVで観察した。試料は、ウルトラミクロトーム(ダイヤモンドナイフ使用)で超薄切片を作成した後、切片を銅メッシュに積載し、補強処理としてカーボン蒸着処理を施してTEM検鏡用試料とした。得られたTEM像を図5に示す。
【0071】
図5からも明らかなように、PMMAの表面から10nmより深い部位に金属Agの粒子が分散していることが分かった。また、得られたTEM像から500個以上の粒子の粒径を計測し、その平均粒子径を求めた。平均粒子径は20nmであり、粒径の幅は、4nmから40nmであった。さらにAg微粒子の母材に対する体積含有率は8%であった。
【0072】
次に、Ag微粒子を分散させたPMMAの機能性の一つとしての紫外線の吸収性を調べた。具体的には、島津製、UV−2400型UV−VIS分光光度計を用い、上記試験片の吸光度を測定した。リファレンスは未処理のPMMA試験片を用いた。測定の結果、本実施例で得られた試験片は、350nmから450nmの波長領域の光線を吸収することが分かった。
【0073】
ちなみに、PMMAは本来350nmから450nmの波長領域の光線を吸収しないが、上記のようなAg微粒子を複合化させることにより、この波長領域の光線を吸収し、その結果、たとえばコンタクトレンズに好適に適用することができる。さらに、薬品による機能層の剥離の有無を確認するため、上記試験片の表面をアセトンでさらに拭き取り、同様に光の吸収性を調べた結果、拭き取りの前後で、吸収性の差は見られなかった。この結果から、薬剤によっても分散層からの微粒子の脱離は見られないことが確認できた。
【0074】
(実施例2)
本実施例では、材料としてPETの試験片(15mm×18mm×1mm)を用いた。装置、その他の試薬、および操作方法は、実施例1と同じであるのでその説明を省略する。分析の結果、PETの場合も、表面から10nmより深い部位に金属Agの粒子が分散していることが分かった。同一条件では、粒子の平均径は10nmとなり、PMMAの場合と比べて、小さい値となった。
【0075】
PETへのAg微粒子の分散体について、機能性の一つとして電磁波の吸収性について調べた。ヒューレットパッカード社のネットワークアナライザーを用いて測定した結果、本実施例では、最大20dBの吸収による電磁波の遮蔽効果(電磁波の減衰率で90%)が得られた。従って、このようなAg微粒子で複合化されたPETからなる繊維で被服等を編成、織成した場合、電磁波遮蔽効果を有する被服等を提供することができる。
【0076】
さらに、当該試験片の表面をアセトンでさらに拭き取り、同様に電磁波の遮蔽性を調べた結果、拭き取りの前後で、遮蔽性の差は見られなかった。
【0077】
(実施例3)
本実施例では、前駆体としてチタンイソプロポキシドを用いた。チタンイソプロポキシドの重量は、試験片の重量に対してTiで15%分のものを用いた。試験片の材質と大きさは実施例1と同様のものを用いた。補助溶剤としては、上記実施例1のアセトンに代えてエタノール(和光純薬工業製)を用いた。温度、圧力も実施例1と同じ条件で行った。エタノールの投入量は、二酸化炭素のモル数に対して10%とした。二酸化炭素の流通速度や減圧速度、処理時間も実施例1と同じとした。ただし、二酸化炭素とともに水を流通させた。
【0078】
注入後の後処理として、水と高圧流体との混合流体を、注入後の試験片に接触させた。混合比、温度、圧力、処理時間は注入時の条件と同じである。処理の結果、チタンイソプロポキシドは、流通させた水によって加水分解され、酸化チタンに変換された。
【0079】
(その他実施例)
PETとPMMAを用いて、温度を、25℃から80℃まで、圧力を6MPaから30MPaまで、アセトンの添加率を0.5%から10%まで変化させて前記実施例1と同様の実験を行い、試料の分析を行った。その結果、Ag粒子の体積含有率が0.001%以上10%以下であること、粒子径は、1nmから100nmの範囲であることが確認された。
【0080】
さらに、平板状の試料の他に、同芯円筒状の試料、繊維状の試料について同様の条件で実験した結果、各試料について、全表面に微粒子分散層が形成されていることを確認できた。
【0081】
【発明の効果】
以上のように、本発明においては、有機高分子材料の表面から10nmより深い位置に無機微粒子を注入、分散させて複合材料を製造することができるため、その複合材料の表面が過酷な使用条件にさらされても、機能性を有する無機微粒子は、母材となる有機高分子材料から脱離することがないという効果がある。
【0082】
また、無機物質の微粒子の粒子径が、1nm以上100nm以下である場合には、吸収による電磁波遮断効果が得られるという効果がある。
【0083】
さらに、本発明の無機微粒子複合化有機高分子材料の製造方法においては、有機高分子材料と、無機物質の微粒子に変換される無機微粒子の前駆体を溶解した高圧流体とを接触させて前記前駆体を有機高分子材料に注入し、次に前駆体が注入された有機高分子材料と高圧流体とを接触させて、前記有機高分子材料の表面から10nmの深さまでの部分の前駆体を除去すべく洗浄するので、その後に前駆体を無機物質の微粒子に変換すると、上記のように有機高分子材料の表面から10nmより深い部位に無機物質の微粒子が注入、分散された無機微粒子複合化有機高分子材料を好適に製造することが可能となる。
しかも注入処理に用いた高圧流体を前駆体の洗浄処理に利用するので、余剰の前駆体の除去も効率的に行われることとなる。
【0084】
さらに、無機物質の微粒子に変換される前駆体と有機高分子材料とを別々の高圧セルに収容し、前駆体が収容された高圧セルに高圧流体を供給して該前駆体を高圧流体中に溶解し、次に前駆体を溶解した高圧流体を有機高分子材料が収容された高圧セルに供給して両者を接触させて前記前駆体を有機高分子材料に注入し、その後、高圧流体のみを前記有機高分子材料が収容された高圧セルに供給し、前駆体が注入された有機高分子材料と高圧流体とを接触させて洗浄を行なう場合には、高圧流体に溶解した前駆体を効率的に有機高分子材料に接触させることができ、また余剰の前駆体が有機高分子材料に不用意に接触して付着するのを防止することができ、さらに洗浄工程で、高圧セル内に残存する前駆体を予め高圧セル外へ除去せずに二酸化炭素を連続的に通すことによって、より短時間に有機高分子材料の洗浄を行うことができる。しかも高圧セル内部の有機高分子材料のみを取り替えることによって、最初に仕込んだ前駆体を次工程で有効に使用することができるという効果がある。
【0085】
さらに、前駆体を有機高分子材料に注入する際に、高圧流体とともに、有機高分子材料又は前駆体の少なくともいずれかを溶解あるいは可塑化させうる良溶媒を補助溶媒として添加する場合には、有機高分子材料の可塑化をより確実に進行させることができ、或いは前駆体をより好適に溶解させることができるので、有機高分子材料への前駆体の注入をより確実に行うことができるという効果がある。
【0086】
さらに、前駆体を有機高分子材料に注入した後、材料の表面に付着する余剰の前駆体および表面から10nmの深さに注入された前駆体を洗浄して除去する前に、注入時の処理温度より低い温度まで有機高分子材料を冷却する場合には、有機高分子材料の可塑化がある程度抑制され、その後の洗浄時に、すでに注入された前駆体が有機高分子材料から不用意に離脱するのが防止されるという効果がある。
【0087】
さらに、二酸化炭素のような常温常圧で気体である流体をプロセス溶媒として用いて処理する場合には、複合材料と溶媒としての二酸化炭素との分離が容易であり、プロセスの簡略化を図ることができるという効果がある。
【図面の簡単な説明】
【図1】一実施形態としての無機微粒子複合化有機高分子材料の製造装置の概略ブロック図
【図2】一実施形態としての無機微粒子複合化有機高分子材料の製造装置の概略ブロック図
【図3】一実施形態としての無機微粒子複合化有機高分子材料の製造装置の概略ブロック図
【図4】一実施形態としての無機微粒子複合化有機高分子材料の製造装置の概略ブロック図
【図5】一実施例としての無機微粒子の分散状態を示す透過電子顕微鏡写真。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is intended to improve the function of organic polymer materials such as general-purpose plastics, general-purpose engineering plastics, and special engineering plastics, or to impart a new function to organic polymer materials, in order to improve the function of organic polymer materials with inorganic substance fine particles. And a method for producing the same.
[0002]
Problems to be solved by the prior art and the invention
Conventionally, as a technique of compounding an inorganic substance with an organic polymer material, a kneading method of mechanically kneading a fine powder of a metal or a metal oxide, or polymerizing after a metal alkoxide is sol-gel decomposed in an organic monomer. There is a casting method. However, the kneading method has a problem that it is difficult to prevent agglomeration of fine powders and to mix them uniformly. In the casting method, there is a limitation on the amount of a polymer or a polymerizable metal or metal oxide that can be dissolved in a solvent. There is a problem that there is.
[0003]
Further, an ion implantation method in which metal ions are implanted at a high voltage into the surface of a solid such as glass or plastic and then heat-treated to form metal fine particles has been studied as a method for creating an optical element. However, in most cases, this method mainly modifies a smooth surface, and it is difficult to uniformly disperse fine particles in a fine structure.
[0004]
Recently, a supercritical fluid having a plasticizing effect of an organic polymer material has been used to infiltrate an organometallic compound into a material, and then to perform a post-treatment to convert the organometallic compound to a metal. A technique for dispersing fine particles has been announced.
[0005]
For example, as shown in the following Non-Patent Documents 1, 2, and 3, J. Watkins et al. Injected a platinum complex into poly (4-methyl-1-pentene), and then performed hydrogen reduction to form a dispersion layer of platinum fine particles having a diameter of more than 10 nm.
[0006]
[Non-patent document 1]
J. J. Watkins and T.W. J. McCarthy, Polym. Mater. Sci. Eng. , 74, 402 (1996)
[Non-patent document 2]
J. J. Watkins and T.W. J. McCarthy, Polym. Mater. Sci. Eng. , 73, 158 (1995)
[Non-Patent Document 3]
J. J. Watkins and T.W. J. McCarthy, Chem. Mater. , 7, 1991 (1995).
[0007]
Also, as described in Non-patent Documents 4 and 5 below, J.I. Rosolovsky et al. Perform heat treatment after injecting a silver complex using supercritical carbon dioxide to form a mirror surface on the surface of a polyimide resin thin film. As a result, an Ag cluster dispersion layer having a diameter of several tens nm was formed at a depth of several hundred nm from the sample surface.
[0008]
[Non-patent document 4]
J. Rosolovsky, R.A. K. Boggess, A.S. F. Rubira, L.A. T. Taylor, D.A. M. Stokeley and A. K. St. Clair, J .; Mater. Res. , Vol. 12, No. 11, 3127 (1997)
[Non-Patent Document 5]
R. K. Bogesss, L .; T. Taylor, D.A. M. Stokeley and A. K. St. Clair, J .; Appl. Polym. Sci. , 64, 1309 (1997).
[0009]
Further, as described in Non-Patent Document 6 below, N.I. Nazem et al. An Ag mirror surface was formed on the polyetheretherketone resin in a manner similar to that of Rosolovsky et al.
[Non-Patent Document 6]
N. Nazem, L .; T. Taylor and A. F. Rubira, J. et al. Supercritical Fluids, 23, 43 (2002)
[0010]
However, in the method using such a supercritical fluid, there is no report on the result of depositing inorganic particles near the surface of an organic polymer material to form a mirror surface on the surface of a flat plate-shaped material. In most cases, after clarifying the mechanism of dispersion of fine particles from the surface to the inside, it is not clarified how to give a specific function. Furthermore, it does not disclose a processing method for a material having a complicated shape or a strength stability of the dispersion layer. In addition, in the method using such a supercritical fluid, when nanometer-sized fine particles are concentrated and dispersed in the vicinity of the surface, the fine particles are highly organic depending on the use conditions of the material and the surrounding environment. There is a new problem that the fine particle dispersion layer may be physically broken and damaged by detaching from the surface of the molecule.
[0011]
The present inventors have aimed at injecting titanium isopropoxide into polymethyl methacrylate (PMMA) using supercritical carbon dioxide for the purpose of imparting functionality different from the above-mentioned Non-Patent Documents 1 to 6, and A technique for forming a cluster has been developed and disclosed in Non-Patent Document 7 below, but it has not yet been proven to provide a specific function. Further, the problem that "when inorganic fine particles are concentrated only on the surface, the fine particles may be detached from the surface of the organic polymer" has not been solved reliably.
[0012]
[Non-Patent Document 7]
Journal of Polymers, edited by the Society of Polymer Science, Volume 58 Number 12 2001
"Injection of organometallic compounds into polymer materials using supercritical carbon dioxide (T. Nakanishi)"
[0013]
The present invention has been made to solve the above-described problems, and uniformly injects and disperses nanometer-sized inorganic substance fine particles over the entire surface even for an organic polymer material having a complicated shape. In addition, by dispersing the fine particles of the inorganic substance inside the surface of the organic polymer material from the surface of the organic polymer material, the fine particles of the inorganic substance do not separate from the organic polymer material, and the composite material has a long-lasting function. The task is to provide
[0014]
[Means for Solving the Problems]
The present invention has been made to solve such problems as an inorganic fine particle composite organic polymer material and a method for producing the same. In other words, fine particles of an inorganic substance are injected and dispersed in a portion deeper than 10 nm from the substrate.
[0015]
The term “part deeper than 10 nm from the surface” means that the average particle diameter of the injected inorganic fine particles is about 10 nm, and if the inorganic fine particles are injected into a part deeper than the assumed average particle diameter, the inorganic fine particles This is because the possibility of projecting from the surface of the organic polymer material is small.
[0016]
The volume content of the fine particles of the inorganic substance with respect to the organic polymer material is preferably 0.001% or more and 10% or less. If the content is less than 0.001% or more than 10%, for example, it may not be possible to provide functions such as bending elasticity and light absorption in a specific wavelength region. Here, the “volume content of the fine particles of the inorganic substance with respect to the organic polymer material” refers to the organic polymer material only in the portion where the fine particles of the inorganic material are dispersed (the portion having a certain thickness in the organic polymer material). Is assumed to be V 1 And the total volume occupied by the inorganic fine particles in that part is V 2 And V 2 / V 1 × 100 (%).
[0017]
The diameter of the inorganic fine particles is preferably from 1 nm to 100 nm. From the viewpoint that the inorganic fine particles are a reinforcing material for the organic polymer material, the smaller the diameter of the inorganic fine particles, the stronger the interaction with the organic polymer material, and therefore, the lower the flowability of the organic polymer material, The result is a strong material as a composite material. Generally, those having a particle size of 100 nm or less are called nanoparticles, and the nanoparticles have excellent characteristics from the viewpoint of the above-mentioned reinforcing material.
[0018]
Further, it is known that the surface plasmon effect is exerted on the nanoparticles. Surface plasmon refers to a compression wave of electrons that propagates energy of electrons generated between a metal and a base material when metal fine particles are dispersed inside a different kind of material. It is known that the properties strongly depend on the geometrical properties of the interface, and that the plasmon effect appears on the surface of the nano-sized fine particles and absorbs light of a specific wavelength. The reason why the diameter of the inorganic fine particles is preferably 100 nm or less is as described above.
[0019]
As the material of the inorganic fine particles, for example, metal, metal oxide, glass and the like are used. When the metal is inorganic fine particles, the organic polymer material composited with the metal fine particles has a good electromagnetic wave shielding effect. Further, the organic polymer material composited with the fine particles of glass has good transparency.
[0020]
Further, the feature of the method for producing an inorganic fine particle-composite organic polymer material is that the organic polymer material is brought into contact with a high-pressure fluid in which a precursor of inorganic fine particles that is converted into fine particles of an inorganic substance is brought into contact with the precursor. Is injected into the organic polymer material, and then the organic polymer material into which the precursor has been injected is brought into contact with a high-pressure fluid, and the organic polymer material is washed to remove the precursor within 10 nm from the surface of the organic polymer material. Then, the precursor is converted into fine particles of an inorganic material, and fine particles of the inorganic material are injected into a portion deeper than 10 nm from the surface of the organic polymer material to produce an inorganic fine particle composite organic polymer material dispersed therein. It is.
[0021]
Furthermore, the feature as a method of manufacturing other inorganic fine particle composite organic polymer material,
A precursor of inorganic fine particles to be converted into fine particles of an inorganic substance and an organic polymer material are housed in separate high-pressure cells, and a high-pressure fluid is supplied to the high-pressure cell containing the precursor, and the precursor is placed in the high-pressure fluid. The high-pressure fluid in which the precursor is dissolved is then supplied to a high-pressure cell containing an organic polymer material, and the high-pressure fluid in which the precursor is dissolved is brought into contact with the organic polymer material to form the precursor. Is injected into the organic polymer material, then only the high-pressure fluid is supplied to the high-pressure cell containing the organic polymer material, and the organic polymer material in which the precursor is injected is brought into contact with the high-pressure fluid, The organic polymer material is washed to remove the precursor at a depth of 10 nm from the surface thereof, and then the precursor is converted into fine particles of an inorganic substance. No particles are injected and dispersed It is to produce a fine particle composite organic polymer material.
[0022]
When injecting the precursor of the inorganic fine particles into the organic polymer material, a solvent capable of dissolving at least one of the organic polymer material and the precursor can be added as an auxiliary solvent together with the high-pressure fluid. If the auxiliary solvent is a good solvent for the precursor, the precursor can be suitably injected into the organic polymer material by increasing the concentration of the precursor in the high-pressure fluid, and the auxiliary solvent is a good solvent for the organic polymer material. If a solvent is used, the plasticization of the organic polymer material proceeds more suitably, and as a result, the precursor is easily injected into the organic polymer material. Accordingly, the auxiliary solvent may be a good solvent for at least one of the organic polymer material and the precursor, but may be a good solvent for both.
[0023]
Further, after the precursor of the inorganic fine particles is injected into the organic polymer material, a temperature lower than the processing temperature at the time of injection is required before washing and removing the precursor injected within a range of 10 nm from the surface of the organic polymer material. It is also possible to cool the organic polymer material up to. By cooling, plasticization of the organic polymer material is suppressed to some extent, and during subsequent washing, the inorganic fine particle precursor already injected is prevented from being inadvertently separated from the organic polymer material.
[0024]
Means for changing the precursor of the inorganic fine particles into fine particles of the inorganic substance include, for example, means for increasing the temperature of the organic polymer material to thermally decompose the precursor, and adding water to the high-pressure fluid as an auxiliary solvent, Means for bringing the mixed fluid with the high-pressure fluid into contact with the organic polymer material is employed. When the former means is employed, for example, a metal complex is used as a precursor, and when the latter means is employed, for example, a metal alkoxide is used as a precursor.
[0025]
Organic polymer materials serving as base materials include polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), ABS resin, polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), General-purpose plastics such as polyvinylidene chloride (PVDC) and polyethylene terephthalate (PET); general-purpose engineering plastics such as nylon, polyacetal (POM), polycarbonate (PC), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN); PSU), polyether sulfone (PES), polyphenylene sulfide (PPS), polyarylate (PAR), polyamideimide (PAI), polyetherimide (PEI), polyetherether Ton (PEEK), polyimide (PI), fluorocarbon resin (PTFE, PCTFE, PVDF, etc.), such as, but available special engineering plastics, polymer blend can also be used mixtures thereof.
[0026]
Fine particles of the inorganic substance to be injected include, for example, metals, metal oxides, and glass, and as precursors thereof, metal alkoxides or organic metals having a carbon-metal bond such as a metal complex in the molecule. Compounds are available. The types of metals include silver (Ag), gold (Au), copper (Cu), titanium (Ti), silicon (Si), zinc (Zn), nickel (Ni), aluminum (Al), and palladium (Pd). , Platinum (Pt), iron (Fe), manganese (Mn), and the like.
[0027]
As the high-pressure fluid, various fluids can be used, but it is preferable to use a subcritical fluid or a supercritical fluid having excellent permeability to the organic polymer material. Examples of the type of fluid include carbon dioxide (critical temperature: 31.1 ° C., critical pressure: 7.38 MPa), nitrous oxide (critical temperature: 36.4 ° C., critical pressure: 7.24 MPa), trifluoromethane (critical Temperature: 25.9 ° C, critical pressure: 4.84 MPa), nitrogen (critical temperature: -147 ° C, critical pressure: 3.39 MPa), or a mixture of two or more thereof can be used.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0029]
(Embodiment 1)
FIG. 1 is a schematic block diagram of an apparatus used for producing an inorganic fine particle composite organic polymer material according to one embodiment. The apparatus of the present embodiment includes a high-pressure pump 2, a pressure gauge 3, a thermostat 4, a back pressure valve 5, and a high-pressure cell 6.
[0030]
The high-pressure pump 2 is a pump for supplying a high-pressure fluid to the high-pressure cell 6. In the present embodiment, a plunger-type high-pressure pump manufactured by JASCO Corporation was used. However, for example, a plunger-type or diaphragm-type plunger such as manufactured by Nippon Seiki Seiki, Nikkiso Co., Ltd., or Fuji Pump Co., Ltd. High pressure pumps can generally be used. The high-pressure pump 2 is connected to a cylinder 1 for supplying a high-pressure fluid. In the present embodiment, carbon dioxide is used as the high-pressure fluid.
[0031]
The pressure gauge 3 is for detecting and displaying the pressure in the system at the time of operation, and is preferably installed before the high-pressure cell 6 in order to prevent contamination inside the instrument. For example, a pressure gauge manufactured by Nagano Keiki, Yamazaki Keiki, or the like can be used. In addition, as a type, a diaphragm type and a Bourdon tube type can be used, but a diaphragm type is preferable in order to prevent contamination.
[0032]
The thermostat 4 is for precisely adjusting the temperature of the high-pressure cell 6, and the medium for heat conduction can be air, water, oil, ethylene glycol, sand, or a mixture thereof. Oil and sand are effective at high temperatures of 100 ° C. or higher, and water, ethylene glycol, and a mixture thereof are effective at low temperatures of 100 ° C. or lower. Air is effectively applicable to both ranges. In the present embodiment, an air-circulating constant-temperature bath manufactured by GL-Science that can perform precise temperature control is used.
[0033]
The back pressure valve 5 is a valve for keeping the pressure in the high pressure cell 6 constant, and a manual or automatic back pressure valve can be used. For example, a back pressure valve manufactured by AKICO, Toyo Kogyo, JASCO, or the like can be used, but an automatic control type back pressure valve is preferable from the viewpoint of fine adjustment of the decompression speed and reduction of pressure fluctuation.
[0034]
The high-pressure cell 6 is a container for injecting a precursor 9 of inorganic fine particles into a material 8. Inside the high-pressure cell, a gantry for fixing the material and a stirring device for stirring the fluid in the cell are provided. As the stirring equipment, any of a stirring blade type and a fluid circulation type can be used. Although not shown, a visible window for internal observation may be attached in order to easily observe the state inside the high-pressure cell 6.
[0035]
In addition, in the device of the present embodiment, each device is connected by a pressure-resistant pipe, and further, a pressure-resistant valve for adjusting the flow rate of the fluid and for opening and closing the flow path is provided at an intermediate portion of the path of the pipe. (The pressure-resistant valve is omitted in the drawing.) For example, a pressure-resistant valve manufactured by Swagelok or Autoclave can be used. The material of the pressure-resistant component device is not particularly limited, but is preferably a pressure-resistant and corrosion-resistant material such as SUS314, SUS316, SUS316L, Hastelloy, Inconel, or Monel steel.
[0036]
Next, an embodiment of a method for producing an inorganic fine particle composite organic polymer material using such an apparatus will be described.
[0037]
First, an organic polymer material (hereinafter, also simply referred to as a material) 8 for injecting and dispersing inorganic fine particles is fixed to a material fixing base in the high-pressure cell 6, and a precursor 9 of the inorganic fine particles is stirred with stirring for stirring. The high pressure cell 6 is sealed together with the child 7. In the present embodiment, polymethyl methacrylate (PMMA), which is a general-purpose plastic and is important as an optical functional material, is used as the material 8. As the inorganic fine particles, silver was selected, which has little effect on the living body and can be expected to impart electromagnetic wave shielding properties and conductivity. As the silver precursor 8, silver (6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanezinate), which is a silver complex, was used. (Abbreviation AgFOD).
[0038]
Next, carbon dioxide is supplied from the cylinder 1 to the high-pressure cell 6, and after purging the remaining air in the high-pressure cell 6, carbon dioxide is supplied to the high-pressure cell 6 using the high-pressure pump 2, and the temperature and pressure are adjusted. did. The temperature was adjusted in the thermostat 4 and the pressure was adjusted in the back pressure valve 5. The temperature and pressure may be such that the high-pressure fluid used is a subcritical fluid or a supercritical fluid. In this embodiment, since carbon dioxide (critical temperature: 31.1 ° C., critical pressure: 7.38 MPa) is used as the high-pressure fluid, the temperature range is preferably 25 ° C. to 80 ° C., and the pressure is preferably 6 MPa to 50 MPa.
[0039]
After reaching the predetermined temperature and pressure conditions, the high-pressure pump 1 was stopped, the stirring in the high-pressure cell 6 was started by the stirrer 7, and the carbon dioxide and the precursor 9 were mixed. Although not shown, a magnet type stirring device was used for rotating the stirrer 7. After the start of the stirring, the injection treatment was performed for a predetermined time.
[0040]
When the supercritical fluid of carbon dioxide comes into contact with the material 8, the carbon dioxide permeates into the inside of the material 8. Therefore, the material 8 swells and plasticizes, the glass transition temperature decreases, the viscosity decreases, and the transfer characteristics of the substance inside the material 8 are significantly improved. Further, since the precursor 9 is dissolved in carbon dioxide as a supercritical fluid, the precursor 9 can be permeated into the material 8 using carbon dioxide as a medium. The processing time at this time is preferably 0.5 hours to 4 hours.
[0041]
After the injection treatment, the high-pressure pump 6 was operated to continuously flow carbon dioxide, and the precursor 9 excessively attached to the surface of the material 8 was removed.
When carbon dioxide is continuously circulated, the precursor 9 first flows out of the high-pressure cell 6, and then the carbon dioxide comes into contact with the surface of the material 8. 9 can be washed away. At this time, the precursor 9 that has permeated into the material 8 is fixed inside the material 8 and does not flow out. Before flowing the carbon dioxide, the mobility of the precursor inside the material 8 may be reduced by cooling the temperature once to a low temperature of 25 ° C. or lower, and then the carbon dioxide may be passed.
[0042]
Thereafter, the back pressure valve 5 is opened to reduce the pressure in the high pressure cell 6 to the atmospheric pressure. At this time, if the pressure is reduced at a speed higher than 0.1 MPa / min, the material 8 foams due to carbon dioxide remaining inside the material 8. When the pressure is reduced without foaming the material 8, it is preferable to reduce the pressure at a speed lower than 0.1 MPa / min.
[0043]
Further, the precursor 9 inside the material 8 is reduced to metal fine particles by performing a heat treatment in the constant temperature bath 4 while holding the material 8 inside the high-pressure cell 6, thereby producing an inorganic fine particle composite organic polymer material. did.
[0044]
The operating condition of the thermostat 4 was 160 ° C., which is the decomposition temperature of AgFOD as the precursor 9, and the treatment time was 2 hours. The precursor 9 can be converted from an organic substance to an inorganic substance by thermal decomposition. At this time, since the thermal decomposition temperature varies depending on the type of the precursor 9, the processing temperature is appropriately selected according to the type. be able to. For example, the acetylacetone complex of silver is 100 ° C, the acetylacetone complex of copper is 286 ° C, the acetylacetone complex of nickel is 240 ° C, the acetylacetone complex of platinum is 251 ° C, and the acetylacetone complex of palladium is 260 ° C.
[0045]
(Embodiment 2)
As shown in FIG. 2, the equipment of the present embodiment includes a solvent pump 10 in addition to the high-pressure pump 2, the pressure gauge 3, the thermostat 4, the back pressure valve 5, and the high-pressure cell 6. The storage tank 11 is connected. That is, in the present embodiment, carbon dioxide is used as the fluid, and a solvent is used as the auxiliary solvent.
[0046]
Next, only the different parts of the operation procedure are shown in comparison with the first embodiment.
[0047]
After the material 8 and the precursor 9 are sealed in the high-pressure cell 6 and the remaining air is purged, carbon dioxide is allowed to flow to set a predetermined temperature and pressure, and then acetone as a solvent is pumped through a solvent pump 10. Then, a predetermined amount is charged into the high-pressure cell 6. After the introduction of acetone, the high-pressure pump 6 and the solvent pump 10 are stopped, and injection is performed for a predetermined time. The amount of acetone to be charged is preferably from 0.5% to 10% in molar ratio with respect to the amount of carbon dioxide to be charged under predetermined temperature and pressure conditions.
[0048]
After the injection process, the high-pressure pump 6 is operated to continuously flow carbon dioxide, and when removing the precursor 9 excessively attached to the surface of the material 8, acetone is added while enhancing the cleaning effect. , Can also flow carbon dioxide. The operation procedures other than the injection processing of the precursor 9 and the cleaning and removal processing of the surplus precursor 9 are the same as those in the first embodiment, and thus the description thereof is omitted here.
[0049]
In this embodiment, since acetone, which is a good solvent for both the organic polymer material 8 and the precursor 9, is used as an auxiliary solvent, the material 8 is more easily plasticized, and the precursor 9 is placed inside the material 8. This has the effect of making it easier to penetrate. In addition, by increasing the solubility of the precursor 9 in carbon dioxide, the amount of the precursor 9 that permeates into the material 8 can be increased. Further, since the auxiliary solvent is used in the cleaning step, the precursor 9 adheres to the surface of the material 8. There is an effect that the cleaning effect of the surplus precursor 9 can be further improved.
[0050]
From the viewpoint of exhibiting such effects, it is desirable that the solvent should be selected from a good solvent for the material 8 and a good solvent for the precursor 9 of the inorganic fine particles. In this embodiment, acetone is used as the solvent. However, the interaction between the auxiliary solvent and the precursor 9 or the material 8 is checked in advance, and a good solvent for the precursor 9, a good solvent for the material 8, or a precursor for the material 8 is used. By confirming that both 9 and 8 are good solvents, a solvent other than acetone can be appropriately selected. For example, lower alcohols such as methanol, ethanol, n-propanol and isopropanol can be used.
[0051]
(Embodiment 3)
In the present embodiment, as shown in FIG. 3, two high-pressure cells, a high-pressure cell 6a dedicated to dissolving and extracting the inorganic fine particle precursor 9 and a high-pressure cell 6b dedicated to processing of the material 8, are provided. The thermostats 4a and 4b are installed in the cell, respectively, and a circulation pump 12 and a circulation line 22 are installed for stirring the system.
[0052]
In the first and second embodiments, the dissolution of the precursor 9 and the plasticization of the material 8 are performed in one high-pressure cell. In the present embodiment, the dissolution and extraction of the precursor 9 in the high-pressure cell 6a are performed. The processing and the plasticizing processing of the material 8 in the high-pressure cell 6b are performed.
[0053]
More specifically, first, the valve 13 on the high-pressure pump 2 side and the valves 14, 15, 16, and 17 at the inlet and outlet of the high-pressure cells 6a and 6b are opened, and the other valves are opened. After the remaining air in the high-pressure cells 6a and 6b is purged with the 18, 19, 20, and 21 being closed, carbon dioxide is removed from the cylinder 1 using the high-pressure pump 2 until a predetermined temperature and pressure are reached. , 6b.
[0054]
After reaching a predetermined pressure, the high-pressure pump 2 is stopped, the valve 13 on the high-pressure pump 2 side is closed, the valves 20 and 21 in the circulation line 22 are opened, and the circulation pump 12 is operated. Let it. As a result, the high-pressure fluid circulates through the circulation line 22 and is supplied to the high-pressure cells 6a and 6b, and the high-pressure fluid efficiently dissolves the precursor 9 and efficiently comes into contact with the material 8, so that the excess precursor 9 can be prevented from inadvertently contacting and adhering to the material 8.
[0055]
In this way, after the precursor 9 is injected into the material 8, the valves 14 and 15 at the inlet and outlet of the high-pressure cell 6a are closed, and the valve 18 therebetween is opened. The precursor 9 is not supplied to the high-pressure cell 6a, and only the high-pressure fluid is supplied to the high-pressure cell 6b. As a result, the material 8 is cleaned as in the above embodiments. In this cleaning step, the precursor 9 remaining in the high-pressure cell 6a does not need to be discharged to the outside of the high-pressure cell 6a. 8 can be performed.
[0056]
After the above-described injection and cleaning processes are completed, the back pressure valve 5 is opened to remove carbon dioxide in the high pressure cell 6b, the high pressure cell 6b is opened, and a new material 8 is put in the high pressure cell 6b and installed. Then, the same processing is performed. In this case, since the precursor 9 is housed in the high-pressure cell 6b in which the material 8 is housed and in another high-pressure cell 6a, by replacing only the material 8 in the high-pressure cell 6b, the inside of the high-pressure cell 6a is replaced. The precursor 9 that has been initially charged can be effectively used in the processing of the next new material.
[0057]
As described above, in the present embodiment, two high-pressure cells, the high-pressure cell 6a dedicated to dissolution and extraction and the high-pressure cell 6b dedicated to processing of the material 8 are provided, and the circulation pump 7 stirs the system. Inside the high-pressure cell 6a, the precursor 9 dissolved in the high-pressure fluid can efficiently contact the material 8, and the excessive precursor 9 can be prevented from inadvertently contacting and adhering to the material 8, In the next cleaning step, the carbon dioxide is continuously passed only through the high-pressure cell 6b without removing the precursor 9 remaining in the high-pressure cell 6a out of the high-pressure cell 6a in advance, thereby cleaning the material 8 in a shorter time. By replacing only the material 8 inside the high-pressure cell 6b, the precursor 9 initially charged can be effectively used in the next step.
[0058]
(Embodiment 4)
The apparatus of the present embodiment includes a solvent storage tank 10 and a solvent pump 11 in addition to the components of the third embodiment as shown in FIG. Therefore, in the present embodiment, carbon dioxide is used as the fluid, and a solvent is used as the auxiliary solvent. The effect of using a solvent in addition to carbon dioxide is the same as that of the second embodiment.
[0059]
Next, only a different part of the operation procedure will be described in comparison with the third embodiment. That is, the material 8 and the precursor 9 of the inorganic fine particles are sealed in the high-pressure cells 6a and 6b, respectively, and after purging the remaining air, carbon dioxide is allowed to flow to set a predetermined temperature and pressure. Is supplied to the high-pressure cell 6a and the high-pressure cell 6b by using the solvent pump 11 as a predetermined amount. After the supply of acetone, the high-pressure pump 2 is stopped, and injection is performed for a predetermined time. At this time, the circulation pump 12 is operated to uniformly stir the fluid in the system. As in the second embodiment, the supply amount of acetone is preferably 0.5 to 10% in terms of a molar ratio with respect to the input amount of carbon dioxide under predetermined temperature and pressure conditions.
[0060]
After the injection treatment, the high-pressure pump 2 is operated to continuously flow carbon dioxide, and the precursor 9 excessively attached to the surface of the material 8 is removed. At this time, in order to enhance the cleaning effect, it is possible to flow carbon dioxide while introducing acetone. Further, in the cleaning step, if the valves 14 and 15 at the inlet and the outlet of the high-pressure cell 6a are closed and the valve 18 between them is opened, the carbon dioxide is supplied only to the high-pressure cell 6b side. There is no need to perform a step of removing the precursor 9 remaining in 6a in advance, and the cleaning operation can be performed more effectively. In this embodiment, the valve 23 is provided not only on the high pressure pump 2 side but also on the solvent pump 10 side. The other steps are the same as those in the first to third embodiments, and the description is omitted here.
[0061]
(Embodiment 5)
In the present embodiment, a metal alkoxide is used as the precursor 9 of the inorganic fine particles instead of the organometallic complex of silver in the first to fourth embodiments. More specifically, titanium isopropoxide was used. Then, after injecting the precursor 9 into the material 8, water is flowed together with carbon dioxide. As a result, titanium isopropoxide is hydrolyzed into titanium oxide, and as a result, titanium oxide fine particles are injected and dispersed in the material.
[0062]
The devices and materials used were the same as those in Embodiments 1 to 4, and a material in which titanium oxide fine particles were injected and dispersed was obtained by the same operation procedure as in Embodiments 1 to 4.
[0063]
(Embodiment 6)
In the present embodiment, polyethylene terephthalate (PET) is used as the organic polymer material instead of the polymethyl methacrylate (PMMA) of the first to fourth embodiments. The precursor 9 of the inorganic fine particles uses the same silver complex as in Embodiments 1 to 4, uses the same apparatus as in Embodiments 1 to 4, and obtains a material in which silver fine particles are dispersed by the same operation procedure. I was able to.
[0064]
(Other embodiments)
The high-pressure valve located in the middle of the pipe may be of a needle type, a diaphragm type, a ball valve type, or the like. It is preferable to use a needle type for pressure adjustment and a ball valve type for efficient opening and closing of the flow path. In order to prevent impurities from flowing into the valve, a diaphragm type is preferable.
[0065]
Further, the high-pressure cell preferably has a visible window for observing changes in the material 8 or the fluid inside. In order to prevent reactants inside the high-pressure cell from adhering to the inner surface of the visible window, it is preferable to attach a protective cover such as mica to the inner surface of the visible window. Further, the application of the inorganic fine particle composite organic polymer material of the present invention does not matter, but for example, an electromagnetic shielding material utilizing an electromagnetic shielding effect, a light-related material such as a lens utilizing an ultraviolet absorbing effect, and the like. Can be applied.
[0066]
【Example】
Hereinafter, examples of the present invention will be described.
[0067]
(Example 1)
In this example, the apparatus of the second embodiment was used. The operation procedure is as follows. First, a test piece (15 mm × 18 mm × 1 mm) of PMMA was prepared as a material and fixed to a sample mount. AgFOD (manufactured by Aldrich) for 15 wt% of Ag with respect to the weight of the test piece was used as a precursor. It was sealed in a high-pressure cell together with a stirrer.
[0068]
Subsequently, after purging the remaining air in the high-pressure cell with carbon dioxide, the temperature was adjusted to 50 ° C. and the pressure was adjusted to 20 MPa. After reaching the predetermined conditions, acetone was injected with a high-pressure pump. The amount of acetone was 10% based on the number of moles of carbon dioxide. After the introduction of acetone, stirring in the high-pressure cell was started, and injection treatment was performed for 2 hours.
[0069]
After the injection treatment, the sample was cooled to 25 ° C. at a constant pressure, and the sample surface was washed for 30 minutes by flowing carbon dioxide at a rate of 1 ml / min. Subsequently, the pressure was reduced at a rate of 0.1 MPa / min, and after reaching atmospheric pressure, AgFOD was converted to metal Ag by thermal decomposition at 160 ° C. for 2 hours. The reason why the temperature of 160 ° C. was selected as the decomposition temperature was that the AgFOD of the precursor was found to have an exothermic peak due to decomposition and a weight loss at 140 ° C. or higher from the results of thermal analysis (TG-DTA) in advance. It was confirmed that it was decomposed into
[0070]
Next, the chemical form of Ag in the sample was analyzed with an X-ray diffractometer. The apparatus was analyzed using a RINT 2500 type X-ray diffractometer manufactured by Rigaku Corporation under the conditions of a tube voltage of 40 kV, a tube current of 200 mA and a scanning speed of 5 ° / min. The dispersion state of the inorganic fine particles was observed by observing the cross section of the sample piece with a transmission electron microscope. The device was observed at an accelerating voltage of 125 kV using a Hitachi H-7100 transmission electron microscope. After preparing ultrathin sections with an ultramicrotome (using a diamond knife), the sections were mounted on a copper mesh and subjected to a carbon vapor deposition treatment as a reinforcing treatment to obtain a sample for a TEM microscope. The obtained TEM image is shown in FIG.
[0071]
As is clear from FIG. 5, it was found that metal Ag particles were dispersed in a portion deeper than 10 nm from the surface of PMMA. The particle diameter of 500 or more particles was measured from the obtained TEM image, and the average particle diameter was determined. The average particle size was 20 nm, and the size range was from 4 nm to 40 nm. Further, the volume content of the Ag fine particles with respect to the base material was 8%.
[0072]
Next, the absorbency of ultraviolet light as one of the functions of PMMA in which Ag fine particles were dispersed was examined. Specifically, the absorbance of the test piece was measured using a UV-2400 UV-VIS spectrophotometer manufactured by Shimadzu. An untreated PMMA test piece was used as a reference. As a result of the measurement, it was found that the test piece obtained in this example absorbed light in a wavelength region of 350 nm to 450 nm.
[0073]
Incidentally, PMMA originally does not absorb light in the wavelength region of 350 nm to 450 nm, but it absorbs light in this wavelength region by combining Ag fine particles as described above, and as a result, is suitably applied to, for example, contact lenses. can do. Furthermore, in order to confirm the presence or absence of peeling of the functional layer due to the chemical, the surface of the test piece was further wiped with acetone, and the light absorption was similarly examined. As a result, no difference was observed before and after the wiping. Was. From this result, it was confirmed that no desorption of the fine particles from the dispersion layer was observed even by the drug.
[0074]
(Example 2)
In this example, a PET test piece (15 mm × 18 mm × 1 mm) was used as a material. The apparatus, other reagents, and operation method are the same as those in the first embodiment, and a description thereof will be omitted. As a result of the analysis, it was found that also in the case of PET, metal Ag particles were dispersed in a portion deeper than 10 nm from the surface. Under the same conditions, the average particle diameter was 10 nm, which was smaller than that of PMMA.
[0075]
Regarding the dispersion of Ag fine particles in PET, the electromagnetic wave absorption was examined as one of the functionalities. As a result of measurement using a network analyzer manufactured by Hewlett-Packard Company, in the present embodiment, an electromagnetic wave shielding effect (90% in terms of electromagnetic wave attenuation) due to absorption of a maximum of 20 dB was obtained. Therefore, when knitting and weaving a garment or the like with fibers of PET compounded with such Ag fine particles, a garment or the like having an electromagnetic wave shielding effect can be provided.
[0076]
Further, the surface of the test piece was further wiped off with acetone, and the shielding performance of electromagnetic waves was similarly examined. As a result, no difference was observed between before and after the wiping.
[0077]
(Example 3)
In this example, titanium isopropoxide was used as a precursor. The weight of titanium isopropoxide used was 15% of Ti with respect to the weight of the test piece. The material and size of the test piece were the same as in Example 1. As the auxiliary solvent, ethanol (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of acetone in Example 1 above. The temperature and pressure were the same as in Example 1. The amount of ethanol added was 10% based on the number of moles of carbon dioxide. The flow rate of carbon dioxide, the pressure reduction rate, and the processing time were the same as those in Example 1. However, water was circulated together with carbon dioxide.
[0078]
As a post-treatment after the injection, a mixed fluid of water and a high-pressure fluid was brought into contact with the test piece after the injection. The mixing ratio, temperature, pressure, and processing time are the same as the conditions at the time of injection. As a result of the treatment, titanium isopropoxide was hydrolyzed by flowing water and converted to titanium oxide.
[0079]
(Other examples)
The same experiment as in Example 1 was performed using PET and PMMA, changing the temperature from 25 ° C. to 80 ° C., the pressure from 6 MPa to 30 MPa, and the addition ratio of acetone from 0.5% to 10%. The samples were analyzed. As a result, it was confirmed that the volume content of the Ag particles was 0.001% or more and 10% or less, and the particle diameter was in the range of 1 nm to 100 nm.
[0080]
Furthermore, in addition to the flat sample, a concentric cylindrical sample and a fibrous sample were tested under the same conditions. As a result, it was confirmed that a fine particle dispersion layer was formed on the entire surface of each sample. .
[0081]
【The invention's effect】
As described above, in the present invention, since a composite material can be manufactured by injecting and dispersing inorganic fine particles at a position deeper than 10 nm from the surface of the organic polymer material, the surface of the composite material can be used under severe operating conditions. The inorganic fine particles having the function do not desorb from the organic polymer material as the base material even when exposed to water.
[0082]
Further, when the particle diameter of the inorganic fine particles is 1 nm or more and 100 nm or less, there is an effect that an electromagnetic wave blocking effect by absorption is obtained.
[0083]
Further, in the method for producing an inorganic fine particle-composite organic polymer material of the present invention, the organic polymer material is brought into contact with a high-pressure fluid in which a precursor of inorganic fine particles to be converted into fine particles of an inorganic substance is brought into contact with the organic polymer material. The body is injected into the organic polymer material, and then the organic polymer material into which the precursor has been injected is brought into contact with the high-pressure fluid to remove a part of the precursor from the surface of the organic polymer material to a depth of 10 nm. If the precursor is converted into fine particles of an inorganic substance, the fine particles of the inorganic substance are injected into a portion deeper than 10 nm from the surface of the organic polymer material and dispersed as described above. It is possible to suitably produce a polymer material.
In addition, since the high-pressure fluid used for the injection process is used for the cleaning process of the precursor, excess precursor is efficiently removed.
[0084]
Further, the precursor to be converted into fine particles of the inorganic substance and the organic polymer material are housed in separate high-pressure cells, and a high-pressure fluid is supplied to the high-pressure cell in which the precursor is housed, and the precursor is placed in the high-pressure fluid. Dissolve and then supply the high-pressure fluid in which the precursor is dissolved to a high-pressure cell containing the organic polymer material, contact the two, and inject the precursor into the organic polymer material, and then only the high-pressure fluid When the organic polymer material is supplied to a high-pressure cell in which the organic polymer material is contained, and the organic polymer material into which the precursor is injected is brought into contact with the high-pressure fluid for cleaning, the precursor dissolved in the high-pressure fluid is efficiently treated. Can be prevented from contacting and adhering to the organic polymer material by careless contact with the organic polymer material, and can remain in the high-pressure cell during the washing step. Diacid without first removing the precursor out of the high pressure cell By passing carbon continuously, it can be performed more quickly in the washing of the organic polymer material. Moreover, by replacing only the organic polymer material inside the high-pressure cell, there is an effect that the precursor initially charged can be effectively used in the next step.
[0085]
Further, when the precursor is injected into the organic polymer material, when a good solvent capable of dissolving or plasticizing at least one of the organic polymer material and the precursor is added as an auxiliary solvent together with the high-pressure fluid, Since the plasticization of the polymer material can proceed more reliably or the precursor can be more suitably dissolved, the effect of more reliably injecting the precursor into the organic polymer material can be obtained. There is.
[0086]
Further, after the precursor is injected into the organic polymer material, a treatment at the time of the injection is performed before cleaning and removing the excess precursor adhering to the surface of the material and the precursor injected to a depth of 10 nm from the surface. When the organic polymer material is cooled to a temperature lower than the temperature, plasticization of the organic polymer material is suppressed to some extent, and during subsequent washing, the already injected precursor is inadvertently separated from the organic polymer material. This has the effect of preventing the occurrence of an error.
[0087]
Furthermore, when a fluid that is a gas at normal temperature and normal pressure, such as carbon dioxide, is treated as a process solvent, separation of the composite material and carbon dioxide as a solvent is easy, and the process should be simplified. There is an effect that can be.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram of an apparatus for manufacturing an inorganic fine particle composite organic polymer material as one embodiment.
FIG. 2 is a schematic block diagram of an apparatus for producing an inorganic fine particle composite organic polymer material as one embodiment.
FIG. 3 is a schematic block diagram of an apparatus for manufacturing an inorganic fine particle composite organic polymer material as one embodiment.
FIG. 4 is a schematic block diagram of an apparatus for producing an inorganic fine particle composite organic polymer material as one embodiment.
FIG. 5 is a transmission electron micrograph showing a dispersion state of inorganic fine particles as one example.

Claims (12)

有機高分子材料の表面から10nmより深い部位に、無機物質の微粒子が注入、分散されていることを特徴とする無機微粒子複合化有機高分子材料。An inorganic fine particle composite organic polymer material, wherein fine particles of an inorganic substance are injected and dispersed in a portion deeper than 10 nm from the surface of the organic polymer material. 無機物質の微粒子の体積含有率が、0.001%以上10%以下である請求項1記載の無機微粒子複合化有機高分子材料。The inorganic fine particle composite organic polymer material according to claim 1, wherein a volume content of the fine particles of the inorganic substance is 0.001% or more and 10% or less. 無機物質の微粒子の粒子径が、1nm以上100nm以下である請求項1又は2記載の無機微粒子複合化有機高分子材料。3. The organic polymer material with composite inorganic fine particles according to claim 1, wherein the fine particles of the inorganic substance have a particle diameter of 1 nm or more and 100 nm or less. 無機物質の微粒子が、金属、金属酸化物、又はガラスである請求項1乃至3のいずれかに記載の無機微粒子複合化有機高分子材料。4. The inorganic fine particle composite organic polymer material according to claim 1, wherein the inorganic fine particles are a metal, a metal oxide, or a glass. 有機高分子材料と、無機物質の微粒子に変換される無機微粒子の前駆体を溶解した高圧流体とを接触させることによって前記前駆体を有機高分子材料に注入し、次に前駆体が注入された有機高分子材料と高圧流体とを接触させて、有機高分子材料の表面から10nmの深さまでの部分の前駆体を除去すべく洗浄し、その後、前駆体を無機物質の微粒子に変換して、有機高分子材料の表面から10nmより深い部位に無機物質の微粒子が注入、分散された複合化材料を製造することを特徴とする無機微粒子複合化有機高分子材料の製造方法。The organic polymer material and the precursor were injected into the organic polymer material by contacting a high-pressure fluid in which a precursor of the inorganic fine particles to be converted into fine particles of the inorganic substance was dissolved, and then the precursor was injected. The organic polymer material is brought into contact with a high-pressure fluid, washed to remove a part of the precursor from the surface of the organic polymer material to a depth of 10 nm, and then the precursor is converted into fine particles of an inorganic substance. A method for producing an inorganic fine particle composite organic polymer material, comprising: producing a composite material in which fine particles of an inorganic substance are injected into a portion deeper than 10 nm from the surface of the organic polymer material and dispersed. 無機物質の微粒子に変換される無機微粒子の前駆体と有機高分子材料とを別々の高圧セルに収容し、前駆体が収容された高圧セルに高圧流体を供給して該前駆体を高圧流体中に溶解し、次に前駆体を溶解した高圧流体を、有機高分子材料が収容された高圧セルに供給し、該有機高分子材料に前記前駆体を溶解した高圧流体を接触させることによって前記前駆体を有機高分子材料に注入し、次に高圧流体のみを前記有機高分子材料が収容された高圧セルに供給し、前駆体が注入された有機高分子材料と高圧流体とを接触させて、前記有機高分子材料の表面から10nmの深さまでの部分の前駆体を除去すべく洗浄し、その後、前駆体を無機物質の微粒子に変換して、有機高分子材料の表面から10nmより深い部位に無機物質の微粒子が注入、分散された複合化材料を製造することを特徴とする無機微粒子複合化有機高分子材料の製造方法。The precursor of the inorganic fine particles to be converted into the fine particles of the inorganic substance and the organic polymer material are accommodated in separate high-pressure cells, and the high-pressure fluid is supplied to the high-pressure cell containing the precursor, and the precursor is placed in the high-pressure fluid. The high-pressure fluid in which the precursor is dissolved is then supplied to a high-pressure cell containing an organic polymer material, and the high-pressure fluid in which the precursor is dissolved is brought into contact with the organic polymer material, whereby the precursor is dissolved. The body is injected into the organic polymer material, then only the high-pressure fluid is supplied to the high-pressure cell containing the organic polymer material, and the organic polymer material in which the precursor is injected is brought into contact with the high-pressure fluid, The surface of the organic polymer material is washed to remove the precursor at a depth of 10 nm from the surface, and then the precursor is converted into fine particles of an inorganic substance. Fine particles of inorganic substances are injected, Method of producing an inorganic fine particle composite organic polymer material, characterized in that to produce a dispersed composite material. 無機微粒子の前駆体を有機高分子材料に注入する際に、高圧流体とともに、有機高分子材料又は前駆体の少なくともいずれかを溶解又は可塑化させうる溶剤を補助溶媒として添加する請求項5又は6記載の無機微粒子複合化有機高分子材料の製造方法。7. When the precursor of the inorganic fine particles is injected into the organic polymer material, a solvent capable of dissolving or plasticizing at least one of the organic polymer material and the precursor is added as an auxiliary solvent together with the high-pressure fluid. The method for producing the inorganic fine particle composite organic polymer material according to the above. 無機微粒子の前駆体を有機高分子材料に注入した後、有機高分子材料の表面から10nmの深さまでの部分の前駆体を洗浄して除去する前に、注入時の処理温度より低い温度まで有機高分子材料を冷却する請求項5乃至7のいずれかに記載の無機微粒子複合化有機高分子材料の製造方法。After injecting the precursor of the inorganic fine particles into the organic polymer material, before washing and removing the precursor from the surface of the organic polymer material to a depth of 10 nm, the organic material is cooled to a temperature lower than the processing temperature at the time of injection. The method for producing an inorganic fine particle composite organic polymer material according to any one of claims 5 to 7, wherein the polymer material is cooled. 無機微粒子の前駆体を無機物質の微粒子に変換させる手段が、有機高分子材料の温度を上昇させて前記前駆体を熱分解する手段である請求項5乃至8のいずれかに記載の無機微粒子複合化有機高分子材料の製造方法。The inorganic fine particle composite according to any one of claims 5 to 8, wherein the means for converting the inorganic fine particle precursor into the inorganic substance fine particles is a means for increasing the temperature of the organic polymer material to thermally decompose the precursor. Of producing a fluorinated organic polymer material. 前記無機微粒子の前駆体が、金属錯体である請求項9記載の無機微粒子複合化有機高分子材料の製造方法。10. The method for producing an inorganic fine particle composite organic polymer material according to claim 9, wherein the precursor of the inorganic fine particles is a metal complex. 無機微粒子の前駆体を無機物質の微粒子に変換させる手段が、水を補助溶剤として高圧流体に添加し、水と高圧流体との混合流体と、有機高分子材料とを接触させる手段である請求項5乃至8のいずれかに記載の無機微粒子複合化有機高分子材料の製造方法。The means for converting the precursor of the inorganic fine particles into the fine particles of the inorganic substance is a means for adding water to the high-pressure fluid as an auxiliary solvent and bringing the mixed fluid of water and the high-pressure fluid into contact with the organic polymer material. 9. The method for producing an inorganic fine particle composite organic polymer material according to any one of 5 to 8. 無機微粒子の前駆体が、金属アルコキシドである請求項11記載の無機微粒子複合化有機高分子材料の製造方法。The method for producing an inorganic fine particle composite organic polymer material according to claim 11, wherein the precursor of the inorganic fine particles is a metal alkoxide.
JP2002299446A 2002-10-11 2002-10-11 Manufacturing method of inorganic fine particle composite organic polymer material. Expired - Fee Related JP4324360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002299446A JP4324360B2 (en) 2002-10-11 2002-10-11 Manufacturing method of inorganic fine particle composite organic polymer material.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002299446A JP4324360B2 (en) 2002-10-11 2002-10-11 Manufacturing method of inorganic fine particle composite organic polymer material.

Publications (2)

Publication Number Publication Date
JP2004131657A true JP2004131657A (en) 2004-04-30
JP4324360B2 JP4324360B2 (en) 2009-09-02

Family

ID=32288579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002299446A Expired - Fee Related JP4324360B2 (en) 2002-10-11 2002-10-11 Manufacturing method of inorganic fine particle composite organic polymer material.

Country Status (1)

Country Link
JP (1) JP4324360B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298993A (en) * 2004-04-08 2005-10-27 Kagawa Industry Support Foundation Structural fiber product and method for producing the same
JP2006096810A (en) * 2004-09-28 2006-04-13 Kagawa Industry Support Foundation Functional transparent organic polymer material and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298993A (en) * 2004-04-08 2005-10-27 Kagawa Industry Support Foundation Structural fiber product and method for producing the same
JP4615887B2 (en) * 2004-04-08 2011-01-19 財団法人かがわ産業支援財団 A method for producing a fiber structure.
JP2006096810A (en) * 2004-09-28 2006-04-13 Kagawa Industry Support Foundation Functional transparent organic polymer material and method for producing the same

Also Published As

Publication number Publication date
JP4324360B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
CN101302612B (en) Manufacturing method of polymer member and polymer member
TW201736516A (en) Silicone rubber composition and cured product thereof
JP4105753B2 (en) Method for surface modification of plastic member, method for forming metal film, and method for manufacturing plastic member
CN106633627A (en) Polyether-ether-ketone/nanometer zinc oxide/carbon fiber wear-resistant composite material and preparation method thereof, and application of composite material to mechanical polishing of retaining rings
Pegalajar‐Jurado et al. Hydrophilic modification of polysulfone ultrafiltration membranes by low temperature water vapor plasma treatment to enhance performance
TW201734095A (en) Inorganic particle-polysiloxane composite, dispersion and solid material containing the composite, and making method
Dachraoui et al. Atomic mechanisms of nanocrystallization via cluster-clouds in solution studied by liquid-phase scanning transmission electron microscopy
US20080245184A1 (en) Preparation method of metal nano particle using micro mixer
JP4324360B2 (en) Manufacturing method of inorganic fine particle composite organic polymer material.
JP4324361B2 (en) Manufacturing method of inorganic fine particle composite organic polymer material.
CN111132577A (en) PVA brush cleaning method and cleaning device
Barzegar et al. Peroxopolyoxometalate nanoparticles blended PES membrane with improved hydrophilicity, anti‐fouling, permeability, and dye separation properties
CN104876266B (en) A kind of aqueous phase preparation method of bismuth sulfide/protein composite Nano ball
EP3810686A1 (en) Nanoparticles of polydopamine and s-paek (sulfonated-polyaryletherketone) derivatives and water-based process for preparing thereof
Loeb et al. Hierarchical 3D printed porous silicones with porosity derived from printed architecture and silicone-shell microballoons
EP3130390B1 (en) Ptfe/pfsa additive blended membrane
JP4426870B2 (en) Lens manufacturing method
JP6536884B2 (en) Modification method of metal surface using micro and nano bubble and adhesion method of metal and resin
JP2007131725A (en) Method of surface modification for thermoplastic resin
JP4615887B2 (en) A method for producing a fiber structure.
JP2007054693A (en) Particulate-dispersed tubular membrane and its manufacturing method
US10000620B2 (en) Polyarylene sulfide resin composition and method for producing same
JP2009275279A (en) Surface reforming method of plastic and surface-reformed plastic
JP2008255390A (en) Method for forming plating film and electroless plating solution
Kobayashi et al. Fabrication of hollow particles composed of silica containing gadolinium compound and magnetic resonance imaging using them

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees