JP2004124112A - Electrodeposition coating apparatus - Google Patents

Electrodeposition coating apparatus Download PDF

Info

Publication number
JP2004124112A
JP2004124112A JP2002285718A JP2002285718A JP2004124112A JP 2004124112 A JP2004124112 A JP 2004124112A JP 2002285718 A JP2002285718 A JP 2002285718A JP 2002285718 A JP2002285718 A JP 2002285718A JP 2004124112 A JP2004124112 A JP 2004124112A
Authority
JP
Japan
Prior art keywords
electrode
electrodeposition
value
bare
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002285718A
Other languages
Japanese (ja)
Inventor
Toshinori Watanabe
渡 邊 俊 典
Hirofumi Takada
高 田 浩 文
Satoru Yamanaka
山 中   覚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trinity Industrial Corp
Original Assignee
Trinity Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trinity Industrial Corp filed Critical Trinity Industrial Corp
Priority to JP2002285718A priority Critical patent/JP2004124112A/en
Publication of JP2004124112A publication Critical patent/JP2004124112A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make a pH value of an electrodeposition paint keep in a permissible range without replenishing amine even when the pH value of an anionic electrodeposition paint is higher than a permissible value, or replenishing an organic acid even when the pH value of a cationic electrodeposition paint is lower than a permissible value. <P>SOLUTION: This electrodeposition coating apparatus comprises two sorts of electrodes (4) together installed in an electrodeposition tank (2), which consist of a diaphragm electrode (4A) that forms an electric field between an article W to be coated and itself through an ion-exchange resin film (5A) for making ions having the same polarity with the article W selectively permeate, and a bare electrode (4B) that directly forms an electric field between the article W and itself without passing an ion-exchange resin film (5A); and a voltage controller (C) that supplies voltage individually to the diaphragm electrode (4A) and the bare electrode (4B). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電着液を貯留した電着槽内に浸漬された被塗物と槽内電極との間で電界を形成し、電着液に含まれる塗料成分を被塗物上に析出させて塗膜を形成する電着塗装装置に関する。
【0002】
【従来の技術】
電着塗装には、槽内電極を正極とし、被塗物を負極又はアース電位に維持して電着塗装を行うアニオン電着塗装と、槽内電極を負極又はアース電位とし、被塗物を正極に維持して電着塗装を行うカチオン電着塗装とがあり、高品質塗装が要求される自動車ボディ等の下塗りには、被塗物からの金属溶出がなく塗膜の耐食性が良好なことから主としてカチオン電着塗装が用いられている(非特許文献1参照)。
【0003】そして、カチオン電着塗装を行う場合も、アニオン電着塗装を行う場合も、一定品質の電着塗膜を形成するためには、電着槽内に貯留されている電着塗料の塗料濃度、pH値、塗料温度などの性状を常に一定に維持管理する必要がある。
【0004】
【非特許文献1】日本塗装技術協会編「塗装技術ハンドブック」日刊工業新聞社、1989年2月20日、p293−295
【非特許文献2】石塚末豊他5名著「技術シリーズ 塗装」朝倉書店、1982年3月5日、p129−130
【非特許文献3】松谷守康著「増補 塗装と塗装設備」技術書院、p181−184
【0005】このうち、pH値は電着塗料によって例えばPH8±0.5というように予め設定されているが、アニオン電着塗料にあっては、電着時にアミンが遊離して徐々にpH値が大きくなってアルカリ性が強くなり、イオン濃度が高くなって電流が多く流れるが、許容範囲を超えると、電着された樹脂分がアルカリによって再溶解して剥離し、膜厚が薄くなって電着効率が低下すると同時に、塗膜の肌荒れやピンホールの発生を起こす。
【0006】逆にカチオン電着塗料にあっては、電着時に有機酸が遊離して徐々にpH値が小さくなって酸性が強くなり、イオン濃度が高くなって電流が多く流れるが、許容範囲を超えると、電着された樹脂分が酸によって再溶解して剥離し、膜厚が薄くなって電着効率が低下すると同時に、塗膜の肌荒れやピンホールの発生を起こす。
【0007】このため、いずれの場合も一日一回はpH値を測定し、その電着塗料に適したpH値に維持されているか否かを確認した上で、アニオン電着塗料のpH値が許容範囲より大きな場合はアミンを補充したり、カチオン電着塗料のpH値が許容範囲より小さい場合は有機酸を補充することによりpH値を調整するようにしている。
【0008】
【発明が解決しようとする課題】
しかしながら、塗料を補充する場合は槽内の塗料濃度が不均一にならないように、前日の電着塗料終了後に補充して、一晩中塗料を攪拌する必要があり、電着塗装中にpH値が許容範囲から外れて塗装不良を生じた場合には、ラインをある程度の時間停止せざるを得ず、生産効率が低下して莫大な損害を被るおそれがあった。
【0009】そこで本発明は、アニオン電着塗料のpH値が許容範囲より大きな場合にアミンを補充したり、カチオン電着塗料のpH値が許容範囲より小さい場合に有機酸を補充するまでもなく、常に、塗料のpH値を許容範囲内に維持できるようにすることを技術的課題としている。
【0010】
【課題を解決するための手段】
この課題を解決するために、本発明は、電着液を貯留した電着槽内に浸漬された被塗物と槽内電極との間で電界を形成し、電着液に含まれる塗料成分を被塗物上に析出させて塗膜を形成する電着塗装装置において、前記槽内電極が、被塗物と同極性のイオンを選択的に透過させるイオン交換樹脂膜を介して被塗物との間に電界を形成する隔膜電極と、そのようなイオン交換樹脂膜を介さずに被塗物との間に直接電界を形成する裸電極とからなり、前記隔膜電極及び前記裸電極に対して個別に電圧供給する電圧コントローラを備えたことを特徴とする。
【0011】本発明によれば、隔膜電極と裸電極の二種類の電極を備えている。例えば、アニオン電着塗料にあっては、隔膜電極と被塗物間の間で電界を形成して電着塗装を行うと、電着時に遊離したアミンが隔膜電極のイオン交換樹脂膜内に取り込まれるため、徐々に電着液のアルカリ性が弱くなって電着液のpH値が小さくなる傾向にある。
一方、裸電極と被塗物間の間で電界を形成して電着塗装を行うと、電着時に遊離したアミンがそのまま電着液内に残るので、徐々に電着液のアルカリ性が強くなってpH値が大きくなる傾向にある。
したがって、隔膜電極及び裸電極に対して個別に電圧供給を行い、電着液のpH値が大きくなったときは隔膜電極の通電量を増やすことにより、また、電着液のpH値が小さくなったときは裸電極で通電量を増やすことにより電着液のpH値を調整することができる。
このようにして、pH値が適正に維持されるので、電着された樹脂分がアルカリによって再溶解して剥離したり、膜厚が薄くなって電着効率が低下したり、塗膜の肌荒れやピンホールの発生を起こすこともない。
【0012】また、カチオン電着塗料にあっては、隔膜電極と被塗物間の間で電界を形成して電着塗装を行うと、電着時に遊離した有機酸が隔膜電極のイオン交換樹脂膜内に取り込まれるため、徐々に電着液の酸性が弱くなって電着液のpH値が大きくなる傾向にある。
一方、裸電極と被塗物間の間で電界を形成して電着塗装を行うと、電着時に遊離した有機酸がそのまま電着液内に残るので、徐々に電着液の酸性が強くなってpH値が小さくなる傾向にある。
したがって、隔膜電極及び裸電極に対して個別に電圧供給を行い、電着液のpH値が小さくなったときは隔膜電極の通電量を増やすことにより、また、電着液のpH値が大きくなったときは裸電極で通電量を増やすことにより、電着液のpH値を調整することができる。
このようにして、pH値が適正に維持されるので、電着された樹脂分が酸によって再溶解して剥離したり、膜厚が薄くなって電着効率が低下したり、塗膜の肌荒れやピンホールの発生を起こすこともない。
【0013】なお、隔膜電極及び裸電極の双方で通電し、アニオン電着塗料(カチオン電着塗料)により電着塗装している間に、電着液のアルカリ性(酸性)が強くなってpH値が大きく(小さく)なるとイオン濃度が濃くなるため、電圧を一定に維持していれば各電極から流れる電流が増える。
逆に、電着液のアルカリ性(酸性)が弱くなってpH値が小さく(大きく)なるとイオン濃度が薄くなるため、各電極から流れる電流が減少する。
【0014】したがって、請求項2のように、電着液のpH値をモニタするpH検出器を備え、そのpH値が予め設定された上限及び下限を超えたときに、裸電極及び隔膜電極の一方の電極から供給される電力を低下させ、他方の電極から供給される電力を増大させれば、pH値を適正に調整できる。
【0015】ここで、請求項3のように裸電極を流れる電流値をpH値として検出すれば、アニオン電着塗料及びカチオン電着塗料のいずれの場合も、電着液のイオン濃度が高くなるとpH値が変化して裸電極を流れる電流が増えるため、この場合は、裸電極に印加される電圧を低下させ電力を減少させると同時に、隔膜電極に印加される電圧を上昇させて電力を増大させる。
これにより、電着液中のイオンが隔膜電極に捕捉されてイオン濃度が低くなりpH値が適正に調整される。
また、イオン濃度が低くなるとpH値が変化して裸電極を流れる電流が減少するため、この場合は、裸電極に印加される電圧を上昇させて電力を増大させると同時に、隔膜電極に印加される電圧を低下させて電力を減少させる。
これにより、隔膜電極に捕捉されるイオンが減少するので、電着液中のイオン濃度が増えてpH値が適正に調整される。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて具体的に説明する。
図1は本発明による電着塗装装置の一例を示す概略構成図、図2は電圧コントローラの処理手順を示すフローチャートである。
【0017】本例の電着塗装装置1は、電着液を貯留した電着槽2内に、ハンガコンベア3で自動車ボディなどの被塗物Wを搬送しながら浸漬し、電着槽2内を移動する被塗物Wと槽内電極4との間で電界を形成して、電着液に含まれる塗料成分を被塗物W上に析出させて塗膜を形成するようになっている。
【0018】槽内電極4は、被塗物Wと同極性のイオンを選択的に透過させるイオン交換樹脂膜5Aを介して被塗物Wとの間に電界を形成する隔膜電極4A…と、そのようなイオン交換樹脂膜を介さずに被塗物Wとの間に直接電界を形成する裸電極4B…とからなる。
【0019】隔膜電極4Aは、プラスチック製のケース6A内に金属電極7Aを格納し、ケース6Aの前面にイオン交換樹脂膜5Aを張り、その内部が極液と称する水で満たされて、電着槽2の側壁に沿って並設されている。
イオン交換樹脂膜5Aは、アニオン電着塗料で電着塗装する際は、電着時に遊離したアミンを極液中に取り込むカチオン交換樹脂膜を用い、カチオン電着塗料で電着塗装する際は、電着時に遊離した有機酸を極液中に取り込むアニオン交換樹脂膜を用いる。
【0020】一方、裸電極4Bは、プラスチック製のケース6B内に金属電極7Bを格納し、ケース6B前面にイオン交換機能を有さない防護ネット5Bを張り、この防護ネット5Bを介して電着液が流通するようになっている。
【0021】なお、前記金属電極7A、7Bは、アニオン電着塗料で電着塗装する際は電着液及び極液がアルカリとなることから普通鋼でも良いが、カチオン電着塗料で電着塗装する際は電着液及び極液が酸性となって金属を溶出させるため耐食性の高いステンレス鋼又はその他の不溶性電極が用いられる。
【0022】隔膜電極4A…及び裸電極4B…は、交互に同数ずつ配されると共に、それぞれの電極群に対して個別に電圧供給することができるように、各隔膜電極4A…同士が並列接続されて電源装置8Aに接続され、裸電極4B…同士が並列接続されて電源装置8Bに接続されている。
【0023】この電源装置8A,8Bは、その出力電圧を制御する電圧コントローラCに接続され、電圧コントローラCは、その入力側に、隔膜電極4A及び裸電極4Bを流れる電流及び電圧を測定する電流計9A,9B及び電圧計10A,10Bを備えており、出力側に前記電源装置8A、8Bが接続されている。
アニオン電着塗装の場合はアミンが遊離されて正イオンが増えてpH値が大きくなり、また、カチオン電着塗装の場合は有機酸が遊離されて負イオンが増えてpH値が小さくなる。
いずれの場合も電着塗装時間が長くなるほどイオン濃度が高くなって電流値が増大する傾向にあり、電流値はイオン濃度によって変化し、イオン濃度はpH値に対応するので、電流値はpH値に対応する。
したがって、電流をモニタすることによりpH値を推定することができ、電流計9A,9BはpH検出器として機能する。
そして、裸電極4B側の電流計9BをpH検出器として用い、その電流値がpH値に応じて予め設定された上限値を越えたときに、裸電極4Bに印加する電圧を低下させ、隔膜電極4Aに印加する電圧を上昇させ、その電流値がpH値に応じて予め設定された下限値より下がったときに、裸電極4Bに印加する電圧を上昇させ、隔膜電極4Aに印加する電圧を低下させる。
【0024】図2は、電圧コントローラCの制御手順を示すフローチャートであって、まず、スイッチ(図示せず)がオンされてシステムが稼動すると、ステップSTP1で電源装置8A,8Bから予め設定された定電圧Vを夫々の電極4A,4Bに印加し、ステップSTP2で電流計9A,9B及び電圧計10A,10Bで検出される電流値I,I及び電圧値V,Vに基づいて各電極4A,4Bの電力W,Wを算出する。
【0025】次いで、ステップSTP3に移行して、隔膜電極4A及び裸電極4Bの電力W,Wの和W+Wと予め設定された電力Wcを比較する。
イオン濃度が適正であれば電流値I,Iも適正値に維持されるため総電力W+W=Wcとなり、イオン濃度が高くなれば電流値I,Iも高くなるので総電力W+W>Wcとなり、イオン濃度が低くなれば電流値I,Iも低くなるので総電力W+W<Wcとなる。
【0026】そして、総電力W+W=WcであればステップSTP2に戻り、総電力W+W>WcであればステップSTP4に移行する。
ステップSTP4では、電源装置8Bから裸電極4Bに印加する電圧Vを所定電圧dVだけ低下させ、ステップSTP5で電力Wを算出し、ステップSTP6で隔膜電極4Aから供給すべき電力W=W−Wを算出し、これに基づいて、ステップSTP7では電源装置8Aから隔膜電極4Aに印加すべき電圧VをV=W/Iにより求めて印加し、ステップSTP2に戻る。
【0027】また、ステップSTP3で総電力W+W<WcであればステップSTP8に移行する。
ステップSTP8では、電源装置8Aから隔膜電極4Aに印加する電圧Vを所定電圧dVだけ低下させ、ステップSTP9で電力Wを算出し、ステップSTP10で裸電極4Aから供給すべき電力W=W−Wを算出し、これに基づいて、ステップSTP11では電源装置8Bから隔膜電極4Bに印加すべき電VをV=W/Iにより求めて印加し、ステップSTP2に戻る。
【0028】以上が本発明の一構成例であって、次にその作用を説明する。
カチオン電着塗料を用いて塗装する場合、ステップSTP1により隔膜電極4Aと裸電極4Bに300Vを印加して電着塗装を行うと、電着液に有機酸が遊離すると共に、遊離した有機酸の一部が隔膜電極4Aの極液に取り込まれるが、時間と共に電着液内の有機酸の濃度が高くなる傾向にある。
【0029】有機酸はイオンとして存在するので、電着液の比抵抗が下がり、電極電圧を300Vに維持していても電流値I、Iが上昇し、ひいては、総電力W+Wも上昇する。
このため、ステップSTP2〜7により、裸電極4Bの電圧Vを低下させてイオンの増加を抑えると同時に、隔膜電極4Aの電圧Vを上昇させてイオン除去量を増加させ、総電力W+W=Wcとなるまで処理を継続する。
【0030】次に、W+W=Wcとなった時点では、隔膜電極4Aの電圧Vが裸電極4Bの電極に比して高いので、このまま放置すると、電着液内のイオン濃度が薄くなりすぎて、電流値I、Iが上昇し、ひいては、総電力W+Wが減少する。
このため、ステップSTP2、3、8〜11により、隔膜電極4Aの電圧Vを低下させてイオンの除去量を抑えると同時に、裸電極4Bの電圧Vを上昇させてイオン発生量を増加させ、総電力W+W=Wcとなるまで処理を継続する。
【0031】このようにして、常にイオン濃度が最適値になるように、すなわち、pH値が最適に維持されるように自動的に調整されるので、pH異常による塗装不良を起こすことがない。
なお、槽内電極4は、箱型のプラスチックケース6A、6Bに金属電極7A、7Bが格納されたいわゆる箱型電極に限らず、円筒状に形成されたイオン交換樹脂膜5A内や防護ネット5B内に電極棒を格納し、その円筒内を極液や電着液で満たした筒状電極を用いても良い。
【0032】
【発明の効果】
以上述べたように、本発明によれば、pH値を調整するためのアミンや有機酸を補充するまでもなく、電圧コントロールだけで、塗料のpH値を許容範囲内に維持することができ、pH異常に起因する塗装不良を起こすことがないとう大変優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明による電着塗装装置の一例を示す概略構成図。
【図2】電圧コントローラの処理手順を示すフローチャート。
【符号の説明】
1………電着塗装装置
2………電着槽
W………被塗物
4………槽内電極
4A……隔膜電極
4B……裸電極
5A……イオン交換樹脂膜
6A、6B……ケース
7A,7B……金属電極
8A,8B……電源装置
C………電圧コントローラ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention forms an electric field between an object to be coated immersed in an electrodeposition tank storing an electrodeposition liquid and an electrode in the tank, and deposits a paint component contained in the electrodeposition liquid on the object to be coated. The present invention relates to an electrodeposition coating apparatus for forming a coating film.
[0002]
[Prior art]
For electrodeposition coating, the electrode in the tank is used as the positive electrode, the object to be coated is maintained at the negative electrode or the ground potential, and the anion electrodeposition coating for performing the electrodeposition coating is performed. There is a cationic electrodeposition coating that performs electrodeposition coating while maintaining the positive electrode, and undercoats such as automobile bodies that require high quality coating have no metal elution from the coated object and good corrosion resistance of the coating film Cation electrodeposition coating is mainly used (see Non-Patent Document 1).
[0003] In both the case of performing the cationic electrodeposition coating and the case of performing the anion electrodeposition coating, in order to form an electrodeposition coating film of a constant quality, the electrodeposition coating material stored in the electrodeposition tank is required. It is necessary to constantly maintain properties such as paint concentration, pH value, and paint temperature.
[0004]
[Non-Patent Document 1] "Coating Technology Handbook" edited by The Japan Coating Technology Association, Nikkan Kogyo Shimbun, Feb. 20, 1989, pp. 293-295.
[Non-Patent Document 2] Sueyo Ishizuka et al., "Technical Series Painting," Asakura Shoten, March 5, 1982, p. 129-130
[Non-Patent Document 3] Moriyasu Matsutani, "Supplementary Painting and Painting Equipment," Technical Shoin, pp. 181-184
Among these, the pH value is preset by the electrodeposition paint, for example, PH 8 ± 0.5, but in the case of the anion electrodeposition paint, the amine is liberated at the time of electrodeposition and the pH value gradually increases. However, if the concentration exceeds the allowable range, the electrodeposited resin is redissolved by the alkali and peels off, resulting in a thinner film and a thinner film. At the same time as the deposition efficiency decreases, roughening of the coating film and generation of pinholes occur.
Conversely, in the case of cationic electrodeposition paint, the organic acid is liberated during electrodeposition and the pH value gradually decreases, the acidity increases, and the ionic concentration increases. If it exceeds 300, the electrodeposited resin component is redissolved by the acid and peeled off, and the film thickness becomes thin to lower the electrodeposition efficiency, and at the same time, the surface of the coating film becomes rough and pinholes occur.
Therefore, in each case, the pH value is measured once a day to check whether the pH value is maintained at a value suitable for the electrodeposition paint, and then the pH value of the anion electrodeposition paint is determined. Is larger than the allowable range, the amine is replenished, and when the pH value of the cationic electrodeposition paint is smaller than the allowable range, the organic acid is replenished to adjust the pH value.
[0008]
[Problems to be solved by the invention]
However, when replenishing the paint, it is necessary to replenish the paint after the end of the previous day's electrodeposition paint and to stir the paint overnight, so that the paint concentration in the tank does not become uneven. However, if the coating is out of the allowable range and a coating failure occurs, the line must be stopped for a certain period of time, and the production efficiency may be reduced, resulting in enormous damage.
Accordingly, the present invention is not limited to supplementing an amine when the pH value of the anionic electrodeposition paint is higher than the allowable range, or replenishing an organic acid when the pH value of the cationic electrodeposition paint is lower than the allowable range. It is a technical task to always maintain the pH value of a paint within an allowable range.
[0010]
[Means for Solving the Problems]
In order to solve this problem, the present invention forms an electric field between an object to be coated immersed in an electrodeposition tank storing an electrodeposition liquid and an electrode in the tank, and paint components contained in the electrodeposition liquid. In the electrodeposition coating apparatus for forming a coating film by depositing on the substrate, the electrode in the tank, through the ion exchange resin membrane that selectively transmits ions of the same polarity as the substrate, the substrate And a bare electrode that directly forms an electric field between the object to be coated without such an ion-exchange resin membrane, with respect to the diaphragm electrode and the bare electrode. And a voltage controller for individually supplying a voltage.
According to the present invention, two types of electrodes, a diaphragm electrode and a bare electrode, are provided. For example, in the case of anionic electrodeposition paint, when an electric field is formed between the diaphragm electrode and the object to be coated and the electrodeposition coating is performed, amine released at the time of electrodeposition is taken into the ion exchange resin membrane of the diaphragm electrode. Therefore, the alkalinity of the electrodeposition liquid gradually weakens, and the pH value of the electrodeposition liquid tends to decrease.
On the other hand, when an electrodeposition is performed by forming an electric field between the bare electrode and the object to be coated, the amine liberated at the time of electrodeposition remains in the electrodeposition solution, so that the alkalinity of the electrodeposition solution gradually increases. Therefore, the pH value tends to increase.
Therefore, the voltage is separately supplied to the diaphragm electrode and the bare electrode, and when the pH value of the electrodeposition liquid increases, the amount of electricity supplied to the diaphragm electrode is increased, and the pH value of the electrodeposition liquid decreases. In such a case, the pH value of the electrodeposition liquid can be adjusted by increasing the amount of electricity with a bare electrode.
In this way, since the pH value is appropriately maintained, the electrodeposited resin component is redissolved by alkali and peels off, the film thickness becomes thinner, the electrodeposition efficiency decreases, and the coating film becomes rough. No pinholes are generated.
In the case of the cationic electrodeposition coating, when an electric field is formed between the diaphragm electrode and the object to be coated, the electrodeposition coating is performed. Since it is taken into the film, the acidity of the electrodeposition solution tends to gradually weaken and the pH value of the electrodeposition solution tends to increase.
On the other hand, when an electrodeposition is performed by forming an electric field between the bare electrode and the object to be coated, the organic acid released during the electrodeposition remains in the electrodeposition solution as it is, so that the acidity of the electrodeposition solution gradually increases. And the pH value tends to decrease.
Therefore, the voltage is separately supplied to the diaphragm electrode and the bare electrode, and when the pH value of the electrodeposition liquid decreases, the amount of electricity supplied to the diaphragm electrode is increased to increase the pH value of the electrodeposition liquid. In such a case, the pH value of the electrodeposition liquid can be adjusted by increasing the amount of electricity through the bare electrode.
In this manner, the pH value is appropriately maintained, so that the electrodeposited resin is redissolved by the acid and peeled off, the film thickness is reduced, the electrodeposition efficiency is reduced, and the coating film is rough. No pinholes are generated.
During the application of electricity to both the diaphragm electrode and the bare electrode and electrodeposition coating with an anionic electrodeposition paint (cation electrodeposition paint), the alkaline (acid) of the electrodeposition liquid becomes strong and the pH value increases. As the voltage becomes larger (smaller), the ion concentration becomes higher. If the voltage is kept constant, the current flowing from each electrode increases.
Conversely, when the alkaline (acid) of the electrodeposition liquid becomes weaker and the pH value becomes smaller (larger), the ion concentration becomes thinner, and the current flowing from each electrode decreases.
Therefore, a pH detector for monitoring the pH value of the electrodeposition solution is provided, and when the pH value exceeds a predetermined upper limit and lower limit, the naked electrode and the diaphragm electrode are set. If the power supplied from one electrode is reduced and the power supplied from the other electrode is increased, the pH value can be adjusted appropriately.
If the value of the current flowing through the bare electrode is detected as a pH value as in claim 3, the ion concentration of the electrodeposition liquid becomes higher in both the anionic electrodeposition paint and the cationic electrodeposition paint. Since the pH value changes and the current flowing through the bare electrode increases, in this case, the voltage applied to the bare electrode is reduced to reduce the power, and at the same time, the power is increased by increasing the voltage applied to the diaphragm electrode. Let it.
Thereby, the ions in the electrodeposition liquid are captured by the diaphragm electrode, the ion concentration is reduced, and the pH value is appropriately adjusted.
Further, when the ion concentration decreases, the pH value changes and the current flowing through the bare electrode decreases.In this case, the voltage applied to the bare electrode is increased to increase the power, and at the same time, the voltage applied to the diaphragm electrode is increased. Power to decrease by lowering the voltage.
As a result, the number of ions captured by the diaphragm electrode decreases, so that the ion concentration in the electrodeposition solution increases and the pH value is appropriately adjusted.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an example of an electrodeposition coating apparatus according to the present invention, and FIG. 2 is a flowchart showing a processing procedure of a voltage controller.
In the electrodeposition coating apparatus 1 of this embodiment, an object W such as an automobile body is immersed in an electrodeposition tank 2 storing an electrodeposition liquid while being transported by a hanger conveyor 3. An electric field is formed between the object W to be moved and the electrode 4 in the tank, and a coating component contained in the electrodeposition liquid is deposited on the object W to form a coating film. .
The in-tank electrode 4 includes a diaphragm electrode 4A that forms an electric field with the object W through an ion exchange resin film 5A that selectively transmits ions of the same polarity as the object W; A bare electrode 4B that directly forms an electric field with the article W without passing through such an ion exchange resin membrane.
As the diaphragm electrode 4A, a metal electrode 7A is housed in a plastic case 6A, an ion exchange resin film 5A is stretched on the front surface of the case 6A, and the inside thereof is filled with water called an anolyte. They are arranged side by side along the side wall of the tank 2.
The ion-exchange resin membrane 5A uses a cation-exchange resin membrane that takes in the amine liberated at the time of electrodeposition into the polar liquid when electrodeposition-coating with an anion electrodeposition paint. An anion exchange resin membrane is used, which takes in the organic acid liberated during electrodeposition into the polar solution.
On the other hand, for the bare electrode 4B, a metal electrode 7B is stored in a plastic case 6B, a protection net 5B having no ion exchange function is provided on the front surface of the case 6B, and electrodeposition is performed via the protection net 5B. The liquid is circulating.
When the metal electrodes 7A and 7B are electrodeposited with an anionic electrodeposition coating, ordinary steel may be used because the electrodeposition liquid and the electrode solution become alkali, but the metal electrodes 7A and 7B are electrodeposition coated with a cationic electrodeposition coating. In this case, a highly corrosion-resistant stainless steel or other insoluble electrode is used because the electrodeposition solution and the electrode solution become acidic to elute the metal.
The diaphragm electrodes 4A and the bare electrodes 4B are alternately arranged in the same number, and the diaphragm electrodes 4A are connected in parallel so that a voltage can be individually supplied to each electrode group. Are connected to the power supply 8A, and the bare electrodes 4B are connected in parallel to each other and connected to the power supply 8B.
The power supplies 8A and 8B are connected to a voltage controller C for controlling their output voltages. The voltage controller C has on its input side a current flowing through the diaphragm electrode 4A and the bare electrode 4B and a current for measuring the voltage. A total of 9A and 9B and voltmeters 10A and 10B are provided, and the power supplies 8A and 8B are connected to the output side.
In the case of anionic electrodeposition coating, amines are released and positive ions increase to increase the pH value, and in the case of cationic electrodeposition coating, organic acids are released and negative ions increase to decrease the pH value.
In any case, the longer the electrodeposition coating time, the higher the ion concentration and the current value tends to increase, and the current value changes depending on the ion concentration, and the ion concentration corresponds to the pH value. Corresponding to
Therefore, the pH value can be estimated by monitoring the current, and the ammeters 9A and 9B function as pH detectors.
Then, the ammeter 9B on the bare electrode 4B side is used as a pH detector, and when the current value exceeds an upper limit set in advance in accordance with the pH value, the voltage applied to the bare electrode 4B is reduced, and The voltage applied to the electrode 4A is increased, and when the current value falls below a lower limit preset according to the pH value, the voltage applied to the bare electrode 4B is increased, and the voltage applied to the diaphragm electrode 4A is increased. Lower.
FIG. 2 is a flowchart showing a control procedure of the voltage controller C. First, when a switch (not shown) is turned on and the system starts operating, the power supply units 8A and 8B are set in advance in step STP1. applying a constant voltage V C respectively of the electrode 4A, in 4B, based ammeter 9A at step STP2, 9B and voltmeter 10A, the current value I a is detected by 10B, I B and the voltage value V a, the V B each electrode 4A Te, 4B power W a, to calculate the W B.
[0025] Then, the processing proceeds to step STP3, comparing the power W A, the sum W A + W B with a preset power Wc of W B of the diaphragm electrodes 4A and bare electrodes 4B.
Current value if the ion concentration is correct I A, the total power W A + W B = Wc becomes to be maintained I B to the proper value, the current value the higher the ion concentration I A, since the higher the I B Total power W a + W B> Wc, and the current value the lower the ion concentration I a, I B becomes the total power W a + W B <Wc becomes lower.
[0026] Then, if the total power W A + W B = Wc returns to step STP2, to migrate if the total power W A + W B> Wc to step STP4.
In step STP4, lowering the voltage V B to be applied from the power supply device 8B naked electrode 4B by a predetermined voltage dV, to calculate the power W B at step STP5, power W A = W to be supplied from the membrane electrode 4A at step STP6 C -W B calculates, based on this, the voltage V a to be applied to the membrane electrode 4A from step STP7 the power supply 8A is applied seeking by V a = W a / I a , the flow returns to step STP2.
[0027] In addition, the process proceeds to step STP8 if the total power W A + W B <Wc in step STP3.
In step STP8, lowering the voltage V A is applied from the power supply 8A to membrane electrode 4A predetermined voltage dV, to calculate the power W A at step STP9, the power W B = W to be supplied from the bare electrode 4A at step STP10 C -W a is calculated and based on this, the to be applied electrostatic V B to membrane electrode 4B from step STP11 the power device 8B is applied seeking by V B = W B / I B , returns to step STP2.
The above is one configuration example of the present invention, and its operation will be described below.
In the case of applying using the cationic electrodeposition paint, when applying 300 V to the diaphragm electrode 4A and the bare electrode 4B in step STP1 to perform the electrodeposition coating, the organic acid is released into the electrodeposition liquid and the released organic acid is removed. Part of the concentration is taken into the electrode solution of the diaphragm electrode 4A, but the concentration of the organic acid in the electrodeposition liquid tends to increase with time.
[0029] Since the organic acid is present as an ion, electrodeposition solution resistivity decreases, and also the current value I A and maintains the electrode voltages 300 V, the I B increases, and thus, the total power W A + W B Also rises.
Therefore, in step STP2~7, lowering the voltage V B of the bare electrodes 4B and simultaneously suppressing the increase of the ion, by increasing the voltage V A of the membrane electrode 4A increases the ion removal amount, the total power W A The process is continued until + W B = Wc.
Next, at the time when W A + W B = Wc, the voltage VA of the diaphragm electrode 4A is higher than that of the bare electrode 4B. too thin, and the current value I a, the I B increases, and thus, the total power W a + W B is reduced.
Therefore, in step STP2,3,8~11, by reducing the voltage V A of the membrane electrode 4A at less removal of ions, the voltage is increased V B of the bare electrode 4B to increase the amount of generated ions , And the process is continued until the total power W A + W B = Wc.
In this way, the ion concentration is automatically adjusted so as to be always at the optimum value, that is, the pH value is maintained at the optimum value, so that coating failure due to abnormal pH does not occur.
The in-tank electrode 4 is not limited to a so-called box-shaped electrode in which metal electrodes 7A and 7B are stored in box-shaped plastic cases 6A and 6B, but may be formed in a cylindrical ion-exchange resin membrane 5A or a protective net 5B. A cylindrical electrode may be used in which an electrode rod is housed and the inside of the cylinder is filled with an electrode solution or an electrodeposition solution.
[0032]
【The invention's effect】
As described above, according to the present invention, it is possible to maintain the pH value of a coating material within an allowable range only by voltage control without needing to supplement an amine or an organic acid for adjusting the pH value. It has a very excellent effect of not causing coating defects due to abnormal pH.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of an electrodeposition coating apparatus according to the present invention.
FIG. 2 is a flowchart showing a processing procedure of a voltage controller.
[Explanation of symbols]
1 ... Electrodeposition coating device 2 ... Electrodeposition tank W ... Coating object 4 ... Inside tank electrode 4A ... Diaphragm electrode 4B ... Nude electrode 5A ... Ion exchange resin film 6A, 6B ... ... Cases 7A, 7B ... Metal electrodes 8A, 8B ... Power supply device C ... Voltage controller

Claims (3)

電着液を貯留した電着槽内に浸漬された被塗物と槽内電極との間で電界を形成し、電着液に含まれる塗料成分を被塗物上に析出させて塗膜を形成する電着塗装装置において、
前記槽内電極が、被塗物と同極性のイオンを選択的に透過させるイオン交換樹脂膜を介して被塗物との間に電界を形成する隔膜電極と、そのようなイオン交換樹脂膜を介さずに被塗物との間に直接電界を形成する裸電極とからなり、
前記隔膜電極及び前記裸電極に対して個別に電圧供給する電圧コントローラを備えたことを特徴とする電着塗装装置。
An electric field is formed between the object to be coated immersed in the electrodeposition tank storing the electrodeposition liquid and the electrode in the tank, and a coating component contained in the electrodeposition liquid is deposited on the object to form a coating film. In the electrodeposition coating equipment to be formed,
The electrode in the tank, a diaphragm electrode that forms an electric field between the object to be coated through an ion exchange resin membrane that selectively transmits ions of the same polarity as the object to be coated, and such an ion exchange resin film. Consisting of a bare electrode that forms an electric field directly with the object without intervening,
An electrodeposition coating apparatus comprising a voltage controller for individually supplying a voltage to the diaphragm electrode and the bare electrode.
前記電圧コントローラは、電着液のpH値をモニタするpH検出器を備え、そのpH値が予め設定された上限及び下限を超えたと判断されたときに、裸電極及び隔膜電極の一方の電極から供給される電力を低下させ、他方の電極から供給される電力を増大させるように成された請求項1記載の電着塗装装置。The voltage controller includes a pH detector that monitors the pH value of the electrodeposition liquid. The electrodeposition coating apparatus according to claim 1, wherein the supplied electric power is reduced and the electric power supplied from the other electrode is increased. 前記pH検出器が、裸電極及び隔膜電極を流れる電力をpH値として検出する電力検出手段である請求項2記載の電着塗装装置。The electrodeposition coating apparatus according to claim 2, wherein the pH detector is a power detection unit that detects power flowing through the bare electrode and the diaphragm electrode as a pH value.
JP2002285718A 2002-09-30 2002-09-30 Electrodeposition coating apparatus Pending JP2004124112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285718A JP2004124112A (en) 2002-09-30 2002-09-30 Electrodeposition coating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285718A JP2004124112A (en) 2002-09-30 2002-09-30 Electrodeposition coating apparatus

Publications (1)

Publication Number Publication Date
JP2004124112A true JP2004124112A (en) 2004-04-22

Family

ID=32278944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285718A Pending JP2004124112A (en) 2002-09-30 2002-09-30 Electrodeposition coating apparatus

Country Status (1)

Country Link
JP (1) JP2004124112A (en)

Similar Documents

Publication Publication Date Title
TWI475206B (en) A method of inspecting a metal coating and a method for analytical control of a deposition electrolyte serving to deposit said metal coating
JP6169719B2 (en) Device and method for electrolytic coating of objects
CN111593384A (en) Helicopter main hub plating damage repairing method and device
ZA200606571B (en) Method and system for determing the thickness of a layer of lacquer
JP2004124112A (en) Electrodeposition coating apparatus
US8313627B2 (en) Drag through electro-deposition system
US20160108545A1 (en) Method of distributing current in electrodeposition process
KR20150101114A (en) Apparatus and method for treating surface of base metal
Doche et al. Electropolishing of 316L stainless steel parts elaborated by selective laser melting: from laboratory to pilot scale
CN108350594B (en) Method and device for electrochemically applying a surface coating
US5047128A (en) Electrodialysis cell for removal of excess electrolytes formed during electrodeposition of photoresists coatings
US4643815A (en) Electrocoating method and apparatus
KR101461474B1 (en) Apparatus for cleaning strip and electrolytic cleaning line
JP4465084B2 (en) Copper foil manufacturing method and manufacturing apparatus
JP2023037197A (en) Electrodeposition coating device and electrodeposition coating method
CN110552052A (en) method and device for controlling electrotinning anode current
CN219315120U (en) Treatment equipment for carrying out electrophoretic dip coating on metal workpiece
JP2000256895A (en) System and method for electrodeposition coating
KR102215512B1 (en) Electro-deposition coating method and electro-deposition coating equipment
WO2022269945A1 (en) Device for producing alkaline electrolyzed water, method for purifying electrolysis tank of same, and electrolysis tank purification control structure
JP3272883B2 (en) Electrodeposition coating equipment
JPS648080B2 (en)
Coon et al. Paintability of precoated metals with cathodic electrocoat primer
JPH07126893A (en) Electrodeposition coating device
JP2004068130A (en) Method for controlling coating weight in electroplating line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516