JP2004114990A - Turning control apparatus for working vehicle - Google Patents

Turning control apparatus for working vehicle Download PDF

Info

Publication number
JP2004114990A
JP2004114990A JP2002285039A JP2002285039A JP2004114990A JP 2004114990 A JP2004114990 A JP 2004114990A JP 2002285039 A JP2002285039 A JP 2002285039A JP 2002285039 A JP2002285039 A JP 2002285039A JP 2004114990 A JP2004114990 A JP 2004114990A
Authority
JP
Japan
Prior art keywords
turning
speed
continuously variable
rotation speed
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002285039A
Other languages
Japanese (ja)
Other versions
JP3883484B2 (en
JP2004114990A5 (en
Inventor
Yukifumi Yamanaka
山中  之史
Yoshihiro Ueda
上田  吉弘
Shigeki Hayashi
林 繁樹
Yuji Kato
加藤 裕治
Futoshi Ikeda
池田 太
Katsuhide Kato
加藤  勝秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2002285039A priority Critical patent/JP3883484B2/en
Publication of JP2004114990A publication Critical patent/JP2004114990A/en
Publication of JP2004114990A5 publication Critical patent/JP2004114990A5/ja
Application granted granted Critical
Publication of JP3883484B2 publication Critical patent/JP3883484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)
  • Guiding Agricultural Machines (AREA)
  • Harvester Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a turning control apparatus for a vehicle which carries out adequate turning while speed of a running device on the turning center side is made to zero without breaking operation by a mechanical break means. <P>SOLUTION: The turning control apparatus comprises a pair of continuous variable transmissions 11R,11L to carry out speed change operation of a pair of left and right running devices continuously and individually, a speed change operation means 30 which operates the respective continuous variable transmissions 11R,11L speed-changeably, and a control means 31 for operating the speed change operation means 30 to advance straight-forwardly and carry out turning. A target rotation speed of the continuous transmission on the turning center side is determined to allow a speed ratio between output rotation speeds of the transmissions 11R,11L to attain a specified speed ratio. The speed change operation means 30 is actuated to allow the output rotation speed to attain the target rotation speed when the target rotation speed of the continuous transmission is not made to zero. The speed change operation means 30 is actuated to allow a speed change position of a body 29 to be operated for speed change to attain a target speed change position in correspondence to zero speed when the target rotation speed is zero. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、左右一対の走行装置の走行速度を各別に無段階に変速する一対の無段変速装置と、その一対の無段変速装置を各別に変速操作自在な変速操作手段と、直進及び旋回を指令自在で且つ旋回するときの旋回半径の大きさを指令自在な旋回指令手段と、前記旋回指令手段の指令情報に基づいて直進及び旋回を行うべく前記変速操作手段を作動させる旋回制御を実行する制御手段とが備えられている作業車の旋回制御装置に関する。
【0002】
【従来の技術】
上記構成の作業車の走行制御装置は、例えばコンバイン等の作業車に適用されるものであり、従来では、次のような構成のものがあった。
つまり、前記一対の無段変速装置として静油圧式の無段変速装置を用いて、変速操作手段として一対の電動モータが設けられ、一対の無段変速装置夫々の出力回転速度を一対の回転センサにて検出して、これらの回転センサの検出値が夫々目標とする出力回転速度になるように各電動モータにより一対の無段変速装置を作動させるように構成され、しかも、これらの無段変速装置の伝動下手側に動力伝達を入り切り自在な操向クラッチと各走行装置を制動自在な操向ブレーキとが備えられ、前記旋回制御として、次のような処理を実行する構成のものがあった。つまり、旋回モードとして、緩旋回モード、ブレーキ旋回モード、スピン旋回モードがあり、そのうちの緩旋回モードでは、旋回指令手段としてのパワステレバーの直進指令位置から離れる方向への移動量が大きくなって小さい旋回半径を指令するほど、左右一対の無段変速装置のうち旋回中心から離れる側の無段変速装置の出力回転速度を所定速度に維持しながら、旋回中心側の無段変速装置を無段階に減速させる形態で、一対の無段変速装置の回転速度の比率を変化させることにより旋回するときの旋回半径を小さくさせるように変速操作手段の作動を制御するように構成したものがあった。尚、ブレーキ旋回モードでは、パワステレバーの旋回用の操作角度が大になると旋回中心側の走行装置に対して操向クラッチを切り且つ操向ブレーキを作動させる状態で旋回を行い、スピン旋回モードでは、操向クラッチの切り及び操向ブレーキの作動に加えて、パワステレバーの旋回用の操作角度が大になると、旋回中心側の走行装置が逆回転する状態に切り換わるようになっている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開平8−172871号公報(第3頁―第5頁、図4、図6)
【0004】
【発明が解決しようとする課題】
上記従来構成においては、緩旋回モードで旋回走行する場合に、左右一対の無段変速装置のうち旋回中心から離れる側の無段変速装置の出力回転速度を設定速度に維持して、旋回中心側の無段変速装置を減速させて一対の無段変速装置の回転速度の比率を変化させる形態で、一対の無段変速装置夫々の出力回転速度が夫々目標とする出力回転速度になるように変速操作手段を作動させるように構成されており、前記目標回転速度として零速が指令されたような場合に次のような不都合が発生するという不利な点があった。
【0005】
つまり、上記構成では、前記目標回転速度として零速が指令されたような場合であっても、回転センサにて検出される旋回中心側の無段変速装置の出力回転速度が目標回転速度つまり零速になるように、変速操作手段としての電動モータにより変速用の***作体を零速に対応する位置に調整しようとする。しかし、コンバイン等の作業車にあっては圃場等などの不整地を走行することが多く、このような不整地においては走行装置に対する走行負荷が大になるので、旋回中心側の走行装置を零速にして旋回走行している場合であっても、旋回中心側の走行装置が地面との摩擦によって反対側の走行装置の走行方向と同じ方向に連れ回りしてしまうことがある。
【0006】
このような連れ回りが発生すると、変速用の***作体を零速に対応する位置に調整しているにもかかわらず、回転センサの検出値が零でなく所定の回転速度で回転している状態として誤って検出することになる。そして、その状態から所定の回転速度分だけ減速させるように変速用の***作体を零速に対応する位置よりも更に減速側、つまり、中立位置を越えて変速出力がそれまでの正転方向から回転方向が逆となる逆転方向に対応する操作位置にまで変速操作することになる。
【0007】
しかし、そのように変速用の***作体が逆転方向になる操作位置にまで操作さていることが検出されると、制御手段が無段変速装置の変速出力が逆転方向での回転であると判断して、今度はその逆転方向での回転を零速にすべく、直ちに変速用の***作体を正転方向における元の位置にまで戻すように制御する。そして、又、上記したように、その状態から所定の回転速度分だけ減速させるように変速用の***作体を零速に対応する位置よりも更に減速側に操作するといったことを繰り返し実行することになる。その結果、変速用の***作体は中立位置付近を正転状態と逆転状態とに交互に切り換わり、出力回転速度は零速に収束することなく、上記したような連れ回り状態が継続することになり、旋回中心側の走行装置を零速にさせた状態での適正な旋回が行えないものとなる不利がある。
【0008】
ところで、上記従来構成においては、旋回モードをブレーキ旋回モードに切り換えて、旋回中心側の走行装置に対する操向クラッチを切り操作して操向ブレーキを操作することで、旋回中心側の走行装置を零速にさせて旋回を行うことができる構成となっているが、このような構成では、左右一対の無段変速装置の操作だけでなく操向ブレーキ等の機械的な制動手段による旋回中心側の走行装置に対する制動操作を実行しなければならず構成が複雑になる不利がある。
【0009】
本発明はかかる点に着目してなされたものであり、その目的は、機械的な制動手段による制動操作を行うといった構成の複雑化を招くことなく、旋回中心側の走行装置を零速にさせた状態で適正な旋回を行うことが可能となる作業車の旋回制御装置を提供する点にある。
【0010】
【課題を解決するための手段】
請求項1に記載の作業車の旋回制御装置は、左右一対の走行装置の走行速度を各別に無段階に変速する一対の無段変速装置と、その一対の無段変速装置を各別に変速操作自在な変速操作手段と、直進及び旋回を指令自在で且つ旋回するときの旋回半径の大きさを指令自在な旋回指令手段と、前記旋回指令手段の指令情報に基づいて直進及び旋回を行うべく前記変速操作手段を作動させる旋回制御を実行する制御手段とが備えられているものであって、前記一対の無段変速装置の夫々における変速用の***作体の変速位置を各別に検出する一対の変速位置検出手段と、前記一対の無段変速装置の出力回転速度を各別に検出する一対の変速出力検出手段とが備えられ、前記制御手段が、前記旋回制御として、前記変速出力検出手段にて検出される旋回中心から離れる側に位置する無段変速装置の出力回転速度を基準として、左右一対の無段変速装置の出力回転速度の速度比率が前記旋回指令手段にて指令される旋回半径に対応する速度比率となるように前記旋回中心側に位置する無段変速装置の目標回転速度を求める目標回転速度設定処理、及び、その目標回転速度設定処理にて求められる前記目標回転速度が零速でないときは、前記旋回中心側に位置する無段変速装置の出力回転速度が前記目標回転速度になるように前記変速出力検出手段の検出情報に基づいて前記変速操作手段を作動させ、且つ、前記目標回転速度設定処理にて求められる前記目標回転速度が零速であるときは、前記旋回中心側に位置する無段変速装置における変速用の***作体の変速位置が零速に対応する目標変速位置になるように前記変速位置検出手段の検出情報に基づいて前記変速操作手段を作動させる旋回用調整処理の夫々を実行するように構成されていることを特徴とする。
【0011】
すなわち、旋回中心から離れる側に位置する無段変速装置の出力回転速度を基準として、左右一対の無段変速装置の出力回転速度の速度比率が旋回指令手段にて指令される旋回半径に対応する速度比率となるように旋回中心側に位置する無段変速装置の目標回転速度を求め、その目標回転速度が零速でないときは、旋回中心側に位置する無段変速装置の出力回転速度が目標回転速度になるように変速操作手段を作動させる。このように、左右一対の走行装置が旋回指令手段にて指令される旋回半径に対応する速度比率で走行するので適正な旋回が行われることになる。
【0012】
そして、前記目標回転速度が零速であるときは、旋回中心側に位置する無段変速装置における変速用の***作体の変速位置が零速に対応する目標変速位置になるように変速位置検出手段の検出情報に基づいて変速操作手段を作動させるので、旋回中心側の無段変速装置における変速用の***作体の変速位置が零速に対応する目標変速位置に位置保持されることになり変速状態が変化することがなく、機械的な制動手段による制動操作を行わなくても、旋回中心側に位置する走行装置が速度零の状態を維持することができ、適正な旋回を行うことが可能となる。
【0013】
従って、機械的な制動手段による制動操作を行うといった構成の複雑化を招くことなく、旋回中心側の走行装置を零速にさせた状態で適正な旋回を行うことが可能となる作業車の旋回制御装置を提供できるに至った。
【0014】
請求項2に記載の作業車の旋回制御装置は、請求項1において、前記旋回指令手段にて前記直進が指令されているときにおける目標車速を指令する車速指令手段が備えられ、前記制御手段が、前記旋回制御において、前記旋回中心から離れる側に位置する無段変速装置における変速用の***作体の変速位置が前記目標車速に対応する目標変速位置になるように、前記変速位置検出手段の検出情報に基づいて前記変速操作手段を作動させるように構成されていることを特徴とする。
【0015】
すなわち、旋回中心から離れる側に位置する無段変速装置における変速用の***作体の変速位置が、車速指令手段にて指令される目標車速に対応する目標変速位置になるように変速操作手段を作動させるのである。このように、速度比率の基準となる側の無段変速装置は、***作体の変速位置が目標変速位置になるように制御されるので、例えば、走行負荷の変動等によって出力回転速度が変化しても***作体の変速位置に対する目標変速位置は変化しない。そして、反対側の無段変速装置の出力回転速度は、基準側の無段変速装置の出力回転速度を基準として、旋回指令手段にて指令される旋回半径に対応する速度比率になるように速度調整される。つまり、走行負荷の変動等によりエンジン回転速度が変動するような場合においては、左右一対の無段変速装置は出力回転速度が変化するものの、左右一対の無段変速装置は、ほぼ同じような速度比率を維持して追従しながら変化することになり、誤差の少ない状態で旋回指令手段にて指令された旋回半径にて適正に旋回走行することが可能となる。
【0016】
請求項3記載の作業車の旋回制御装置は、請求項1又は2において、前記旋回指令手段が、直進を指令する直進指令位置及び旋回を指令する旋回操作用操作領域の全範囲にわたり移動操作自在な操作具を備えて、その操作具が、前記旋回操作用操作領域において直進指令位置から離れる方向へ移動されるほど小さい旋回半径を指令するように構成され、前記制御手段が、前記目標回転速度設定処理として、前記旋回指令手段にて指令される旋回半径が小さくなるほど漸次低速となり、且つ、前記旋回指令手段にて最も小さい旋回半径が指令されたときに零速とする形態で、前記旋回中心側に位置する無段変速装置の目標回転速度を求める処理を実行するように構成されていることを特徴とする。
【0017】
すなわち、旋回指令手段の操作具が旋回操作用操作領域において直進指令位置から離れる方向へ移動されるほど小さい旋回半径が指令されるが、そのとき指令される旋回半径が小さくなるほど漸次低速となるように旋回中心側に位置する無段変速装置の目標回転速度が求められ、最も小さい旋回半径が指令されたときには前記目標回転速度として零速が指令されることになる。
【0018】
従って、最大操作位置まで操作して最も小さい旋回半径が指令されたときには、変速用の***作体の変速位置が零速に対応する目標変速位置になるように変速操作手段を作動させるので適正な旋回を行うことが可能となる。
【0019】
請求項4記載の作業車の旋回制御装置は、請求項1又は2において 前記旋回指令手段が、直進を指令する直進指令位置及び旋回を指令する旋回操作用操作領域の全範囲にわたり移動操作自在な操作具を備えて、その操作具が、前記旋回操作用操作領域において直進指令位置から離れる方向へ移動されるほど小さい旋回半径を指令するように構成され、前記制御手段が、前記目標回転速度設定処理として、前記旋回指令手段にて指令される旋回半径が小さくなるほど漸次低速にして零速とし且つその後において逆回転状態で漸次高速にする形態で、前記旋回中心側に位置する無段変速装置の目標回転速度を求める処理を実行するように構成されていることを特徴とする。
【0020】
すなわち、旋回指令手段の操作具が旋回操作用操作領域において直進指令位置から離れる方向へ移動されるほど小さい旋回半径が指令されるが、そのとき指令される旋回半径が小さくなるほど零速になるように漸次低速となり、且つその後において逆回転状態で漸次高速にする形態で旋回中心側に位置する無段変速装置の目標回転速度を求めることになる。つまり、操作具を旋回操作用操作領域において直進指令位置から離れる方向へ移動させると、旋回中心側に位置する無段変速装置の目標回転速度が漸次低速となり、操作具を旋回操作用操作領域の途中の所定位置まで操作すると目標回転速度が零速となる。そして、更に操作具を移動操作すると、目標回転速度が逆回転状態で漸次高速になり、旋回中心側に位置する走行装置が逆回転状態となって零速で旋回するものに比べて更に旋回半径を小さくして小回り旋回が行えるものとなる。
【0021】
従って、操作具を旋回操作用操作領域の途中の所定位置に操作して目標回転速度が零速になると、変速用の***作体の変速位置が零速に対応する目標変速位置になるように変速操作手段を作動させるので、このような場合においても適正な旋回が行われることになる。
【0022】
請求項5記載の作業車の旋回制御装置は、請求項1〜4のいずれかにおいて、前記一対の無段変速装置の夫々が静油圧式無段変速装置にて構成されていることを特徴とする。
【0023】
静油圧式無段変速装置は、変速用の***作体を操作することで、正転方向並びに逆転方向の夫々に無段階に変速操作することが可能であり、正転方向での変速操作域と逆転方向での変速操作域との間に速度零となる中立域があり、変速用の***作体をこの中立域に操作することで変速出力を零速にすることができる。
従って、左右一対の走行装置を各別に零速を含む状態で前進方向並びに後進方向の夫々に無段階に変速操作することにより、旋回半径を漸次変更させて滑らかな旋回走行を行うことができる。
【0024】
【発明の実施の形態】
以下、本発明に係る作業車の旋回制御装置の実施形態を作業車の一例としてのコンバインに適用した場合について図面に基づいて説明する。
【0025】
図1に作業車の一例であるコンバインの全体側面が示されており、このコンバインは、走行装置の一例である左右一対のクローラ式の走行装置1R、1Lの駆動で走行する走行機体2の前部に、植立穀稈を刈り取って後方に向けて搬送する刈取搬送装置3を昇降可能に連結し、走行機体2に、刈取搬送装置3からの刈取穀稈を受け取って脱穀処理並びに選別処理を実行する脱穀装置4と、脱穀装置4からの穀粒を貯留する穀粒タンク5とを搭載するとともに、穀粒タンク5の前方箇所に搭乗運転部6を形成することによって構成されている。
【0026】
図2に示すように、このコンバインは、エンジン7からの動力を、ベルトテンション式の主クラッチ8を介してミッションケース9の入力軸10に伝達し、この入力軸10から走行用の一対の無段変速装置11R、11Lに分配伝達し、走行用の一方の無段変速装置11Lによる変速後の動力を左側のギヤ式の副変速装置13Lを介して左側のクローラ式走行装置1Lに伝達し、走行用の他方の無段変速装置11Rによる変速後の動力を、右側のギヤ式の副変速装置13Rを介して右側のクローラ式走行装置1Rに伝達するようにして走行駆動用の伝動機構を構成している。一方、エンジン7からの動力が作業用の無段変速装置12にも供給され、その作業用の無段変速装置12による変速後の動力を、ベルトテンション式の刈取クラッチ14を介して刈取搬送装置3に伝達するようにして刈取作業用の伝動機構を構成している。左右のギヤ式の副変速装置13R、13Lは、前記各無段変速装置11R、11Lの変速後の動力を高低2段に切り換え自在に構成されている。又、搭乗運転部6には、前後方向に揺動操作可能な単一の副変速レバー25が設けられ、この副変速レバー25は、図示しない連係機構を介してギヤ式の副変速機構13R、13Lに連係されており、副変速レバー25の操作によって、走行用の各無段変速装置11R、11Lによる変速後の動力を高低2段に変速できるようになっている。
【0027】
走行用の各無段変速装置11R、11Lは、アキシャルプランジャ形式で可変容量型のピストンポンプ19とピストンモータ20とを夫々備えて静油圧式の無段変速装置として構成され、作業用の無段変速装置12も同様に、アキシャルプランジャ形式で可変容量型のピストンポンプ21とピストンモータ22とを備えて静油圧式無段変速装置として構成され、左右の走行装置1R、1L夫々の走行方向を前進方向並びに後進方向に切り換え且つ走行速度を無段階に変速することができる構成となっている。
【0028】
そして、図3に示すように、走行用の各無段変速装置11R、11Lを各別に変速操作する変速操作手段としての油圧式の走行用操作機構30と、作業用の無段変速装置12を変速操作する油圧式の作業用操作機構36とが夫々備えられている。前記走行用操作機構30は、走行用の各無段変速装置11R、11Lの夫々におけるトラニオン軸29(***作体の一例)に連動連結された一対の複動型の油圧シリンダ33R、33Lと、これらの各油圧シリンダ33R、33Lに対する正逆方向夫々の操作に対応する一対の油室に作動油を供給する状態と供給を停止する状態とに切り換え自在な一対の2位置切換式の給油用電磁弁34Aと、前記一対の油室から作動油を排出する状態と排出を停止する状態とに切り換え自在な一対の2位置切換式の排油用電磁弁34Bとを備えて構成されている。前記各油圧シリンダ33R、33Lは、内装されるバネの付勢力により中立位置に復帰付勢される構成となっている。
【0029】
前記作業用操作機構36も同様に、作業用の無段変速装置12におけるトラニオン軸37に連動連結されるとともに、内装されるバネの付勢力により中立位置に復帰付勢される構成の複動型の油圧シリンダ40と、この油圧シリンダ40に対する正逆方向夫々の操作に対応する一対の油室に作動油を供給する状態と供給を停止する状態とに切り換え自在な一対の2位置切換式の給油用電磁弁41Aと、前記一対の油室から作動油を排出する状態と排出を停止する状態とに切り換え自在な一対の2位置切換式の排油用電磁弁41Bとを備えて構成されている。
【0030】
前記各給油用電磁弁34A、41Aは、バネの付勢力によってスプールを給油停止状態に移動付勢する構成となっており、ソレノイドによる電磁力によってバネの付勢力に抗してスプールを移動操作して作動油を供給する状態に切り換える構成となっており、又、前記各排油用電磁弁34B、41Bは、バネの付勢力によってスプールを排出状態に移動付勢される構成となっており、ソレノイドによる電磁力によってバネの付勢力に抗してスプールを移動操作して作動油の排出を停止する状態に切り換わる構成となっている。
【0031】
上記したような無段変速装置11R、11Lの変速動作の概略について説明を加えると、図4に示すように、トラニオン軸29の変速位置が中立域にあれば変速出力(走行速度)は零となり、トラニオン軸29の変速位置がその中立域から所定方向に回動操作されると前進方向への走行速度が無段階に増速操作され、トラニオン軸29が中立域から所定方向と反対方向に回動操作されると後進方向への走行速度が無段階に増速操作される構成となっている。
【0032】
搭乗運転部6には、走行停止を指令する停止用指令位置としての中立位置を含む所定操作範囲内で車体前後方向に沿って移動自在な単一の主変速レバー24、及び、直進を指令する直進指令位置及び旋回を指令する旋回操作用操作領域としての旋回指令範囲の全範囲にわたり移動操作自在な操作具としての単一の旋回レバー26などが装備されている。そして、図3に示すように、主変速レバー24の操作位置を検出する変速レバーセンサ27と、旋回レバー26の操作位置を検出する旋回レバーセンサ28とが夫々設けられ、それらは共に回転式のポテンショメータにて構成されている。変速レバーセンサ27及び旋回レバーセンサ28の検出情報は後述する制御装置31に入力される構成となっており、前記主変速レバー24と変速レバーセンサ27とにより車速指令手段が構成され、旋回レバー26と旋回レバーセンサ28とにより旋回指令手段が構成される。
【0033】
又、走行用の一対の無段変速装置11R、11Lには、それらの出力回転速度を各別に検出する変速出力検出手段としての回転速度センサ44、45と、夫々の無段変速装置11R、11Lの変速位置、すなわち、一対の油圧シリンダ33R、33Lによる夫々のトラニオン軸29の操作角度を検出する変速位置検出手段としての回転式のポテンショメータにて構成される変速位置センサ46、47とが夫々備えられている。尚、作業用の無段変速装置12にも同様に回転速度センサ51が設けられる。
【0034】
そして、前記走行用操作機構30の動作を制御する制御手段としてのマイクロコンピュータ利用の制御装置31が備えられ、この制御装置31は、主変速レバー24にて指令される目標車速で車体を直進走行させるべく走行用操作機構30を作動させる直進制御を実行するとともに、旋回レバー26にて指令された旋回半径で旋回を行うべく走行用操作機構30を作動させる旋回制御を実行する構成となっている。
【0035】
前記直進制御について簡単に説明すると、旋回レバー26が直進指令位置に操作されて直進が指令されている状態で、主変速レバー24が操作可能範囲のほぼ中間に位置する中立位置に操作されると走行停止状態となり、中立位置から前進側へ揺動操作されるとそれに伴って前進側への走行速度が無段階で高速となる目標車速が指令され、中立位置から後進側へ操作されるとそれに伴って後進側への走行速度が無段階で高速となる目標車速が指令される。そして、左右一対の無段変速装置11R、11L夫々のトラニオン軸29が目標車速に対応する目標変速位置から離れているときは、左右一対の無段変速装置11R、11L夫々のトラニオン軸29を目標車速に対応する目標変速位置になるように走行用操作機構30を作動させる。そして、いずれかの無段変速装置のトラニオン軸29が目標変速位置に至ると、いずれか一方の無段変速装置はトラニオン軸29が目標変速位置に維持されるように制御されるが、他方の無段変速装置はその出力回転速度が、前記一方の無段変速装置の出力回転速度と同じ速度になるように速度同期処理が行われる。
【0036】
次に、旋回制御について説明すると、主変速レバー24が操作されて所定速度で走行しているときに、旋回レバー26が直進指令位置から左右いずれかの旋回指令範囲に揺動操作されると、前記直進指令位置から離れる側に操作されるほど旋回半径が小さくなるように旋回が指令され、その指令情報に基づいて制御装置31が走行用操作機構30を作動させるように構成されている。
説明を加えると、制御装置31は、前記旋回制御として次のような処理を実行するように構成されている。つまり、一対の無段変速装置11R、11Lのうちの旋回中心から離れる側に位置する無段変速装置を基準側の無段変速装置として、その基準側の無段変速装置における変速用のトラニオン軸29の変速位置が目標車速に対応する目標変速位置になるように走行用操作機構30を作動させる変速位置調整処理、基準側の無段変速装置の出力回転速度を基準として、左右一対の無段変速装置11R、11Lの出力回転速度の速度比率が旋回レバー26の操作位置にて指令される旋回半径に対応する速度比率となるように旋回中心側に位置する無段変速装置の目標回転速度を求める目標回転速度設定処理、及び、その目標回転速度設定処理にて求められる目標回転速度が零速でないときは、旋回中心側に位置する無段変速装置の出力回転速度が目標回転速度になるように回転速度センサの検出情報に基づいて走行用操作機構30を作動させ、且つ、目標回転速度設定処理にて求められる目標回転速度が零速であるときは、旋回中心側に位置する無段変速装置における変速用のトラニオン軸29の変速位置が零速に対応する目標変速位置になるように変速位置センサの検出情報に基づいて走行用操作機構30を作動させる旋回用調整処理の夫々を実行するように構成されている。
【0037】
以下、フローチャートに基づいて制御装置31の旋回制御の処理動作について具体的に説明する。
図6に示すように、旋回レバー26が直進指令位置から旋回指令範囲に揺動操作されて旋回が指令され、例えば右方向に旋回が指令されている場合には(ステップ1、2)、旋回中心に対して離れる側に位置する無段変速装置である左側の無段変速装置11Lを基準側の無段変速装置として、その左側の無段変速装置11Lにおけるトラニオン軸29の変速位置が目標変速位置になるように走行用操作機構30を作動させる変速位置調整処理を実行する(ステップ3)。
【0038】
この変速位置調整処理について説明を加えると、図7に示すように、先ず、左側の無段変速装置11Lにおけるトラニオン軸29に対する目標変速位置を計算にて求める(ステップ31)。このとき、主変速レバー24にて指令されている目標車速に対応するトラニオン軸29の変速位置を前記目標変速位置として設定するようになっている。次に、この目標変速位置と、変速位置センサ47にて検出される現在のトラニオン軸29の変速位置との偏差を求めて、その位置偏差が小さくなるように比例制御にて走行用操作機構30を作動させてトラニオン軸29の変速位置を変更調整する(ステップ32、33)。具体的には、走行用操作機構30における給油用電磁弁34A及び各排油用電磁弁34Bを切り換え制御して油圧シリンダ33Rの作動を制御するのである。
【0039】
上記したようにして変速位置調整が行われる左側の無段変速装置11Lの出力回転速度を回転速度センサ45にて検出して、左側の無段変速装置11Lの出力回転速度と右側の無段変速装置11Rの出力回転速度との速度比率が、旋回レバー26の操作位置の変化に応じて変化する旋回レバーセンサ28の検出情報に基づいて指令される旋回半径に対応する速度比率となるように右側の無段変速装置11Rの目標回転速度を求める目標回転速度設定処理を実行する(ステップ4)。
【0040】
図9に示すように、旋回レバー26の操作位置に対する目標となる旋回半径に対応する左右の無段変速装置11R、11Lの速度比率の関係が予め設定されて記憶されており、この関係と、旋回レバー26の操作位置による指令情報とに基づいて、右側の無段変速装置11Rの目標回転速度を求めるのである。図9に示す関係について説明を加えると、この図は、旋回レバー26の操作位置の変化に対して、基準側すなわち旋回中心に対して離れる側に位置する無段変速装置の出力回転速度Vを基準として、旋回中心側に位置する無段変速装置の速度比率の変化を示している。ステップ4では、右側の無段変速装置11Rが旋回中心側に位置する無段変速装置であるから、この速度比率から右側の無段変速装置11Rの目標回転速度を求めることになる。
【0041】
この図から明らかなように、旋回レバー26による直進指令位置からの移動量が大になるほど小さい旋回比率に対応する速度比率となり、直進指令位置から離れる方向への移動量が大になるほど、旋回レバーの操作位置の単位量あたりの変化に対する速度比率の変化量を大側に変化させる二次関数として設定されている。しかも、旋回レバー26の移動量が最も大きい最大操作位置に操作されたときの速度比率が互いに異なる形態の複数(図9に示す例では4種類)の旋回モードが選択可能に構成されている。そして、旋回モードを切り換えるためのモード切換スイッチ42が設けられており、このモード切換スイッチ42による切換指令が制御装置31に与えられて、制御装置31は、その切換指令に基づいていずれの特性を利用して目標回転速度を求めるかを決定するようになっている。
【0042】
図9に示す4種類の旋回モードについて説明すると、旋回レバー26が最大操作位置にまで操作されたときに、旋回中心側の無段変速装置の出力回転速度が反対側の無段変速装置の出力回転速度Vの約1/3の速度にまで減速される緩旋回モード(L1)、旋回中心側の無段変速装置の出力回転速度が零となるまで減速される信地旋回モード(L2)、旋回中心側の無段変速装置の出力回転速度が反対側の無段変速装置の駆動回転方向とは逆回転方向で反対側の無段変速装置の出力回転速度Vの約1/3の速度になる低速スピン旋回モード(L3)、旋回中心側の無段変速装置の出力回転速度が反対側の無段変速装置の駆動回転方向とは逆回転方向で反対側の無段変速装置の出力回転速度Vと同程度の速度になる高速スピン旋回モード(L4)が夫々設定されている。
【0043】
前記緩旋回モードでは、旋回レバー26がどのような操作位置にあっても、旋回中心側の無段変速装置に対する目標回転速度は零速になることはないが、前記信地旋回モードでは、旋回レバー26による直進指令位置からの移動量が大になるほど漸次低速となり、且つ、旋回レバー26が旋回指令範囲の最大操作位置にまで操作されて最も小さい旋回半径が指令されたときに零速となる形態で目標回転速度を求めることになる。そして、低速スピン旋回モードや高速スピン旋回モードでは、旋回レバー26による直進指令位置からの移動量が大になるほど漸次低速にして零速とし、且つ、その後において逆回転状態で漸次高速にする形態で目標回転速度を求めることになる。
【0044】
上記したようにして目標回転速度が求められると、次に、右側の無段変速装置について旋回用調整処理を実行する(ステップ5)。この旋回用調整処理は、図8に示すように、上述したような4種類の旋回モードのうちモード切換スイッチ42にて信地旋回モード以外の旋回モードが選択されており、且つ、求められる目標回転速度が零速でない場合(ステップ50、51)、及び、信地旋回モードが選択されていても旋回レバー26が最大操作位置に操作されていない場合(ステップ50、52)には、目標回転速度と現在の右側の無段変速装置11Rの出力回転速度との偏差を求めて、その偏差が小さくなるように、つまり、右側の無段変速装置11Rの出力回転速度が前記目標回転速度になるように、比例積分(PI)制御によって走行用操作機構30を作動させる回転速度調整処理を実行する(ステップ53)。具体的には、走行用操作機構30における給油用電磁弁34A及び各排油用電磁弁34Bを切り換え制御して出力回転速度が目標回転速度になるようにトラニオン軸29の変速位置を変更調整する。このようにして、左右の走行装置1R、1Lが前記速度比率にて回転駆動されて、旋回レバー26にて指令された旋回半径にて車体が旋回走行するのである。
【0045】
そして、信地旋回モード以外の旋回モードが選択されており、且つ、求められる目標回転速度が零速である場合(ステップ50、51)、及び、信地旋回モードが選択されていて旋回レバー26が最大操作位置に操作されている場合(ステップ50、52)には、右側の無段変速装置におけるトラニオン軸29の変速位置が零速に対応する目標変速位置になるように変速位置センサ46の検出情報に基づいて走行用操作機構30を作動させる(ステップ54)。このようにして、旋回中心側に位置する右側の無段変速装置11Rを零速に維持した状態で適正に旋回を行うことができる。
【0046】
ステップ2で旋回方向として左方向が指令されている場合には、制御される対象が左右反対になるが、右側の無段変速装置11Rを基準側の無段変速装置としてステップ3〜5と同様な変速位置調整処理、目標回転速度設定処理、及び、旋回用調整処理の夫々を実行することになる(ステップ6、7、8)。
【0047】
〔別実施形態〕
次に、別実施形態を列記する。
【0048】
(1)上記実施形態では、旋回レバー26の操作位置に対する目標となる旋回半径に対応する左右の無段変速装置11R、11Lの速度比率の関係として、4種類のモードが設定され、選択して使用する構成としたが、このような構成にかぎらず、目標回転速度として零速が存在する1つのモードのみで制御する構成としてもよい。例えば、前記信地旋回モード、前記低速スピン旋回モード又は前記高速スピン旋回モードのうちのいずれか1つの旋回モードを備える構成としてもよい。そのとき、前記旋回用調整処理としては、図8に示すようなフローチャートに代えて次のように構成するものでもよい。
【0049】
例えば、前記信地旋回モードのみを備える構成であれば、図8のステップ50及びステップ51の判断処理は省略して、ステップ52の旋回レバーの最大操作位置にあるか否かの判断に基づいて、ステップ53の回転速度調整を実行するか、ステップ54の零速に対応する変速位置調整を実行するかを判別するようにしてもよい。
【0050】
又、前記低速スピン旋回モード又は前記高速スピン旋回モードのうちのいずれかのみを備える構成であれば、図8のステップ50及びステップ52の判断処理は省略して、ステップ51の目標回転速度が零速であるか否かの判断に基づいて、ステップ53の回転速度調整を実行するか、ステップ54の零速に対応する変速位置調整を実行するかを判別するようにしてもよい。
【0051】
(2)上記実施形態では、旋回レバー26の操作位置に対する目標となる旋回半径に対応する左右の無段変速装置11R、11Lの速度比率の関係として、直進指令位置から離れる方向への移動量が大になるほど、旋回レバーの操作位置の単位量あたりの変化に対する旋回半径の変化量を大側に変化させる二次関数として設定されるものを例示したが、このような構成に限るものではなく、移動量が大になるほど旋回半径が小さくなるものであればよく変化特性は限定されない。例えば、直線的に変化するものや傾きの異なる複数の直線を折れ線状態に繋いだもの等各種の形態で実施することができる。
【0052】
(3)上記実施形態では、旋回指令手段として、左右の揺動操作自在な操作具としての旋回レバーと、その操作位置を検出するポテンショメータ式の旋回レバーセンサとを備える構成としたが、このような構成に限らず、例えば、指令する旋回半径が互いに異なる複数のスイッチで構成したり、スイッチを押し操作する時間で旋回半径を異ならせるように指令する構成等、各種の形態で実施してもよい。又、車速指令手段も旋回指令手段と同様に、複数のスイッチで構成するなど各種の形態で実施してもよい。
【0053】
(4)上記実施形態では、無段変速装置のトラニオン軸を操作するアクチュエータとして、油圧シリンダを例示したが、油圧モータや電動モータ等他のアクチュエータを用いてもよい。
【0054】
(5)上記実施形態では、一対の無段変速装置として、静油圧式無段変速装置を用いたが、このような構成に代えて、例えば、テーパコーン型の無段変速装置等の他の無段変速装置を用いてもよい。
【0055】
(6)上記実施形態では、作業車としてコンバインを例示したが、本発明はコンバインに限らず、人参収穫機や大根収穫機など他の農作業車でもよく、又、農作業車に限らず建設機械等の作業車でもよい。
【図面の簡単な説明】
【図1】コンバインの全体側面図
【図2】伝動構造を示す概略縦断背面図
【図3】操作構造の構成を示す概略図
【図4】変速位置と変速出力との関係を示す図
【図5】主変速レバー操作位置と目標車速との関係を示す図
【図6】制御動作のフローチャート
【図7】制御動作のフローチャート
【図8】制御動作のフローチャート
【図9】旋回レバーの位置と速度比率との関係を示す図
【符号の説明】
1R、1L    走行装置
11R、11L  無段変速装置
24、27    車速指令手段
26、28    旋回指令手段
29       ***作体
30       変速操作手段
31       制御手段
44、45    変速出力検出手段
46、47    変速位置検出手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a pair of continuously variable transmissions for continuously changing the traveling speed of a pair of left and right traveling devices in a stepless manner, a shift operation means capable of individually performing a speed change operation of the pair of continuously variable transmissions, And a turning control for actuating the speed change operating means to perform a straight running and a turning based on the command information of the turning command means. The present invention relates to a turning control device for a work vehicle provided with control means for performing a turning operation.
[0002]
[Prior art]
The traveling control device for a working vehicle having the above configuration is applied to, for example, a working vehicle such as a combine, and conventionally, there is the following configuration.
That is, a hydrostatic type continuously variable transmission is used as the pair of continuously variable transmissions, and a pair of electric motors are provided as the shift operation means. The output rotation speed of each of the pair of continuously variable transmissions is determined by a pair of rotation sensors. And a pair of continuously variable transmissions are operated by the respective electric motors so that the detection values of these rotation sensors become the respective target output rotational speeds. There is a configuration in which a steering clutch capable of freely turning on and off power transmission and a steering brake capable of braking each traveling device are provided on the lower transmission side of the device, and the following control is executed as the turning control. . That is, the turning mode includes a gentle turning mode, a brake turning mode, and a spin turning mode. In the gentle turning mode, the moving amount of the power steering lever as the turning command means in the direction away from the straight-moving command position is large and small. As the turning radius is commanded, the continuously variable transmission on the turning center side is steplessly controlled while maintaining the output rotation speed of the continuously variable transmission on the side away from the turning center of the pair of left and right continuously variable transmissions at a predetermined speed. There has been a configuration in which the operation of the speed change operating means is controlled so as to reduce the turning radius when turning by changing the ratio of the rotational speeds of the pair of continuously variable transmissions in the form of deceleration. In the brake turning mode, when the turning angle of the power steering lever becomes large, the turning is performed in a state where the steering clutch is disengaged and the steering brake is operated for the traveling device on the turning center side, and in the spin turning mode. In addition to the disengagement of the steering clutch and the operation of the steering brake, when the operation angle for turning the power steering lever becomes large, the traveling device on the turning center side is switched to the state of reverse rotation (for example, And Patent Document 1.).
[0003]
[Patent Document 1]
JP-A-8-172871 (pages 3 to 5, FIGS. 4 and 6)
[0004]
[Problems to be solved by the invention]
In the conventional configuration described above, when turning in the gentle turning mode, the output rotation speed of the continuously variable transmission that is away from the turning center of the pair of left and right continuously variable transmissions is maintained at the set speed, and the turning center side is maintained. The speed of the pair of continuously variable transmissions is changed by reducing the speed of the continuously variable transmission to change the ratio of the rotation speeds of the pair of continuously variable transmissions so that the output rotation speed of each of the pair of continuously variable transmissions becomes the target output rotation speed. It is configured to operate the operating means, and there is a disadvantage that the following inconvenience occurs when zero speed is commanded as the target rotation speed.
[0005]
That is, in the above configuration, even when the zero speed is commanded as the target rotation speed, the output rotation speed of the continuously variable transmission on the turning center side detected by the rotation sensor is equal to the target rotation speed, that is, zero. Attempts to adjust the speed-change operated body to a position corresponding to the zero speed by the electric motor as the speed change operation means so as to increase the speed. However, a work vehicle such as a combine vehicle often travels on uneven terrain such as a field, and the traveling load on the traveling device becomes large on such irregular terrain. Even when the vehicle is turning at a high speed, the traveling device on the turning center side may be rotated in the same direction as the traveling direction of the traveling device on the opposite side due to friction with the ground.
[0006]
When such a co-rotation occurs, the detected value of the rotation sensor is not zero but is rotating at a predetermined rotation speed despite the fact that the operated body for shifting is adjusted to a position corresponding to zero speed. It will be incorrectly detected as a state. Then, the speed-change operated body is further decelerated from the position corresponding to zero speed, that is, beyond the neutral position, so that the speed change output is shifted in the normal rotation direction up to that position so that the speed-change operated body is decelerated by a predetermined rotation speed from that state. The speed change operation is performed from to the operation position corresponding to the reverse rotation direction in which the rotation direction is reversed.
[0007]
However, if it is detected that the operated body for shifting has been operated to the operating position in which the gear rotates in the reverse direction, the control means determines that the shift output of the continuously variable transmission is rotation in the reverse direction. Then, in order to reduce the rotation in the reverse rotation direction to zero speed, control is performed to immediately return the operated body for shifting to the original position in the normal rotation direction. Further, as described above, it is necessary to repeatedly execute the operation of operating the speed-change operated body further to the deceleration side than the position corresponding to the zero speed so as to decelerate from the state by the predetermined rotational speed. become. As a result, the operated body for gear shifting alternately switches the vicinity of the neutral position between the normal rotation state and the reverse rotation state, and the output rotation speed does not converge to zero speed, and the above-described rotating state continues. Therefore, there is a disadvantage that a proper turning cannot be performed in a state where the traveling device on the turning center side is set to zero speed.
[0008]
By the way, in the above-mentioned conventional configuration, the turning mode is switched to the brake turning mode, the steering clutch for the traveling device on the turning center side is disengaged and the steering brake is operated, so that the traveling device on the turning center side becomes zero. In such a configuration, not only the operation of the pair of left and right continuously variable transmissions but also the turning center side by mechanical braking means such as a steering brake is adopted. There is a disadvantage in that the braking operation on the traveling device must be performed and the configuration becomes complicated.
[0009]
The present invention has been made in view of such a point, and an object of the present invention is to make the traveling device on the turning center side zero speed without complicating the configuration such as performing a braking operation by mechanical braking means. It is an object of the present invention to provide a work vehicle turning control device capable of performing a proper turning in a state where the turning is performed.
[0010]
[Means for Solving the Problems]
The turning control device for a working vehicle according to claim 1, wherein a pair of continuously variable transmissions for continuously changing the traveling speed of the pair of left and right traveling devices in a stepless manner, and a speed change operation for each of the pair of continuously variable transmissions. A flexible shift operation means, a turn command means capable of instructing a straight movement and a turn and a command of a magnitude of a turning radius when turning, and a straight movement and a turn based on command information of the turn command means. Control means for performing a turning control for operating the speed change operation means, wherein a pair of continuously variable shift devices each of which detects a shift position of a shift operated body in each of the pair of continuously variable transmissions. A shift position detecting means, and a pair of shift output detecting means for individually detecting output rotational speeds of the pair of continuously variable transmissions, wherein the control means performs the turning control by the shift output detecting means. Detected With reference to the output rotational speed of the continuously variable transmission located on the side away from the center of rotation, the speed ratio of the output rotational speed of the pair of left and right continuously variable transmissions corresponds to the turning radius instructed by the turning instruction means. A target rotation speed setting process for obtaining a target rotation speed of the continuously variable transmission located on the side of the turning center so as to obtain a ratio, and when the target rotation speed obtained in the target rotation speed setting process is not zero speed. Operating the shift operation means based on the detection information of the shift output detection means so that the output rotation speed of the continuously variable transmission located on the turning center side becomes the target rotation speed; and When the target rotation speed obtained in the setting process is zero speed, the speed change position of the operated body for shifting in the continuously variable transmission located on the turning center side corresponds to the target speed corresponding to zero speed. Characterized in that it is configured to perform each of the turning adjustment processing for activating the shift operation means on the basis of the detection information of the shift position detecting means so as to position.
[0011]
That is, the speed ratio of the output rotation speeds of the pair of left and right continuously variable transmissions corresponds to the turning radius commanded by the turning command means, based on the output rotation speed of the continuously variable transmission located on the side away from the turning center. The target rotation speed of the continuously variable transmission located on the turning center side is determined so that the speed ratio is obtained. If the target rotation speed is not zero speed, the output rotation speed of the continuously variable transmission located on the turning center side is set to the target rotation speed. The shift operation means is operated so as to attain the rotation speed. As described above, the pair of left and right traveling devices travels at the speed ratio corresponding to the turning radius instructed by the turning instructing means, so that proper turning is performed.
[0012]
When the target rotational speed is zero speed, the shift position detection is performed so that the shift position of the operated body for shifting in the continuously variable transmission located on the turning center side becomes the target shift position corresponding to zero speed. Since the shift operation means is operated based on the detection information of the means, the shift position of the operated body for shifting in the continuously variable transmission on the turning center side is held at the target shift position corresponding to zero speed. The speed change state does not change, and the traveling device located on the turning center side can maintain the zero speed state without performing the braking operation by the mechanical braking means, and it is possible to perform an appropriate turning. It becomes possible.
[0013]
Therefore, the turning of the working vehicle can be performed properly while the traveling device on the turning center side is set to zero speed without complicating the configuration such as performing the braking operation by the mechanical braking means. The control device can be provided.
[0014]
The turning control device for a working vehicle according to claim 2 is provided with vehicle speed commanding means for commanding a target vehicle speed when the straight traveling is commanded by the turning commanding means according to claim 1, wherein the control means is provided. In the turning control, the shift position detecting means of the continuously variable transmission located on the side away from the turning center may be configured such that the shift position of the operated body for shifting is a target shift position corresponding to the target vehicle speed. It is characterized in that the shift operation means is operated based on the detection information.
[0015]
That is, the shift operation means is controlled so that the shift position of the shift target in the continuously variable transmission located away from the turning center is the target shift position corresponding to the target vehicle speed instructed by the vehicle speed instruction means. It works. In this way, the continuously variable transmission on the reference side of the speed ratio is controlled such that the shift position of the operated body is at the target shift position. However, the target shift position relative to the shift position of the operated body does not change. The output rotational speed of the continuously variable transmission on the opposite side is set to a speed ratio corresponding to the turning radius commanded by the turning command means with reference to the output rotational speed of the reference continuously variable transmission. Adjusted. In other words, when the engine rotational speed fluctuates due to a change in running load or the like, the output rotational speed of the pair of left and right continuously variable transmissions changes, but the pair of left and right continuously variable transmissions has substantially the same speed. The ratio changes while following the ratio while maintaining the ratio, and it is possible to appropriately turn with the turning radius commanded by the turning command means in a state with a small error.
[0016]
According to a third aspect of the present invention, there is provided the turning control device for a work vehicle according to the first or second aspect, wherein the turning command means is capable of movably operating over the entire range of a straight-moving command position for commanding straight-ahead and a turning operation operation area for commanding turning. The operating tool is configured to command a smaller turning radius as the operating tool is moved in a direction away from the straight-moving command position in the turning operation operation area, and the control unit controls the target rotation speed. As the setting process, the turning center gradually decreases as the turning radius commanded by the turning command means decreases, and becomes zero speed when the smallest turning radius is commanded by the turning command means. And a process for determining a target rotational speed of the continuously variable transmission located on the side.
[0017]
That is, the smaller the turning radius is commanded as the operating tool of the turning command means is moved away from the straight-moving command position in the turning operation operation area, the lower the turning radius commanded at that time, the slower the speed becomes. Then, the target rotation speed of the continuously variable transmission located on the turning center side is obtained, and when the smallest turning radius is commanded, zero speed is commanded as the target rotation speed.
[0018]
Therefore, when the smallest turning radius is commanded by operating up to the maximum operation position, the shift operation means is operated so that the shift position of the shift target body becomes the target shift position corresponding to zero speed. It is possible to make a turn.
[0019]
According to a fourth aspect of the present invention, in the turning control device for a working vehicle according to the first or second aspect, the turning command means is capable of performing a movement operation over the entire range of a straight command position for commanding straight traveling and a turning operation operation region for commanding turning. An operating tool, wherein the operating tool is configured to instruct a smaller turning radius as the operating tool is moved away from the straight-moving command position in the turning operation operation area, and the control unit sets the target rotation speed. As the processing, as the turning radius instructed by the turning command means decreases, the speed gradually decreases to zero speed, and then gradually increases in the reverse rotation state. It is characterized in that it is configured to execute processing for obtaining a target rotation speed.
[0020]
That is, the smaller the turning radius is commanded as the operating tool of the turning command means is moved in the direction away from the straight-moving command position in the turning operation operation area, the smaller the turning radius commanded at that time is, the lower the turning speed becomes. Then, the target rotational speed of the continuously variable transmission located on the turning center side is obtained in such a manner that the speed gradually becomes lower and then gradually becomes higher in the reverse rotation state. That is, when the operating tool is moved in the direction away from the straight-moving command position in the turning operation operation area, the target rotation speed of the continuously variable transmission located at the turning center side gradually decreases, and the operating tool is moved to the turning operation operation area. When the operation is performed to a predetermined position in the middle, the target rotation speed becomes zero. Then, when the operating tool is further moved, the target rotation speed gradually increases in the reverse rotation state, and the traveling device located on the turning center side is in the reverse rotation state, and the turning radius is further increased as compared with the turning device at zero speed. And small turning can be performed.
[0021]
Therefore, when the operating tool is operated to a predetermined position in the middle of the turning operation operation area and the target rotation speed becomes zero speed, the shift position of the operated body for shifting becomes the target shift position corresponding to zero speed. Since the speed change operation means is operated, proper turning can be performed even in such a case.
[0022]
According to a fifth aspect of the present invention, in the work vehicle turning control device according to any one of the first to fourth aspects, each of the pair of continuously variable transmissions is configured by a hydrostatic continuously variable transmission. I do.
[0023]
The hydrostatic continuously variable transmission can perform a stepless shift operation in each of a forward rotation direction and a reverse rotation direction by operating an operation target body for shifting, and a shift operation range in the forward rotation direction. There is a neutral region where the speed becomes zero between the speed change operation region in the reverse rotation direction and the speed change output can be set to zero speed by operating the speed change operated body in this neutral region.
Therefore, by smoothly changing the turning radius of the pair of left and right traveling devices in the forward direction and the reverse direction in a state including the zero speed, respectively, the turning radius can be gradually changed, and the smooth turning can be performed.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a case where an embodiment of a turning control device for a work vehicle according to the present invention is applied to a combine as an example of a work vehicle will be described with reference to the drawings.
[0025]
FIG. 1 shows an overall side view of a combine as an example of a working vehicle. This combine is in front of a traveling body 2 driven by a pair of left and right crawler traveling devices 1R and 1L as an example of a traveling device. A cutting and conveying device 3 that cuts and transports the planted grain culm to the rear is connected to the section so as to be able to move up and down, and the traveling body 2 receives the harvested grain culm from the cutting and conveying device 3 and performs threshing and sorting. It is configured by mounting a threshing device 4 to be executed and a grain tank 5 for storing grains from the threshing device 4, and forming a boarding operation unit 6 at a position ahead of the grain tank 5.
[0026]
As shown in FIG. 2, the combine transmits power from an engine 7 to an input shaft 10 of a transmission case 9 via a belt-tension type main clutch 8, and from the input shaft 10, a pair of traveling The transmission is distributed to the step transmissions 11R and 11L, and the power after shifting by one of the continuously variable transmissions 11L is transmitted to the left crawler type traveling device 1L via the left gear type auxiliary transmission 13L. A transmission drive mechanism is configured to transmit power after shifting by the other continuously variable transmission 11R to the right crawler type traveling device 1R via the right gear type auxiliary transmission 13R. are doing. On the other hand, the power from the engine 7 is also supplied to the continuously variable transmission 12 for work, and the power after the speed change by the continuously variable transmission 12 for work is transferred to the reaping conveyance device via the belt tension type reaping clutch 14. The transmission mechanism for mowing work is constituted so as to transmit the power to the transmission mechanism 3. The left and right gear type auxiliary transmissions 13R, 13L are configured to be capable of switching the power after shifting of each of the continuously variable transmissions 11R, 11L between high and low gears. Further, the boarding operation unit 6 is provided with a single sub-transmission lever 25 capable of swinging in the front-rear direction. The sub-transmission lever 25 is connected to a gear-type sub-transmission mechanism 13R via a linkage mechanism (not shown). 13L, the power after shifting by the continuously variable transmissions 11R and 11L for traveling can be shifted between high and low by operating the auxiliary transmission lever 25.
[0027]
Each of the continuously variable transmissions 11R and 11L for traveling is configured as a hydrostatic continuously variable transmission including an axial plunger type variable displacement type piston pump 19 and a piston motor 20, respectively. Similarly, the transmission 12 is configured as a hydrostatic stepless transmission including an axial plunger-type variable displacement piston pump 21 and a piston motor 22, and moves forward in the traveling direction of each of the left and right traveling devices 1R and 1L. The direction and the reverse direction can be switched, and the running speed can be continuously changed.
[0028]
Then, as shown in FIG. 3, a hydraulic traveling operation mechanism 30 as a shift operation means for performing a shift operation of each of the continuously variable transmissions 11R and 11L for traveling, and a continuously variable transmission 12 for work. A hydraulic work operation mechanism 36 for performing a speed change operation is provided. The traveling operation mechanism 30 includes a pair of double-acting hydraulic cylinders 33R and 33L that are operatively connected to the trunnion shaft 29 (an example of an operated body) in each of the traveling continuously variable transmissions 11R and 11L. A pair of two-position switching type oil supply electromagnetics that can be switched between a state in which hydraulic oil is supplied to a pair of oil chambers and a state in which supply of hydraulic oil is stopped corresponding to operations in the forward and reverse directions on these hydraulic cylinders 33R, 33L, respectively. It is provided with a valve 34A and a pair of two-position switching type oil discharge electromagnetic valves 34B that are switchable between a state in which the hydraulic oil is discharged from the pair of oil chambers and a state in which the discharge is stopped. Each of the hydraulic cylinders 33R and 33L is configured to be urged to return to the neutral position by the urging force of a spring installed therein.
[0029]
Similarly, the work operation mechanism 36 is linked to the trunnion shaft 37 of the work continuously variable transmission 12 and is urged to return to the neutral position by the biasing force of the internal spring. Hydraulic cylinder 40 and a pair of two-position switching type refueling that can be switched between a state in which hydraulic oil is supplied to a pair of oil chambers corresponding to operations in the forward and reverse directions with respect to the hydraulic cylinder 40 and a state in which supply is stopped. Electromagnetic valve 41A and a pair of two-position switching type oil discharge electromagnetic valves 41B that can be switched between a state in which hydraulic oil is discharged from the pair of oil chambers and a state in which discharge is stopped. .
[0030]
Each of the refueling solenoid valves 34A and 41A is configured to move and bias the spool to a refueling stop state by a biasing force of a spring, and moves the spool against the biasing force of the spring by an electromagnetic force of a solenoid. The hydraulic oil discharging solenoid valves 34B and 41B are configured to move and bias the spool to a discharging state by the biasing force of a spring. The configuration is such that the operation is switched to a state in which the discharge of the hydraulic oil is stopped by moving the spool against the urging force of the spring by the electromagnetic force of the solenoid.
[0031]
The outline of the shift operation of the continuously variable transmissions 11R and 11L described above will be described. As shown in FIG. 4, if the shift position of the trunnion shaft 29 is in the neutral range, the shift output (running speed) becomes zero. When the transmission position of the trunnion shaft 29 is rotated in the predetermined direction from the neutral region, the traveling speed in the forward direction is steplessly increased, and the trunnion shaft 29 is rotated in the direction opposite to the predetermined direction from the neutral region. When it is operated dynamically, the traveling speed in the reverse direction is increased steplessly.
[0032]
A single main shift lever 24 that can move in the longitudinal direction of the vehicle within a predetermined operation range including a neutral position as a stop command position for commanding a stop of travel and a command for straight-ahead travel are issued to the boarding operation unit 6. A single turning lever 26 or the like is provided as an operating tool that can move freely over the entire range of a turning command range as a turning operation operation area for commanding a straight movement command and turning. As shown in FIG. 3, a speed change lever sensor 27 for detecting the operation position of the main speed change lever 24 and a turning lever sensor 28 for detecting the operation position of the turning lever 26 are provided, each of which is a rotary type. It consists of a potentiometer. The detection information of the shift lever sensor 27 and the turning lever sensor 28 is configured to be input to a control device 31 described later, and the main shift lever 24 and the shift lever sensor 27 constitute a vehicle speed command unit. The turning lever sensor 28 constitutes turning command means.
[0033]
The pair of continuously variable transmissions 11R and 11L for traveling have rotation speed sensors 44 and 45 as shift output detecting means for detecting their output rotational speeds individually, and the respective continuously variable transmissions 11R and 11L. Shift position sensors 46, 47, which are rotary potentiometers as shift position detecting means for detecting the operation angle of the respective trunnion shafts 29 by the pair of hydraulic cylinders 33R, 33L. Have been. The work continuously variable transmission 12 is also provided with a rotation speed sensor 51.
[0034]
A control device 31 using a microcomputer as control means for controlling the operation of the traveling operation mechanism 30 is provided. The control device 31 travels straight through the vehicle body at a target vehicle speed commanded by the main shift lever 24. In addition to executing the straight-ahead control for operating the traveling operation mechanism 30 to perform the turning operation, the turning control for operating the traveling operation mechanism 30 to perform the turning with the turning radius commanded by the turning lever 26 is executed. .
[0035]
Briefly describing the straight-ahead control, if the main shift lever 24 is operated to a neutral position substantially at the center of the operable range in a state where the turning lever 26 is operated to the straight-ahead command position and the straight-ahead is commanded. When the vehicle is in the traveling stop state and the swing operation is performed from the neutral position to the forward side, the target vehicle speed at which the traveling speed to the forward side becomes steplessly high is instructed accordingly, and when the vehicle is operated from the neutral position to the reverse side, At the same time, a target vehicle speed at which the traveling speed to the reverse side is increased steplessly is instructed. When the trunnion shaft 29 of each of the pair of left and right continuously variable transmissions 11R and 11L is separated from the target shift position corresponding to the target vehicle speed, the trunnion shaft 29 of each of the pair of left and right continuously variable transmissions 11R and 11L is moved to the target. The traveling operation mechanism 30 is operated so as to reach the target shift position corresponding to the vehicle speed. When the trunnion shaft 29 of one of the continuously variable transmissions reaches the target shift position, one of the continuously variable transmissions is controlled such that the trunnion shaft 29 is maintained at the target shift position, while the other one is controlled. The speed synchronizing process is performed so that the output rotation speed of the continuously variable transmission is the same as the output rotation speed of the one continuously variable transmission.
[0036]
Next, the turning control will be described. When the main shifting lever 24 is operated and the vehicle is running at a predetermined speed, the turning lever 26 is operated to swing from the straight-moving command position to the right or left turning command range. The turning is commanded so that the turning radius becomes smaller as it is operated away from the straight-moving command position, and the control device 31 operates the traveling operation mechanism 30 based on the command information.
In addition, the control device 31 is configured to execute the following processing as the turning control. In other words, the continuously variable transmission located on the side away from the center of rotation of the pair of continuously variable transmissions 11R and 11L is defined as the reference side continuously variable transmission, and the transmission trunnion shaft in the reference side continuously variable transmission is used. A shift position adjusting process for operating the traveling operation mechanism 30 so that the shift position of the shift lever 29 becomes the target shift position corresponding to the target vehicle speed, and a pair of left and right continuously variable speeds based on the output rotation speed of the reference side continuously variable transmission. The target rotation speed of the continuously variable transmission located on the turning center side is set so that the speed ratio of the output rotation speeds of the transmissions 11R and 11L becomes the speed ratio corresponding to the turning radius commanded at the operation position of the turning lever 26. If the target rotation speed setting process to be obtained and the target rotation speed obtained in the target rotation speed setting process are not zero speed, the output rotation speed of the continuously variable transmission located on the turning center side is targeted. The traveling operation mechanism 30 is operated based on the detection information of the rotation speed sensor so that the rotation speed becomes the rotation speed, and when the target rotation speed obtained in the target rotation speed setting process is zero speed, the turning center side is set. Turning adjustment processing for operating the traveling operation mechanism 30 based on the detection information of the shift position sensor such that the shift position of the shift trunnion shaft 29 in the located continuously variable transmission is set to the target shift position corresponding to zero speed. Are configured to be executed.
[0037]
Hereinafter, the processing operation of the turning control of the control device 31 will be specifically described based on a flowchart.
As shown in FIG. 6, when the turning lever 26 is swung from the straight-moving command position to the turning command range and turning is commanded, for example, when turning is commanded rightward (steps 1 and 2), turning is performed. The left continuously variable transmission 11L, which is the continuously variable transmission located away from the center, is the reference continuously variable transmission, and the gear position of the trunnion shaft 29 in the left continuously variable transmission 11L is the target gear. The shift position adjusting process for operating the traveling operation mechanism 30 to the position is executed (step 3).
[0038]
To explain the shift position adjustment processing, as shown in FIG. 7, first, a target shift position with respect to the trunnion shaft 29 in the left continuously variable transmission 11L is calculated (step 31). At this time, the shift position of the trunnion shaft 29 corresponding to the target vehicle speed commanded by the main shift lever 24 is set as the target shift position. Next, a deviation between the target shift position and the current shift position of the trunnion shaft 29 detected by the shift position sensor 47 is determined, and the traveling operation mechanism 30 is controlled by proportional control so as to reduce the position deviation. Is operated to change and adjust the shift position of the trunnion shaft 29 (steps 32 and 33). Specifically, the operation of the hydraulic cylinder 33R is controlled by switching control of the oil supply solenoid valve 34A and the oil drainage solenoid valve 34B in the traveling operation mechanism 30.
[0039]
The output rotational speed of the left continuously variable transmission 11L for which the shift position adjustment is performed as described above is detected by the rotational speed sensor 45, and the output rotational speed of the left continuously variable transmission 11L and the right continuously variable transmission are detected. The right side so that the speed ratio with the output rotation speed of the device 11R becomes the speed ratio corresponding to the turning radius commanded based on the detection information of the turning lever sensor 28 which changes according to the change of the operation position of the turning lever 26. A target rotation speed setting process for obtaining the target rotation speed of the continuously variable transmission 11R is executed (step 4).
[0040]
As shown in FIG. 9, the relationship between the speed ratio of the left and right continuously variable transmissions 11R and 11L corresponding to the target turning radius with respect to the operating position of the turning lever 26 is set and stored in advance. The target rotational speed of the right continuously variable transmission 11R is obtained based on the command information based on the operation position of the turning lever 26. In addition to the description of the relationship shown in FIG. 9, this diagram shows that the output rotation speed V of the continuously variable transmission located on the reference side, that is, the side away from the center of rotation, in response to a change in the operation position of the rotation lever 26. The change in the speed ratio of the continuously variable transmission located on the turning center side is shown as a reference. In step 4, since the right continuously variable transmission 11R is the continuously variable transmission located on the turning center side, the target rotational speed of the right continuously variable transmission 11R is determined from this speed ratio.
[0041]
As is clear from this figure, the speed ratio corresponding to the smaller turning ratio becomes larger as the moving amount of the turning lever 26 from the straight-moving command position becomes larger, and the turning lever becomes larger as the moving amount in the direction away from the straight-moving command position becomes larger. Is set as a quadratic function that changes the change amount of the speed ratio with respect to the change per unit amount of the operation position to the large side. In addition, a plurality of (four in the example shown in FIG. 9) turning modes having different speed ratios when the turning lever 26 is operated to the maximum operation position where the moving amount of the turning lever 26 is the largest can be selected. A mode changeover switch 42 for switching the turning mode is provided, and a changeover command by the mode changeover switch 42 is given to the control device 31, and the control device 31 determines any characteristic based on the changeover command. It is determined whether or not the target rotational speed is to be obtained by utilizing this.
[0042]
The four types of turning modes shown in FIG. 9 will be described. When the turning lever 26 is operated to the maximum operation position, the output rotation speed of the continuously variable transmission on the turning center side is changed to the output of the continuously variable transmission on the opposite side. A gentle turning mode (L1) in which the rotation speed is reduced to about 1/3 of the rotation speed V, a pivot turning mode (L2) in which the output rotation speed of the continuously variable transmission on the turning center side is reduced to zero, The output rotational speed of the continuously variable transmission on the turning center side is about one-third of the output rotational speed V of the continuously variable transmission on the opposite side in the direction opposite to the drive rotation direction of the continuously variable transmission on the opposite side. The low-speed spin rotation mode (L3), in which the output rotation speed of the continuously variable transmission on the turning center side is opposite to the drive rotation direction of the continuously variable transmission on the opposite side, and the output rotation speed of the continuously variable transmission on the opposite side. High-speed spin rotation mode (L4 There are respectively set.
[0043]
In the gentle turning mode, the target rotation speed for the continuously variable transmission on the turning center side does not become zero speed regardless of the operating position of the turning lever 26. As the amount of movement from the straight traveling command position by the lever 26 increases, the speed gradually decreases, and becomes zero when the turning lever 26 is operated to the maximum operation position in the turning command range and the smallest turning radius is commanded. The target rotation speed is obtained in the form. In the low-speed spin rotation mode and the high-speed spin rotation mode, the lower the speed, the lower the speed gradually as the amount of movement from the straight-ahead command position by the swivel lever 26 increases, and then the higher the speed in the reverse rotation state. The target rotation speed will be obtained.
[0044]
When the target rotation speed is obtained as described above, next, the turning adjustment process is executed for the continuously variable transmission on the right side (step 5). In the turning adjustment process, as shown in FIG. 8, a turning mode other than the pivot turning mode is selected by the mode change switch 42 among the four types of turning modes as described above, and the desired target is determined. When the rotation speed is not zero speed (steps 50 and 51), and when the pivot lever 26 is not operated to the maximum operation position even when the pivot turning mode is selected (steps 50 and 52), the target rotation is performed. A deviation between the speed and the current output rotational speed of the right continuously variable transmission 11R is determined, and the deviation is reduced, that is, the output rotational speed of the right continuously variable transmission 11R becomes the target rotational speed. As described above, the rotation speed adjusting process for operating the traveling operation mechanism 30 by the proportional integration (PI) control is executed (step 53). Specifically, the solenoid valve 34A for oil supply and the solenoid valve 34B for oil drain in the traveling operation mechanism 30 are switched and controlled to change and adjust the shift position of the trunnion shaft 29 so that the output rotation speed becomes the target rotation speed. . In this way, the left and right traveling devices 1R and 1L are rotationally driven at the above-mentioned speed ratio, and the vehicle body turns with the turning radius commanded by the turning lever 26.
[0045]
When a turning mode other than the pivot turn mode is selected and the required target rotation speed is zero speed (steps 50 and 51), and when the pivot turn mode is selected and the turning lever 26 is turned on. Is operated to the maximum operation position (steps 50 and 52), the shift position sensor 46 of the shift position sensor 46 is set so that the shift position of the trunnion shaft 29 in the continuously variable transmission on the right side becomes the target shift position corresponding to zero speed. The traveling operation mechanism 30 is operated based on the detection information (step 54). In this way, it is possible to appropriately turn while maintaining the right side continuously variable transmission 11R located at the turning center side at zero speed.
[0046]
When the left direction is commanded as the turning direction in step 2, the control target is reversed left and right, but the right stepless transmission 11R is set as the reference side stepless transmission as in steps 3 to 5. The shift position adjustment process, the target rotation speed setting process, and the turning adjustment process are executed (steps 6, 7, and 8).
[0047]
[Another embodiment]
Next, another embodiment will be described.
[0048]
(1) In the above embodiment, four types of modes are set and selected as the relationship between the speed ratio of the left and right continuously variable transmissions 11R and 11L corresponding to the target turning radius with respect to the operating position of the turning lever 26. Although the configuration is used, the configuration is not limited to such a configuration, and the configuration may be such that control is performed in only one mode in which zero speed exists as the target rotation speed. For example, it may be configured to include any one of the pivot turn mode, the low-speed spin mode, and the high-speed spin mode. At that time, the turning adjustment process may be configured as follows instead of the flowchart shown in FIG.
[0049]
For example, if the configuration includes only the pivot turn mode, the determination processing of steps 50 and 51 in FIG. 8 is omitted, and the determination is made based on the determination of whether or not the swing lever is at the maximum operation position in step 52. Alternatively, it may be determined whether to execute the rotation speed adjustment in step 53 or the shift position adjustment corresponding to the zero speed in step 54.
[0050]
In addition, if the configuration includes only one of the low-speed spin rotation mode and the high-speed spin rotation mode, the determination processing in step 50 and step 52 in FIG. 8 is omitted, and the target rotation speed in step 51 is zero. It may be determined whether to execute the rotation speed adjustment in step 53 or the shift position adjustment corresponding to the zero speed in step 54 based on the determination as to whether or not the speed is the speed.
[0051]
(2) In the above embodiment, as the relationship between the speed ratios of the left and right continuously variable transmissions 11R and 11L corresponding to the target turning radius with respect to the operating position of the turning lever 26, the amount of movement in the direction away from the straight travel command position is As the size becomes larger, the one set as a quadratic function that changes the change amount of the turning radius with respect to the change per unit amount of the operating position of the turning lever to the large side is exemplified, but the present invention is not limited to such a configuration. The change characteristic is not limited as long as the turning radius decreases as the movement amount increases. For example, the present invention can be implemented in various forms, such as one that changes linearly or one in which a plurality of straight lines having different inclinations are connected in a broken line state.
[0052]
(3) In the above embodiment, the turning command means is provided with the turning lever as the operating tool capable of swinging left and right, and the potentiometer-type turning lever sensor for detecting the operating position. The present invention is not limited to such a configuration, and may be implemented in various forms, such as a configuration in which a commanded turning radius is configured by a plurality of switches different from each other, or a command instructing the turning radius to be different depending on the time of pressing the switch. Good. Further, the vehicle speed commanding means may be implemented in various forms such as a plurality of switches, similarly to the turning commanding means.
[0053]
(4) In the above embodiment, the hydraulic cylinder is exemplified as the actuator for operating the trunnion shaft of the continuously variable transmission. However, another actuator such as a hydraulic motor or an electric motor may be used.
[0054]
(5) In the above embodiment, the hydrostatic stepless transmission is used as the pair of stepless transmissions. However, instead of such a configuration, for example, another stepless transmission such as a tapered cone type stepless transmission may be used. A step transmission may be used.
[0055]
(6) In the above embodiment, the combine vehicle is exemplified as the work vehicle. However, the present invention is not limited to the combine vehicle, but may be another agricultural work vehicle such as a ginseng harvester or a radish harvester. Work vehicle.
[Brief description of the drawings]
FIG. 1 is an overall side view of a combine.
FIG. 2 is a schematic longitudinal rear view showing a transmission structure.
FIG. 3 is a schematic diagram showing a configuration of an operation structure.
FIG. 4 is a diagram showing a relationship between a shift position and a shift output.
FIG. 5 is a diagram showing a relationship between a main shift lever operation position and a target vehicle speed.
FIG. 6 is a flowchart of a control operation.
FIG. 7 is a flowchart of a control operation.
FIG. 8 is a flowchart of a control operation.
FIG. 9 is a diagram showing a relationship between a position of a turning lever and a speed ratio.
[Explanation of symbols]
1R, 1L traveling device
11R, 11L continuously variable transmission
24, 27 Vehicle speed command means
26, 28 Turn command means
29 Operated body
30 Speed change operation means
31 Control means
44, 45 shift output detecting means
46, 47 shift position detecting means

Claims (5)

左右一対の走行装置の走行速度を各別に無段階に変速する一対の無段変速装置と、その一対の無段変速装置を各別に変速操作自在な変速操作手段と、直進及び旋回を指令自在で且つ旋回するときの旋回半径の大きさを指令自在な旋回指令手段と、前記旋回指令手段の指令情報に基づいて直進及び旋回を行うべく前記変速操作手段を作動させる旋回制御を実行する制御手段とが備えられている作業車の旋回制御装置であって、
前記一対の無段変速装置の夫々における変速用の***作体の変速位置を各別に検出する一対の変速位置検出手段と、前記一対の無段変速装置の出力回転速度を各別に検出する一対の変速出力検出手段とが備えられ、
前記制御手段が、前記旋回制御として、
前記変速出力検出手段にて検出される旋回中心から離れる側に位置する無段変速装置の出力回転速度を基準として、左右一対の無段変速装置の出力回転速度の速度比率が前記旋回指令手段にて指令される旋回半径に対応する速度比率となるように前記旋回中心側に位置する無段変速装置の目標回転速度を求める目標回転速度設定処理、
及び、その目標回転速度設定処理にて求められる前記目標回転速度が零速でないときは、前記旋回中心側に位置する無段変速装置の出力回転速度が前記目標回転速度になるように前記変速出力検出手段の検出情報に基づいて前記変速操作手段を作動させ、且つ、前記目標回転速度設定処理にて求められる前記目標回転速度が零速であるときは、前記旋回中心側に位置する無段変速装置における変速用の***作体の変速位置が零速に対応する目標変速位置になるように前記変速位置検出手段の検出情報に基づいて前記変速操作手段を作動させる旋回用調整処理の夫々を実行するように構成されている作業車の旋回制御装置。
A pair of continuously variable transmissions for continuously changing the traveling speed of the pair of left and right traveling devices in a stepless manner, a shift operation means capable of individually performing a shift operation of the pair of continuously variable transmissions, and a command for directing straight and turning. Turning command means capable of instructing the size of a turning radius when turning, and control means for executing turning control for operating the speed change operating means to perform straight ahead and turning based on command information of the turning command means. Is a turning control device of a work vehicle provided with
A pair of shift position detecting means for separately detecting a shift position of a shift operated body in each of the pair of continuously variable transmissions, and a pair of shift position detecting means for separately detecting an output rotation speed of the pair of continuously variable transmissions. Shift output detection means,
The control means includes:
Based on the output rotation speed of the continuously variable transmission located on the side distant from the turning center detected by the shift output detection means, the speed ratio of the output rotation speed of the pair of left and right continuously variable transmissions to the turning command means. Target rotation speed setting processing for obtaining a target rotation speed of the continuously variable transmission located on the turning center side so as to have a speed ratio corresponding to the turning radius commanded by
When the target rotation speed obtained in the target rotation speed setting process is not zero speed, the shift output is set so that the output rotation speed of the continuously variable transmission located on the turning center side becomes the target rotation speed. When the speed change operation means is operated based on the detection information of the detection means, and the target rotation speed obtained in the target rotation speed setting process is zero speed, the continuously variable shift located on the turning center side. Each of the turning adjustment processes for operating the speed change operation means based on the detection information of the speed change position detection means so that the speed change position of the speed change operated body in the device becomes the target speed change position corresponding to zero speed. Turning device for a working vehicle configured to perform
前記旋回指令手段にて前記直進が指令されているときにおける目標車速を指令する車速指令手段が備えられ、
前記制御手段が、前記旋回制御において、
前記旋回中心から離れる側に位置する無段変速装置における変速用の***作体の変速位置が前記目標車速に対応する目標変速位置になるように、前記変速位置検出手段の検出情報に基づいて前記変速操作手段を作動させるように構成されている請求項1記載の作業車の旋回制御装置。
Vehicle speed command means for commanding a target vehicle speed when the straight traveling is commanded by the turning command means,
In the turning control, the control means may include:
Based on the detection information of the shift position detecting means, the shift position of the operated body for shifting in the continuously variable transmission located on the side away from the turning center is the target shift position corresponding to the target vehicle speed. 2. The turning control device for a working vehicle according to claim 1, wherein the turning control device is configured to operate a speed change operation means.
前記旋回指令手段が、
直進を指令する直進指令位置及び旋回を指令する旋回操作用操作領域の全範囲にわたり移動操作自在な操作具を備えて、その操作具が、前記旋回操作用操作領域において直進指令位置から離れる方向へ移動されるほど小さい旋回半径を指令するように構成され、
前記制御手段が、前記目標回転速度設定処理として、
前記旋回指令手段にて指令される旋回半径が小さくなるほど漸次低速となり、且つ、前記旋回指令手段にて最も小さい旋回半径が指令されたときに零速とする形態で、前記旋回中心側に位置する無段変速装置の目標回転速度を求める処理を実行するように構成されている請求項1又は2記載の作業車の旋回制御装置。
The turning command means,
It is provided with an operating tool that can move freely over the entire range of a straight-moving command position for commanding straight ahead and a turning operation operation area for commanding turning, and the operating tool moves away from the straight-moving command position in the turning operation operation area. It is configured to command a smaller turning radius as it is moved,
The control means, as the target rotation speed setting process,
As the turning radius instructed by the turning command means decreases, the speed gradually decreases, and when the minimum turning radius is commanded by the turning command means, the speed is set to zero speed. 3. The turning control device for a work vehicle according to claim 1, wherein the turning control device is configured to execute a process of obtaining a target rotation speed of the continuously variable transmission.
前記旋回指令手段が、
直進を指令する直進指令位置及び旋回を指令する旋回操作用操作領域の全範囲にわたり移動操作自在な操作具を備えて、その操作具が、前記旋回操作用操作領域において直進指令位置から離れる方向へ移動されるほど小さい旋回半径を指令するように構成され、
前記制御手段が、前記目標回転速度設定処理として、
前記旋回指令手段にて指令される旋回半径が小さくなるほど漸次低速にして零速とし且つその後において逆回転状態で漸次高速にする形態で、前記旋回中心側に位置する無段変速装置の目標回転速度を求める処理を実行するように構成されている請求項1又は2記載の作業車の旋回制御装置。
The turning command means,
It is provided with an operating tool that can move freely over the entire range of a straight-moving command position for commanding straight ahead and a turning operation operation area for commanding turning, and the operating tool moves away from the straight-moving command position in the turning operation operation area. It is configured to command a smaller turning radius as it is moved,
The control means, as the target rotation speed setting process,
The target rotation speed of the continuously variable transmission located at the turning center side is gradually reduced to zero speed as the turning radius commanded by the turning command means decreases, and then gradually increased in the reverse rotation state. The turning control device for a work vehicle according to claim 1, wherein the turning control device is configured to execute a process for obtaining the turning force.
前記一対の無段変速装置の夫々が静油圧式無段変速装置にて構成されている請求項1〜4のいずれか1項に記載の作業車の旋回制御装置。The turning control device for a work vehicle according to any one of claims 1 to 4, wherein each of the pair of continuously variable transmissions includes a hydrostatic continuously variable transmission.
JP2002285039A 2002-09-30 2002-09-30 Work vehicle turning control device Expired - Fee Related JP3883484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285039A JP3883484B2 (en) 2002-09-30 2002-09-30 Work vehicle turning control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285039A JP3883484B2 (en) 2002-09-30 2002-09-30 Work vehicle turning control device

Publications (3)

Publication Number Publication Date
JP2004114990A true JP2004114990A (en) 2004-04-15
JP2004114990A5 JP2004114990A5 (en) 2005-06-16
JP3883484B2 JP3883484B2 (en) 2007-02-21

Family

ID=32278437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285039A Expired - Fee Related JP3883484B2 (en) 2002-09-30 2002-09-30 Work vehicle turning control device

Country Status (1)

Country Link
JP (1) JP3883484B2 (en)

Also Published As

Publication number Publication date
JP3883484B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
JP4353953B2 (en) Drive control device for work vehicle
JP3883484B2 (en) Work vehicle turning control device
JP3850322B2 (en) Work vehicle turning control device
JP3786629B2 (en) Work vehicle travel control device
JP3176237B2 (en) Work vehicle steering system
JP3949041B2 (en) Work vehicle turning control device
JP3782030B2 (en) Work vehicle turning control device
JP4681394B2 (en) Drive control device for mowing machine
JP4537923B2 (en) Shift control device for work equipment
JP4476234B2 (en) Drive control device for work vehicle
JP2007091090A (en) Travel controlling device for working vehicle
JP2004116756A (en) Running control device of working vehicle
JP2004116728A (en) Shift controller and work vehicle provided therewith
JP4023686B2 (en) Work vehicle turning control device
JP2004114797A (en) Turning control apparatus for working vehicle
JP2004114798A (en) Turning control apparatus for working vehicle
JP4346499B2 (en) Work vehicle
JP2007091091A (en) Travel controlling device for working vehicle
JP4297826B2 (en) Work vehicle turning control device
JP2004116757A (en) Travel controller for work vehicle
JP2008306972A (en) Combine harvester
JPH08142901A (en) Spin-turn mechanism
JP2007062543A (en) Running driving device for working machine
JP2004116660A (en) Travel controller for work vehicle
JPH0774011B2 (en) Steering control device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees