JP2004128716A - 固体撮像装置及び画像補正回路 - Google Patents

固体撮像装置及び画像補正回路 Download PDF

Info

Publication number
JP2004128716A
JP2004128716A JP2002287617A JP2002287617A JP2004128716A JP 2004128716 A JP2004128716 A JP 2004128716A JP 2002287617 A JP2002287617 A JP 2002287617A JP 2002287617 A JP2002287617 A JP 2002287617A JP 2004128716 A JP2004128716 A JP 2004128716A
Authority
JP
Japan
Prior art keywords
signal
pixel
image
imaging device
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002287617A
Other languages
English (en)
Inventor
Kazuto Nishida
西田 一人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002287617A priority Critical patent/JP2004128716A/ja
Publication of JP2004128716A publication Critical patent/JP2004128716A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】分割された画像領域のつなぎ目において発生する振幅波形ひずみによる画像のつなぎ目での段差によるスジ状のキズの発生を抑える。
【解決手段】複数に分割された画素領域と、分割された前記画素領域毎に設けられた電荷転送路により転送された画素信号を読み出す手段と、を有する固体撮像装置であって、分割された画素領域のそれぞれにおける1単位読み出し期間中の、遮光状態における信号値を基準信号とし白チャートを測定して得られた白レベル信号を検出する白レベル信号検出手段21、22、28、29と、白レベル信号手段により検出された白レベル信号が、1単位読み出し期間中の複数の時点において近づくように画像信号を補正する補正回路23、30と、分割された前記画素領域の画面を補正後の画像信号に基づいて合成する画面合成回路とを有する。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
本発明は、画像領域を複数に分割し、分割された画像領域毎に画素信号を読み出す手段を有する固体撮像装置に関し、特に固体撮像装置の画像補正回路に関する。
【0002】
【従来の技術】
従来からデジタルスチルカメラやデジタルビデオカメラ用には、1本の水平転送CCDと1つの出力端子とを備えるCCD固体撮像素子が用いられてきた。CCD固体撮像素子における画素数の増加に伴い、1本の水平CCDに多数本の垂直CCDを繋げると、読み出し周波数を高くせざるを得ない。例えば、68万画素の画素数を有するデジタルビデオカメラにおいては、読み出し周波数は一般的に27MHz程度である。画素数を200万画素程度まで大きくすると、動作周波数を理論上、例えば72MHz程度まで高くする必要があるが、実際上は動作周波数を72MHZまで上げるのは難しい。従って、前のフレームの信号が残留し、今回の信号と混ざることにより、画質が落ちるという問題が生じる。
【0003】
上記問題点を解決するために、CCD固体撮像素子の画像領域を複数の領域に分割し、それぞれに水平転送CCDと出力アンプとを設け、複数の領域で並行して画像データを読み出す分割型固体撮像装置も開発されている。
【0004】
上記分割型固体撮像装置の構成について、図1を参照して説明する。図1に示す分割型固体撮像装置は、画素領域を複数(図では2領域)に分割し、領域毎に画素信号を読み出す手段を有する。より具体的には、分割された2領域における画素信号を、2本の水平転送CCD4と5とにより転送し、信号処理回路11、12に出力する。信号処理回路11、12において処理された信号が合成回路13により1つの連続した画像に合成する。
【0005】
図8は、上記分割型固体撮像装置を用いた単板式ビデオカメラの構成例を示す機能ブロック図である。レンズを通して被写体像が、CCD固体撮像素子111の撮像面(厳密にはフォトダイオード2(図1))に結像され、固体撮像素子1(図1)では被写体像が画素(フォトダイオード)毎に光電変換され電気信号が得られる。
【0006】
固体撮像素子1からの出力信号は、水平CCD4又は5(図1)を共有するそれぞれの左右の画像領域単位でアンプ6、7(図1)を通って外部に出力される。水平転送CCD4と水平転送CCD5とは同時に動作し、並行して左右の画像データが同時に出力される。左右の画像領域における画像データは、2組のCDS回路112、113と、ADコンバータ112、113によりデジタルデータに変換され、信号処理回路120に入力される。信号処理回路120では、ADコンバータ112および113の出力である右画像データと左画像データとに対して補正回路114・115により補正する処理が行われる。別々に補正を行った左右の画像領域の画像データを、合成回路116によりつなぎ合わせて1枚の画像データに再合成し、画像信号出力S2を出力する。
【0007】
図9に合成回路の動作を説明した図を示す。図9の水平走査期間121において、右画像データと左画像データとが、図9の122、123のタイミングで入力される。合成回路116(図8)では、左画像データを入力の順番と同じ順番で合成回路出力124のタイミングで出力する。その後、右画像データを入力の順番と逆の順番で合成回路出力125のタイミングで出力することにより、水平2画面の画像データを1画面に合成することができる。
【0008】
すなわち、右画像データの画素がR1、…Rnの順で入力され、左画像データの画素がL1…Lnの順に入力されると、合成回路116の出力は、L1…Ln,Rn…R1の並びで出力される。
【0009】
【発明が解決しようとする課題】
ここで、図8の合成回路116によって画像データをつなぎ合わせ1枚の画像データに合成する。左右の領域の画像データは、それぞれ別の水平転送CCD4、5(図1)、CCD固体撮像装置の出力アンプ6、7(図1)、CDS回路、ADコンバータ112、113を介して信号処理に入力されており、これらの各回路の利得のばらつきなどにより、左右の領域の画像データ間に振幅の差が発生する。この振幅の差の影響を取り除くために、図10に示す画像補正回路が設けられている。
【0010】
図10に示す画像補正回路は、CCD固体撮像装置の撮像面において均一な光が入射するよう白チャートを撮影し、そのときの左右の画像データの信号の振幅を白レベル検出回路201、205において計測する。計測した左右の画像データの信号の振幅が一致するように補正値算出回路202、206において補正値が計算され、レジスタ203、207に設定される。レジスタ203、207の補正値と乗算回路204、208により元の左右の画像データとを乗算し、振幅の等しい左右の画像データが出力される。
【0011】
水平転送CCDでは、各CCD段の転送効率の影響によりCCD読み出し開始の画素データと読みだし終了の画素データとの間で信号の振幅に差が発生する。また、CCD撮像素子、CDS回路、ADコンバータの各要素において、電源電圧の変動などによりサグ状の振幅ひずみを受ける。これらの各要素において発生する振幅に対するひずみは、画像データの振幅に比例する。
【0012】
図11に示すように、上記波形ひずみを受けた左右領域の画像211をそのままつなぎ合わせると、符号212に示すように、左右領域画像211のつなぎ合わせの部分を中心としてV字状の信号段差が発生する。このV字状段差が発生した状態の画像データに基づいて輝度信号を作成すると、輝度信号回路では213に示すように水平のエッジ(H−DTL)信号が生成し、これが輝度信号に加算されることにより、中央に縦スジが発生するという問題が生じる。
【0013】
一方、左右の領域の画像データは、それぞれ別の水平転送CCD、CCD撮像素子の出力アンプ、CDS回路、ADコンバータを介して信号処理回路に入力されており、これらの各要素の利得のばらつきにより、左右の領域の画像データ間における黒レベルに段差が発生する。この段差をとるため、図12に示す画像補正回路が設けられる。
【0014】
図12に示すように、左右の画像データDin(L)、Din(R)の後段に位置するダミー画素領域の振幅をDUM検出回路301、305によりそれぞれ測定する。測定した左右の画像データにおいて、補正値算出回路300、302においてダミー画素領域の振幅値が一致するように補正値が求められる。この補正値(補正係数)は、レジスタ304、308に設定される。レジスタ304、308に設定された補正値が、加算回路303、307により左右の画像データに加算され、段差のない左右の画像データが出力される。
【0015】
ここで合成回路によって画像データをつなぎ合わせ1枚の画像データに合成する際に、左右の画像領域における画像データは、それぞれ別の水平転送CCD、CCD撮像素子の出力アンプ、CDS回路、ADコンバータを介して信号処理回路に入力されている。上記各要素により左右の画素領域における画像データは波形ひずみを受ける。水平転送CCDでは、各CCD段の転送効率によってCCD読み出し開始の画素データと読み出し終了の画素データ間で信号振幅に差が発生する。また、CCD撮像素子、CDS回路、ADコンバータの各要素においては、電源電圧の変動によりサグ状の振幅ひずみを受ける。
【0016】
図13に示すように、これら波形ひずみを受けた左右の画素領域401における画像信号をそのままつなぎ合わせると、遮光状態における画像データについて符号402に示すように、左右の画素領域401のつなぎ合わせ部分を中心として、V字状の信号段差が発生する。このV字状段差が発生した状態の画像データに基づいて輝度信号を生成すると、符号403に示す水平のエッジ信号が生成されやすくなり、このエッジ信号が輝度信号に加算され、出力輝度信号の中央に縦スジが発生するという問題が生じる。尚、この段差は遮光状態での黒基準レベルでの段差であるため、撮像している画像の条件にかかわらず発生する。
本発明の目的は、分割された画像領域の画素データを合成する際に発生するつなぎ目近傍での画像の劣化を防止することである。
【0017】
【課題を解決するための手段】
本発明ではこの問題を解決すべく、画像領域を左右2分割し領域毎に画素信号を読み出す手段を有するCCD撮像素子を用いたビデオカメラにおいて使用される画像補正回路であって、左右の画像データに対する画像補正手段として、2箇所の画像領域の振幅を検出する手段と、補正値を算出する手段と、ノコギリ波信号発生手段と、ノコギリ波信号の振幅を調整する手段を有することを特徴とする画像補正回路を設けることで、中央に発生する縦スジを無くし画質劣化の抑制を実現することを提案するものである。
【0018】
すなわち、本発明の一観点によれば、複数に分割された画素領域と、分割された前記画素領域毎に設けられた電荷転送路により転送された画素信号を読み出す手段と、を有する固体撮像装置であって、分割された前記画素領域のそれぞれにおける1単位読み出し期間中の画像信号の特性値を検出し、前記1単位読み出し期間中の複数の時点における前記画素信号の特性値が近づくように補正する補正回路を備えた固体撮像装置が提供される。
【0019】
上記固体撮像装置においては、ある特性値に着目して、その特性値の時間により変化しないように補正することにより、複数に分割された画素領域における信号を合成した際の境界の切れ目における段差を低減することができる。
【0020】
前記特性値は、遮光状態における信号値を基準信号とし白チャートを測定して得られた白レベル信号であるのが好ましい。白レベルの検出は容易なため、補正を簡単に行うことができる。
【0021】
本発明の他の観点によれば、複数に分割された画素領域と、分割された前記画素領域毎に設けられた電荷転送路により転送された画素信号を読み出す手段と、を有する固体撮像装置であって、分割された前記画素領域のそれぞれにおける1単位読み出し期間中の、遮光状態における信号値を基準信号とし白チャートを測定して得られた白レベル信号を検出する白レベル信号検出手段と、前記1単位読み出し期間中の複数の時点において前記白レベル信号手段により検出された白レベル信号が近づくように画像信号を補正する補正回路と、分割された前記画素領域の画面を補正後の画像信号に基づいて合成する画面合成回路とを有する固体撮像装置が提供できる。
【0022】
前記補正回路は、前記1単位読み出し期間中の複数の時点において検出された白レベル信号の差分に基づいて該差分を補償する乗算値を有する補償信号を作成し、該補償信号と補正前の信号とを乗算する回路であるのが好ましい。
【0023】
前記補償信号は、補正前の白レベル信号の振幅の傾きと逆の傾きを有するノコギリ波信号であるのが好ましい。上記構成により、簡単な方法で補正を行うことができる。
【0024】
また、本発明では、画像領域を左右2分割し領域毎に画素信号を読み出す手段を有するCCD撮像素子を用いたビデオカメラにおいて使用される画像補正回路であって、左右の画像データに対する画像補正手段として、CCD画素データのオプティカルブラックの信号値を検出する手段と、空送り部分の信号値を検出する手段と、2箇所の遮光時の画像領域の黒レベルを検出する手段と、補正値を算出する手段と、ノコギリ波信号発生手段と、ノコギリ波信号の振幅を調整する手段と、設定値を加算する手段と、画像データとの加算手段を有することを特徴とする画像補正回路を設けることで、中央に発生する縦スジを無くし画質劣化の抑制を実現することを提案するものである。
【0025】
本発明の別の観点によれば、複数に分割された画素領域であってそれぞれに黒レベルの基準信号を得るための前記画素領域面で遮光状態となっている遮光画素を含む画素領域と、分割された前記画素領域毎に設けられた電荷転送路により転送された画素信号を読み出す手段と、を有する固体撮像装置であって、分割された前記画素領域のそれぞれにおける1単位読み出し期間中の前記遮光画素の画像信号と、前記1単位読み出し期間の前後少なくともいずれかの空読み出し信号とに基づいて、予め測定した複数の黒レベル信号と、に基づいて、前記1単位読み出し期間中の信号の振幅が等しくなるように補正する補正回路を備えた固体撮像装置が提供される。
【0026】
前記黒レベル信号は、前記画素領域面全体を遮光した状態(アイリスを閉じた状態)で測定された、第1及び第2の少なくなくと2つの黒レベル信号であるのが好ましい。また、前記第1の黒レベル信号と前記第2の黒レベル信号のうちの一方は、前記遮光画素の画素信号と時間的に近接し、他方は、前記空読み出し信号と時間的に近接する位置のおいて測定された信号であるのが好ましい。
【0027】
上記固体撮像装置によれば、予め複数の黒レベル信号を測定し、それぞれの黒レベル信号と、遮光画素の画像信号及び1単位読み出し期間の前後少なくともいずれかの空読み出し信号と、の関連性の高さを利用して、画像データの補正を行うため、動作時において測定できない黒レベル信号値を推測し、その推測値に基づいて単位読み出し期間中の信号の振幅が等しくなるように補正するため、精度の良い補正を行うことができる。
【0028】
本発明のさらに別の観点によれば、複数に分割された画素領域であってそれぞれに黒レベルの基準信号を得るための前記画素領域面で遮光状態となっている遮光画素を含む画素領域と、分割された前記画素領域毎に設けられた電荷転送路により転送された画素信号を読み出す手段と、を有する固体撮像装置であって、分割された前記画素領域のそれぞれにおける前記遮光画素の画像信号を検出するオプティカルブラック信号検出回路と、空読み出し信号を検出するダミー画素データ検出回路と、複数の黒レベル信号を検出する黒レベル検出回路と、前記オプティカルブラック信号検出回路と、前記ダミー画素データ検出回路と、前記黒レベル検出回路と、に基づいて、前記1単位読み出し期間中の信号の振幅が等しくなるようにする補正値を求める補正値算出回路とを備えた固体撮像装置が提供される。
【0029】
さらに、前記ダミー画素データ検出回路と前記オプティカルブラック信号検出回路とによりそれぞれ検出された値に基づいて、それぞれに近接する黒レベル信号値を推定し、推定された黒レベル信号に基づき信号の振幅の傾きを求め、この傾きを平らにするように補償する補償波と、元の画素データとを加算するのが好ましい。また、前記補償波は、前記黒レベル信号に基づき信号の振幅の傾き逆の傾きを有するノコギリ波であるのが好ましい。
【0030】
また、複数に分割された画素領域であってそれぞれに黒レベルの基準信号を得るための前記画素領域面で遮光状態となっている遮光画素を含む画素領域と、分割された前記画素領域毎に設けられた電荷転送路により転送された画素信号を読み出す手段と、を有する固体撮像装置に設けられ、分割された前記画素領域のそれぞれにおける前記遮光画素の画像信号を検出するオプティカルブラック信号検出回路と、空読み出し信号を検出するダミー画素データ検出回路と、複数の黒レベル信号を検出する黒レベル検出回路と、前記オプティカルブラック信号検出回路と、前記ダミー画素データ検出回路と、前記黒レベル検出回路とに基づいて、前記1単位読み出し期間中の信号の振幅が等しくなるようにする補正値を求める補正値算出回路とを備えた画像補正回路が提供される。
【0031】
【発明の実施の形態】
以下に、本発明の第1の実施の形態による固体撮像装置について図面を参照して説明する。図1は、本発明の第1の実施の形態による固体撮像装置の平面図であり、図2(A)は、本発明の第1の実施の形態による固体撮像装置の概略構成を示す機能ブロック図である。図2(B)は、図2(A)に示す固体撮像装置の信号処理回路中に含まれる補正回路の構成例を示す機能ブロック図である。
【0032】
図1に示すように、本実施の形態による固体撮像装置は、画像領域を複数に分割し、分割された画像領域毎に画素信号を読み出す手段を有するCCD固体撮像装置(単板式ビデオカメラに用いる)である。左右に2分割して信号を読み出す形式のCCD固体撮像装置を用いた場合を例にして説明する。
【0033】
図1に示すように、画素領域を複数に分割し、領域毎に画素信号を読み出す手段を有する。より具体的には、マイクロレンズを通して被写体像がCCD固体撮像装置1の撮像面上に行列状に整列配置されたフォトダーオード(光電変換素子)2に結像・入射し、被写体像が画素毎に電気信号に変換される。変換された電気信号は、垂直電荷転送路(VCCD)3内に入り、駆動回路により水平電荷転送路(HCCD)の方向に向けて転送される。分割された2領域における画素信号は、2本のHCCD4・5に入る画素信号は、駆動回路によりHCCD4・5中をアンプ6・7の方向に転送され、増幅された画像信号が信号処理回路11・12に出力する。信号処理回路11・12において処理された信号が合成回路13により1つの連続した画像に合成する。固体撮像装置1の出力は、左右の画像領域についてそれぞれ画像データ信号が出力される。
【0034】
図2(A)に示すように、CCD固体撮像装置51の左右の領域により取得された画像データは、2組のCDS回路およびADコンバータ52、53によりデジタルデータに変換され、信号処理回路60に入力される。信号処理回路60では、ADコンバータの出力である左右の画像データのそれぞれは、補正回路54に入力されて信号補正処理が行われた後に画像合成回路55に出力される。2画面合成回路55では左右の画像データ信号を合成し、左右分離されていた画像を1枚の画像データS1として出力する。
【0035】
図2(B)に示すように、補正回路は、例えば、非線形補正回路と、黒レベル補正回路と、白レベル補正回路と、2画面合成回路と、ノイズ補正回路とを有している。いずれの回路を含むかは任意である。本実施の形態による固体撮像装置は、白レベル補正回路を有しており、主として白レベル補正回路について説明する。
【0036】
図3は、本発明の第1の実施の形態による白レベル補正回路の構成を示す機能ブロック図である。図3に示すように、ADコンバータ52、53(図2(A))においてデジタル変換された左右の画像データは、画像補正回路のDin(L)端子とDin(R)端子とに入力される。左右の入力画像データは、それぞれに対して設けられた白レベル検出回路(1)21・28と、白レベル検出回路(2)22・29とにそれぞれ入力され、各データ値が計測される。
【0037】
白レベル検出回路(1)21、(2)22からの信号は、補正値算出回路23に入力され、白レベル検出回路(1)28、(2)29からの信号は、補正値算出回路30に入力され、それぞれ計測データ値から補正値を算出する。ノコギリ波信号発生回路24・31により、ノコギリ波信号が出力される。補正値算出回路23・30により算出された補正値は、それぞれ、レジスタ25・32に設定され、第1及び第2の乗算回路26・33により、上記補正値とノコギリ波信号とが乗算される。第3及び第4の乗算回路27・34により、第1及び第2の乗算回路26・33の出力と、画像補正回路のDin(L)端子とDin(R)端子からの入力画像データとが乗算され、乗算された信号が、Dout(L)、Dout(R)端子から出力される。
【0038】
次に、図3に示す白レベル補正回路の動作について、図4(A)、(B)を参照しつつ説明を行う。図4(A)は、被写体として白チャートを撮影した場合の各部におけるデータの検出方法を示す図であり、CCD固体撮像装置の撮像面には均一の光が入射しているものとする。図4の符号41は、左右の画像データの1水平走査期間中における画像データ信号を示したものである。CCD撮像素子からの左右の画像出力信号としては、最初にオプティカルブラックデータOBが現れ、次に画像データが続く。
【0039】
オプティカルブラックデータOBは、CCD撮像面での遮光状態の信号値を示し、実際の黒基準となるデータ値であって、信号値は“0”に固定されている。白レベル検出(1)・(2)の各検出回路において、画像データにおける白レベルデータ(1)、白レベルデータ(2)の2データを計測する。図4(A)の符号41で示されるように、2箇所の検出箇所である左右の白レベル検出(1)と白レベル検出(2)との間の振幅に相当する振幅差を有する画像データの振幅ひずみが存在し、測定データは、その間を直線により繋いだスロープ状の信号波形となる。図4(A)の白レベル(1)と白レベル(2)との段差が等しくなるような乗数係数を求める。この乗算係数は、図4(B)に示すようなノコギリ波の信号波形に対応する信号となる。この信号波形は、図3の符号24、25及び26と、符号31、32及び33の回路により生成される。この信号が、図4(B)において符号42で示される波形である。
【0040】
図4(A)の入力画像データの信号波形41と図4(B)のノコギリ波の信号波形42とを乗算することにより、図4(B)の符号43で示される波形を有する出力信号が得られる。この波形43は、白レベル(1)の領域と白レベル(2)の領域との間の段差が小さい、傾きがほぼ“0”の平坦な信号となる。この平坦な信号を、次段の合成回路55(図2(A))において、左右の画像データをつなぎ合わせて1枚の画像データにすることにより、つなぎ合わせの部分においても平坦でなめらかな振幅特性が得られ、振幅波形ひずみが補正される。
【0041】
以上、本実施の形態による固体撮像装置によれば、画像領域を左右2分割し、領域毎に画素信号を読み出す手段を有するCCD撮像素子を用いた固体撮像装置(例えばビデオカメラ)において、左右の画像データに発生する振幅波形ひずみによる画像のつなぎ目での段差による縦スジ状のキズの発生を抑えることが可能となり、画像劣化が低減されたビデオカメラを提供することができる。
【0042】
尚、本実施の形態による固体撮像装置における白レベルに基づく画像補整は、デジタルスチルカメラやデジタルビデオカメラなどの製品出荷前に行われるのが一般的である。
【0043】
次に、本発明の第2の実施の形態による固体撮像装置について図面を参照して説明する。本実施の形態による固体撮像装置は、第1の実施の形態による固体撮像装置と概略同様の構成を有しており、図1及び図2に関しては、第1の実施の形態による固体撮像装置と同様であるため、その説明を省略する。
【0044】
図5は、本実施の形態による画像補正回路(黒レベル補正回路)の概略構成を示す機能ブロック図である。ADコンバータによりディジタル変換された左右の画像データは、画像補正回路のDin(L)とDin(R)端子に入力される。
【0045】
左右の入力画像データは、オプティカルブラックデータ検出(OB検出)71・82と、ダミー画素データ検出(DUM検出)72・83と、黒レベル検出
(1)73・84、黒レベル検出(2)74・85の検出回路によって各データ値を計測する。各検出回路71から85までからの計測データ値に基づき、補正値算出回路75・86により補正値を算出する。
【0046】
ノコギリ波信号発生回路76・87により、ノコギリ波信号が出力される。補正値算出回路75・86により算出された補正値は、振幅パラメータレジスタ77・88に設定され、乗算回路78・89により補正値とノコギリ波信号とが乗算される。補正値算出回路75・86により算出されたオフセット補正値がオフセット値パラメータレジスタ79・90に設定され、乗算回路78・89の出力と、オフセット補正値とを、オフセット加算回路80・91において加算し、次いで、Din(L)、Din(R)の入力画像データと、オフセット加算回路80・91において加算された値とが、補正データ加算回路81・92において加算される。
【0047】
次に、図5に示す画像補正回路の動作について、図6(A)、(B)を参照して説明する。図6(A)は、例えばカメラ起動前における遮光状態、例えばアイリス遮光状態での各部のデータ検出を示す図であり、図6(B)は、動作モード(非遮光時)における制御について示す図である。まず、図6(A)の状態について説明する。図6(A)の符号96は、左右の画像データの1水平走査期間の画像データ信号を示したものである。
【0048】
CCD撮像素子からの左右の画像出力信号は、最初にOBデータ(OB)、次に画像データ、その後にダミーデータ(DUM)の各信号領域により構成されている。OBデータ(OB)は、CCDの撮像面での遮光状態の信号値を示し、実際の黒基準となるデータ値である。一方、DUMデータは、水平転送CCDの空読み出し(空転送読み出し)を行った際の画素データであり、基準となる信号データである。
【0049】
黒レベル検出(1)とOBデータ、黒レベル検出(2)とDUMデータは、それぞれ距離的にも近く、互いに強い相関性を有している。カメラ起動時のアイリス遮光状態において、各検出回路により、OBデータ、黒レベル検出(1)、黒レベル検出(2)、DUMデータの4つのデータを計測する。画像データの振幅ひずみは、図6(A)の符号96に示すように、黒レベル検出(1)と黒レベル検出(2)の間に振幅差があり、その間をほぼ直線的につないだスロープ状の波形を有する。
【0050】
この黒レベル検出(1)と黒レベル検出(2)との振幅差に等しく、かつ、逆の正負の符号を有するノコギリ波信号を図5のノコギリ波発生回路76、振幅回路77、乗算器78及びノコギリ波発生回路87、振幅回路88、乗算器89において作成する。乗算器78及び乗算器89において作成された信号が、図6(A)の符号92で示される波形である。
【0051】
図6(A)の符号92で示される波形データと符号91で示される入力画像データとを加算することにより、波線で示されるデータに符号92で示されるデータが加算され、符号93に示される波形が出力信号として得られる。黒レベル検出(1)と黒レベル検出(2)の領域での段差の少ない(傾きがほぼ“0”の)ほぼ平坦な信号が得られる。この画像データに対して図5のオフセットパラメータデータ79、90により左右の画像データ間の段差が“0”になるよう調整し、合成回路55(図2(A))において左右の画像データをつなぎ合わせて1枚の画像データにすることで、分割された画像領域のつなぎ合わせ部分における振幅波形ひずみが補正され、平坦かつ滑らかな振幅特性が得られる。
【0052】
次に、図6(B)は、カメラ動作時(撮影時)の動作を示す図である。カメラ動作時には、符号101で示される実線の信号に対して電源電圧の変動や温度変動により破線で示されるように(符号102)、振幅ひずみの段差が変動するため、常に補正量を制御しなければならない。しかしながら、図6(A)の場合のように、黒レベル(1)と黒レベル(2)とを検出することはできないため、常時計測が可能なOBデータとDUMデータとを用いて撮像時の補正を動的に行なう。
【0053】
OBデータは、図6(A)の黒レベル検出(1)と距離的に近く、電源や温度の変動に対して同様の動作特性を示すと考えられる。また、DUMデータと黒レベル(2)とも同様の動作特性を示すと考えられる。従って、カメラ動作時(撮影時)の黒レベル検出(1)と黒レベル検出(2)との変移量は、OBデータとDUMデータとの変移量とほぼ等しいと考えられる。そこで、このDUMデータの値に対するOBデータの変移量に相当する量だけ、図5の振幅パラメータレジスタ77・78の値を変更し、図6(B)の符号103に示すように、図5のノコギリ波発生回路76、振幅回路77、乗算器78及びノコギリ波発生回路87、振幅回路88、乗算器89において作成したノコギリ波信号の振幅を変移させることで補正を行う。補正後の画像データの波形は、図6(B)の符号104に示すようにほぼ平坦となり、動的な補正が可能であることがわかる。
【0054】
尚、図6(A)、(B)では、基準をDUMデータとして変移を求めたが、同様の方法により、OBを基準としてDUMデータの変移から補正データを制御することも可能である。
【0055】
以上、本実施の形態による固体撮像装置によれば、画像領域を左右2分割し領域毎に画素信号を読み出す手段を有するCCD撮像素子を用いた固体撮像装置(主としてデジタルビデオカメラ)において、左右の画像データに発生する振幅波形ひずみによる画像のつなぎ目での段差による画像劣化を抑えることが可能である。さらに撮影動作中の電源変動や温度変動による振幅ひずみも動的に補正することが可能となり、画像劣化のないビデオカメラを提供することができる。
【0056】
尚、上記各実施の形態による固体撮像装置の補正処理は、輝度信号のみでなく色信号に対しても適用することが可能であり、カラー固体撮像装置にも応用できる。例えば、マゼンタ、グリーン、シアン、イエローの色フィルタをモザイク状に固体撮像装置の撮像面に配置し、各色に対する画素信号を点順次で出力するカラー固体撮像装置を使用した場合は、マゼンタ、グリーン、シアン、イエローのそれぞれの色画素について本実施の形態による補正処理回路を独立に4回路設けるか、或いは、4種類のそれぞれの色画素毎に適した補正係数を独立して設け、時分割で各色の補正係数を切り替えることによりカラー固体撮像装置にも対応することができる。また、CCD固体撮像装置の他にMOS型固体撮像装置にも対応可能である。
【0057】
また、上記実施の形態では、左右に水平CCDが2分割された固体撮像装置を例にして説明したが、上下に2分割された固体撮像装置、4分割された固体撮像装置などその分割の形態を限定するものではない。
【0058】
以上、本実施の形態に沿って説明したが、本発明はこれらの例に限定されるものではなく、種々の変形が可能であるのは言うまでもない。本実施の形態による固体撮像装置は、デジタルスチルカメラやデジタルビデオカメラ、これらを備えたノート型パーソナルコンピュータや携帯電話などを含む各種電子機器に応用可能である。
【0059】
【発明の効果】
本発明を実施することにより、画像領域を分割し領域毎に画素信号を読み出す手段を有する固体撮像装置において、分割された画像領域のつなぎ目において発生する振幅波形ひずみによる画像のつなぎ目での段差によるスジ状のキズの発生を抑えることが可能となり、劣化のない画像を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態による固体撮像装置の概略構成を示す平面図である。
【図2】図2(A)は、本発明の実施の形態による固体撮像装置の概略構成を示す機能ブロック図であり、図2(B)は、図2(A)に示す補正回路の概略構成を示す機能ブロック図である。
【図3】本発明の第1の実施の形態による固体撮像装置における白レベル補正回路の概略構成を示す機能ブロック図である。
【図4】図4(A)、(B)は、本発明の第1の実施の形態による固体撮像装置における白レベル補正回路における補正の手順を示す図である。
【図5】本発明の第2の実施の形態による固体撮像装置における黒レベル補正回路の概略構成を示す機能ブロック図である。
【図6】図6(A)、(B)は、本発明の第2の実施の形態による固体撮像装置における黒レベル補正回路における補正の手順を示す図である。
【図7】本発明の実施の形態による画面合成回路における画面合成の手順を示す図である。
【図8】2画面合成を行う一般的な固体撮像装置の概略構成を示す機能ブロック図である。
【図9】2画面合成を行う一般的な固体撮像装置における画面合成の手順を示す図である。
【図10】2画面合成を行う一般的な固体撮像装置における白レベル補正回路の構成例を示す機能ブロック図である。
【図11】2画面合成を行う一般的な固体撮像装置を用いた場合の第1の問題点を示す図である。
【図12】2画面合成を行う一般的な固体撮像装置におけるダミー信号検出による画像補正回路の概略構成を示す機能ブロック図である。
【図13】図12の回路を用いて補正処理を行った場合の問題点(第2の問題点)を示す図である。
【符号の説明】
1、51、111…CCD固体撮像素子、2…光電変換素子(フォトダイオード)、3…垂直電荷転送路(VCCD)、4、5…水平電荷転送路(HCCD)、6、7…アンプ、11、12…信号処理回路、13…合成回路、21、28…白レベル検出回路(1)、22、29…白レベル検出回路(2)、23、30…補正値算出回路、24、31…ノコギリ波発生回路、25、32…レジスタ(振幅パラメータレジスタ)、26、33…乗算器、27、34…乗算器、52、53…相関2重サンプリング(CDS)回路及びADコンバータ、54…補正回路、55…画面合成回路、60…信号処理回路、S1…画像信号出力、61…1水平期間、71、82…オプティカルブラックデータ検出回路(OB検出)、72、83…ダミー画素データ検出回路(DUM検出)、73、84…黒レベル検出回路(1)、74、85…黒レベル検出回路(2)、75、86…補正値算出回路、76、87…ノコギリ波発生回路、77、88…振幅回路、78、89…乗算器、79、90…オフセット回路(オフセット値パラメータレジスタ)、80、91…オフセット加算回路(加算器)、81、92…補正データ加算回路(加算器)。

Claims (22)

  1. 複数に分割された画素領域と、分割された前記画素領域毎に設けられた電荷転送路により転送された画素信号を読み出す手段と、を有する固体撮像装置であって、
    分割された前記画素領域のそれぞれにおける1単位読み出し期間中の画像信号の特性値を検出し、前記1単位読み出し期間中の複数の時点における前記画素信号の特性値が近づくように補正する補正回路を備えた固体撮像装置。
  2. 前記特性値は、遮光状態における信号値を基準信号とし白チャートを測定して得られた白レベル信号であることを特徴とする請求項1に記載の固体撮像装置。
  3. 複数に分割された画素領域と、分割された前記画素領域毎に設けられた電荷転送路により転送された画素信号を読み出す手段と、を有する固体撮像装置であって、
    分割された前記画素領域のそれぞれにおける1単位読み出し期間中の、遮光状態における信号値を基準信号とし白チャートを測定して得られた白レベル信号を検出する白レベル信号検出手段と、
    前記1単位読み出し期間中の複数の時点において前記白レベル信号手段により検出された白レベル信号値が近づくように画像信号を補正する補正回路と、
    分割された前記画素領域の画面を補正後の画像信号に基づいて合成する画面合成回路と
    を有する固体撮像装置。
  4. 前記補正回路は、前記1単位読み出し期間中の複数の時点において検出された白レベル信号の差分に基づいて該差分を補償する乗算値を有する補償信号を作成し、該補償信号と補正前の信号とを乗算する回路である
    請求項3に記載の固体撮像装置。
  5. 前記補償信号は、補正前の白レベル信号の振幅の傾きと逆の傾きを有するノコギリ波信号であることを特徴とする請求項4に記載の固体撮像装置。
  6. 複数に分割された画素領域と、分割された前記画素領域毎に設けられた電荷転送路により転送された画素信号を読み出す手段と、を有する固体撮像装置に設けられ、
    分割された前記画素領域のそれぞれにおける1単位読み出し期間中の、遮光状態における信号値を基準信号とし白チャートを測定して得られた白レベル信号を検出する白レベル信号検出回路と、
    前記1単位読み出し期間中の複数の時点において前記白レベル信号手段により検出された白レベル信号値が近づくように画像信号を補正する補正回路と
    を有する画像補正回路。
  7. 画像領域を複数に分割し、分割された領域毎に画素信号を読み出す手段を有する撮像素子において用いられる画像補正回路であって、
    分割された画像のデータに対する画像補正手段として、2箇所の画像領域の振幅を検出する手段と、検出された2箇所の画像領域の振幅補正値を算出する手段と、算出された振幅補正値に基づいて前記2箇所における振幅に傾きと逆の傾きを有するノコギリ波信号を発生する手段と、該ノコギリ波信号の振幅を調整する手段とを有することを特徴とする画像補正回路。
  8. 複数に分割された画素領域と、分割された前記画素領域毎に設けられた電荷転送路により転送された画素信号を読み出す手段と、を有し、分割された前記画素領域のそれぞれにおける1単位読み出し期間中の、遮光状態における信号値を基準信号とし白チャートを測定して得られた白レベル信号を検出する白レベル信号検出手段と、前記1単位読み出し期間中の複数の時点において前記白レベル信号手段により検出された白レベル信号値が近づくように画像信号を補正する補正回路と、分割された前記画素領域の画面を補正後の画像信号に基づいて合成する画面合成回路とを有する固体撮像装置を備えたデジタルビデオカメラ。
  9. 複数に分割された画素領域であってそれぞれに黒レベルの基準信号を得るための前記画素領域面で遮光状態となっている遮光画素を含む画素領域と、分割された前記画素領域毎に設けられた電荷転送路により転送された画素信号を読み出す手段と、を有する固体撮像装置であって、
    分割された前記画素領域のそれぞれにおける1単位読み出し期間中の前記遮光画素の画像信号と、前記1単位読み出し期間の前後少なくともいずれかの空読み出し信号と、予め測定した複数の黒レベル信号と、に基づいて、前記1単位読み出し期間中の信号の振幅が等しくなるように補正する補正回路を備えた固体撮像装置。
  10. 前記黒レベル信号は、前記画素領域面全体を遮光した状態で測定された、第1及び第2の少なくなくと2つの黒レベル信号であることを特徴とする請求項9に記載の固体撮像装置。
  11. 前記第1の黒レベル信号と前記第2の黒レベル信号のうちの一方は、前記遮光画素の画素信号と時間的に近接し、他方は、前記空読み出し信号と時間的に近接する位置のおいて測定された信号であることを特徴とする
    請求項9又は10に記載の固体撮像装置。
  12. 複数に分割された画素領域であってそれぞれに黒レベルの基準信号を得るための前記画素領域面で遮光状態となっている遮光画素を含む画素領域と、分割された前記画素領域毎に設けられた電荷転送路により転送された画素信号を読み出す手段と、を有する固体撮像装置であって、
    分割された前記画素領域のそれぞれにおける前記遮光画素の画像信号を検出するオプティカルブラック信号検出回路と、
    空読み出し信号を検出するダミー画素データ検出回路と、
    複数の黒レベル信号を検出する黒レベル検出回路と、
    前記オプティカルブラック信号検出回路と、前記ダミー画素データ検出回路と、前記黒レベル検出回路とに基づいて、前記1単位読み出し期間中の信号の振幅が等しくなるようにする補正値を求める補正値算出回路と
    を備えた固体撮像装置。
  13. さらに、前記ダミー画素データ検出回路と前記オプティカルブラック信号検出回路とによりそれぞれ検出された値に基づいて、それぞれに近接する黒レベル信号値を推定し、推定された黒レベル信号に基づき信号の振幅の傾きを求め、この傾きを平らにするように補償する補償波と、元の画素データとを加算することを特徴とする
    請求項12に記載の固体撮像装置。
  14. 前記補償波は、前記黒レベル信号に基づき信号の振幅の傾き逆の傾きを有するノコギリ信号波であることを特徴とする請求項13に記載の固体撮像装置。
  15. 複数に分割された画素領域であってそれぞれに黒レベルの基準信号を得るための前記画素領域面で遮光状態となっている遮光画素を含む画素領域と、分割された前記画素領域毎に設けられた電荷転送路により転送された画素信号を読み出す手段と、を有する固体撮像装置に設けられ、
    分割された前記画素領域のそれぞれにおける前記遮光画素の画像信号を検出するオプティカルブラック信号検出回路と、
    空読み出し信号を検出するダミー画素データ検出回路と、
    複数の黒レベル信号を検出する黒レベル検出回路と、
    前記オプティカルブラック信号検出回路と、前記ダミー画素データ検出回路と、前記黒レベル検出回路とに基づいて、前記1単位読み出し期間中の信号の振幅が等しくなるようにする補正値を求める補正値算出回路と
    を備えた画像補正回路。
  16. さらに、前記ダミー画素データ検出回路と前記オプティカルブラック信号検出回路とによりそれぞれ検出された値に基づいて、それぞれの値に近接する黒レベル信号値を推定し、推定された黒レベル信号に基づき信号の振幅の傾きを求め、この傾きを平らにするように補償する補償波と、元の画素データとを加算することを特徴とする
    請求項15に記載の画像補正回路。
  17. 前記補償波は、前記黒レベル信号に基づき信号の振幅の傾き逆の傾きを有するノコギリ波であることを特徴とする請求項16に記載の画像補正回路。
  18. 複数に分割された画素領域であってそれぞれに黒レベルの基準信号を得るための前記画素領域面で遮光状態となっている遮光画素を含む画素領域と、分割された前記画素領域毎に設けられた電荷転送路により転送された画素信号を読み出す手段と、を有する固体撮像装置であって、
    分割された前記画素領域のそれぞれにおける前記遮光画素の画像信号を検出するオプティカルブラック信号検出回路と、空読み出し信号を検出するダミー画素データ検出回路と、複数の黒レベル信号を検出する黒レベル検出回路と、前記オプティカルブラック信号検出回路と、前記ダミー画素データ検出回路と、前記黒レベル検出回路と、に基づいて、前記1単位読み出し期間中の信号の振幅が等しくなるようにする補正値を求める補正値算出回路を備えた固体撮像装置を有するデジタルビデオカメラ。
  19. 画像領域を複数に分割し領域毎に画素信号を読み出す手段を有する撮像素子を用いたビデオカメラにおいて使用される画像補正回路であって、
    左右の画像データに対する画像補正手段であって、画素データのオプティカルブラックの信号値を検出する手段と、空送り部分の信号値を検出する手段と、複数箇所の遮光時の画像領域の黒レベルを検出する手段と、補正値を算出する手段と、ノコギリ波信号発生手段と、ノコギリ波信号の振幅を調整する手段と、を有する画像補正手段と、
    設定値を加算する手段と、
    画像データとの加算手段と
    を有することを特徴とする画像補正回路。
  20. 画素領域と、前記画素領域毎に設けられた電荷転送路により転送された画素信号を読み出す手段と、を有する固体撮像装置であって、
    前記画素領域における1単位読み出し期間中の画像信号の特性値を検出し、前記1単位読み出し期間中の複数の時点における前記画素信号の特性値が近づくように補正する補正回路を備えた固体撮像装置。
  21. 複数に分割された画素領域と、分割された前記画素領域毎に設けられた電荷転送路により転送された複数色のカラー画素信号を順次読み出す手段と、を有するカラー固体撮像装置であって、
    分割された前記画素領域のそれぞれにおける1単位読み出し期間中の、遮光状態における信号値を基準信号とし白チャートを測定して得られた白レベル信号を検出する白レベル信号検出手段と、
    前記1単位読み出し期間中の複数の時点において前記白レベル信号手段により検出された白レベル信号値が近づくように前記複数色のカラー画像信号を色毎に独立して補正する複数の補正回路と、
    分割された前記画素領域の画面を補正後のカラー画像信号に基づいて合成する画面合成回路と
    を有するカラー固体撮像装置。
  22. 複数に分割された画素領域であってそれぞれに黒レベルの基準信号を得るための前記画素領域面で遮光状態となっている遮光画素を含む画素領域と、分割された前記画素領域毎に設けられた電荷転送路により転送された複数色のカラー画素信号を順次読み出す手段と、を有するカラー固体撮像装置であって、
    分割された前記画素領域のそれぞれにおける前記遮光画素の画像信号を検出するオプティカルブラック信号検出回路と、
    空読み出し信号を検出するダミー画素データ検出回路と、
    複数の黒レベル信号を検出する黒レベル検出回路と、
    前記オプティカルブラック信号検出回路と、前記ダミー画素データ検出回路と、前記黒レベル検出回路とに基づいて、前記1単位読み出し期間中の信号の振幅が等しくなるようにする補正値を、前記複数色のカラー画像信号の色毎に独立して求める複数の補正値算出回路と
    を備えた固体撮像装置。
JP2002287617A 2002-09-30 2002-09-30 固体撮像装置及び画像補正回路 Pending JP2004128716A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002287617A JP2004128716A (ja) 2002-09-30 2002-09-30 固体撮像装置及び画像補正回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002287617A JP2004128716A (ja) 2002-09-30 2002-09-30 固体撮像装置及び画像補正回路

Publications (1)

Publication Number Publication Date
JP2004128716A true JP2004128716A (ja) 2004-04-22

Family

ID=32280342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002287617A Pending JP2004128716A (ja) 2002-09-30 2002-09-30 固体撮像装置及び画像補正回路

Country Status (1)

Country Link
JP (1) JP2004128716A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318601A (ja) * 2004-04-26 2005-11-10 Magnachip Semiconductor Ltd Cmosイメージセンサー
JP2006157882A (ja) * 2004-10-28 2006-06-15 Fuji Photo Film Co Ltd 固体撮像装置
JP2006229843A (ja) * 2005-02-21 2006-08-31 Ricoh Co Ltd 固体撮像素子の駆動方法
JP2007104256A (ja) * 2005-10-04 2007-04-19 Pentax Corp 撮像素子、及びデジタルカメラ
JP2007189327A (ja) * 2006-01-11 2007-07-26 Sanyo Electric Co Ltd 電子カメラ
JP2009081767A (ja) * 2007-09-27 2009-04-16 Sony Corp 撮像装置、画像信号処理回路、および画像信号処理方法、並びにコンピュータ・プログラム
JP2012510203A (ja) * 2008-11-25 2012-04-26 オムニヴィジョン テクノロジーズ インコーポレイテッド 不均一な遮光体を有するイメージセンサ

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318601A (ja) * 2004-04-26 2005-11-10 Magnachip Semiconductor Ltd Cmosイメージセンサー
JP2006157882A (ja) * 2004-10-28 2006-06-15 Fuji Photo Film Co Ltd 固体撮像装置
JP2006229843A (ja) * 2005-02-21 2006-08-31 Ricoh Co Ltd 固体撮像素子の駆動方法
JP4514138B2 (ja) * 2005-02-21 2010-07-28 株式会社リコー 固体撮像素子の駆動方法およびデジタルカメラ
JP2007104256A (ja) * 2005-10-04 2007-04-19 Pentax Corp 撮像素子、及びデジタルカメラ
JP2007189327A (ja) * 2006-01-11 2007-07-26 Sanyo Electric Co Ltd 電子カメラ
JP4698426B2 (ja) * 2006-01-11 2011-06-08 三洋電機株式会社 電子カメラ
JP2009081767A (ja) * 2007-09-27 2009-04-16 Sony Corp 撮像装置、画像信号処理回路、および画像信号処理方法、並びにコンピュータ・プログラム
JP4656115B2 (ja) * 2007-09-27 2011-03-23 ソニー株式会社 撮像装置、画像信号処理回路、および画像信号処理方法、並びにコンピュータ・プログラム
US8040404B2 (en) 2007-09-27 2011-10-18 Sony Corporation Image pickup apparatus, image signal processing circuit and image signal processing method as well as computer program
EP2043363A3 (en) * 2007-09-27 2012-02-08 Sony Corporation Image pickup apparatus, image signal processing circuit and image signal processing method as well as computer program
JP2012510203A (ja) * 2008-11-25 2012-04-26 オムニヴィジョン テクノロジーズ インコーポレイテッド 不均一な遮光体を有するイメージセンサ

Similar Documents

Publication Publication Date Title
US20080218598A1 (en) Imaging method, imaging apparatus, and driving device
KR100468169B1 (ko) 위색(僞色)신호발생이억제가능한단판식컬러카메라
US7880789B2 (en) Solid-state image pick-up apparatus capable of remarkably reducing dark current and a drive method therefor
WO2011132618A1 (ja) 撮像装置並びに撮像画像処理方法と撮像画像処理プログラム
KR20110036707A (ko) 화상 신호 보정 장치, 촬상 장치, 화상 신호 보정 방법, 및 프로그램
JP3991011B2 (ja) 画像信号処理装置
US7277128B2 (en) Image-sensing device having a plurality of output channels
US7218351B2 (en) Image-sensing apparatus for compensating video signal of a plurality of channels
JP2007174560A (ja) 信号処理装置
JP2011055351A (ja) 撮影装置及びその制御方法
JP2010147785A (ja) 固体撮像素子及び撮像装置並びにその画像補正方法
JP2007135200A (ja) 撮像方法および撮像装置並びに駆動装置
JP4379006B2 (ja) 撮像装置
JP2004128716A (ja) 固体撮像装置及び画像補正回路
JP2004297807A (ja) 画像情報におけるノイズを補償するシステム及び方法
JP4710617B2 (ja) 撮像装置及び撮像方法
JP6733229B2 (ja) 固体撮像装置、画像読取装置および画像形成装置
JP4077161B2 (ja) 撮像装置、輝度補正方法、およびその方法をコンピュータで実行するためのプログラム
JP2000041179A (ja) 画像入力装置のシェーディング補正方法および画像入力 装置
JP3748031B2 (ja) 映像信号処理装置及び映像信号処理方法
JP2007036353A (ja) 撮像装置
JP2003101815A (ja) 信号処理装置及び信号処理方法
JP2005223133A (ja) 固体撮像装置およびそれを用いた撮像システム
JP4899688B2 (ja) 撮像装置、及びそのスミア偽色低減方法
JP2004128730A (ja) 固体撮像装置及び非線形補正回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624