JP2004129439A - Voltage equalization device for backup power supply device - Google Patents

Voltage equalization device for backup power supply device Download PDF

Info

Publication number
JP2004129439A
JP2004129439A JP2002292565A JP2002292565A JP2004129439A JP 2004129439 A JP2004129439 A JP 2004129439A JP 2002292565 A JP2002292565 A JP 2002292565A JP 2002292565 A JP2002292565 A JP 2002292565A JP 2004129439 A JP2004129439 A JP 2004129439A
Authority
JP
Japan
Prior art keywords
voltage
battery
charging
secondary batteries
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002292565A
Other languages
Japanese (ja)
Inventor
Takehiko Nishida
西田 健彦
Yuichi Fujioka
藤岡 祐一
Tsutomu Hashimoto
橋本 勉
Hidehiko Tajima
田島 英彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002292565A priority Critical patent/JP2004129439A/en
Publication of JP2004129439A publication Critical patent/JP2004129439A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a voltage equalization device capable of canceling the variation among voltages of secondary batteries generated at a standby time, in a backup power supply device that separates an electricity storage device and a charge circuit at the standby time. <P>SOLUTION: The voltage equalization device is characterized by comprising: bypass circuits 4a to 4d that are arranged so as to correspond to the secondary batteries Ba to Bd; voltmeters 22a to 22d that detect battery voltages of all the secondary batteries Ba to Bd and output the detected results; and a CPU 24 that determines the secondary battery operating the bypass circuit based on the detected results and performs the switching control of a switch 8. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン電池等の二次電池を直列接続してなる蓄電装置を用いたバックアップ電源装置に係り、特に、待機時の自己放電等による二次電池の電圧のバラツキを均等化する、バックアップ電源装置の電圧均等化装置に関する。
【0002】
【従来の技術】
従来、無停電電源装置(UPS;Uninterruptible Power Supply)等には、主電源装置とともにバックアップ電源装置が備えられており、主電源装置の入力電源(例えば商用交流電源)の停電時にバックアップ電源装置が電源供給を行う。従来のバックアップ電源装置は、二次電池(セル)を直列接続してなる蓄電装置(二次電池セル列)とこの二次電池セル列に対して充放電を行う充放電回路を備え、主電源装置が電源供給を行うことができない時に安定して電源供給できるようにしている(例えば、特許文献1参照)。また、蓄電装置と充電回路との間にスイッチを備え、主電源装置により電源供給が可能な待機時に、二次電池セル列が満充電状態になると、蓄電装置と充放電装置を切り離すものもある。
【0003】
【特許文献1】
特開平10−2943号公報(第3−7頁、第1図)
【0004】
【発明が解決しようとする課題】
しかしながら、待機時に蓄電装置と充電回路を切り離す従来のバックアップ電源装置では、待機時にセルが例えば自己放電して電池電圧が低下し、各セルの電圧にバラツキが生じる。この結果、蓄電装置の充電電力を有効に使うことができなくなり、主電源装置が電源供給を行うことができない時に、安定して電源供給することに支障をきたす虞がある。
【0005】
本発明は、このような事情を考慮してなされたもので、その目的は、待機時に蓄電装置と充放電回路を切り離すバックアップ電源装置、又は待機時に蓄電装置と充放電回路を切離さずフロート充電するバックアップ電源装置において、待機時に生じた二次電池の電圧のバラツキを解消することができる電圧均等化装置を提供することにある。
【0006】
【課題を解決するための手段】
上記の課題を解決するために、請求項1に記載の発明は、複数の二次電池を直列接続してなる蓄電装置と、前記二次電池を充電する充電回路と、前記蓄電装置と前記充電回路を接続するスイッチとを備えたバックアップ電源装置の電圧均等化装置であって、前記二次電池の各々に対応して設けられるバイパス回路と、前記全ての二次電池の電池電圧を検出し、該検出結果を出力する電圧計測手段と、前記電圧計測手段の前記検出結果に基づいて、前記バイパス回路を作動させる二次電池を決定するバイパス回路制御手段と、前記電圧計測手段の前記検出結果に基づいて、前記スイッチの開閉を制御する充電制御手段とを具備することを特徴としている。
この発明によれば、全ての二次電池の電池電圧の検出結果に基づいて、充電する二次電池を選択したり、あるいは各電池毎の充電電流を充電状態によって制御できるので、二次電池の電圧を均等化させることができる。さらに、全ての二次電池の電池電圧の検出結果に基づいてスイッチを開閉することにより、蓄電装置の充電制御を行うことも可能となるので、待機時に蓄電装置と充放電回路を切り離すバックアップ電源装置において、待機時に生じた二次電池の電圧のバラツキを解消することができる。
【0007】
請求項2に記載のバックアップ電源装置の電圧均等化装置において、前記バイパス回路制御手段は、基準電圧と電池電圧との差が所定電圧値以上である二次電池のバイパス回路を作動させることを特徴とする。
この発明によれば、基準電圧との差が所定電圧値以上の二次電池については、バイパス回路を作動させることにより、充電を一定期間停止させ、または、充電電流の一部をバイパスすることにより充電電流を減少させる(このバイパス電流は例えば図1の実施形態のバイパス回路の抵抗値によって決まる)。一方、バイパス回路が作動されなかった二次電池については充電を引き続き行う。このようにして、電池電圧の低い二次電池においては、引き続き充電を行うことにより徐々に電池電圧が上昇し、徐々にバイパス回路が作動した二次電池の電池電圧に近づくことになるため、蓄電装置を構成する二次電池の電池電圧のバラツキを確実に小さくすることができる。
また、このような構成によれば、電圧のバラツキを均等化させながら、充電を行うことができるので、非常に効率よく蓄電装置の充電を実施することが可能となる。なお、上記基準電圧としては、最低電池電圧を採用しても良いし、それ以外の比較的電池電圧の低いものを採用するようにしてもよい。
【0008】
上記の課題を解決するために、請求項3に記載の発明は、複数の二次電池を直列接続してなる蓄電装置と、前記二次電池を充電する充電回路と、前記蓄電装置と前記充電回路を接続するスイッチとを備えたバックアップ電源装置の電圧均等化装置であって、前記二次電池の各々に対応して設けられるバイパス回路と、前記二次電池の電池電圧が所定の電圧に達した場合に、該二次電池に対応する前記バイパス回路を作動させるバイパス回路制御手段と、前記全ての二次電池の電池電圧を検出し、該検出結果を出力する電圧計測手段と、前記電圧計測手段の前記検出結果に基づいて、前記スイッチの開閉を制御する充電制御手段とを具備することを特徴としている。
この発明によれば、二次電池の電圧が所定の電圧、(例えば、満充電電圧)に達した場合には、バイパス回路制御手段が当該二次電池に対応するバイパス回路を作動させるので、二次電池の充電電流はバイパス回路を流れることとなる。これにより、満充電電圧に達した二次電池の過充電を防止することができるとともに、未だ満充電電圧に達していない二次電池については、充電を継続させることが可能となる。この結果、二次電池の電圧を均等化させることができる。さらに、全ての二次電池の電池電圧の検出結果に基づいてスイッチを開閉することにより、蓄電装置の充電制御を行うことも可能となるので、待機時に蓄電装置と充放電回路を切り離すバックアップ電源装置において、待機時に生じた二次電池の電圧のバラツキを解消することができる。
【0009】
請求項4に記載のバックアップ電源装置の電圧均等化装置において、前記充電制御手段は、前記全ての二次電池の電池電圧の総和が前記蓄電装置の満充電電圧よりも所定電圧値以上小さい値であった場合に、前記スイッチを閉じることを特徴とする。
この発明によれば、蓄電装置の満充電電圧に基づいて充電制御が行われるので、充電頻度をできる限り少なくして、待機時に生じた二次電池の電圧のバラツキを解消することができる。
【0010】
請求項5に記載のバックアップ電源装置の電圧均等化装置において、前記充電制御手段は、いずれか2つの前記二次電池の電池電圧の差が所定電圧値以上であった場合に、前記スイッチを閉じることを特徴とする。
この発明によれば、二次電池の電池電圧の差に基づいて充電制御が行われるので、待機時に生じた二次電池の電圧のバラツキを適宜解消することができる。
【0011】
【発明の実施の形態】
以下、図面を参照し、本発明の一実施形態について説明する。
図1は、本発明の一実施形態による電圧均等化装置を適用したバックアップ電源装置の構成を示すブロック図である。図1に示すバックアップ電源装置において、電圧均等化装置は電池回路2とバイパス回路4a〜4dから構成される。
【0012】
なお、図1においては、蓄電装置(二次電池セル列)として4個の二次電池(セル)Ba〜Bdを直列接続してなるものを例に挙げて説明する。また、上記セルBa〜Bdとしては、リチウムイオン電池、ニッケルカドニウム電池、ニッケル水素電池が使用される。
【0013】
図1において、セルBa〜Bdを直列接続してなる二次電池セル列は、スイッチ8を介して充放電装置6に接続される。充放電装置6は、主電源装置(図示せず)から供給される主電源により二次電池セル列を充電する充電回路と、主電源装置が電源供給を行うことができない時に、二次電池セル列から放電させてバックアップ電源を供給する放電回路を備える。これら充電回路及び放電回路は、スイッチ8が閉じている場合に二次電池セル列と接続され、一方、スイッチ8が解放している場合には二次電池セル列から切り離される。
【0014】
バイパス回路4a〜4dは、各セルBa〜Bdに対応して設けられている。電池回路2は、全てのセルBa〜Bdの電池電圧を検出し、この検出結果に基づいてバイパス回路4a〜4dとスイッチ8を制御する。
【0015】
上記バイパス回路4a〜4dは、トランジスタと抵抗が直列に接続された構成となっている。
上記電池回路2は、電圧計測器22a〜22dとCPU24から構成されている。電圧計測器22a〜22dは、セル毎に対応して設けられており、各セルの電池電圧をそれぞれ計測する。CPU24は、各電圧計測器22a〜22dから計測結果を取得し、この計測結果に基づいて、バイパス回路4a〜4dのトランジスタを制御するバイパス指令信号と、スイッチ8を制御する制御信号を出力する。
【0016】
次に、上記図1に示す構成からなる電圧均等化装置の動作について説明する。まず、電圧計測器22a〜22dは、所定のタイミングで対応するセルBa〜Bdの電池電圧を計測し、計測結果をCPU24へ出力する。
CPU24は、各セルの電池電圧を受信すると、これら電池電圧に基づいて、予めCPU24に設定されている充電実行条件を満足するか否かを判断する。
【0017】
この充電実行条件とは、全てのセルの電池電圧の総和が、二次電池セル列の満充電電圧よりも所定電圧値(例えば1V)以上、小さい値であること、である。例えば、今、満充電電圧が20Vであり、所定電圧値として1Vが設定されていた場合、CPU24は、全セルの電池電圧の総和が19V以下であると、充電実行条件を満足していると判断する。
あるいは、充電実行条件として、いずれか2つのセルの電池電圧の差が所定電圧値(例えば50mV)以上であることとしてもよい。
【0018】
CPU24は、上記充電実行条件が満足している場合にスイッチ8を閉じ、充放電装置6により二次電池セル列の充電を開始する。一方、上記充電実行条件が満足していない場合にはスイッチ8を開放し、二次電池セル列の充電を停止する。
【0019】
そして、CPU24は、上記充電実行条件が満足している場合には、さらに、各セルの電池電圧の中から、最も低い電池電圧(最低電池電圧)を抽出し、この最低電池電圧よりも所定電圧値以上高い電池電圧を示しているセルを抽出する。例えば、今、最低電池電圧が3.8Vであり、所定電圧値として30mVが設定されていた場合、CPU24は、3.83V以上の電池電圧を示しているセルを抽出する。
【0020】
そして、CPU24は、抽出したセルのバイパス回路を作動させるバイパス指令信号を出力する。このバイパス指令信号により、当該バイパス回路のトランジスタがオンしてバイパス回路が作動し、該セルに流れていた充電電流がバイパスされる。これにより、基準電圧(ここでは、最低電池電圧を基準電圧とした)よりも所定電圧値以上高い電池電圧が計測されたセルの充電を停止、又は充電電流を減少させる。一方、バイパス回路14が作動されていないセルについては、引き続き充電が行われる。
【0021】
これにより、電池電圧が低いセルについては、電池電圧が徐々に上昇するので、電池電圧が高くバイパス回路が作動されたセルと、電池電圧が低くバイパス回路が作動されなかったセルとの電池電圧の差を縮めることができる。これにより、蓄電装置を構成する全体のセルの電圧が均等化される。
【0022】
なお、上記基準電圧は、最低電池電圧に限らず、他の電池電圧、例えば、平均電池電圧等を採用するようにしてもよく、設計変更により適宜設定することができるものとする。
【0023】
また、上述した実施形態において、バイパス回路を作動させる二次電池の数が非常に多くなってしまった場合、充電が効率よく行われず、満充電状態になるまでに長時間要することとなる。
このような場合に備えて、バイパス回路を作動させる二次電池の数を予め設定し、バイパス回路を作動させる二次電池の数を制限する。
例えば、バイパス回路を作動させるセルの数として10セルが設定されていた場合には、電池電圧が高い上位10セルを、バイパス回路を作動させるセルとして決定する。これにより、二次電池の電圧の均等化を行いながらも、充電を効率よく実施することができる。
【0024】
図2は、本発明の他の実施形態による電圧均等化装置を適用したバックアップ電源装置の構成を示すブロック図である。図2において、図1にに示す実施形態との差異は、電圧均等化回路110をセルBa〜Bd毎に対応して設け、これら電圧均等化回路110がセルの電池電圧に応じて充電電流をバイパスさせることにある。このため、CPU24は、セルBa〜Bdの電池電圧及び上記電圧均等化動作の充電実行条件に基づいてスイッチ8の開閉制御のみを行う。
【0025】
電圧均等化回路110において、まず、セルと並列に分圧抵抗R3とVRとが接続されており、この分圧抵抗の中点がシャントレギュレータ113のレファレンス端子Rに接続されている。ここで、分圧抵抗VRは、可変抵抗であり、シャントレギュレータ113は、オペアンプとツェナーダイオードとが図3のように接続されたICである(例えば、製品番号HA17431)。
また、シャントレギュレータ113のアノード端子Aは、セルのマイナス側に接続され、カソード端子Kは、直列抵抗R1とR2とを介してセルのプラス側に接続されている。
更に、抵抗R1とR2との中点がコレクタ接地型のバイポーラトランジスタ(ここでは、PNP型)114のベースBに接続され、そのエミッタEがセルのプラス側に、コレクタCがセルのマイナス側に接続されている。
【0026】
次に、図2に示す実施形態に係る電圧均等化回路110の動作について説明する。
CPU24がスイッチ8を閉じ、充電が開始されると、まず、セルBaの充電が進み、セルBaの端子電圧が満充電電圧に達すると、この満充電電圧は分圧抵抗R3とVRとによって分圧されて、シャントレギュレータ113のレファレンス端子Rに印加される。
これにより、シャントレギュレータ113は導通し、カソード端子Kからアノード端子Aに向けて電流が流れる。これにより、抵抗R1の両端に電圧差が生じることとなり、バイポーラトランジスタ114のエミッタ端子Eとベース端子Bとの間に電位差が生じ、今までオフ状態であったバイポーラトランジスタ114が作動状態となる。
この結果、バイポーラトランジスタ114を介するバイパス電流路Qが形成され、このバイパス電流路Qを流れた充電電流がセルBbへ供給される。
【0027】
上述したように、各セルが満充電電圧に達した時点で充電電流はバイパス電流路Qを経由して流れるので、満充電状態に達したセルにおいては、過充電を防止することができ、また、満充電状態に達していないセルについては充電を継続して行うことが可能となる。
この結果、蓄電装置(二次電池セル列)を構成するセルの充電状態にバラツキがあったとしても、全てのセルを確実に満充電状態とすることが可能となる。
【0028】
なお、図2に示す電圧均等化回路110においては、バイパス電流路Qにコレクタ接地型のバイポーラトランジスタ114を設けている。このコレクタ接地型のバイポーラトランジスタ114は、エミッタEからベースBへ流れ込む電流の量に応じてバイポーラトランジスタ114の抵抗値が変化する。
即ち、充電電流が大きい程、抵抗値がゼロに近くなり、バイパス電流路Qに流れる電流は大きくなり、反対に、充電電流が小さければ、抵抗値は大きくなり、バイパス電流路Qに流れる電流は小さくなる。
【0029】
図2に示す実施形態では、バイポーラトランジスタ114は、不飽和状態において作動するので、少なからず抵抗成分を含んでいる。これにより、バイポーラトランジスタ114のエミッタE−コレクタC間の電圧は、セルの端子電圧と同電圧となる。このため、充電電流がバイパス電流路Qに流れている状態であっても、蓄電装置(二次電池セル列)全体の端子電圧が低下することを回避することができる。
【0030】
また、図2に示す実施形態によれば、分圧抵抗VRの抵抗値は可変であるので、シャントレギュレータ113の入力端子へ印加するセルの両端電圧の分圧比を自由に設定することができる。これにより、充電電流をバイパス電流路Qに流す端子電圧、即ち、満充電電流をセル毎に設定することが可能となる。
即ち、セルが使用とともに劣化し、これにより満充電電圧が徐々に低下するという特性を有している電池の場合、セルの劣化に伴い、可変抵抗の分圧比を変更してやれば、各セルに応じた最適な満充電電圧で充電を停止することができ、満充電電流をバイパスさせることが可能となる。
【0031】
なお、図2に示した電圧均等化回路110において、バイパス電流経路Qに抵抗を介在させても良い。このように抵抗を介在させることにより、バイパス電流経路Qに流れる電流を確実に制限することが可能となる。
【0032】
以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。
例えば、バイパス回路は、図1,図2に示した回路構成に限られず、セルに流れる充電電流をバイパスさせるような手段であれば、どのような回路構成を有していてもよい。
また、上記図2の実施形態においては、バイポーラトランジスタ114として、コレクタ接地のPNP型を使用したが、これに制限されない。
【0033】
【発明の効果】
以上説明したように、本発明によれば、二次電池の電池電圧に基づいて、充電する二次電池を選択したり、あるいは各電池毎の充電電流を充電状態によって制御できるので、二次電池の電圧を均等化させることができる。さらに、全ての二次電池の電池電圧の検出結果に基づいて蓄電装置の充電制御を行うことも可能となるので、待機時に生じた二次電池の電圧のバラツキを解消することができる。
【0034】
また、請求項4に記載の発明によれば、蓄電装置の満充電電圧に基づいて充電制御が行われるので、充電頻度をできる限り少なくして、待機時に生じた二次電池の電圧のバラツキを解消することができる。
【0035】
また、請求項5に記載の発明によれば、二次電池の電池電圧の差に基づいて充電制御が行われるので、待機時に生じた二次電池の電圧のバラツキを適宜解消することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態による電圧均等化装置を適用したバックアップ電源装置の構成を示すブロック図である。
【図2】本発明の他の実施形態による電圧均等化装置を適用したバックアップ電源装置の構成を示すブロック図である。
【図3】図2に示したシャントレギュレータ113の内部回路を示す図である。
【符号の説明】
2…電池回路、4a〜4d…バイパス回路、6…充放電装置、8…スイッチ、22a〜22d…電圧計測器、24…CPU、110…電圧均等化回路、113…シャントレギュレータ、114…バイポーラトランジスタ、Ba〜Bd…セル(二次電池)、R1〜R3,VR…抵抗(分圧抵抗)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a backup power supply device using a power storage device in which secondary batteries such as lithium ion batteries are connected in series, and in particular, to equalize variations in the voltage of the secondary batteries due to self-discharge during standby and the like. The present invention relates to a voltage equalizer for a backup power supply.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an uninterruptible power supply (UPS) and the like have a backup power supply together with a main power supply, and the backup power supply supplies power when an input power supply (for example, a commercial AC power supply) of the main power supply fails. Supply. A conventional backup power supply device includes a power storage device (secondary battery cell row) in which secondary batteries (cells) are connected in series, and a charge / discharge circuit for charging / discharging the secondary battery cell row. It is configured to stably supply power when the device cannot supply power (for example, see Patent Document 1). In addition, there is a switch that includes a switch between the power storage device and the charging circuit, and disconnects the power storage device and the charge / discharge device when the secondary battery cell row is fully charged during standby when power can be supplied from the main power supply device. .
[0003]
[Patent Document 1]
JP-A-10-2943 (Page 3-7, FIG. 1)
[0004]
[Problems to be solved by the invention]
However, in the conventional backup power supply device in which the power storage device and the charging circuit are separated during standby, the cells self-discharge, for example, during standby, and the battery voltage decreases, and the voltage of each cell varies. As a result, the charging power of the power storage device cannot be used effectively, and when the main power supply device cannot supply power, there is a concern that stable supply of power may be hindered.
[0005]
The present invention has been made in view of such circumstances, and a purpose thereof is to provide a backup power supply device that separates a power storage device from a charging / discharging circuit during standby, or a float charging device that does not disconnect the power storage device and charging / discharging circuit during standby. It is an object of the present invention to provide a voltage equalizing device that can eliminate the variation in the voltage of the secondary battery caused during standby in a backup power supply device.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 provides a power storage device including a plurality of secondary batteries connected in series, a charging circuit that charges the secondary battery, the power storage device, and the charging device. A voltage equalizing device of a backup power supply device including a switch for connecting a circuit, a bypass circuit provided for each of the secondary batteries, and detecting a battery voltage of all of the secondary batteries, A voltage measurement unit that outputs the detection result; a bypass circuit control unit that determines a secondary battery that activates the bypass circuit based on the detection result of the voltage measurement unit; And charging control means for controlling opening and closing of the switch based on the charging control means.
According to the present invention, the secondary batteries to be charged can be selected based on the detection results of the battery voltages of all the secondary batteries, or the charging current of each battery can be controlled by the state of charge. The voltage can be equalized. Further, by opening and closing the switches based on the detection results of the battery voltages of all the secondary batteries, it becomes possible to control the charging of the power storage device. In this case, it is possible to eliminate the variation in the voltage of the secondary battery caused during the standby.
[0007]
3. The voltage equalizing device for a backup power supply device according to claim 2, wherein the bypass circuit control means activates a bypass circuit of a secondary battery in which a difference between a reference voltage and a battery voltage is equal to or more than a predetermined voltage value. And
According to the present invention, for a secondary battery whose difference from the reference voltage is equal to or more than a predetermined voltage value, by activating the bypass circuit, charging is stopped for a certain period of time, or a part of the charging current is bypassed. The charging current is reduced (this bypass current is determined, for example, by the resistance value of the bypass circuit in the embodiment of FIG. 1). On the other hand, the secondary battery in which the bypass circuit is not operated continues to be charged. In this way, in a secondary battery with a low battery voltage, the battery voltage gradually increases by continuing charging, and gradually approaches the battery voltage of the secondary battery in which the bypass circuit is activated. Variations in the battery voltage of the secondary batteries constituting the device can be reliably reduced.
According to such a configuration, charging can be performed while equalizing the variation in voltage, so that the power storage device can be charged very efficiently. As the reference voltage, the lowest battery voltage may be employed, or another reference voltage having a relatively low battery voltage may be employed.
[0008]
In order to solve the above-mentioned problem, an invention according to claim 3 is a power storage device including a plurality of secondary batteries connected in series, a charging circuit that charges the secondary batteries, the power storage device, and the charging device. What is claimed is: 1. A voltage equalizing device for a backup power supply, comprising: a switch for connecting a circuit; and a bypass circuit provided for each of said secondary batteries, wherein a battery voltage of said secondary battery reaches a predetermined voltage. In this case, bypass circuit control means for operating the bypass circuit corresponding to the secondary battery, voltage measurement means for detecting battery voltages of all the secondary batteries and outputting the detection results, and Charging control means for controlling opening and closing of the switch based on the detection result of the means.
According to the present invention, when the voltage of the secondary battery reaches a predetermined voltage (for example, a full charge voltage), the bypass circuit control means operates the bypass circuit corresponding to the secondary battery. The charging current of the secondary battery flows through the bypass circuit. Thus, overcharging of the secondary battery that has reached the full charge voltage can be prevented, and charging of the secondary battery that has not yet reached the full charge voltage can be continued. As a result, the voltage of the secondary battery can be equalized. Further, by opening and closing the switches based on the detection results of the battery voltages of all the secondary batteries, it becomes possible to control the charging of the power storage device. In this case, it is possible to eliminate the variation in the voltage of the secondary battery caused during the standby.
[0009]
5. The voltage equalizing device of the backup power supply device according to claim 4, wherein the charge control unit is configured to set a sum of battery voltages of all the secondary batteries to a value smaller than a full charge voltage of the power storage device by a predetermined voltage value or more. When there is, the switch is closed.
According to the present invention, the charging control is performed based on the full charge voltage of the power storage device, so that the charging frequency can be reduced as much as possible, and the variation in the voltage of the secondary battery caused during the standby can be eliminated.
[0010]
6. The voltage equalization device for a backup power supply device according to claim 5, wherein the charging control unit closes the switch when a difference between battery voltages of any two of the secondary batteries is equal to or more than a predetermined voltage value. It is characterized by the following.
According to the present invention, since the charging control is performed based on the difference between the battery voltages of the secondary batteries, it is possible to appropriately eliminate the variation in the voltage of the secondary batteries that occurs during standby.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of a backup power supply device to which a voltage equalization device according to an embodiment of the present invention is applied. In the backup power supply device shown in FIG. 1, the voltage equalizing device includes a battery circuit 2 and bypass circuits 4a to 4d.
[0012]
In FIG. 1, an example in which four secondary batteries (cells) Ba to Bd are connected in series as a power storage device (secondary battery cell row) will be described. As the cells Ba to Bd, a lithium ion battery, a nickel cadmium battery, and a nickel hydrogen battery are used.
[0013]
In FIG. 1, a secondary battery cell row formed by connecting cells Ba to Bd in series is connected to a charge / discharge device 6 via a switch 8. The charging / discharging device 6 includes a charging circuit that charges a secondary battery cell row with a main power supplied from a main power supply (not shown), and a secondary battery cell that is used when the main power supply cannot supply power. A discharge circuit that discharges from the column and supplies backup power. The charging circuit and the discharging circuit are connected to the secondary battery cell row when the switch 8 is closed, and are disconnected from the secondary battery cell row when the switch 8 is open.
[0014]
The bypass circuits 4a to 4d are provided corresponding to the cells Ba to Bd. The battery circuit 2 detects the battery voltages of all the cells Ba to Bd, and controls the bypass circuits 4a to 4d and the switch 8 based on the detection results.
[0015]
Each of the bypass circuits 4a to 4d has a configuration in which a transistor and a resistor are connected in series.
The battery circuit 2 includes voltage measuring devices 22a to 22d and a CPU 24. The voltage measuring devices 22a to 22d are provided corresponding to each cell, and measure the battery voltage of each cell. The CPU 24 obtains measurement results from the voltage measuring devices 22a to 22d, and outputs a bypass command signal for controlling the transistors of the bypass circuits 4a to 4d and a control signal for controlling the switch 8 based on the measurement results.
[0016]
Next, the operation of the voltage equalizing device having the configuration shown in FIG. 1 will be described. First, the voltage measuring devices 22a to 22d measure the battery voltages of the corresponding cells Ba to Bd at a predetermined timing, and output the measurement results to the CPU 24.
Upon receiving the battery voltage of each cell, the CPU 24 determines whether or not a charging execution condition set in advance in the CPU 24 is satisfied based on the battery voltages.
[0017]
The charge execution condition is that the sum of the battery voltages of all the cells is smaller than the full charge voltage of the secondary battery cell row by a predetermined voltage value (for example, 1 V) or more. For example, if the full charge voltage is now 20 V and the predetermined voltage value is set to 1 V, the CPU 24 determines that the charge execution condition is satisfied if the sum of the battery voltages of all cells is 19 V or less. to decide.
Alternatively, as a charging execution condition, the difference between the battery voltages of any two cells may be equal to or more than a predetermined voltage value (for example, 50 mV).
[0018]
The CPU 24 closes the switch 8 when the above-mentioned charge execution condition is satisfied, and starts charging the secondary battery cell array by the charge / discharge device 6. On the other hand, if the above-mentioned charging execution condition is not satisfied, the switch 8 is opened to stop charging the secondary battery cell array.
[0019]
Then, when the above-described charging execution condition is satisfied, the CPU 24 further extracts the lowest battery voltage (minimum battery voltage) from the battery voltages of each cell, and extracts a predetermined voltage from the minimum battery voltage. The cell showing the battery voltage higher than the value is extracted. For example, if the minimum battery voltage is 3.8 V and the predetermined voltage value is set to 30 mV, the CPU 24 extracts a cell indicating a battery voltage of 3.83 V or more.
[0020]
Then, the CPU 24 outputs a bypass command signal for operating the bypass circuit of the extracted cell. The bypass command signal turns on the transistor of the bypass circuit to operate the bypass circuit, thereby bypassing the charging current flowing through the cell. As a result, the charging of the cell whose battery voltage is higher than the reference voltage (here, the lowest battery voltage is set as the reference voltage) by a predetermined voltage value or more is stopped or the charging current is reduced. On the other hand, the cells in which the bypass circuit 14 is not operated are continuously charged.
[0021]
As a result, the battery voltage of a cell having a low battery voltage gradually increases, and the battery voltage of a cell having a high battery voltage and the bypass circuit has been activated and a cell having a low battery voltage and having the bypass circuit not activated. The difference can be reduced. Thus, the voltages of all the cells included in the power storage device are equalized.
[0022]
Note that the reference voltage is not limited to the minimum battery voltage, and another battery voltage, for example, an average battery voltage or the like may be adopted, and can be appropriately set by a design change.
[0023]
Further, in the above-described embodiment, when the number of secondary batteries for operating the bypass circuit becomes very large, charging is not performed efficiently, and it takes a long time to reach a fully charged state.
In preparation for such a case, the number of secondary batteries for operating the bypass circuit is set in advance, and the number of secondary batteries for operating the bypass circuit is limited.
For example, when 10 cells are set as the number of cells for activating the bypass circuit, the top 10 cells having the highest battery voltage are determined as the cells for activating the bypass circuit. Thereby, charging can be efficiently performed while equalizing the voltage of the secondary battery.
[0024]
FIG. 2 is a block diagram showing a configuration of a backup power supply device to which a voltage equalization device according to another embodiment of the present invention is applied. In FIG. 2, the difference from the embodiment shown in FIG. 1 is that a voltage equalizing circuit 110 is provided corresponding to each of the cells Ba to Bd, and these voltage equalizing circuits 110 supply a charging current according to the battery voltage of the cell. To bypass. Therefore, the CPU 24 performs only the opening / closing control of the switch 8 based on the battery voltages of the cells Ba to Bd and the charging execution condition of the voltage equalizing operation.
[0025]
In the voltage equalizing circuit 110, first, the voltage dividing resistors R3 and VR are connected in parallel with the cell, and the midpoint of the voltage dividing resistor is connected to the reference terminal R of the shunt regulator 113. Here, the voltage dividing resistor VR is a variable resistor, and the shunt regulator 113 is an IC in which an operational amplifier and a Zener diode are connected as shown in FIG. 3 (for example, product number HA17431).
The anode terminal A of the shunt regulator 113 is connected to the negative side of the cell, and the cathode terminal K is connected to the positive side of the cell via series resistors R1 and R2.
Further, the midpoint between the resistors R1 and R2 is connected to the base B of a common-collector type bipolar transistor (here, PNP type) 114, with its emitter E on the plus side of the cell and its collector C on the minus side of the cell. It is connected.
[0026]
Next, the operation of the voltage equalization circuit 110 according to the embodiment shown in FIG. 2 will be described.
When the CPU 24 closes the switch 8 and starts charging, first, the charging of the cell Ba proceeds, and when the terminal voltage of the cell Ba reaches the full charging voltage, the full charging voltage is divided by the voltage dividing resistors R3 and VR. The voltage is applied to a reference terminal R of the shunt regulator 113.
As a result, the shunt regulator 113 conducts, and a current flows from the cathode terminal K to the anode terminal A. As a result, a voltage difference is generated between both ends of the resistor R1, a potential difference is generated between the emitter terminal E and the base terminal B of the bipolar transistor 114, and the bipolar transistor 114, which has been off until now, is activated.
As a result, a bypass current path Q is formed via the bipolar transistor 114, and the charging current flowing through the bypass current path Q is supplied to the cell Bb.
[0027]
As described above, since the charging current flows via the bypass current path Q when each cell reaches the full charge voltage, overcharging can be prevented in the cell that has reached the full charge state, In addition, the cells that have not reached the fully charged state can be continuously charged.
As a result, even if the charging state of the cells constituting the power storage device (secondary battery cell row) varies, all the cells can be reliably brought to the fully charged state.
[0028]
In the voltage equalizing circuit 110 shown in FIG. 2, a common collector bipolar transistor 114 is provided in the bypass current path Q. In the common-collector type bipolar transistor 114, the resistance value of the bipolar transistor 114 changes according to the amount of current flowing from the emitter E to the base B.
That is, as the charging current increases, the resistance value approaches zero and the current flowing through the bypass current path Q increases. Conversely, when the charging current decreases, the resistance value increases and the current flowing through the bypass current path Q decreases. Become smaller.
[0029]
In the embodiment shown in FIG. 2, since bipolar transistor 114 operates in an unsaturated state, it includes a considerable amount of resistance. As a result, the voltage between the emitter E and the collector C of the bipolar transistor 114 becomes the same as the terminal voltage of the cell. For this reason, even when the charging current is flowing in the bypass current path Q, it is possible to avoid a decrease in the terminal voltage of the entire power storage device (secondary battery cell row).
[0030]
In addition, according to the embodiment shown in FIG. 2, since the resistance value of the voltage dividing resistor VR is variable, the voltage dividing ratio of the voltage across the cell applied to the input terminal of the shunt regulator 113 can be set freely. This makes it possible to set the terminal voltage at which the charging current flows through the bypass current path Q, that is, the full charging current for each cell.
In other words, in the case of a battery having the characteristic that the cell deteriorates with use and the full charge voltage gradually decreases due to this, if the voltage dividing ratio of the variable resistor is changed with the cell deterioration, the The charging can be stopped at the optimal full charge voltage, and the full charge current can be bypassed.
[0031]
In the voltage equalization circuit 110 shown in FIG. 2, a resistor may be interposed in the bypass current path Q. By interposing the resistor in this manner, it is possible to reliably limit the current flowing in the bypass current path Q.
[0032]
Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to the embodiments, and may include design changes and the like without departing from the gist of the present invention.
For example, the bypass circuit is not limited to the circuit configuration shown in FIGS. 1 and 2 and may have any circuit configuration as long as it is a unit that bypasses the charging current flowing through the cell.
Further, in the embodiment of FIG. 2, a PNP transistor with a common collector is used as the bipolar transistor 114, but the present invention is not limited to this.
[0033]
【The invention's effect】
As described above, according to the present invention, a secondary battery to be charged can be selected based on the battery voltage of the secondary battery, or the charging current of each battery can be controlled by the state of charge. Can be equalized. Further, since it is possible to control the charging of the power storage device based on the detection results of the battery voltages of all the secondary batteries, it is possible to eliminate variations in the voltage of the secondary batteries that occur during standby.
[0034]
According to the fourth aspect of the present invention, the charging control is performed based on the full charge voltage of the power storage device. Therefore, the charging frequency is reduced as much as possible, and the variation in the voltage of the secondary battery caused during the standby is reduced. Can be eliminated.
[0035]
According to the fifth aspect of the present invention, since the charging control is performed based on the difference between the battery voltages of the secondary batteries, it is possible to appropriately eliminate the variation in the voltage of the secondary batteries that occurs during standby.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a backup power supply device to which a voltage equalization device according to an embodiment of the present invention is applied.
FIG. 2 is a block diagram showing a configuration of a backup power supply device to which a voltage equalization device according to another embodiment of the present invention is applied.
FIG. 3 is a diagram showing an internal circuit of the shunt regulator 113 shown in FIG.
[Explanation of symbols]
2 ... Battery circuit, 4a-4d ... Bypass circuit, 6 ... Charge / discharge device, 8 ... Switch, 22a-22d ... Voltage measuring instrument, 24 ... CPU, 110 ... Voltage equalization circuit, 113 ... Shunt regulator, 114 ... Bipolar transistor , Ba-Bd ... cells (secondary batteries), R1-R3, VR ... resistance (voltage division resistance)

Claims (5)

複数の二次電池を直列接続してなる蓄電装置と、前記二次電池を充電する充電回路と、前記蓄電装置と前記充電回路を接続するスイッチとを備えたバックアップ電源装置の電圧均等化装置であって、
前記二次電池の各々に対応して設けられるバイパス回路と、
前記全ての二次電池の電池電圧を検出し、該検出結果を出力する電圧計測手段と、
前記電圧計測手段の前記検出結果に基づいて、前記バイパス回路を作動させる二次電池を決定するバイパス回路制御手段と、
前記電圧計測手段の前記検出結果に基づいて、前記スイッチの開閉を制御する充電制御手段と、
を具備することを特徴とするバックアップ電源装置の電圧均等化装置。
A voltage equalization device for a backup power supply device including a power storage device formed by connecting a plurality of secondary batteries in series, a charging circuit for charging the secondary battery, and a switch connecting the power storage device and the charging circuit. So,
A bypass circuit provided for each of the secondary batteries,
Voltage measurement means for detecting the battery voltage of all the secondary batteries and outputting the detection result,
A bypass circuit control unit that determines a secondary battery to operate the bypass circuit based on the detection result of the voltage measurement unit;
Charge control means for controlling opening and closing of the switch based on the detection result of the voltage measurement means,
A voltage equalizing device for a backup power supply, comprising:
前記バイパス回路制御手段は、基準電圧と電池電圧との差が所定電圧値以上である二次電池のバイパス回路を作動させることを特徴とする請求項1に記載のバックアップ電源装置の電圧均等化装置。2. The voltage equalizer according to claim 1, wherein the bypass circuit controller activates a bypass circuit of the secondary battery in which a difference between the reference voltage and the battery voltage is equal to or greater than a predetermined voltage value. 3. . 複数の二次電池を直列接続してなる蓄電装置と、前記二次電池を充電する充電回路と、前記蓄電装置と前記充電回路を接続するスイッチとを備えたバックアップ電源装置の電圧均等化装置であって、
前記二次電池の各々に対応して設けられるバイパス回路と、
前記二次電池の電池電圧が所定の電圧に達した場合に、該二次電池に対応する前記バイパス回路を作動させるバイパス回路制御手段と、
前記全ての二次電池の電池電圧を検出し、該検出結果を出力する電圧計測手段と、
前記電圧計測手段の前記検出結果に基づいて、前記スイッチの開閉を制御する充電制御手段と、
を具備することを特徴とするバックアップ電源装置の電圧均等化装置。
A voltage equalization device for a backup power supply device including a power storage device formed by connecting a plurality of secondary batteries in series, a charging circuit for charging the secondary battery, and a switch connecting the power storage device and the charging circuit. So,
A bypass circuit provided for each of the secondary batteries,
When the battery voltage of the secondary battery reaches a predetermined voltage, bypass circuit control means for operating the bypass circuit corresponding to the secondary battery,
Voltage measurement means for detecting the battery voltage of all the secondary batteries and outputting the detection result,
Charge control means for controlling opening and closing of the switch based on the detection result of the voltage measurement means,
A voltage equalizing device for a backup power supply, comprising:
前記充電制御手段は、前記全ての二次電池の電池電圧の総和が前記蓄電装置の満充電電圧よりも所定電圧値以上小さい値であった場合に、前記スイッチを閉じることを特徴とする請求項1乃至請求項3のいずれかの項に記載のバックアップ電源装置の電圧均等化装置。The charge control unit closes the switch when the sum of the battery voltages of all the secondary batteries is smaller than a full charge voltage of the power storage device by a predetermined voltage value or more. The voltage equalization device for a backup power supply device according to claim 1. 前記充電制御手段は、いずれか2つの前記二次電池の電池電圧の差が所定電圧値以上であった場合に、前記スイッチを閉じることを特徴とする請求項1乃至請求項3のいずれかの項に記載のバックアップ電源装置の電圧均等化装置。4. The charge control unit according to claim 1, wherein the switch is closed when a difference between battery voltages of any two of the secondary batteries is equal to or greater than a predetermined voltage value. Item 8. A voltage equalizing device for a backup power supply device according to item 7.
JP2002292565A 2002-10-04 2002-10-04 Voltage equalization device for backup power supply device Pending JP2004129439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002292565A JP2004129439A (en) 2002-10-04 2002-10-04 Voltage equalization device for backup power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002292565A JP2004129439A (en) 2002-10-04 2002-10-04 Voltage equalization device for backup power supply device

Publications (1)

Publication Number Publication Date
JP2004129439A true JP2004129439A (en) 2004-04-22

Family

ID=32283783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292565A Pending JP2004129439A (en) 2002-10-04 2002-10-04 Voltage equalization device for backup power supply device

Country Status (1)

Country Link
JP (1) JP2004129439A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2420235A (en) * 2004-11-12 2006-05-17 Sanyo Electric Co Battery pack having voltage detection and discharge circuits to balance discharge currents
JP2006318843A (en) * 2005-05-16 2006-11-24 Toshiba Mitsubishi-Electric Industrial System Corp Charge/discharge circuit of lithium ion secondary battery
JP2007124883A (en) * 2005-09-27 2007-05-17 Matsushita Electric Ind Co Ltd Capacitor device
JP2008508685A (en) * 2004-07-28 2008-03-21 エナーデル、インク Method and apparatus for cell balancing of a multi-cell lithium battery system
JP2008510280A (en) * 2004-08-12 2008-04-03 エナーデル、インク Method for cell balancing for lithium battery systems
CN100433497C (en) * 2006-12-11 2008-11-12 赵建和 A device for charging protection of the battery unit and detection of the charging and discharging feature of the battery
JP2009090419A (en) * 2007-10-10 2009-04-30 Hitachi Koki Co Ltd Power tool
KR100995816B1 (en) * 2008-07-15 2010-11-23 엘에스엠트론 주식회사 Energy storage device module
JP2012115103A (en) * 2010-11-26 2012-06-14 Shin Kobe Electric Mach Co Ltd Dc power supply and voltage non-equalization suppressing method of capacitor module
WO2012132414A1 (en) * 2011-03-31 2012-10-04 電動車両技術開発株式会社 Balance correction apparatus and electrical storage system
JP2013123344A (en) * 2011-12-12 2013-06-20 Toyota Industries Corp Device for equalizing battery cell voltages
WO2020241439A1 (en) * 2019-05-31 2020-12-03 パナソニックIpマネジメント株式会社 Energy storage system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508685A (en) * 2004-07-28 2008-03-21 エナーデル、インク Method and apparatus for cell balancing of a multi-cell lithium battery system
JP2008510280A (en) * 2004-08-12 2008-04-03 エナーデル、インク Method for cell balancing for lithium battery systems
US7453237B2 (en) 2004-11-12 2008-11-18 Sanyo Electric Co., Ltd. Battery pack
GB2420235B (en) * 2004-11-12 2008-12-17 Sanyo Electric Co Battery pack
GB2420235A (en) * 2004-11-12 2006-05-17 Sanyo Electric Co Battery pack having voltage detection and discharge circuits to balance discharge currents
JP4641862B2 (en) * 2005-05-16 2011-03-02 東芝三菱電機産業システム株式会社 Lithium-ion secondary battery charge / discharge circuit
JP2006318843A (en) * 2005-05-16 2006-11-24 Toshiba Mitsubishi-Electric Industrial System Corp Charge/discharge circuit of lithium ion secondary battery
JP2007124883A (en) * 2005-09-27 2007-05-17 Matsushita Electric Ind Co Ltd Capacitor device
JP4513791B2 (en) * 2005-09-27 2010-07-28 パナソニック株式会社 Power storage device
CN100433497C (en) * 2006-12-11 2008-11-12 赵建和 A device for charging protection of the battery unit and detection of the charging and discharging feature of the battery
JP2009090419A (en) * 2007-10-10 2009-04-30 Hitachi Koki Co Ltd Power tool
KR100995816B1 (en) * 2008-07-15 2010-11-23 엘에스엠트론 주식회사 Energy storage device module
JP2012115103A (en) * 2010-11-26 2012-06-14 Shin Kobe Electric Mach Co Ltd Dc power supply and voltage non-equalization suppressing method of capacitor module
WO2012132414A1 (en) * 2011-03-31 2012-10-04 電動車両技術開発株式会社 Balance correction apparatus and electrical storage system
US9083188B2 (en) 2011-03-31 2015-07-14 Evtd Inc. Balance correcting apparatus and electricity storage system
JP2013123344A (en) * 2011-12-12 2013-06-20 Toyota Industries Corp Device for equalizing battery cell voltages
WO2020241439A1 (en) * 2019-05-31 2020-12-03 パナソニックIpマネジメント株式会社 Energy storage system
CN113812031A (en) * 2019-05-31 2021-12-17 松下知识产权经营株式会社 Electricity storage system

Similar Documents

Publication Publication Date Title
JP4858378B2 (en) Cell voltage monitoring device for multi-cell series batteries
US7408325B2 (en) Battery charging method
TWI403072B (en) Charging and discharging control circuit and charging type power supply device
RU2472270C2 (en) Charging circuit for secondary accumulator battery
US7863863B2 (en) Multi-cell battery pack charge balance circuit
JP4864992B2 (en) Battery balanced charge control device and battery module thereof
US20090176146A1 (en) Battery pack
US20090243540A1 (en) Methods and apparatus for battery charging management
JP2006211885A (en) Capacity adjusting device and capacity adjusting method for battery pack
JP2010032412A (en) Power supply for vehicle
JP2010124640A5 (en)
JP4667276B2 (en) A battery pack in which multiple secondary batteries are connected in series or in parallel
JPH07336905A (en) Charger for battery set
JP2003333762A (en) Voltage level equalization device for battery pack
JP2008043009A (en) Battery pack and control method
JP2004129439A (en) Voltage equalization device for backup power supply device
US20120032513A1 (en) Battery management circuit, battery module and battery management method
JPH07105986A (en) Battery pack
JP6136820B2 (en) Battery monitoring device, power storage device, and battery monitoring method
TW202203543A (en) Bidirectional battery charging system including capacitor divider circuit
JPH11332116A (en) Charging/discharging control circuit and charging-type power supply device
JPH11258280A (en) Voltage detector for secondary battery and secondary battery device
JP2005020866A (en) Battery charger
JP2006020382A (en) Dc voltage supply
JP4110858B2 (en) Abnormality detection device for battery pack

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050913