JP2004130646A - Thermally conductive sheet - Google Patents

Thermally conductive sheet Download PDF

Info

Publication number
JP2004130646A
JP2004130646A JP2002297017A JP2002297017A JP2004130646A JP 2004130646 A JP2004130646 A JP 2004130646A JP 2002297017 A JP2002297017 A JP 2002297017A JP 2002297017 A JP2002297017 A JP 2002297017A JP 2004130646 A JP2004130646 A JP 2004130646A
Authority
JP
Japan
Prior art keywords
heat
heat conductive
thermally conductive
conductive silicone
uncured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002297017A
Other languages
Japanese (ja)
Other versions
JP3952184B2 (en
Inventor
Akio Nakano
中野 昭生
Takeshi Hashimoto
橋本 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2002297017A priority Critical patent/JP3952184B2/en
Publication of JP2004130646A publication Critical patent/JP2004130646A/en
Application granted granted Critical
Publication of JP3952184B2 publication Critical patent/JP3952184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermally conductive sheet which is used in a general power supply, an electronic device, etc., applicable to the heat radiation of the integrated circuit elements of LSI, CPU, etc. of electronic devices such as a personal computer (especially a note PC), a DVD drive or the like, can well maintain workability during attachment and reduce contact thermal resistance. <P>SOLUTION: In the thermally conductive sheet wherein a thermally conductive silicone rubber sheet and an uncured thermally conductive silicone composition are laminated, the silicone composition comprises 100 pts.wt. of (A) an organo-polysiloxane with an average degree of polymerization of 100-12,000 and 800-3,000 pts.wt. of (B) an aluminum oxide powder with an average particle size of 50 μm or less. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は一般の電源、電子機器等に用いられる熱伝導性シートおよびパーソナルコンピューター(特にはノートPC)、DVDドライブ等の電子機器のLSI、CPU等の集積回路素子の放熱に用いる熱伝導性シートに最適である。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、CPU、パワートランジスタ、サイリスタ等の発熱性部品は熱の発生により特性が低下するので、設置の際、ヒートシンクを取り付け熱を放散したり、機器の金属製のシャーシに熱を逃がす対策が取られている。このとき、電気絶縁性と密着性を向上させるため発熱性部品とヒートシンクの間にシリコーンゴムに熱伝導性充填剤を配合した放熱絶縁性シートが用いられる。
【0003】
放熱絶縁性材料として、シリコーンゴム等の合成ゴム100重量部に酸化ベリリウム、酸化アルミニウム、水和酸化アルミニウム、酸化マグネシウム、酸化亜鉛から選ばれる少なくとも1種以上の金属酸化物を100〜800重量部配合した絶縁性組成物が開示されている(特許文献1参照)。
【0004】
また、絶縁性を必要としない場所に用いられる放熱材料として、付加硬化型シリコーンゴムにシリカおよび銀、金、ケイ素等の熱伝導性粉末を60〜500重量部を配合した組成物が開示されている(特許文献2参照)。
【0005】
しかし、これらの放熱絶縁シートは非常にゴム硬度の硬いものであり、強い力で締め付けても完全に密着せず、接触熱抵抗が大きくなる欠点がある。
パーソナルコンピューター、DVDドライブ等の電子機器の高集積化が進み、装置内のLSI、CPU等の集積回路素子の発熱量が増加したため、従来の冷却方法では不充分な場合がある。特に、携帯用のノート型のパーソナルコンピューターの場合、機器内部の空間が狭いので、大きなヒートシンクや冷却ファンを取り付けることができない。これらの機器ではプリント基板上に集積回路素子が搭載されており、基板の材質に熱伝導性の悪いガラス補強エポキシ樹脂やポリイミド樹脂が用いられるので、従来のように放熱絶縁シートを介して基板に熱を逃がすことができない。
【0006】
そこで、集積回路素子の近傍に自然冷却タイプあるいは強制冷却タイプの放熱部品を設置し、素子で発生した熱を放熱部品に伝える方式が用いられる。この方式で、素子と放熱部品を直接接触させると表面の凹凸のため熱の伝わりが悪くなり、さらに放熱絶縁シートを介して取り付けても放熱絶縁シートの柔軟性がやや劣るため、熱膨張により素子と基板との間に応力がかかり破損する恐れがある。また、各回路素子ごとに放熱部品を取り付けようとすると余分なスペースが必要となり機器の小型化が難しくなるので、いくつかの素子をひとつの放熱部品に組み合わせて冷却する方式がとられる。特にノート型のパーソナルコンピューターで用いられているCPUは高さが他の素子に比べて低く、発熱量が大きいため冷却方式を充分考慮する必要がある。
【0007】
そこで、素子ごとに高さが異なることに対して種々の隙間を埋められる低硬度の高熱伝導性材が必要になる。このような課題に対して、熱伝導性に優れ、柔軟性があり、種々の隙間に対応できる熱伝導性シートが提案されている。また、年々駆動周波数の高周波化にともないCPUの性能は向上し発熱量が増大するため、より高熱伝導性の材料が求められている。
【0008】
そこで、シリコーン樹脂に金属酸化物等の熱伝導性材料を混入したものを成形したシートで、取扱いに必要な強度を持たせたシリコーン樹脂層の上に柔らかく変形しやすいシリコーン層が積層されているシートが開示されている(特許文献3参照)。
また、熱伝導性充填剤を含有し、アスカーC硬度が5〜50であるシリコーンゴム層と直径0.3mm以上の孔を有する多孔性補強材層を組み合わせた熱伝導性複合シートが開示されている(特許文献4参照)。
【0009】
さらに、可撓性の三次元網状体またはフォーム体の骨格格子表面を熱伝導性シリコーンゴムで被覆したシートが開示されている(特許文献5参照)。
さらに、補強性を有したシートあるいはクロスを内蔵し、少なくとも一方の面が粘着性を有してアスカーC硬度が5〜50である厚さ0.4mm以下の熱伝導性複合シリコーンシートが開示されている(特許文献6参照)。
さらに、付加反応型液状シリコーンゴムと熱伝導性絶縁性セラミック粉末を含有し、その硬化物のアスカーC硬度が25以下で熱抵抗が3.0℃/W以下である放熱スペーサーが開示されている(特許文献7参照)。
【0010】
しかし、CPU等の素子の耐圧性は低く強い力で圧着できないので、いくらシートを低硬度化しても硬化物である限り被着体に密着せず接触熱抵抗が残存してしまう。シートの熱伝導率を上げることによりシート単体の熱抵抗は低減できるが、最終的にシートと被着体との接触熱抵抗の大きさが問題となる。
【0011】
一方、熱伝導性シリコーングリースは流動性があり被着体の間で圧着すると接触面がほぼ埋まり、接触熱抵抗を大幅に低減することができる。
そこで、シリコーンオイルをベースとし、酸化亜鉛粉や酸化アルミニウム粉を増稠剤として使用した熱伝導性グリースが開示されている(特許文献8及び特許文献9参照)。また、熱伝導性の向上するため増稠剤として窒化アルミニウムを使用したものが開示されている(特許文献10参照)。
【0012】
しかし、これらの放熱グリースは使用する際、塗布するのに非常に手間がかかる。ディスペンサー等の吐出機を用いて一定量のグリースを吐出することは可能であるが設備投資に費用がかかる問題がある。また、リワークの際グリースを除去するのに手間がかかり、アルコール等の溶剤を用いて洗浄する必要がある。反対に低硬度熱伝導性シートはこのような手間がかからない代わりに、接触熱抵抗の問題がある。
【0013】
また、熱伝導性無機充填剤を含有した不揮発性シリコーン流体を表面に設けてなるシリコーンゴム製熱良伝導性電気絶縁シートが開示されており、これはシリコーンゴム製の熱伝導性電気絶縁シートの表面に接触熱抵抗を低減する目的でシリコーンオイル、シリコーングリースもしくはゴム状物質に熱伝導性付与のため無機充填剤を添加したシリコーン流体を塗布したものである(特許文献11参照)。本シートは作業性を維持しつつ、接触熱抵抗を低減することができるが、シリコーン流体ときれいに剥離するセパレータが必要となる。通常のフッ素系、シリコーン系のセパレータではセパレータ側にシリコーン流体が移行して厚さがばらつく恐れがある。
【0014】
また、難燃性、熱伝導性および電気絶縁性を有する粘土状熱硬化接着型のシリコーン組成物シートをICパッケージと放熱装置の間に圧接してからICパッケージの発熱によりシリコーン組成物シートを硬化させるICパッケージの放熱装置が開示されている(特許文献12参照)。しかし、シリコーン組成物シートは柔らかく粘着があり変形しやすいので作業性があまり良くない欠点がある。
【0015】
さらに、上下両表面部がゴム状に硬化させた薄膜補強層であり、その間に未加硫のコンパウンド層をはさみ込んだ低硬度放熱シートが開示されている(特許文献13参照)。本シートは取扱い性は改良されているが、両表面に硬化シートがあるので接触熱抵抗が大きくなる問題がある。
【0016】
【特許文献1】
特開昭47−32400号公報
【特許文献2】
特開昭56−100849号公報
【特許文献3】
特開平2−196453号公報
【特許文献4】
特開平7−266356号公報
【特許文献5】
特開平8−238707号公報
【特許文献6】
特開平9−1738号公報
【特許文献7】
特開平9−296114号公報
【特許文献8】
特公昭52−33272号公報
【特許文献9】
特公昭59−52195号公報
【特許文献10】
特開昭52−125506号公報
【特許文献11】
実公昭64−1711号公報
【特許文献12】
特許2732792号公報
【特許文献13】
特開2002−33427号公報
【0017】
【課題を解決するための手段及び発明の実施の形態】
本発明は、
(1)熱伝導性シリコーンゴムシートと未硬化の熱伝導性シリコーン組成物を積層したものであり、未硬化の熱伝導性シリコーン組成物が
(A) 平均重合度100〜12000であるオルガノポリシロキサン 100重量部
(B) 平均粒径50μm以下の酸化アルミニウム粉    800〜3000重量部
からなることを特徴とする熱伝導性シートを提供する。
【0018】
以下、本発明につき更に詳しく説明する。
【0019】
本発明の構成の内、未硬化の熱伝導性シリコーン組成物として、(A)成分の平均重合度100〜12000であるオルガノポリシロキサンは次の平均組成式(I)
SiO(4−n)/2   ‥‥ (I)   (nは1.95〜2.05の正数)
で示されるものである。平均組成式中Rは置換または非置換の一価炭化水素基を表し、具体的にはメチル基、エチル基、プロピル基等のアルキル基、ビニル基、アリル基等のアルケニル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、フェニル基、トリル基等のアリール基あるいはこれらの水素原子が部分的に塩素原子、フッ素原子などで置換されたハロゲン化炭化水素基等が例示されるが、一般的にはオルガノポロシロキサンの主鎖がジメチルシロキサン単位からなるものあるいは、このオルガノポリシロキサンの主鎖にビニル基、フェニル基、トリフルオロプロピル基などを導入したものが好ましい。また、分子鎖末端がトリオルガノシリル基または水酸基で封鎖されたものとすればよいが、このトリオルガノシリル基としては、トリメチルシリル基、ジメチルビニルシリル基、トリビニルシリル基などが例示される。
【0020】
(A)成分のオルガノポリシロキサンの平均重合度は100〜12000、好ましくは150〜10000の範囲であり、性状はオイル状からガム状のものである。平均重合度が100未満では粘度が低すぎ、シリコーン組成物の粘着性が強くなりセパレータから剥がれなくなる。平均重合度が12000を超えると酸化アルミニウム粉の高充填が難しくなり、さらに配合後の流動性が悪くなる。また、平均重合度が異なるオルガノポリシロキサンを2種類以上組み合わせて用いてもよい。
【0021】
(B)成分の酸化アルミニウム粉の配合量は、800〜3000重量部の範囲であり、好ましくは1000〜2500重量部の範囲である。配合量800重量部未満では組成物の熱伝導率が2W/mK未満となり、一方3000重量部を超えると組成物の配合が難しくなる。
【0022】
酸化アルミニウム粉は一般に六方晶または六方菱形面格子の結晶構造を有するα−Alで、外観は白色結晶であり、見掛けは平均粒径2〜80μm程度の粒子であるが各粒子は0.2〜20μm程度の一次結晶アルミナから構成されている。通常熱伝導性充填剤として使用されているものでよいが、その平均粒径が50μm以下であることが好ましい。平均粒径が50μmを超えると、熱伝導性シートとして使用する際に圧着してもシリコーン組成物を薄く延ばすことができなくなる。
【0023】
また、酸化アルミニウム粉の形状は丸みを帯びた形状のものであることが好ましい。形状が丸みを帯びているものほど高充填しても粘度および可塑度の上昇を抑えることができる。特には800重量部以上配合する場合には、球状酸化アルミニウム粉を主成分とする必要がある。このような球状酸化アルミニウム粉の製造方法としては、特開昭52−15498号公報や特開平2−199004号公報に記載されている方法で製造することができる。具体的には球状アルミナASシリーズ(商品名 昭和電工株式会社製)、高純度球状アルミナAOシリーズ(商品名 株式会社アドマテックス製)などが挙げられる。また、粒径の大きい酸化アルミニウム粉と粒径の小さい酸化アルミニウム粉を最密充填理論分布曲線に従う比率で組み合わせることにより充填効率が向上して、低粘度化および高熱伝導化が可能になる。
【0024】
さらに、一般式(II)で表される片末端3官能の加水分解性基含有メチルポリシロキサンを併用すると、組成物を可塑化する効果が高くなる。

Figure 2004130646
(ただし、式中式中のR1は炭素原子数1〜4のアルコキシ基またはアシロキシ基、mは5〜100の整数)
この配合量は(A)成分のオルガノポリシロキサンの内0.1〜80重量%の範囲を、好ましくは0.1〜50重量%の範囲を置き換える量である。配合量が0.1重量%より少ないと組成物の可塑化する効果が小さくなる。80重量%を超えると効果が飽和し、加水分解性基含有メチルポリシロキサンがブリードする恐れがある。
【0025】
未硬化の熱伝導性シリコーン組成物のJIS K 2220に準じて測定した不混和ちょう度が180以下、好ましくは150以下のパテ状である。不混和ちょう度が180を超えると柔らかく粘着性が強くなり、セパレータとの剥離性とリワーク性が悪くなる。また、軽く触れた程度の低圧力で簡単に変形するので、取扱いが難しくなる。
【0026】
その他添加成分として、本発明の効果を損なわない程度の酸化アルミニウム粉以外の熱伝導性充填剤、着色剤、酸化鉄、酸化セリウム等の耐熱性向上剤、フッ素変性シリコーンオイル、フェニル基含有シリコーンオイル等の離型性付与剤等を添加しても良い。
【0027】
未硬化の熱伝導性シリコーン組成物層の厚さは0.05〜3mmの範囲が好ましい。0.05mm未満の厚さでは圧着面への密着性が不充分となり接触熱抵抗が大きくなる。3mmを超えると熱伝導性がやや悪くなる。
【0028】
本発明のもう一つの構成である熱伝導性シリコーンゴムシートは、平均組成式(I)で示されるオルガノポリシロキサンに酸化アルミニウム粉、窒化ホウ素粉、窒化アルミニウム粉、酸化亜鉛粉、炭化ケイ素粉、石英粉、水酸化アルミニウム粉等の熱伝導性充填剤を配合し硬化させたシートを用いる。
【0029】
熱伝導性充填剤の配合量は充填剤の種類によって異なるが、熱伝導率が2W/mK以上になる配合量にする必要がある。具体的にはオルガポリシロキサン成分100重量部に対して、150〜2500重量部の範囲が好ましい。
【0030】
硬化方法としては、通常のシリコーンゴムに使用される公知のものでよく、これにはパーオキサイドのラジカル反応による方法、アルケニル基含有オルガポリシロキサンとケイ素原子に結合した水素原子を1分子中に少なくとも2個以上含有するオルガノハイドロジェンポリシロキサンの白金触媒による付加反応等が例示される。
【0031】
その他、必要に応じて補強性シリカ充填剤、炭酸カルシウム、二酸化チタン等の充填剤、酸化鉄、酸化セリウム等の耐熱性向上剤、着色剤、白金化合物等の難燃性付与剤などを添加してもよい。
【0032】
熱伝導性シリコーンゴムシートとして強度を向上する目的でガラスクロス等で補強したものが知られているが、本発明においては補強のないゴム単層のシートの方が好ましい。この理由としては、補強材が入っていると表面に微細な凹凸ができ接触熱抵抗が大きくなる。また、補強材によりシートの伸びが抑制されるので、圧着面へのシートの追従性が悪くなる。
【0033】
熱伝導性シリコーンゴムシートの厚さは0.05〜1mmの範囲が好ましい。0.05mm未満では強度が不足して取扱い時にシートが切れる恐れがある。1mmを超えると圧縮しにくくなるとともに圧着面への追従性が悪くなり接触熱抵抗が大きくなる。
【0034】
本発明の熱伝導性シートの成形方法としては、最初に、熱伝導性シリコーンゴムシートを成形する。この場合、硬化剤までを配合した材料をカレンダー成形、押出し成形、コーティング成形等によりシート状に成形してから加熱硬化させる。上記成形方法において、コーティング成形を採用する場合には、材料を有機溶剤に溶解し粘度調整してから製造する方が好ましい。また、補強のないゴム単層品のシートでは伸びやすく次の加工が難しくなるので、PETやポリイミドのフィルム上にシートを成形することが好ましい。次に、この硬化シート上にモールド成形、カレンダー成形、コーティング成形等により未硬化の熱伝導性シリコーン組成物層を成形し積層する。最後に未硬化の熱伝導性シリコーン組成物層の保護のため、PE、PP、PET等のセパレータフィルムを貼りつける。この際、セパレータの離型性を向上のため、セパレータの表面をフッ素樹脂処理する方が好ましい。
【0035】
熱伝導性シリコーンゴムシートと未硬化の熱伝導性シリコーン組成物層の合計の厚さは0.1〜4mmの範囲、好ましくは0.2〜3mmの範囲である。0.1mm未満の厚さでは圧着面の微細な凹凸を埋めることができなくなり接触熱抵抗が大きくなる。4mmを超えると熱伝導性がやや悪くなる。
【0036】
本発明の熱伝導性シートを発熱性部品と冷却装置の間に設置後圧縮して接触熱抵抗を低減させてから、未硬化の熱伝導性シリコーン組成物を硬化してもよい。硬化することにより流動性がなくなり、ヒートサイクル等で未硬化の熱伝導性シリコーン組成物が外部にブリードアウトする恐れがない。ただし、完全に硬化させると熱膨張により発生する応力が大きくなるので、架橋密度を小さくする方が好ましい。
【0037】
未硬化の熱伝導性シリコーン組成物の硬化方法としては、先にあげたパーオキサイドのラジカル反応による方法、アルケニル基含有オルガポリシロキサンとケイ素原子に結合した水素原子を1分子中に少なくとも2個以上含有するオルガノハイドロジェンポリシロキサンの白金触媒による付加反応等が例示される。
【0038】
【実施例】
[実施例1〜3及び比較例1、2]
【0039】
ジメチルビニルシロキシ基で両末端封止したジメチルシロキサン単位からなる平均重合度8000のオルガノポリシロキサン(A)100重量部、熱伝導性充填剤として平均粒径10μmの球状酸化アルミニウム粉アドマファインAO−41R(商品名、アドマテックス(株)製) 1400重量部、酸化亜鉛粉亜鉛華1号(商品名、三井金属鉱業(株)製) 300重量部、および次の構造式で示されるα,ω−ジヒドロキシジメチルポリシロキサン8重量部をニーダーで混練りし、170℃で2時間の熱処理を行った。
【0040】
Figure 2004130646
【0041】
冷却後、この組成物100重量部、有機過酸化物C−24(商品名、信越化学工業(株)製) 0.9重量部およびトルエン30重量部を撹拌溶解機で混合溶解した。この溶解液をナイフコーター方式のコーティング装置で厚さ100μmのPETフィルム上に塗布し、温度80℃の加熱炉を通してトルエンを揮発させてから温度150℃の加熱炉を10分間通して組成物を硬化させて厚さ0.1mmの熱伝導性シリコーンゴムシートXを作製した。
【0042】
この熱伝導性シリコーンゴムシートXの熱伝導率をASTM E1530保護熱流計法で測定したところ4.6W/mKであった。
【0043】
次に、平均重合度850のジメチルビニルシロキシ基で両末端を封止したジメチルシロキサン単位からなるオルガノポリシロキサン(B)70重量部、平均重合度180のジメチルビニルシロキシ基で両末端を封止したジメチルシロキサン単位からなるオルガノポリシロキサン(C) 30重量部、平均粒径16μmの球状酸化アルミニウム粉AS−30(商品名、昭和電工(株)製) および平均粒径3μmの酸化アルミニウム粉AL−45−H(商品名、昭和電工(株)製) を表1に示した量で添加し、プラネタリミキサーを用いて室温で30分間混練りした後、温度100℃で加熱しながら30分間混練りした。これらの未硬化の熱伝導性シリコーン組成物を冷却後、不混和ちょう度と熱伝導率を測定した。
【0044】
PET上に成形した熱伝導性シリコーンゴムシートXの上に未硬化の熱伝導性シリコーン組成物を一定量のせ、厚さ0.4mmの金属製の枠を設置し、さらにその上にフッ素樹脂処理したPETフィルムをあててから冷間でプレス成形を行い、厚さ0.5mmの熱伝導性シートを作製した。フッ素樹脂処理したPETフィルムと未硬化の熱伝導性シリコーン組成物層の離型性を確認してから、これらの熱伝導性シートの熱抵抗を次の方法で測定した。
【0045】
(熱抵抗測定方法)
モデルヒーターとヒートシンクの間に熱伝導性シートのサンプルを設置(このとき、未硬化側をヒートシンクに設置)し、1kgf/cmの荷重で圧着する。次にモデルヒータに28Wの電力を印加し、モデルヒーターの温度T1とヒートシンクの温度T2を熱電対で測定し、次式からサンプルの熱抵抗Rを算出する。
【0046】
R=(T1−T2)/28
モデルヒーター:トランジスタTO−3型のアルミニウム製ケースの中にヒーターを埋め込んだもの、設置面積7cm
ヒートシンク:フラット型60F230×70mm(LEX製)
また、リワーク性として熱抵抗測定後のサンプルがヒートシンクからきれいに剥離できるか否かを確認した。
【0047】
表1
Figure 2004130646
比較例2の組成物は、シリコーン分と酸化アルミニウム粉がまとまらずパテ状にならないため物性測定は行うことができなかった。
【0048】
[実施例4〜6]
平均重合度8000のオルガノポリシロキサン(A)45重量部 、平均重合度270のトリメチルシロキシ基で両末端封止したジメチルシロキサン単位からなるオルガノポリシロキサン(D)40重量部、次の構造式で表される加水分解性基含有メチルポリシロキサン(E) 15重量部、
Figure 2004130646
平均粒径10μmの球状酸化アルミニウム粉アドマファインAO−41R(商品名、アドマテックス(株)製) 1500重量部および平均粒径0.7μmの球状酸化アルミニウム粉末アドマファインAO−502(商品名、アドマテックス(株)製) 400重量部をニーダーで混練りし、170℃で2時間の熱処理を行った。
【0049】
この組成物を用いて、実施例1〜3と同様な方法でPETフィルム上に厚さ0.1mmの熱伝導性シリコーンゴムシートYを作製した。この熱伝導性シリコーンゴムシートYの熱伝導率は8.8W/mKであった。
【0050】
オルガノポリシロキサン(A)〜(C)、加水分解性基含有メチルポリシロキサン(E)、球状酸化アルミニウム粉アドマファインAO−41R(商品名、アドマテックス(株)製) および球状酸化アルミニウム粉アドマファインAO−502(商品名、アドマテックス(株)製)を表2に示した量で添加し、プラネタリミキサーを用いて室温で30分間混練りした後、温度100℃で加熱しながら30分間混練りした。これらの未硬化の熱伝導性シリコーン組成物を冷却後、不混和ちょう度と熱伝導率を測定した。
【0051】
熱伝導性シリコーンゴムシートYの上に実施例4〜6の未硬化の熱伝導性シリコーン組成物を同様な方法で積層し、厚さ0.5mmの熱伝導性シートを作製した。フッ素樹脂処理したPETフィルムと未硬化の熱伝導性シリコーン組成物層の離型性を確認してから、これらの熱伝導性シートの熱抵抗を測定した。
【0052】
[実施例7]
また、熱伝導性シリコーンゴムシートとして厚さ0.2mmでガラスクロス補強した熱伝導率5.0W/mKのTC−20BG(商品名、信越化学工業(株)製)を用い、実施例6の未硬化の熱伝導性シリコーン組成物と積層化して、厚さ0.5mmの熱伝導性シートを作製した。
【0053】
[比較例3]
比較のため、熱伝導性シリコーンゴムシートYの上に実施例6の未硬化の熱伝導性シリコーン組成物を一定量のせ、厚さ0.3mmの金属製の枠を設置し、さらにその上に熱伝導性シリコーンゴムシートYをあててから冷間でプレス成形を行い、厚さ0.5mmの熱伝導性シートを作製した。
【0054】
表2
Figure 2004130646
【0055】
【発明の効果】
本発明の熱伝導性シートをパーソナルコンピューター(特にはノートPC)、DVDドライブ等の電子機器のLSI、CPU等の集積回路素子の放熱に用いた場合の効果としては、使用時に圧着すると未硬化の熱伝導性シリコーン組成物が流動し被着体表面と密着するので、接触熱抵抗を低減できる。
また、本シートは片面を熱伝導性シリコーンゴムシートで補強しているので通常の低硬度熱伝導性シリコーンゴムシートと同様に取り扱えるため、作業性に優れているし、グリースに比べ使用個所からの除去が容易であり、リワーク性に優れている。
さらに、硬化シートに比べ熱膨張により発生する応力が小さいので、取り付けられた素子を破壊する恐れがないので、非常に有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat conductive sheet used for a general power supply, an electronic device and the like, and a heat conductive sheet used for heat radiation of an integrated circuit element such as an LSI and a CPU of an electronic device such as a personal computer (particularly a notebook PC) and a DVD drive. Ideal for
[0002]
Problems to be solved by the prior art and the invention
Conventionally, the characteristics of heat-generating components such as CPUs, power transistors, and thyristors are degraded by the generation of heat.Therefore, when installing, take measures to dissipate the heat by attaching a heat sink or dissipating the heat to the metal chassis of the equipment. Have been. At this time, in order to improve electrical insulation and adhesion, a heat-dissipating insulating sheet in which a silicone rubber is mixed with a thermally conductive filler is used between the heat-generating component and the heat sink.
[0003]
100 to 800 parts by weight of at least one metal oxide selected from beryllium oxide, aluminum oxide, hydrated aluminum oxide, magnesium oxide and zinc oxide is mixed with 100 parts by weight of synthetic rubber such as silicone rubber as a heat radiation insulating material. A disclosed insulating composition is disclosed (see Patent Document 1).
[0004]
Also disclosed is a composition in which a heat-conductive powder such as silica and silver, gold, or silicon is added to an addition-curable silicone rubber in an amount of 60 to 500 parts by weight as a heat radiation material used in a place where insulation is not required. (See Patent Document 2).
[0005]
However, these heat-dissipating insulating sheets are very hard with rubber hardness, and do not completely adhere to each other even when tightened with a strong force.
As electronic devices such as personal computers and DVD drives have become more highly integrated, and the amount of heat generated by integrated circuit elements such as LSIs and CPUs in the devices has increased, conventional cooling methods may not be sufficient. In particular, in the case of a portable notebook personal computer, the space inside the device is narrow, so that a large heat sink or cooling fan cannot be attached. In these devices, integrated circuit elements are mounted on a printed circuit board, and glass-reinforced epoxy resin or polyimide resin, which has poor thermal conductivity, is used for the material of the board. I can't escape the heat.
[0006]
Therefore, a system is used in which a heat-radiating component of a natural cooling type or a forced cooling type is installed near the integrated circuit element, and heat generated in the element is transmitted to the heat-radiating component. In this method, if the element and the heat-dissipating component are brought into direct contact, the heat transfer will be poor due to the unevenness of the surface. Stress may be applied between the substrate and the substrate, and the substrate may be damaged. Also, if a heat radiating component is to be attached to each circuit element, an extra space is required and it is difficult to reduce the size of the device. Therefore, a method of cooling by combining several elements into one heat radiating component is adopted. In particular, a CPU used in a notebook personal computer has a lower height than other elements and generates a large amount of heat, so that it is necessary to sufficiently consider a cooling method.
[0007]
Therefore, a low-hardness, high-thermal-conductivity material that can fill various gaps with different heights for each element is required. To solve such a problem, a heat conductive sheet that has excellent heat conductivity, is flexible, and can cope with various gaps has been proposed. Further, the performance of the CPU is improved and the amount of heat generated is increased as the driving frequency is increased year by year, so that a material having higher thermal conductivity is required.
[0008]
Therefore, a sheet formed by mixing a thermally conductive material such as a metal oxide with a silicone resin, and a soft and easily deformable silicone layer is laminated on the silicone resin layer having the necessary strength for handling. A sheet is disclosed (see Patent Document 3).
Also disclosed is a heat conductive composite sheet containing a heat conductive filler and combining a silicone rubber layer having an Asker C hardness of 5 to 50 and a porous reinforcing material layer having a hole having a diameter of 0.3 mm or more. (See Patent Document 4).
[0009]
Furthermore, a sheet in which the surface of a skeleton lattice of a flexible three-dimensional network or foam is coated with a thermally conductive silicone rubber is disclosed (see Patent Document 5).
Further disclosed is a heat conductive composite silicone sheet having a built-in sheet or cloth having a reinforcing property, at least one surface having adhesiveness, and a Asker C hardness of 5 to 50 and a thickness of 0.4 mm or less. (See Patent Document 6).
Furthermore, a heat-dissipating spacer containing an addition-reaction-type liquid silicone rubber and a thermally conductive insulating ceramic powder, and having a cured product having an Asker C hardness of 25 or less and a thermal resistance of 3.0 ° C./W or less is disclosed. (See Patent Document 7).
[0010]
However, since the pressure resistance of elements such as a CPU is low and pressure bonding cannot be performed with a strong force, no matter how low the hardness of the sheet, as long as the sheet is a cured product, it does not adhere to the adherend and the contact thermal resistance remains. By increasing the thermal conductivity of the sheet, the thermal resistance of the sheet alone can be reduced, but ultimately the magnitude of the contact thermal resistance between the sheet and the adherend becomes a problem.
[0011]
On the other hand, the heat conductive silicone grease has fluidity, and when pressed between adherends, the contact surface is almost buried, and the contact thermal resistance can be greatly reduced.
Therefore, heat conductive greases based on silicone oil and using zinc oxide powder or aluminum oxide powder as a thickener have been disclosed (see Patent Documents 8 and 9). In addition, a device using aluminum nitride as a thickener in order to improve thermal conductivity is disclosed (see Patent Document 10).
[0012]
However, these thermal greases are very troublesome to apply when used. Although it is possible to discharge a fixed amount of grease using a discharger such as a dispenser, there is a problem that capital investment is expensive. In addition, it takes time and effort to remove grease during rework, and it is necessary to perform cleaning using a solvent such as alcohol. Conversely, a low-hardness heat conductive sheet does not require such labor, but has a problem of contact thermal resistance.
[0013]
Further, there is disclosed a heat-conductive electrically insulating sheet made of silicone rubber having a surface provided with a non-volatile silicone fluid containing a thermally conductive inorganic filler. In order to reduce the contact thermal resistance, a silicone fluid in which an inorganic filler is added to silicone oil, silicone grease or a rubber-like substance to impart thermal conductivity is applied to the surface (see Patent Document 11). This sheet can reduce the contact thermal resistance while maintaining the workability, but requires a separator that peels cleanly from the silicone fluid. In a normal fluorine-based or silicone-based separator, the silicone fluid may migrate to the separator side and the thickness may vary.
[0014]
Further, a clay-like thermosetting adhesive silicone composition sheet having flame retardancy, thermal conductivity and electrical insulation is pressed between an IC package and a heat radiating device, and then the silicone composition sheet is cured by heat generation of the IC package. An IC package heat radiating device is disclosed (see Patent Document 12). However, since the silicone composition sheet is soft and sticky and easily deformed, there is a disadvantage that workability is not so good.
[0015]
Furthermore, a low-hardness heat radiation sheet is disclosed in which both upper and lower surface portions are rubber-like cured thin film reinforcing layers, and an unvulcanized compound layer is interposed therebetween (see Patent Document 13). Although the present sheet has improved handleability, there is a problem that the contact thermal resistance is increased because the cured sheets are present on both surfaces.
[0016]
[Patent Document 1]
JP-A-47-32400 [Patent Document 2]
JP-A-56-100849 [Patent Document 3]
JP-A-2-196453 [Patent Document 4]
JP-A-7-266356 [Patent Document 5]
JP-A-8-238707 [Patent Document 6]
Japanese Patent Application Laid-Open No. 9-1738 [Patent Document 7]
JP-A-9-296114 [Patent Document 8]
JP-B-52-33272 [Patent Document 9]
JP-B-59-52195 [Patent Document 10]
JP-A-52-125506 [Patent Document 11]
Japanese Utility Model Publication No. 64-1711 [Patent Document 12]
Japanese Patent No. 2732792 [Patent Document 13]
JP, 2002-33427, A
Means for Solving the Problems and Embodiments of the Invention
The present invention
(1) An organopolysiloxane in which a thermally conductive silicone rubber sheet and an uncured thermally conductive silicone composition are laminated, wherein the uncured thermally conductive silicone composition has (A) an average degree of polymerization of 100 to 12,000. 100 parts by weight (B) A heat conductive sheet comprising 800 to 3000 parts by weight of aluminum oxide powder having an average particle size of 50 μm or less.
[0018]
Hereinafter, the present invention will be described in more detail.
[0019]
In the constitution of the present invention, as the uncured thermally conductive silicone composition, the organopolysiloxane having an average degree of polymerization of the component (A) of from 100 to 12000 is represented by the following average composition formula (I).
R 2 n SiO (4-n) / 2   ‥‥ (I) (n is a positive number between 1.95 and 2.05)
It is shown by. In the average composition formula, R 2 represents a substituted or unsubstituted monovalent hydrocarbon group, specifically, an alkyl group such as a methyl group, an ethyl group or a propyl group, an alkenyl group such as a vinyl group or an allyl group, a cyclopentyl group, Examples thereof include cycloalkyl groups such as cyclohexyl groups, aryl groups such as phenyl groups and tolyl groups, and halogenated hydrocarbon groups in which these hydrogen atoms have been partially substituted with chlorine atoms, fluorine atoms, and the like. It is preferable that the main chain of the organopolysiloxane is composed of dimethylsiloxane units, or that the main chain of the organopolysiloxane is introduced with a vinyl group, a phenyl group, a trifluoropropyl group, or the like. In addition, the terminal of the molecular chain may be blocked with a triorganosilyl group or a hydroxyl group. Examples of the triorganosilyl group include a trimethylsilyl group, a dimethylvinylsilyl group, and a trivinylsilyl group.
[0020]
The average degree of polymerization of the organopolysiloxane as the component (A) is in the range of 100 to 12,000, preferably 150 to 10000, and the properties are oily to gum-like. If the average degree of polymerization is less than 100, the viscosity is too low, the tackiness of the silicone composition becomes strong, and the silicone composition does not peel off from the separator. If the average degree of polymerization exceeds 12,000, high filling of aluminum oxide powder becomes difficult, and further, the fluidity after blending becomes poor. Further, two or more kinds of organopolysiloxanes having different average polymerization degrees may be used in combination.
[0021]
The blending amount of the aluminum oxide powder as the component (B) is in the range of 800 to 3000 parts by weight, and preferably in the range of 1000 to 2500 parts by weight. If the amount is less than 800 parts by weight, the thermal conductivity of the composition will be less than 2 W / mK, while if it exceeds 3000 parts by weight, it will be difficult to compound the composition.
[0022]
Aluminum oxide powder is generally α-Al 2 O 3 having a crystal structure of a hexagonal or hexagonal rhombohedral lattice, is a white crystal in appearance, and apparently has an average particle diameter of about 2 to 80 μm, but each particle has a particle diameter of 0 to 80 μm. It is composed of primary crystalline alumina of about 0.2 to 20 μm. What is usually used as a heat conductive filler may be used, but it is preferable that the average particle diameter is 50 μm or less. When the average particle size exceeds 50 μm, the silicone composition cannot be thinly spread even when pressed when used as a heat conductive sheet.
[0023]
Further, the shape of the aluminum oxide powder is preferably a rounded shape. The more rounded the shape, the higher the filling and the higher the viscosity and plasticity can be suppressed. In particular, when 800 parts by weight or more are blended, it is necessary to use spherical aluminum oxide powder as a main component. As a method for producing such a spherical aluminum oxide powder, a method described in JP-A-52-15498 or JP-A-2-199004 can be used. Specific examples include spherical alumina AS series (trade name, manufactured by Showa Denko KK) and high-purity spherical alumina AO series (trade name, manufactured by Admatechs Co., Ltd.). In addition, by combining aluminum oxide powder having a large particle size and aluminum oxide powder having a small particle size at a ratio according to a close-packed theoretical distribution curve, the filling efficiency is improved, and a lower viscosity and higher thermal conductivity can be achieved.
[0024]
Furthermore, when a trifunctional monofunctional trifunctional hydrolyzable group-containing methylpolysiloxane represented by the general formula (II) is used in combination, the effect of plasticizing the composition is enhanced.
Figure 2004130646
(Wherein, R1 in the formula is an alkoxy group or an acyloxy group having 1 to 4 carbon atoms, and m is an integer of 5 to 100)
This amount is used to replace the range of 0.1 to 80% by weight, preferably 0.1 to 50% by weight, of the organopolysiloxane of the component (A). If the amount is less than 0.1% by weight, the effect of plasticizing the composition becomes small. If it exceeds 80% by weight, the effect is saturated and the hydrolyzable group-containing methylpolysiloxane may bleed.
[0025]
The uncured thermally conductive silicone composition has a putty shape having an immiscibility penetration of 180 or less, preferably 150 or less, measured according to JIS K 2220. If the degree of immiscibility exceeds 180, the adhesive becomes soft and sticky, and the releasability from the separator and the reworkability deteriorate. In addition, since it is easily deformed at a low pressure that is lightly touched, handling becomes difficult.
[0026]
Other additives, such as a thermally conductive filler other than aluminum oxide powder, a coloring agent, a heat resistance improver such as iron oxide and cerium oxide, a fluorine-modified silicone oil, and a phenyl group-containing silicone oil that do not impair the effects of the present invention. And the like.
[0027]
The thickness of the uncured thermally conductive silicone composition layer is preferably in the range of 0.05 to 3 mm. If the thickness is less than 0.05 mm, the adhesion to the pressure-bonded surface is insufficient and the contact thermal resistance increases. If it exceeds 3 mm, the thermal conductivity becomes slightly poor.
[0028]
The heat conductive silicone rubber sheet as another constitution of the present invention is obtained by adding an organopolysiloxane represented by the average composition formula (I) to aluminum oxide powder, boron nitride powder, aluminum nitride powder, zinc oxide powder, silicon carbide powder, A sheet cured by blending a thermally conductive filler such as quartz powder or aluminum hydroxide powder is used.
[0029]
The amount of the thermally conductive filler varies depending on the type of the filler, but the amount must be such that the thermal conductivity is 2 W / mK or more. Specifically, the range is preferably 150 to 2500 parts by weight based on 100 parts by weight of the organopolysiloxane component.
[0030]
As the curing method, a known method used for ordinary silicone rubber may be used. Examples thereof include a method based on a radical reaction of peroxide, and a method in which at least one hydrogen atom bonded to an alkenyl group-containing organopolysiloxane and a silicon atom is contained in one molecule. An addition reaction of an organohydrogenpolysiloxane containing two or more with a platinum catalyst is exemplified.
[0031]
In addition, if necessary, reinforcing silica filler, filler such as calcium carbonate, titanium dioxide, etc., heat resistance improver such as iron oxide and cerium oxide, coloring agent, flame retardant such as platinum compound, etc. are added. You may.
[0032]
As a thermally conductive silicone rubber sheet, a sheet reinforced with glass cloth or the like for the purpose of improving strength is known, but in the present invention, a sheet of a rubber single layer without reinforcement is preferred. The reason for this is that when a reinforcing material is contained, fine irregularities are formed on the surface, and the contact thermal resistance increases. Further, since the elongation of the sheet is suppressed by the reinforcing material, the ability of the sheet to follow the pressure-bonded surface deteriorates.
[0033]
The thickness of the thermally conductive silicone rubber sheet is preferably in the range of 0.05 to 1 mm. If the thickness is less than 0.05 mm, the strength may be insufficient and the sheet may be cut during handling. If it exceeds 1 mm, it is difficult to compress, and the followability to the pressure-bonded surface is deteriorated, and the contact thermal resistance increases.
[0034]
As a method for forming the heat conductive sheet of the present invention, first, a heat conductive silicone rubber sheet is formed. In this case, the material containing the curing agent is formed into a sheet by calendering, extrusion, coating, or the like, and then cured by heating. In the above molding method, when coating molding is employed, it is preferable to dissolve the material in an organic solvent and adjust the viscosity before producing. In addition, since a sheet of a rubber single-layered product without reinforcement is easily stretched and the next processing is difficult, it is preferable to form the sheet on a PET or polyimide film. Next, an uncured thermally conductive silicone composition layer is formed and laminated on the cured sheet by molding, calendering, coating or the like. Finally, a separator film such as PE, PP, or PET is attached for protection of the uncured thermally conductive silicone composition layer. At this time, it is preferable to treat the surface of the separator with a fluororesin in order to improve the releasability of the separator.
[0035]
The total thickness of the thermally conductive silicone rubber sheet and the uncured thermally conductive silicone composition layer is in the range of 0.1 to 4 mm, preferably in the range of 0.2 to 3 mm. If the thickness is less than 0.1 mm, it is not possible to fill the fine irregularities on the pressure-bonded surface, and the contact thermal resistance increases. If it exceeds 4 mm, the thermal conductivity becomes slightly poor.
[0036]
After the thermal conductive sheet of the present invention is placed between the heat generating component and the cooling device and then compressed to reduce the contact thermal resistance, the uncured thermal conductive silicone composition may be cured. By curing, the fluidity is lost, and there is no fear that the uncured thermally conductive silicone composition bleeds out to the outside in a heat cycle or the like. However, since the stress generated by thermal expansion increases when completely cured, it is preferable to reduce the crosslinking density.
[0037]
Examples of the method of curing the uncured thermally conductive silicone composition include the above-described method using a radical reaction of peroxide, at least two hydrogen atoms bonded to an alkenyl group-containing organopolysiloxane and a silicon atom in one molecule. Examples of the addition reaction of the contained organohydrogenpolysiloxane with a platinum catalyst are exemplified.
[0038]
【Example】
[Examples 1 to 3 and Comparative Examples 1 and 2]
[0039]
Adomafine AO-41R, a spherical aluminum oxide powder having an average particle size of 10 μm as a heat conductive filler and 100 parts by weight of an organopolysiloxane (A) having an average degree of polymerization of dimethyl siloxane units capped at both ends with dimethylvinylsiloxy groups. (Trade name, manufactured by Admatechs Co., Ltd.) 1,400 parts by weight, zinc oxide powder zinc flower No. 1 (trade name, manufactured by Mitsui Mining & Smelting Co., Ltd.) 300 parts by weight, and α, ω- represented by the following structural formula 8 parts by weight of dihydroxydimethylpolysiloxane was kneaded with a kneader and heat-treated at 170 ° C. for 2 hours.
[0040]
Figure 2004130646
[0041]
After cooling, 100 parts by weight of this composition, 0.9 parts by weight of organic peroxide C-24 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) and 30 parts by weight of toluene were mixed and dissolved by a stirring dissolver. This solution is applied on a 100 μm-thick PET film using a knife coater type coating device, and the toluene is volatilized through a heating furnace at a temperature of 80 ° C., and then passed through a heating furnace at a temperature of 150 ° C. for 10 minutes to cure the composition. Thus, a thermally conductive silicone rubber sheet X having a thickness of 0.1 mm was produced.
[0042]
The thermal conductivity of this thermally conductive silicone rubber sheet X was 4.6 W / mK as measured by ASTM E1530 protective heat flow meter method.
[0043]
Next, both ends were capped with 70 parts by weight of an organopolysiloxane (B) comprising a dimethylsiloxane unit capped at both ends with a dimethylvinylsiloxy group having an average degree of polymerization of 850, and dimethylvinylsiloxy groups having an average degree of polymerization of 180. 30 parts by weight of organopolysiloxane (C) composed of dimethylsiloxane units, spherical aluminum oxide powder AS-30 (trade name, manufactured by Showa Denko KK) having an average particle diameter of 16 μm and aluminum oxide powder AL-45 having an average particle diameter of 3 μm -H (trade name, manufactured by Showa Denko KK) was added in the amount shown in Table 1, kneaded at room temperature for 30 minutes using a planetary mixer, and then kneaded for 30 minutes while heating at 100 ° C. . After cooling these uncured thermally conductive silicone compositions, the immiscibility and thermal conductivity were measured.
[0044]
A fixed amount of the uncured thermally conductive silicone composition is placed on the thermally conductive silicone rubber sheet X molded on PET, a 0.4 mm thick metal frame is placed, and a fluororesin treatment is further performed thereon. The formed PET film was applied and cold press-formed to produce a heat conductive sheet having a thickness of 0.5 mm. After confirming the releasability of the fluororesin-treated PET film and the uncured thermally conductive silicone composition layer, the thermal resistance of these thermally conductive sheets was measured by the following method.
[0045]
(Method of measuring thermal resistance)
A sample of the heat conductive sheet is placed between the model heater and the heat sink (at this time, the uncured side is placed on the heat sink), and is pressed under a load of 1 kgf / cm 2 . Next, 28 W of electric power is applied to the model heater, the temperature T1 of the model heater and the temperature T2 of the heat sink are measured with a thermocouple, and the thermal resistance R of the sample is calculated from the following equation.
[0046]
R = (T1-T2) / 28
Model heater: Transistor TO-3 type with aluminum heater embedded in case, installation area 7cm 2
Heat sink: Flat type 60F230 × 70mm (made by LEX)
In addition, as a rework property, it was confirmed whether or not the sample after the thermal resistance measurement could be peeled cleanly from the heat sink.
[0047]
Table 1
Figure 2004130646
The composition of Comparative Example 2 could not be measured for physical properties because the silicone component and the aluminum oxide powder were not put together and did not form a putty.
[0048]
[Examples 4 to 6]
45 parts by weight of an organopolysiloxane (A) having an average degree of polymerization of 8000, 40 parts by weight of an organopolysiloxane (D) composed of dimethylsiloxane units capped at both ends with a trimethylsiloxy group having an average degree of polymerization of 270, represented by the following structural formula 15 parts by weight of a hydrolyzable group-containing methylpolysiloxane (E)
Figure 2004130646
ADMAFINE AO-41R (trade name, manufactured by Admatechs Co., Ltd.) having an average particle diameter of 10 μm 1500 parts by weight and spherical aluminum oxide powder ADMAFINE AO-502 (trade name, manufactured by Admatechs Co., Ltd.) 400 parts by weight of the material were kneaded with a kneader and heat-treated at 170 ° C. for 2 hours.
[0049]
Using this composition, a thermally conductive silicone rubber sheet Y having a thickness of 0.1 mm was produced on a PET film in the same manner as in Examples 1 to 3. The thermal conductivity of this thermally conductive silicone rubber sheet Y was 8.8 W / mK.
[0050]
Organopolysiloxanes (A) to (C), hydrolyzable group-containing methylpolysiloxane (E), spherical aluminum oxide powder Admafine AO-41R (trade name, manufactured by Admatechs Co., Ltd.) and spherical aluminum oxide powder Admafine AO-502 (trade name, manufactured by Admatechs Co., Ltd.) was added in the amount shown in Table 2, kneaded at room temperature for 30 minutes using a planetary mixer, and then kneaded for 30 minutes while heating at 100 ° C. did. After cooling these uncured thermally conductive silicone compositions, the immiscibility and thermal conductivity were measured.
[0051]
The uncured thermally conductive silicone compositions of Examples 4 to 6 were laminated on the thermally conductive silicone rubber sheet Y by the same method to produce a thermally conductive sheet having a thickness of 0.5 mm. After confirming the release properties of the fluororesin-treated PET film and the uncured thermally conductive silicone composition layer, the thermal resistance of these thermally conductive sheets was measured.
[0052]
[Example 7]
Further, as a heat conductive silicone rubber sheet, a TC-20BG (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) having a thermal conductivity of 5.0 W / mK and a glass cloth reinforced thickness of 0.2 mm was used. It was laminated with the uncured heat conductive silicone composition to produce a heat conductive sheet having a thickness of 0.5 mm.
[0053]
[Comparative Example 3]
For comparison, a fixed amount of the uncured heat-conductive silicone composition of Example 6 was placed on the heat-conductive silicone rubber sheet Y, a 0.3 mm-thick metal frame was placed, and further placed thereon. After applying the heat conductive silicone rubber sheet Y, press molding was performed in a cold state to produce a heat conductive sheet having a thickness of 0.5 mm.
[0054]
Table 2
Figure 2004130646
[0055]
【The invention's effect】
When the heat conductive sheet of the present invention is used for heat radiation of an integrated circuit device such as an LSI or a CPU of an electronic device such as a personal computer (particularly a notebook PC) or a DVD drive, an uncured material may be obtained by pressure bonding during use. Since the thermally conductive silicone composition flows and adheres to the surface of the adherend, the contact thermal resistance can be reduced.
Also, since this sheet is reinforced on one side with a heat-conductive silicone rubber sheet, it can be handled in the same way as a normal low-hardness heat-conductive silicone rubber sheet, so it has excellent workability. It is easy to remove and has excellent reworkability.
Further, since the stress generated by thermal expansion is smaller than that of the cured sheet, there is no possibility that the attached element is broken, which is very useful.

Claims (8)

熱伝導性シリコーンゴムシートと未硬化の熱伝導性シリコーン組成物を積層したものであり、未硬化の熱伝導性シリコーン組成物が
(A) 平均重合度100〜12000であるオルガノポリシロキサン 100重量部
(B) 平均粒径50μm以下の酸化アルミニウム粉    800〜3000重量部
からなることを特徴とする熱伝導性シート。
A heat conductive silicone rubber sheet and an uncured heat conductive silicone composition are laminated, and the uncured heat conductive silicone composition is (A) 100 parts by weight of an organopolysiloxane having an average degree of polymerization of 100 to 12,000. (B) A heat conductive sheet comprising 800 to 3000 parts by weight of aluminum oxide powder having an average particle size of 50 μm or less.
酸化アルミニウム粉が丸みを帯びた形状の粉を主成分とすることを特徴とする請求項1記載の熱伝導性シート。The heat conductive sheet according to claim 1, wherein the aluminum oxide powder is mainly composed of a rounded powder. 熱伝導性シリコーンゴムシートがゴム単層の構造であり、その熱伝導率が2W/mK以上であることを特徴とする請求項1乃至2のいずれか1項記載の熱伝導性シート。The heat conductive sheet according to any one of claims 1 to 2, wherein the heat conductive silicone rubber sheet has a single-layer rubber structure and has a heat conductivity of 2 W / mK or more. 未硬化の熱伝導性シリコーン組成物の熱伝導率が2W/mK以上であることを特徴とする請求項1乃至3のいずれか1項記載の熱伝導性シート。The heat conductive sheet according to any one of claims 1 to 3, wherein the heat conductivity of the uncured heat conductive silicone composition is 2 W / mK or more. 未硬化の熱伝導性シリコーン組成物が、一般式
Figure 2004130646
(式中のRは炭素原子数1〜4のアルコキシ基またはアシロキシ基、mは5〜100の整数)
で表される片末端3官能の加水分解性メチルポリシロキサンを含有することを特徴とする請求項1乃至4のいずれか1項記載の熱伝導性シート。
The uncured thermally conductive silicone composition has the general formula
Figure 2004130646
(Wherein R 1 is an alkoxy group or an acyloxy group having 1 to 4 carbon atoms, and m is an integer of 5 to 100)
The thermally conductive sheet according to any one of claims 1 to 4, further comprising a hydrolyzable methylpolysiloxane having one terminal and having three functional groups represented by the following formula:
未硬化の熱伝導性シリコーン組成物の不混和ちょう度が180以下のパテ状であることを特徴とする請求項1乃至5のいずれか1項記載の熱伝導性シート。The heat conductive sheet according to any one of claims 1 to 5, wherein the uncured heat conductive silicone composition has a putty shape having an immiscibility of 180 or less. 熱伝導性シリコーンゴムシートの厚さが0.05〜1mmであり、未硬化の熱伝導性シリコーン組成物層の厚さが0.05〜3mmであって、さらに、合計の厚さが0.1〜4mmであることを特徴とする請求項1乃至6のいずれか1項記載の熱伝導性シート。The thickness of the thermally conductive silicone rubber sheet is 0.05 to 1 mm, the thickness of the uncured thermally conductive silicone composition layer is 0.05 to 3 mm, and the total thickness is 0. The heat conductive sheet according to any one of claims 1 to 6, wherein the thickness is 1 to 4 mm. 発熱性部品と冷却装置の間に設置後、圧縮してから未硬化の熱伝導性シリコーン組成物を硬化させることを特徴とする請求項1乃至7のいずれか1項記載の熱伝導性シート。The heat conductive sheet according to any one of claims 1 to 7, wherein after being placed between the heat generating component and the cooling device, the uncured heat conductive silicone composition is cured after being compressed.
JP2002297017A 2002-10-10 2002-10-10 Thermally conductive sheet Expired - Fee Related JP3952184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002297017A JP3952184B2 (en) 2002-10-10 2002-10-10 Thermally conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002297017A JP3952184B2 (en) 2002-10-10 2002-10-10 Thermally conductive sheet

Publications (2)

Publication Number Publication Date
JP2004130646A true JP2004130646A (en) 2004-04-30
JP3952184B2 JP3952184B2 (en) 2007-08-01

Family

ID=32286824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297017A Expired - Fee Related JP3952184B2 (en) 2002-10-10 2002-10-10 Thermally conductive sheet

Country Status (1)

Country Link
JP (1) JP3952184B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065718A1 (en) * 2006-11-29 2008-06-05 Fujitsu Limited Heat conductive sheet and electronic apparatus
CN103129201A (en) * 2011-12-02 2013-06-05 信越聚合物株式会社 Transfer sheet for transfer and manufacturing method thereof
WO2019216190A1 (en) * 2018-05-08 2019-11-14 富士高分子工業株式会社 Heat-conductive sheet, mounting method using same and bonding method using same
JP2020050701A (en) * 2018-09-25 2020-04-02 三菱電線工業株式会社 Thermally conductive putty composition, and thermally conductive sheet and battery module including the same
KR20200041683A (en) * 2018-10-12 2020-04-22 주식회사 엘지화학 Method of manufacturing silicon heat-radiadting pad and heat-radiating member comprising silicon heat-radiating pad
JP2022099587A (en) * 2020-12-23 2022-07-05 信越化学工業株式会社 Thermally conductive sheet and semiconductor device
WO2023145438A1 (en) 2022-01-31 2023-08-03 信越化学工業株式会社 Thermally-conductive addition-curable silicone composition and cured product thereof

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5553006B2 (en) 2010-11-12 2014-07-16 信越化学工業株式会社 Thermally conductive silicone grease composition
JP5783128B2 (en) 2012-04-24 2015-09-24 信越化学工業株式会社 Heat curing type heat conductive silicone grease composition
WO2013168291A1 (en) * 2012-05-11 2013-11-14 信越化学工業株式会社 Thermally conductive silicone grease composition
US9698077B2 (en) 2013-01-22 2017-07-04 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone composition based on combination of components, heat conductive layer, and semiconductor device
JP5898139B2 (en) 2013-05-24 2016-04-06 信越化学工業株式会社 Thermally conductive silicone composition
JP5947267B2 (en) 2013-09-20 2016-07-06 信越化学工業株式会社 Silicone composition and method for producing thermally conductive silicone composition
JP6149831B2 (en) 2014-09-04 2017-06-21 信越化学工業株式会社 Silicone composition
JP6260519B2 (en) 2014-11-25 2018-01-17 信越化学工業株式会社 Method for storing and curing one-component addition-curable silicone composition
JP6388072B2 (en) 2015-03-02 2018-09-12 信越化学工業株式会社 Thermally conductive silicone composition
JP6451592B2 (en) 2015-10-28 2019-01-16 信越化学工業株式会社 Thermally conductive fluorine-containing curable composition, cured product thereof, and electric / electronic component
JP6515860B2 (en) 2016-04-13 2019-05-22 信越化学工業株式会社 Thermally conductive fluorine-containing adhesive composition and electric / electronic component
KR102268543B1 (en) 2016-08-03 2021-06-23 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally Conductive Silicone Composition
WO2018079309A1 (en) 2016-10-26 2018-05-03 信越化学工業株式会社 Thermally-conductive silicone composition
EP3533837B1 (en) 2016-10-31 2024-05-15 Dow Toray Co., Ltd. One-pack curable type thermally conductive silicone grease composition and electronic/electrical component
US11591470B2 (en) 2018-01-15 2023-02-28 Shin-Etsu Chemical Co., Ltd. Silicone composition
KR20200135992A (en) 2018-03-23 2020-12-04 신에쓰 가가꾸 고교 가부시끼가이샤 Silicone composition
JP7476793B2 (en) 2018-10-12 2024-05-01 信越化学工業株式会社 Addition-curable silicone composition and method for producing same
JP2020123415A (en) 2019-01-30 2020-08-13 株式会社東芝 Disk device
JP6959950B2 (en) 2019-03-04 2021-11-05 信越化学工業株式会社 Non-curable thermally conductive silicone composition
JP7027368B2 (en) 2019-04-01 2022-03-01 信越化学工業株式会社 Thermally conductive silicone composition, its manufacturing method and semiconductor device
CN114423825B (en) 2019-09-27 2023-10-03 信越化学工业株式会社 Thermally conductive silicone composition, method for producing same, and semiconductor device
JP7325324B2 (en) 2019-12-23 2023-08-14 信越化学工業株式会社 Thermally conductive silicone composition
KR20230015340A (en) 2020-05-22 2023-01-31 신에쓰 가가꾸 고교 가부시끼가이샤 High thermal conductivity silicone composition
JP7388550B2 (en) 2020-05-22 2023-11-29 信越化学工業株式会社 Thermally conductive silicone composition, method for producing the same, and semiconductor device
CN117413021A (en) 2021-06-03 2024-01-16 信越化学工业株式会社 Thermally conductive silicone composition and cured product thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065718A1 (en) * 2006-11-29 2008-06-05 Fujitsu Limited Heat conductive sheet and electronic apparatus
CN103129201A (en) * 2011-12-02 2013-06-05 信越聚合物株式会社 Transfer sheet for transfer and manufacturing method thereof
WO2019216190A1 (en) * 2018-05-08 2019-11-14 富士高分子工業株式会社 Heat-conductive sheet, mounting method using same and bonding method using same
JP6674590B1 (en) * 2018-05-08 2020-04-01 富士高分子工業株式会社 Thermal conductive sheet, mounting method using the same, and bonding method using the same
US11450589B2 (en) 2018-05-08 2022-09-20 Fuji Polymer Industries Co., Ltd. Heat-conductive sheet, mounting method using same and bonding method using same
JP2020050701A (en) * 2018-09-25 2020-04-02 三菱電線工業株式会社 Thermally conductive putty composition, and thermally conductive sheet and battery module including the same
JP7075323B2 (en) 2018-09-25 2022-05-25 三菱電線工業株式会社 Thermally conductive putty composition, and thermally conductive sheet and battery module using it
KR20200041683A (en) * 2018-10-12 2020-04-22 주식회사 엘지화학 Method of manufacturing silicon heat-radiadting pad and heat-radiating member comprising silicon heat-radiating pad
KR102326676B1 (en) * 2018-10-12 2021-11-15 주식회사 엘지화학 Method of manufacturing silicon heat-radiadting pad and heat-radiating member comprising silicon heat-radiating pad
JP2022099587A (en) * 2020-12-23 2022-07-05 信越化学工業株式会社 Thermally conductive sheet and semiconductor device
WO2023145438A1 (en) 2022-01-31 2023-08-03 信越化学工業株式会社 Thermally-conductive addition-curable silicone composition and cured product thereof

Also Published As

Publication number Publication date
JP3952184B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP3952184B2 (en) Thermally conductive sheet
JP3543663B2 (en) Thermal conductive silicone rubber composition and method for producing the same
JP3444199B2 (en) Thermal conductive silicone rubber composition and method for producing the same
CN101544089B (en) Heat-conductive laminated material and manufacturing method thereof
JP5084987B2 (en) Heat dissipation from circuit boards with bare silicon chips
JP3029556B2 (en) Thermal conductive composite silicone rubber sheet
JP2006096986A (en) Thermoconductive silicone elastomer, thermoconductive medium and thermoconductive silicone elastomer composition
JP6136952B2 (en) Thermally conductive composite silicone rubber sheet
JP6032359B2 (en) Thermally conductive composite sheet and heat dissipation structure
JP4144998B2 (en) Material for heat dissipation
JP6797075B2 (en) Thermal conductivity silicone rubber composite sheet
JP7050704B2 (en) Thermally conductive silicone rubber sheet with thermally conductive adhesive layer
TWI822954B (en) Thermal conductive silicone composition and manufacturing method thereof, and thermally conductive silicone hardened material
JPH07266356A (en) Heat conductive composite sheet
JP6020187B2 (en) Thermally conductive composite sheet
JP6590079B2 (en) Thermally conductive composite silicone rubber sheet and method for producing the same
JP3425521B2 (en) Method for reducing surface tackiness of low hardness thermally conductive silicone rubber sheet
JP2010006923A (en) Thermoconductive silicone composition
JP2009269337A (en) Thermally-conductive sheet, thermally-conductive sheet laminated body, and its manufacturing process
JP2006089675A (en) Thermally-conductive silicone elastomer and thermally-conductive silicone elastomer composition
TW201943768A (en) Heat-conductive silicone composition and cured product thereof
JP3521781B2 (en) Heat dissipation member
JP7270792B2 (en) Thermally conductive silicone rubber sheet with thermally conductive adhesive layer
KR102408612B1 (en) Thermal-conductive composite sheet
JP2016219732A (en) Thermal conducive composite silicone rubber sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160511

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees