JP2004111945A - Wiring board and manufacturing method of the same - Google Patents

Wiring board and manufacturing method of the same Download PDF

Info

Publication number
JP2004111945A
JP2004111945A JP2003302929A JP2003302929A JP2004111945A JP 2004111945 A JP2004111945 A JP 2004111945A JP 2003302929 A JP2003302929 A JP 2003302929A JP 2003302929 A JP2003302929 A JP 2003302929A JP 2004111945 A JP2004111945 A JP 2004111945A
Authority
JP
Japan
Prior art keywords
wiring board
liquid crystal
crystal polymer
adhesive layer
polymer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003302929A
Other languages
Japanese (ja)
Other versions
JP4462872B2 (en
Inventor
Katsura Hayashi
林 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003302929A priority Critical patent/JP4462872B2/en
Publication of JP2004111945A publication Critical patent/JP2004111945A/en
Application granted granted Critical
Publication of JP4462872B2 publication Critical patent/JP4462872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board comprising a substrate and laminated insulating layers on the surface of the substrate and also to provide a manufacturing method of the same, wherein conventional problem such as disconnection of a penetrated conductor due to a big dimensional change by heat expansion along a thickness direction is avoided when a thick liquid crystal polymer film having good processability for laser application is used to obtain a fine penetrated conductor formed on a substrate. <P>SOLUTION: The wiring board is characterized by laminating a plurality of liquid crystal polymer films 1 of each thickness 10 to 200 μm with an adhesive layer 2 in between and by having a base 5 installed with adhesive layers 2 as a top layer and a bottom layer. Since the liquid crystal polymer film 1 is thin, the strain exerted on a penetrating conductor 3 formed on the liquid crystal polymer film 1 can be minimized by suppressing the dimensional change to relatively a small value. The strain also can be dispersed since not less than 2 layers of liquid crystal polymer films 1 and adhesive layers 2 placed between are laminated and the penetrated conductor 3 is not disconnected. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、各種AV機器や家電機器,通信機器,コンピュータ装置およびその周辺機器等の電子機器に使用される配線基板に関する。 The present invention relates to a wiring board used for electronic devices such as various AV devices, home appliances, communication devices, computer devices and peripheral devices thereof.

 従来、IC,LSI等の半導体素子等の能動素子および容量素子や抵抗素子等の受動素子を多数搭載して所定の電子回路を構成して成る混成集積回路に用いられる配線基板は、通常、ガラスクロスにエポキシ樹脂を含浸させて成る絶縁基板の上下面に銅箔を接着し、これをサブトラクティブ法により配線パターン状の配線導体に加工した後、ドリルによって配線導体と絶縁基板とを貫通する貫通孔(スルーホール)を形成し、この貫通孔内部にめっき法により導体層を被着して成る貫通導体を形成することによって基体を製作し、その主面にソルダーレジストと呼ばれる絶縁層を積層することによって製作される。または、配線密度をより上げるために、上記の基体の主面に、エポキシ樹脂等から成る絶縁層を積層し、レーザ光を照射することにより絶縁層に貫通孔(ビアホール)を形成した後、めっき法により貫通孔の内部に導体層を形成するとともに、絶縁層の表面に配線導体を形成するという工程を数回繰り返すことにより、ビルドアップ部を形成することによって製作される。 2. Description of the Related Art Conventionally, a wiring board used for a hybrid integrated circuit in which a predetermined electronic circuit is formed by mounting a large number of active elements such as semiconductor elements such as IC and LSI and passive elements such as capacitance elements and resistance elements is usually made of glass. A copper foil is adhered to the upper and lower surfaces of an insulating substrate made by impregnating a cloth with an epoxy resin, and this is processed into a wiring conductor in the form of a wiring pattern by a subtractive method, and then drilled through the wiring conductor and the insulating substrate. A base is manufactured by forming a hole (through hole), forming a through conductor formed by applying a conductive layer by plating to the inside of the through hole, and forming an insulating layer called a solder resist on the main surface. Produced by Alternatively, in order to further increase the wiring density, an insulating layer made of an epoxy resin or the like is laminated on the main surface of the base, and a through hole (via hole) is formed in the insulating layer by irradiating a laser beam, followed by plating. It is manufactured by forming a build-up portion by repeating a process of forming a conductor layer inside a through hole by a method and forming a wiring conductor on the surface of an insulating layer several times.

 一般に、電子機器は、小型化,薄型化,軽量化,高速動作や低消費電力等の高性能化、各接続部の接続性や耐候性等の点で高信頼性化が要求されており、このような電子機器に搭載される配線基板も、配線導体の微細化,高密度化が必要となってきており、基体に形成される貫通導体も直径が200μm以下、隣接する貫通導体の間隔が300μm以下と微細化および狭間隔化が必要となってきている。このため、貫通導体を形成するためにドリル加工よりも微細加工が可能なレーザ加工が用いられるようになってきた。 In general, electronic devices are required to have high performance in terms of miniaturization, thinning, weight reduction, high-speed operation, low power consumption, etc., and connectivity and weather resistance of each connection portion. Wiring boards mounted on such electronic devices also require finer and denser wiring conductors, and the through conductors formed on the substrate have a diameter of 200 μm or less, and the distance between adjacent through conductors is small. It has become necessary to reduce the size to 300 μm or less and to reduce the spacing. For this reason, laser processing that allows finer processing than drill processing has been used to form through conductors.

 しかしながら、ガラスクロスにエポキシ樹脂を含浸させて成る絶縁基板は、ガラスクロスをレーザ光により穿設加工することが困難なため、貫通導体の微細化には限界があり、また、ガラスクロスの厚みが不均一なために均一な孔径の貫通導体を形成することが困難であるという問題点を有していた。また、ガラスクロスとエポキシ樹脂との密着性が悪いため、ガラスクロスとエポキシ樹脂との界面で貫通導体の導体のマイグレーションが発生しやすく、隣接する貫通導体間の間隔を狭くすると、高温バイアス試験で貫通導体同士がショートして絶縁不良が発生してしまうという問題点も有していた。 However, an insulating substrate made of glass cloth impregnated with epoxy resin is difficult to drill the glass cloth with laser light, so there is a limit to miniaturization of the through conductor, and the thickness of the glass cloth is limited. There is a problem that it is difficult to form a through conductor having a uniform hole diameter due to the unevenness. In addition, due to poor adhesion between the glass cloth and the epoxy resin, migration of the conductor of the through conductor at the interface between the glass cloth and the epoxy resin is likely to occur. There is also a problem in that the through conductors are short-circuited and insulation failure occurs.

 このような問題点を解決するために、絶縁基板の材料として液晶ポリマーフィルムを用いることが検討されている(特許文献1参照)。液晶ポリマーフィルムは、変形し難い直線状の分子で構成されているとともに分子同士がある程度規則的に並んだ構成をしているため、高耐熱性,高弾性率,高寸法安定性および低吸湿性を示し、従ってガラスクロスのような強化材を用いる必要がなく、また、微細加工性にも優れるという特性を有している。さらに、高周波領域においても低比誘電率,低誘電損失であり、高周波特性に優れるという特性を有している。
特開2002−261453号公報
In order to solve such problems, use of a liquid crystal polymer film as a material for an insulating substrate has been studied (see Patent Document 1). The liquid crystal polymer film is composed of linear molecules that are difficult to deform and has a structure in which the molecules are regularly arranged to some extent, so that it has high heat resistance, high elastic modulus, high dimensional stability, and low moisture absorption. Therefore, it is not necessary to use a reinforcing material such as a glass cloth, and it also has a property of being excellent in fine workability. Further, it has a low relative dielectric constant and a low dielectric loss even in a high frequency region, and has characteristics of being excellent in high frequency characteristics.
JP-A-2002-261453

 しかしながら、従来の絶縁基板はその厚みが0.4mm〜0.8mm程度であり、このような厚みの液晶ポリマーフィルムで形成した絶縁基板を用いて基体を製作した場合、液晶ポリマーフィルムは厚み方向の熱膨張係数が大きいために200℃以上の高温下では液晶ポリマーフィルムの厚み方向の寸法変化が大きくなって、液晶ポリマーフィルムに形成した貫通導体に極度の応力が加わることとなり、貫通導体が断線してしまうという問題点を有していた。また、液晶ポリマーフィルムと配線導体との接着性および液晶ポリマーフィルムと絶縁層との接着性が悪く、高温高湿下で剥離を生じてしまい、その結果、積層不良が発生するという問題点も有していた。 However, a conventional insulating substrate has a thickness of about 0.4 mm to 0.8 mm, and when a substrate is manufactured using an insulating substrate formed of a liquid crystal polymer film having such a thickness, the liquid crystal polymer film is At a high temperature of 200 ° C or higher, the dimensional change in the thickness direction of the liquid crystal polymer film becomes large at a high temperature of 200 ° C. or more, and extreme stress is applied to the through conductor formed on the liquid crystal polymer film, and the through conductor is disconnected. Had the problem that In addition, the adhesion between the liquid crystal polymer film and the wiring conductor and the adhesion between the liquid crystal polymer film and the insulating layer are poor, and peeling occurs under high temperature and high humidity, resulting in a problem that lamination failure occurs. Was.

 さらに近年、より高密度化が要求されるようになり、ビルドアップ部の貫通導体の数の増加や配線導体のパターンの複雑化が進行してきており、このようにビルドアップ部の絶縁層に多数の貫通導体を形成したり、複雑なパターンの配線導体を形成すると、ビルドアップ部の熱膨張による寸法変化が絶縁層自体のものと大きく異なってくる傾向があり、ビルドアップ部の貫通導体の数や配線導体のパターンが配線基板の上下でわずかに異なっただけでも配線基板に反りが生じやすく、その結果、配線基板表面の電子部品との接続部において断線が生じてしまうという問題点も有していた。 Furthermore, in recent years, higher densities have been required, and the number of through conductors in the build-up portion has been increasing and the pattern of wiring conductors has been becoming more complicated. When a through conductor of a shape or a wiring conductor having a complicated pattern is formed, the dimensional change due to thermal expansion of the build-up portion tends to be significantly different from that of the insulating layer itself. There is also a problem that the wiring board is likely to be warped even if the pattern of the wiring conductor is slightly different between the upper and lower parts of the wiring board, and as a result, a disconnection occurs at the connection part with the electronic component on the surface of the wiring board. I was

 また、LSIの高速化・高機能化に伴い、シリコン表面に低誘電率材料が用いられる傾向がある。最も低誘電率の材料は空気であるが、回路の保持に問題があるため、低誘電率材料の候補は多くの気泡を含んだ材料となる傾向がある。多くの気泡を含んだ低誘電率材料は強度が低いため、これを用いたシリコンチップを実装するパッケージはシリコンチップとの熱膨張率差をできる限り小さくし、シリコンチップに熱応力を生じさせないものでなければならない。このため、パッケージ基板の熱膨張率はシリコンチップの熱膨張率に限りなく近いものが求められている。 (4) With the increase in speed and function of LSIs, there is a tendency that low dielectric constant materials are used for silicon surfaces. Although the material with the lowest dielectric constant is air, a candidate for a low dielectric constant material tends to be a material containing many bubbles due to a problem in maintaining a circuit. Since low dielectric constant materials containing many air bubbles have low strength, a package that mounts a silicon chip using this material minimizes the difference in thermal expansion coefficient from the silicon chip and does not generate thermal stress on the silicon chip. Must. Therefore, the thermal expansion coefficient of the package substrate is required to be as close as possible to the thermal expansion coefficient of the silicon chip.

 また、LSIは同時に多くのデータを処理するため大型化する傾向がある。LSIが大型化するとデータのインプットとアウトプットを行うI/Oを増やす必要がある。I/Oは現在数千程度であるが、将来は一万に達すると予測されている。そのため、配線基板には配線の微細化が求められている。また、数千を超える微細な配線を接続するためには、絶縁層の間を電気的に接続するスルーホールの間隔を狭くして、スルーホール密度を高くすることも求められている。 LIn addition, LSIs tend to increase in size because they process a lot of data at the same time. As the size of the LSI increases, it is necessary to increase the number of I / Os for inputting and outputting data. I / O is currently on the order of thousands, but is expected to reach 10,000 in the future. Therefore, finer wiring is required for the wiring board. In order to connect more than several thousand fine wirings, it is also required to reduce the distance between through holes for electrically connecting between insulating layers and increase the through hole density.

 多層配線板は、通常、内層回路を形成した内層回路板の上に絶縁層を形成し、その上に金属層を形成して、配線板全体を貫通する孔をあけたり、内層回路に達するバイアホールを形成して内層回路と金属箔とを電気的に接続し、金属箔の不要な箇所をエッチング除去して製造しているが、通常の絶縁材では、熱膨張率が約16PPM/℃であり、シリコンチップの3PPM/℃との間に大きな差があった。この差が大きいとリフローなどの加熱に余って、シリコンチップとパッケージ用基板の間に熱膨張率差が原因で熱応力が生じ、これが原因となってシリコンチップ表面の低誘電率層を破壊する問題があった。また、通常の絶縁基材は補強材としてガラスクロスを用いているため、スルーホールの微細加工が難しいという問題もあった。 Generally, a multilayer wiring board is formed by forming an insulating layer on an inner layer circuit board on which an inner layer circuit is formed, forming a metal layer on the insulating layer, making a hole penetrating the entire wiring board, or a via reaching the inner layer circuit. A hole is formed to electrically connect the inner layer circuit and the metal foil, and unnecessary portions of the metal foil are removed by etching. However, a normal insulating material has a thermal expansion coefficient of about 16 PPM / ° C. There was a great difference between the silicon chip and 3 PPM / ° C. If this difference is large, thermal stress is generated due to a difference in the coefficient of thermal expansion between the silicon chip and the package substrate due to heating such as reflow, which destroys the low dielectric constant layer on the silicon chip surface. There was a problem. Further, since a normal insulating base material uses glass cloth as a reinforcing material, there is a problem that it is difficult to finely process through holes.

 本発明はかかる従来技術の問題点に鑑み完成されたものであり、その目的は、高密度な配線を有するとともに、接続信頼性および積層信頼性に優れた配線基板を提供することにある。 The present invention has been completed in view of the problems of the related art, and an object of the present invention is to provide a wiring board having high-density wiring, and excellent in connection reliability and lamination reliability.

 本発明の配線基板は、厚みが10乃至200μmの液晶ポリマーフィルムが接着剤層を介して複数積層されているとともに最上層および最下層が前記接着剤層とされ、両主面に貫通導体を介して互いに電気的に接続された配線導体がそれぞれ形成されている基体と、この基体の主面に積層された絶縁層とを具備したことを特徴とするものである。 The wiring board of the present invention has a structure in which a plurality of liquid crystal polymer films having a thickness of 10 to 200 μm are laminated via an adhesive layer, and the uppermost layer and the lowermost layer are the adhesive layers. And a wiring conductor electrically connected to each other, and an insulating layer laminated on the main surface of the base.

 また、本発明の配線基板において、上記構成において好ましくは、前記液晶ポリマーフィルムは前記接着剤層よりも厚いことを特徴とするものである。 In the wiring board of the present invention, the liquid crystal polymer film is preferably thicker than the adhesive layer.

 また、本発明の配線基板によれば、前記液晶ポリマーフィルムの総厚みと前記接着剤層の総厚みの和に対して、前記接着剤層の総厚みが5〜30%であることが望ましい。 According to the wiring board of the present invention, it is desirable that the total thickness of the adhesive layer is 5 to 30% with respect to the sum of the total thickness of the liquid crystal polymer film and the total thickness of the adhesive layer.

 また、本発明の配線基板によれば、前記液晶ポリマーフィルムの平面方向の熱膨張率が、25〜200℃の温度範囲で負であることが望ましい。 According to the wiring board of the present invention, it is desirable that the coefficient of thermal expansion in the planar direction of the liquid crystal polymer film is negative in a temperature range of 25 to 200 ° C.

 また、本発明の配線基板によれば、金属層が金、銀、銅のうちいずれかを主成分としてなることが望ましい。 According to the wiring board of the present invention, it is preferable that the metal layer contains any one of gold, silver, and copper as a main component.

 また、本発明の配線基板によれば、接着剤層がエポキシ系樹脂を主成分とすることが望ましい。 According to the wiring board of the present invention, it is preferable that the adhesive layer contains an epoxy resin as a main component.

 また、本発明の配線基板によれば、接着剤層がPPE系樹脂又はPPO系樹脂を主成分とすることが望ましい。 According to the wiring board of the present invention, it is preferable that the adhesive layer contains a PPE resin or a PPO resin as a main component.

 また、本発明の配線基板によれば、接着剤層が無機充填材を10〜70体積%含有することが望ましい。 According to the wiring board of the present invention, it is desirable that the adhesive layer contains 10 to 70% by volume of the inorganic filler.

 また、本発明の配線基板によれば、無機充填材が酸化珪素、酸化アルミニウム、炭化珪素、窒化アルミニウムから選ばれるいずれかを主成分とすることが望ましい。 According to the wiring board of the present invention, it is preferable that the inorganic filler is mainly composed of any one selected from silicon oxide, aluminum oxide, silicon carbide, and aluminum nitride.

 また、本発明の配線基板によれば、接着剤層の硬化後の25〜200℃の熱膨張係数が50×10−6/℃以下であることが望ましい。 According to the wiring board of the present invention, it is desirable that the thermal expansion coefficient at 25 to 200 ° C. after the curing of the adhesive layer is 50 × 10 −6 / ° C. or less.

 本発明の配線基板の製造方法は(a)液晶ポリマーフィルムの少なくとも片面に接着剤層を具備する絶縁フィルムに貫通孔を形成する工程と、(b)前記貫通孔にビアを形成する工程と、(c)(a)、(c)の工程で作製したビアを具備する絶縁フィルムを複数層積層する工程とを具備することを特徴とする。 The method for manufacturing a wiring board according to the present invention includes: (a) forming a through hole in an insulating film having an adhesive layer on at least one surface of a liquid crystal polymer film; and (b) forming a via in the through hole. (C) a step of laminating a plurality of insulating films having vias formed in the steps (a) and (c).

 また、本発明の配線基板の製造方法は、レーザー光により貫通孔を形成することが望ましい。 In addition, in the method of manufacturing a wiring board according to the present invention, it is preferable that the through holes are formed by laser light.

 本発明の配線基板は、厚みが10乃至200μmの液晶ポリマーフィルムが接着剤層を介して複数積層されているとともに最上層および最下層が前記接着剤層とされ、両主面に貫通導体を介して互いに電気的に接続された配線導体がそれぞれ形成されている基体と、この基体の主面に積層された絶縁層とを具備したことを特徴とするものである。 The wiring board of the present invention has a structure in which a plurality of liquid crystal polymer films having a thickness of 10 to 200 μm are laminated via an adhesive layer, and the uppermost layer and the lowermost layer are the adhesive layers. And a wiring conductor electrically connected to each other, and an insulating layer laminated on the main surface of the base.

 本発明の配線基板によれば、厚みが10乃至200μmの液晶ポリマーフィルムが接着剤層を介して複数積層されているとともに最上層および最下層が接着剤層とされ、両主面に貫通導体を介して互いに電気的に接続された配線導体がそれぞれ形成されている基体と、この基体の主面に積層された絶縁層とを具備したことから、液晶ポリマーフィルムの厚みが10乃至200μmと薄いので液晶ポリマーフィルムの厚み方向の熱膨張による寸法変化をある程度小さい値に抑制し、液晶ポリマーフィルムに形成された貫通導体に加わる応力を小さくすることができる。即ち、1層の厚い液晶ポリマーフィルムを用いた場合には貫通導体に大きな応力が加わるのに対して、1層の厚い液晶ポリマーフィルムと合計が同じ厚さでも10乃至200μmと厚みの薄い液晶ポリマーフィルムを接着剤層を介して複数積層した方が応力を分散させることができる。その結果、高温下でも貫通導体が断線してしまうことのない接続信頼性に優れた配線基板とすることができる。また、液晶ポリマーフィルムと配線導体とが、および液晶ポリマーフィルムと絶縁層とが接着剤層を介して積層されているため、強固に接着することができる。その結果、高温高湿下でも液晶ポリマーフィルムと配線導体とが、および液晶ポリマーフィルムと絶縁層とが剥離することのない積層信頼性に優れた配線基板とすることもできる。 According to the wiring board of the present invention, a plurality of liquid crystal polymer films having a thickness of 10 to 200 μm are laminated via an adhesive layer, and the uppermost layer and the lowermost layer are adhesive layers. And the insulating layer laminated on the main surface of the substrate, the thickness of the liquid crystal polymer film is as thin as 10 to 200 μm. The dimensional change due to the thermal expansion in the thickness direction of the liquid crystal polymer film can be suppressed to a small value to some extent, and the stress applied to the through conductor formed on the liquid crystal polymer film can be reduced. That is, when a single layer of a thick liquid crystal polymer film is used, a large stress is applied to the through conductor, but a liquid crystal polymer having a thickness as thin as 10 to 200 μm even when the total thickness is the same as that of a single layer of a thick liquid crystal polymer film. When a plurality of films are laminated via an adhesive layer, the stress can be dispersed. As a result, it is possible to provide a wiring board excellent in connection reliability without breakage of the through conductor even at a high temperature. Further, since the liquid crystal polymer film and the wiring conductor and the liquid crystal polymer film and the insulating layer are laminated via the adhesive layer, they can be firmly bonded. As a result, it is possible to provide a wiring board having excellent lamination reliability in which the liquid crystal polymer film and the wiring conductor and the liquid crystal polymer film and the insulating layer are not separated even under high temperature and high humidity.

 また、本発明の配線基板において、上記構成において好ましくは、前記液晶ポリマーフィルムは前記接着剤層よりも厚いことを特徴とするものである。 In the wiring board of the present invention, the liquid crystal polymer film is preferably thicker than the adhesive layer.

 本発明の配線基板によれば、上記構成において曲がり難い性質を示すが脆くて割れやすい接着剤層よりも柔軟性のある液晶ポリマーフィルムを厚くすることにより、接着剤層の曲げに対する脆さを補うことができ、さらに、液晶ポリマーフィルムの上下には曲がり難い接着剤層が存在することにより基体の曲げ強度が向上する。その結果、配線基板の上下に位置するビルドアップ部の絶縁層の熱膨張による寸法変化の違いによる応力が生じたとしても、配線基板に反りが発生して配線基板表面の電子部品の接続部において断線が生じるのを防ぐことができる。 According to the wiring board of the present invention, the liquid crystal polymer film having the above-mentioned structure, which exhibits a property that is difficult to bend, but is more flexible than the adhesive layer that is brittle and fragile, is thickened to compensate for the brittleness of the adhesive layer against bending. In addition, the presence of the hardly bendable adhesive layers above and below the liquid crystal polymer film improves the bending strength of the substrate. As a result, even if stress is generated due to a difference in dimensional change due to thermal expansion of the insulating layer in the build-up portion located above and below the wiring board, the wiring board is warped and generated at the connection portion of the electronic component on the surface of the wiring board. Disconnection can be prevented from occurring.

 また、本発明の配線基板によれば、前記液晶ポリマーフィルムの総厚みと前記接着剤層の総厚みの和に対して、前記接着剤層の総厚みが5〜30%であることが望ましい。 According to the wiring board of the present invention, it is desirable that the total thickness of the adhesive layer is 5 to 30% with respect to the sum of the total thickness of the liquid crystal polymer film and the total thickness of the adhesive layer.

 また、本発明の配線基板によれば、前記液晶ポリマーフィルムの平面方向の熱膨張率が、25〜200℃の温度範囲で負であることが望ましい。このように、液晶ポリマーフィルムの平面方向の熱膨張率を25〜100℃の温度範囲で負とすることで、配線基板全体の熱膨張係数を大幅に小さくすることができ、低熱膨張係数の半導体素子などの電気素子との接続信頼性を大幅に改善することができる。 According to the wiring board of the present invention, it is desirable that the coefficient of thermal expansion in the planar direction of the liquid crystal polymer film is negative in a temperature range of 25 to 200 ° C. As described above, by making the thermal expansion coefficient in the plane direction of the liquid crystal polymer film negative in the temperature range of 25 to 100 ° C., the thermal expansion coefficient of the entire wiring substrate can be significantly reduced, and the semiconductor having a low thermal expansion coefficient can be obtained. The connection reliability with an electric element such as an element can be greatly improved.

 また、本発明の配線基板によれば、金属層が金、銀、銅のうちいずれかを主成分としてなることが望ましい。このような低抵抗の金属を用いることで、配線基板の配線の抵抗を下げることができ、高性能な配線基板とすることができる。 According to the wiring board of the present invention, it is preferable that the metal layer contains any one of gold, silver, and copper as a main component. By using such a low-resistance metal, the resistance of the wiring of the wiring board can be reduced, and a high-performance wiring board can be obtained.

 また、本発明の配線基板によれば、接着剤層がエポキシ系樹脂を主成分とすることが望ましい。接着剤層として、エポキシ系樹脂を用いることで、熱サイクルがかかるような場合でも、信頼性や位置精度の高い配線基板を提供できる。 According to the wiring board of the present invention, it is preferable that the adhesive layer contains an epoxy resin as a main component. By using an epoxy resin as the adhesive layer, a wiring board with high reliability and high positional accuracy can be provided even when a thermal cycle is applied.

 また、本発明の配線基板によれば、接着剤層がPPE系樹脂又はPPO系樹脂を主成分とすることが望ましい。これらの熱硬化性樹脂は耐熱性と電気特性に優れており、望ましい。 According to the wiring board of the present invention, it is preferable that the adhesive layer contains a PPE resin or a PPO resin as a main component. These thermosetting resins are desirable because of their excellent heat resistance and electrical properties.

 また、本発明の配線基板によれば、接着剤層が無機充填材を10〜70体積%含有することが望ましい。このように接着剤層に、特に、無機充填剤の量を10体積%以上添加することで、接着剤層の強度を向上させたり、耐湿性を向上させることができる。また、70体積以下とすることで、接着剤層の接着力を確保することができる。 According to the wiring board of the present invention, it is desirable that the adhesive layer contains 10 to 70% by volume of the inorganic filler. As described above, by adding the inorganic filler in an amount of at least 10% by volume to the adhesive layer, the strength of the adhesive layer and the moisture resistance can be improved. When the volume is 70 volumes or less, the adhesive strength of the adhesive layer can be ensured.

 また、本発明の配線基板によれば、無機充填材が酸化珪素、酸化アルミニウム、炭化珪素、窒化アルミニウムから選ばれるいずれかを主成分とすることが望ましい。これらのうち、酸化珪素、酸化アルミニウムは入手しやすく、比較的安価であるという点で望ましく、また、炭化珪素、窒化アルミニウムは熱伝導率が高いという点で望ましい。 According to the wiring board of the present invention, it is preferable that the inorganic filler is mainly composed of any one selected from silicon oxide, aluminum oxide, silicon carbide, and aluminum nitride. Among them, silicon oxide and aluminum oxide are desirable because they are easily available and relatively inexpensive, and silicon carbide and aluminum nitride are desirable because they have high thermal conductivity.

 また、本発明の配線基板によれば、接着剤層の硬化後の25〜200℃の熱膨張係数が50×10−6/℃以下であることが望ましい。このように接着剤層の熱膨張係数を上記の範囲に制御することで配線基板全体の熱膨張係数を小さくすることができ、熱膨張係数が小さい、半導体素子などの電気素子を搭載した場合に、高い接続信頼性を実現することができる。 According to the wiring board of the present invention, it is desirable that the thermal expansion coefficient at 25 to 200 ° C. after the curing of the adhesive layer is 50 × 10 −6 / ° C. or less. By controlling the coefficient of thermal expansion of the adhesive layer in the above range, the coefficient of thermal expansion of the entire wiring board can be reduced, and the coefficient of thermal expansion is small, when an electric element such as a semiconductor element is mounted. , High connection reliability can be realized.

 本発明の配線基板の製造方法は(a)液晶ポリマーフィルムの少なくとも片面に接着剤層を具備する絶縁フィルムに貫通孔を形成する工程と、(b)前記貫通孔にビアを形成する工程と、(c)(a)、(c)の工程で作製したビアを具備する絶縁フィルムを複数層積層する工程とを具備することを特徴とする。 The method for manufacturing a wiring board according to the present invention includes: (a) forming a through hole in an insulating film having an adhesive layer on at least one surface of a liquid crystal polymer film; and (b) forming a via in the through hole. (C) a step of laminating a plurality of insulating films having vias formed in the steps (a) and (c).

 このような製造方法により、本発明の配線基板を容易に作製できる。 配線 By such a manufacturing method, the wiring board of the present invention can be easily manufactured.

 また、本発明の配線基板の製造方法は、レーザー光により貫通孔を形成することが望ましい。レーザー光により貫通孔を作製することで、微細な貫通孔を再現よく作製できる。また、ドリルを用いる場合に比べ、消耗品がほとんどないため、コストが安くなる。 In addition, in the method of manufacturing a wiring board according to the present invention, it is preferable that the through holes are formed by laser light. By forming the through-holes using laser light, fine through-holes can be produced with good reproducibility. Also, compared to the case of using a drill, there are almost no consumables, so that the cost is reduced.

 次に、本発明の配線基板を添付の図面に基づいて詳細に説明する。 Next, the wiring board of the present invention will be described in detail with reference to the accompanying drawings.

 図1は、本発明の配線基板の実施の形態の一例を示す断面図である。同図において5は基体、6は絶縁層であり、主にこれらで本発明の配線基板7が構成されている。 FIG. 1 is a sectional view showing an example of an embodiment of a wiring board of the present invention. In the figure, reference numeral 5 denotes a base, and 6 denotes an insulating layer. These mainly constitute a wiring board 7 of the present invention.

 なお、本実施の形態における配線基板7は、基体5の上下両主面に2層の絶縁層6、その表面および層間に形成した配線導体8、および絶縁層6の上下に形成した配線導体8同士あるいは配線導体4と配線導体8とを電気的に接続する貫通導体9とから成るビルドアップ部を形成したものであり、以下この構成について説明する。 The wiring board 7 in the present embodiment includes two insulating layers 6 on both upper and lower main surfaces of the base 5, wiring conductors 8 formed on the surface and between the layers, and wiring conductors 8 formed above and below the insulating layer 6. A build-up portion composed of the through conductors 9 electrically connecting the wiring conductors 4 and the wiring conductors 8 to each other is formed, and this configuration will be described below.

 基体5は、厚みが10乃至200μmの液晶ポリマーフィルム1が接着剤層2を介して複数積層されているとともに最上層および最下層が接着剤層2とされ、両主面に貫通導体3を介して互いに電気的に接続された配線導体4がそれぞれ形成されている。なお、図1の配線基板7では、液晶ポリマーフィルム1を3層形成しているものを示したが、液晶ポリマーフィルム1は2層であってもよく、4層以上であってもよい。 The substrate 5 has a plurality of liquid crystal polymer films 1 each having a thickness of 10 to 200 μm laminated via an adhesive layer 2, the uppermost layer and the lowermost layer being an adhesive layer 2, and both main surfaces having a through conductor 3 interposed therebetween. Wiring conductors 4 electrically connected to each other are formed. Although the wiring board 7 shown in FIG. 1 has three liquid crystal polymer films 1 formed thereon, the liquid crystal polymer film 1 may have two layers or four or more layers.

 そして、本発明の配線基板7は、基体5と、この基体5の主面に積層された絶縁層6とを具備している。この構成により、液晶ポリマーフィルム1を10乃至200μmと薄くすることで液晶ポリマーフィルム1の厚み方向の熱膨張による寸法変化をある程度小さい値に抑制し、液晶ポリマーフィルム1に形成された貫通導体3に加わる応力を小さくすることができる。即ち、1層の厚い液晶ポリマーフィルム1を用いた場合には貫通導体3に大きな応力が加わるのに対して、1層の厚い液晶ポリマーフィルム1と合計が同じ厚さでも薄い液晶ポリマーフィルム1を接着剤層2を介して複数積層した方が応力を分散させることができる。その結果、高温下でも貫通導体3が断線してしまうことのない接続信頼性に優れた配線基板7とすることができる。 The wiring board 7 of the present invention includes the base 5 and the insulating layer 6 laminated on the main surface of the base 5. With this configuration, the thickness of the liquid crystal polymer film 1 is reduced to 10 to 200 μm, thereby suppressing a dimensional change due to thermal expansion in the thickness direction of the liquid crystal polymer film 1 to a small value to some extent. The applied stress can be reduced. That is, when a single layer of the thick liquid crystal polymer film 1 is used, a large stress is applied to the through conductor 3, whereas a thin liquid crystal polymer film 1 having the same total thickness as the single layer of the thick liquid crystal polymer film 1 is used. It is possible to disperse the stress by laminating a plurality of layers via the adhesive layer 2. As a result, it is possible to provide the wiring board 7 having excellent connection reliability without breaking the through conductor 3 even at a high temperature.

 また、液晶ポリマーフィルム1と配線導体4とが、および液晶ポリマーフィルム1と絶縁層6とが接着剤層2を介して積層されているため、両者を強固に接着することができる。その結果、高温高湿下でも液晶ポリマーフィルム1と配線導体4とが、および液晶ポリマーフィルム1と絶縁層6とが剥離することのない積層信頼性に優れた配線基板7とすることもできる。 {Circle around (2)} Since the liquid crystal polymer film 1 and the wiring conductor 4 and the liquid crystal polymer film 1 and the insulating layer 6 are laminated via the adhesive layer 2, both can be firmly bonded. As a result, the wiring substrate 7 having excellent lamination reliability without the liquid crystal polymer film 1 and the wiring conductor 4 and the liquid crystal polymer film 1 and the insulating layer 6 peeling off even under high temperature and high humidity can be obtained.

 なお、ここで液晶ポリマーとは、溶融状態あるいは溶液状態において、液晶性を示すポリマーあるいは光学的に複屈折性を示すポリマーを指し、一般に溶液状態で液晶性を示すリオトロピック液晶ポリマーや溶融時に液晶性を示すサーモトロピック液晶ポリマー、あるいは、熱変形温度で分類される1型,2型,3型すべての液晶ポリマーを含むものであり、本発明に用いる液晶ポリマーとしては、温度サイクル試験における信頼性,半田耐熱性,加工性の観点から、230〜420℃の温度、特に270〜380℃の温度に融点を有するものが好ましい。 Here, the liquid crystal polymer refers to a polymer exhibiting liquid crystallinity or a polymer exhibiting optical birefringence in a molten state or a solution state, and is generally a lyotropic liquid crystal polymer exhibiting liquid crystallinity in a solution state or a liquid crystal polymer in a molten state. The liquid crystal polymer used in the present invention includes a thermotropic liquid crystal polymer exhibiting the following or a liquid crystal polymer of all types 1, 2, and 3 classified by heat distortion temperature. From the viewpoints of solder heat resistance and workability, those having a melting point at a temperature of 230 to 420 ° C, particularly 270 to 380 ° C are preferable.

 また、液晶ポリマーフィルム1の厚みは10乃至200μmである。200μmを超えると、液晶ポリマーフィルム1の厚み方向の熱膨張による寸法変化が大きくなって液晶ポリマーフィルム1に形成された貫通導体3に加わる応力が大きくなる傾向がある。また、10μm未満では配線基板7の強度が低下し易くなる。 (4) The thickness of the liquid crystal polymer film 1 is 10 to 200 μm. If it exceeds 200 μm, the dimensional change due to thermal expansion in the thickness direction of the liquid crystal polymer film 1 increases, and the stress applied to the through conductor 3 formed on the liquid crystal polymer film 1 tends to increase. If the thickness is less than 10 μm, the strength of the wiring board 7 tends to decrease.

 また、液晶ポリマーフィルム1の平面方向の熱膨張係数は、25〜200℃の温度範囲で負であることが望ましい。特に、望ましくは、−5〜−10×10−6/℃がよい。 Further, the thermal expansion coefficient of the liquid crystal polymer film 1 in the plane direction is preferably negative in a temperature range of 25 to 200 ° C. In particular, desirably -5 to -10 x 10-6 / C is preferable.

 さらに、基体5を構成する液晶ポリマーフィルム1の層数は、厚み方向の熱膨張による寸法変化によって貫通導体3に加わる応力を1箇所ではなく複数箇所に小さな応力として分散させるという観点から、2層以上、好ましくは4層以上がよい。 Further, the number of layers of the liquid crystal polymer film 1 constituting the base 5 is two layers from the viewpoint of dispersing the stress applied to the through conductor 3 due to a dimensional change due to thermal expansion in the thickness direction as a small stress not at one place but at a plurality of places. Above, preferably four or more layers.

 また、液晶ポリマーフィルム1は、フィルムとしての物性を損なわない範囲内で、熱安定性を改善するための酸化防止剤や耐光性を改善するための紫外線吸収剤等の光安定剤、難燃性を付加するためのハロゲン系もしくはリン酸系の難燃性剤、アンチモン系化合物やホウ酸亜鉛,メタホウ酸バリウム,酸化ジルコニウム等の難燃助剤、潤滑性を改善するための高級脂肪酸や高級脂肪酸エステル,高級脂肪酸金属塩,フルオロカーボン系界面活性剤等の滑剤、熱膨張係数を調整するためや機械的強度を向上するための酸化アルミニウム,酸化珪素,酸化チタン,酸化バリウム,酸化ストロンチウム,酸化ジルコニウム,酸化カルシウム,ゼオライト,窒化珪素,窒化アルミニウム,炭化珪素,チタン酸カリウム,チタン酸バリウム,チタン酸ストロンチウム,チタン酸カルシウム,ホウ酸アルミニウム,スズ酸バリウム,ジルコン酸バリウム,ジルコン酸ストロンチウム等の充填材を含有してもよい。 Further, the liquid crystal polymer film 1 may be a light stabilizer such as an antioxidant for improving thermal stability or an ultraviolet absorber for improving light resistance, as long as the physical properties of the film are not impaired. Halogen-based or phosphoric-acid-based flame retardants to add water, flame-retardant aids such as antimony-based compounds, zinc borate, barium metaborate, and zirconium oxide; higher fatty acids and higher fatty acids to improve lubricity Lubricants such as esters, higher fatty acid metal salts, fluorocarbon surfactants, etc., aluminum oxide, silicon oxide, titanium oxide, barium oxide, strontium oxide, zirconium oxide, for adjusting the coefficient of thermal expansion and improving mechanical strength Calcium oxide, zeolite, silicon nitride, aluminum nitride, silicon carbide, potassium titanate, barium titanate, titanic acid Strontium, calcium titanate, aluminum borate, barium stannate, barium zirconate, may contain a filler such as strontium zirconate.

 なお、上記の充填材等の粒子形状は、略球状,針状,フレーク状等があり、充填性の観点からは略球状が好ましい。また、粒子径は、0.1〜15μmであり、液晶ポリマーフィルム1の厚みよりも小さいことがよい。 The particle shape of the filler and the like includes a substantially spherical shape, a needle shape, a flake shape, and the like, and a substantially spherical shape is preferable from the viewpoint of filling properties. Further, the particle diameter is 0.1 to 15 μm, and is preferably smaller than the thickness of the liquid crystal polymer film 1.

 また、液晶ポリマーフィルム1は、接着剤層2との密着性を良好とするために、その表面をバフ研磨,ブラスト研磨,ブラシ研磨,プラズマ処理,コロナ処理,紫外線処理,薬品処理等の方法を用いて表面処理しておくことが好ましく、特に水との接触角が3〜65゜であって、かつ表面エネルギーが45〜80mJ/m2となるように処理しておくことが好ましい。 The liquid crystal polymer film 1 is subjected to a method such as buffing, blasting, brushing, plasma treatment, corona treatment, ultraviolet treatment, chemical treatment or the like to improve the adhesion to the adhesive layer 2. It is preferable to use a surface treatment, and it is particularly preferable that the contact angle with water is 3 to 65 ° and the surface energy is 45 to 80 mJ / m 2.

 液晶ポリマーフィルム1に対する水の濡れ性は、液晶ポリマーフィルム1の上下面の水素結合可能な活性基の存在する割合と相関関係にあり、好ましくは液晶ポリマーフィルム1の上下面を水との接触角を3〜65°とすることにより、接着剤層2が液晶ポリマーフィルム1の上下面と強い分子間力で結合して、液晶ポリマーフィルム1と接着剤層2との密着性をさらに良好なものとなすことができる。 The wettability of water with respect to the liquid crystal polymer film 1 is correlated with the proportion of active groups capable of hydrogen bonding on the upper and lower surfaces of the liquid crystal polymer film 1. Is 3 to 65 °, the adhesive layer 2 is bonded to the upper and lower surfaces of the liquid crystal polymer film 1 with strong intermolecular force, and the adhesion between the liquid crystal polymer film 1 and the adhesive layer 2 is further improved. Can be made.

 液晶ポリマーフィルム1の上下面は、水との接触角が3°より小さいと、水との親和性が極度に強くなり、空気中の水が液晶ポリマーフィルム1上に吸着され易くなって、液晶ポリマーフィルム1および接着剤層2を複数重ねるとともに加熱加圧して積層する際に吸着した水が気化し、液晶ポリマーフィルム1と接着剤層2との界面で剥がれが生じ易くなる。また、65°を超えると液晶ポリマーフィルム1と接着剤層2との密着性が低下して両者間で剥離し易くなる。 If the upper and lower surfaces of the liquid crystal polymer film 1 have a contact angle with water of less than 3 °, the affinity with water becomes extremely strong, so that water in the air is easily adsorbed on the liquid crystal polymer film 1, The water adsorbed when the polymer film 1 and the adhesive layer 2 are stacked and heated and pressurized to be laminated is vaporized, and peeling easily occurs at the interface between the liquid crystal polymer film 1 and the adhesive layer 2. On the other hand, if the angle exceeds 65 °, the adhesion between the liquid crystal polymer film 1 and the adhesive layer 2 is reduced, and the liquid crystal polymer film 1 and the adhesive layer 2 are easily separated from each other.

 なお、接触角を評価するための水は、JIS K 0050「化学分析方法通則」に規定される蒸留法もしくはイオン交換法によって精製した水、または逆浸透法,拘留法,イオン交換法等を組み合わせた方法によって精製した水を用いるのがよい。 The water for evaluating the contact angle may be water purified by distillation or ion exchange specified in JIS K-0050 “General rules for chemical analysis” or a combination of reverse osmosis, detention, and ion exchange. It is preferable to use water purified by the above method.

 また、液晶ポリマーフィルム1は、表面の活性化された比較的熱運動しやすい分子層と接着剤層2とが良好に絡み合って結合し、両者の密着をさらに強固なものとするという観点からは、その表面エネルギーを45〜80mJ/mとすることが好ましい。 Further, in the liquid crystal polymer film 1, the molecular layer whose surface is activated and which is relatively easily subjected to thermal motion and the adhesive layer 2 are entangled and bonded well, and from the viewpoint of further strengthening the adhesion between them. The surface energy is preferably 45 to 80 mJ / m 2 .

 液晶ポリマーフィルム1の上下面の表面エネルギーが45mJ/m未満であると、液晶ポリマーフィルム1表面の分子層が十分に活性化されず、接着剤層2と良好に絡み合って結合することが困難となる傾向があり、80mJ/mを超えると液晶ポリマーフィルム1の表面が非常に反応性が高くなって空気中の酸素と反応してその表面に機械的強度の弱い酸化物が形成され、その結果、液晶ポリマーフィルム1と接着剤層2との密着性が低下して両者間で剥離し易くなる傾向がある。 If the surface energy of the upper and lower surfaces of the liquid crystal polymer film 1 is less than 45 mJ / m 2 , the molecular layer on the surface of the liquid crystal polymer film 1 will not be sufficiently activated, and it will be difficult to entangle and bond well with the adhesive layer 2. If it exceeds 80 mJ / m 2 , the surface of the liquid crystal polymer film 1 becomes very reactive and reacts with oxygen in the air to form an oxide having low mechanical strength on the surface, As a result, the adhesiveness between the liquid crystal polymer film 1 and the adhesive layer 2 is reduced, and there is a tendency that the two are easily peeled off.

 次に、接着剤層2は、熱硬化性樹脂から成り、後述する配線導体4を被着形成する際の接着剤の機能を有するとともに、液晶ポリマーフィルム1同士を積層する際の接着剤の役目を果たす。 Next, the adhesive layer 2 is made of a thermosetting resin, and has a function of an adhesive when the wiring conductors 4 described later are formed and adhered, and also functions as an adhesive when the liquid crystal polymer films 1 are laminated. Fulfill.

 このような熱硬化性樹脂としては、エポキシ樹脂,シアネート樹脂,フェノール樹脂,熱硬化性ポリイミド樹脂,アリル変性ポリフェニレンエーテル樹脂等の熱硬化性ポリフェニレンエーテル樹脂,ビスマレイミドトリアジン樹脂等の加熱により硬化反応する樹脂が用いられ、とりわけ熱サイクル試験での信頼性や配線導体4を形成する際の位置精度の観点から、エポキシ樹脂,シアネート樹脂,アリル変性ポリフェニレンエーテル等の熱硬化性ポリフェニレンエーテル樹脂、またはこれらを混合したものが好ましい。特に高周波伝送特性を良好にするという観点からは、液晶ポリマーフィルム1と同程度に低い比誘電率(2.6〜3.3)、低誘電損失(誘電正接で10×10−4〜40×10−4)を示す熱硬化性ポリフェニレンエーテルやシアネート樹脂を含有することが好ましい。 As such a thermosetting resin, a curing reaction is caused by heating of a thermosetting polyphenylene ether resin such as an epoxy resin, a cyanate resin, a phenol resin, a thermosetting polyimide resin, an allyl-modified polyphenylene ether resin, or a bismaleimide triazine resin. Resins are used. In particular, from the viewpoints of reliability in a thermal cycle test and positional accuracy when forming the wiring conductor 4, a thermosetting polyphenylene ether resin such as an epoxy resin, a cyanate resin, and an allyl-modified polyphenylene ether, or a resin such as these. Mixtures are preferred. In particular, from the viewpoint of improving the high-frequency transmission characteristics, the relative dielectric constant (2.6 to 3.3) and the low dielectric loss (10 × 10 −4 to 40 × in the dielectric loss tangent) are as low as those of the liquid crystal polymer film 1. It is preferable to contain a thermosetting polyphenylene ether or cyanate resin showing 10-4).

 また、液晶ポリマーフィルム1の厚さは、曲がり難い性質を示すが脆くて割れやすい接着剤層2の曲げに対する脆さを補うという観点からは、接着剤層2よりも厚くすることが好ましい。また、接着剤層2を形成する際の厚みばらつきを防止するという観点から、接着剤層2の厚さは5μm以上であることが好ましい。 The thickness of the liquid crystal polymer film 1 is preferably thicker than that of the adhesive layer 2 from the viewpoint of compensating for the brittleness of the adhesive layer 2 which exhibits the property of being hard to bend but is brittle and is easily broken. In addition, from the viewpoint of preventing thickness variations when forming the adhesive layer 2, the thickness of the adhesive layer 2 is preferably 5 μm or more.

さらに、接着剤層2の割れを防止するという観点から、接着剤層2の厚さは100μm以下であることが好ましい。 Further, from the viewpoint of preventing cracking of the adhesive layer 2, the thickness of the adhesive layer 2 is preferably 100 μm or less.

 また、接着剤層2の硬化後の熱膨張係数は、配線基板7全体の熱膨張係数を小さくするために、25〜200℃の温度範囲で、50×10−6/℃以下であることが望ましい。また、液晶ポリマーフィルム1の総厚みと、接着剤層の総厚みとの和に対して、前記接着剤層2の総厚みが5〜30%であることが望ましい。 Further, the thermal expansion coefficient of the adhesive layer 2 after curing may be 50 × 10 −6 / ° C. or less in a temperature range of 25 to 200 ° C. in order to reduce the thermal expansion coefficient of the entire wiring board 7. desirable. Further, it is desirable that the total thickness of the adhesive layer 2 is 5 to 30% with respect to the sum of the total thickness of the liquid crystal polymer film 1 and the total thickness of the adhesive layer.

 特に、配線基板7に、熱膨張係数が低く、強度の低い電気素子を搭載する場合には、接着剤層2の総厚みを前記の範囲とすることで、配線基板7の熱膨張係数を低くすることができる。 In particular, when an electric element having a low coefficient of thermal expansion and a low strength is mounted on the wiring board 7, the total thickness of the adhesive layer 2 is set in the above range so that the coefficient of thermal expansion of the wiring board 7 is reduced. can do.

 本発明の配線基板7によれば、曲がり難い性質を示すが脆くて割れやすい接着剤層2よりも柔軟性のある液晶ポリマーフィルム1を厚くすることにより、接着剤層2の曲げに対する脆さを補うことができ、さらに、液晶ポリマーフィルム1の上下には曲がり難い接着剤層2が存在することにより基体5の曲げ強度が向上する。その結果、配線基板7の上下のビルドアップ部の絶縁層6の熱膨張による寸法変化の違いによる応力が生じたとしても、配線基板7に反りが発生して配線基板7表面の電子部品の接続部において断線が生じるのを防ぐことができる。 According to the wiring board 7 of the present invention, the brittleness of the adhesive layer 2 with respect to bending is reduced by thickening the liquid crystal polymer film 1 which is hard to bend but is more flexible than the adhesive layer 2 which is brittle and easily broken. The bending strength of the base 5 is improved by the presence of the hardly bendable adhesive layers 2 above and below the liquid crystal polymer film 1. As a result, even if stress occurs due to a difference in dimensional change due to thermal expansion of the insulating layer 6 in the upper and lower build-up portions of the wiring board 7, the wiring board 7 is warped to connect electronic components on the surface of the wiring board 7. Disconnection can be prevented from occurring in the portion.

 また、基体5の最上層および最下層の接着剤層2は、それ以外の接着剤層2よりも厚いことが好ましい。これにより、基体5の曲げ強度がさらに向上するとともに、絶縁層6と液晶ポリマーフィルム1との熱膨張による寸法変化の違いによる応力を緩和することができる。 (4) It is preferable that the uppermost and lowermost adhesive layers 2 of the substrate 5 are thicker than the other adhesive layers 2. Thereby, the bending strength of the base 5 is further improved, and the stress due to a difference in dimensional change due to thermal expansion between the insulating layer 6 and the liquid crystal polymer film 1 can be reduced.

 接着剤層2は、弾性率を調整するためのゴム成分や熱安定性を改善するための酸化防止剤、耐光性を改善するための紫外線吸収剤等の光安定剤、難燃性を付加するためのハロゲン系もしくはリン酸系の難燃性剤、アンチモン系化合物やホウ酸亜鉛,メタホウ酸バリウム,酸化ジルコニウム等の難燃助剤、潤滑性を改善するための高級脂肪酸,高級脂肪酸エステル,高級脂肪酸金属塩,フルオロカーボン系界面活性剤等の滑剤、熱膨張係数を調整したり機械的強度を向上するための酸化アルミニウム,酸化珪素,酸化チタン,酸化バリウム,酸化ストロンチウム,酸化ジルコニウム,酸化カルシウム,ゼオライト,窒化珪素,窒化アルミニウム,炭化珪素,チタン酸カリウム,チタン酸バリウム,チタン酸ストロンチウム,チタン酸カルシウム,ホウ酸アルミニウム,スズ酸バリウム,ジルコン酸バリウム,ジルコン酸ストロンチウム等の充填材、あるいは、充填材との親和性を高めこれらの接合性向上と機械的強度を高めるためのシラン系カップリング剤やチタネート系カップリング剤等のカップリング剤を含有してもよい。 The adhesive layer 2 adds a rubber component for adjusting the elastic modulus, an antioxidant for improving thermal stability, a light stabilizer such as an ultraviolet absorber for improving light resistance, and flame retardancy. Or phosphoric acid-based flame retardants, antimony-based compounds and flame retardant aids such as zinc borate, barium metaborate, and zirconium oxide, higher fatty acids, higher fatty acid esters, and higher fatty acids for improving lubricity Lubricants such as fatty acid metal salts and fluorocarbon surfactants, aluminum oxide, silicon oxide, titanium oxide, barium oxide, barium oxide, strontium oxide, zirconium oxide, calcium oxide and zeolite for adjusting the coefficient of thermal expansion and improving mechanical strength , Silicon nitride, aluminum nitride, silicon carbide, potassium titanate, barium titanate, strontium titanate, calcium titanate Filler such as aluminum, aluminum borate, barium stannate, barium zirconate, strontium zirconate, or a silane coupling agent for improving the affinity with the filler and improving the bondability and mechanical strength thereof; A coupling agent such as a titanate-based coupling agent may be contained.

 特に液晶ポリマーフィルム1と接着剤層2を積層加圧して基体5を形成する際に、接着剤層2の流動性を抑制し、基体5の厚みばらつきを防止するという観点から、接着剤層2は充填材として10体積%以上の無機絶縁粉末を含有することが好ましい。また、液晶ポリマーフィルム1との接着界面および配線導体4との接着界面での半田リフロー時の剥離を防止するという観点から、無機絶縁粉末の含有量を70体積%以下とすることが好ましい。従って、接着剤層2は10〜70体積%の無機絶縁粉末を含有させておくことが好ましい。 In particular, when forming the substrate 5 by laminating and pressing the liquid crystal polymer film 1 and the adhesive layer 2, from the viewpoint of suppressing the fluidity of the adhesive layer 2 and preventing thickness variation of the substrate 5, Preferably contains 10% by volume or more of an inorganic insulating powder as a filler. Further, from the viewpoint of preventing peeling during solder reflow at the bonding interface with the liquid crystal polymer film 1 and the bonding interface with the wiring conductor 4, the content of the inorganic insulating powder is preferably set to 70% by volume or less. Therefore, the adhesive layer 2 preferably contains 10 to 70% by volume of the inorganic insulating powder.

 なお、上記の無機絶縁粉末の形状は、略球状,針状,フレーク状等があり、充填性の観点からは、粒子径が0.1〜10μmの略球状であることが好ましい。 In addition, the shape of the above-mentioned inorganic insulating powder includes a substantially spherical shape, a needle shape, a flake shape, and the like. From the viewpoint of filling properties, the inorganic insulating powder is preferably a substantially spherical shape having a particle diameter of 0.1 to 10 μm.

 また、本発明の配線基板7は、基体5の両主面に貫通導体3を介して互いに電気的に接続された配線導体4がそれぞれ形成されている。配線導体4および貫通導体3は、厚さ2〜30μmで銅や金等の良導電性の金属から成り、配線基板7に搭載される電子部品(図示せず)を外部電気回路(図示せず)に電気的に接続する機能を有する。 In the wiring board 7 of the present invention, the wiring conductors 4 electrically connected to each other via the through conductors 3 are formed on both main surfaces of the base 5. The wiring conductors 4 and the through conductors 3 are made of a highly conductive metal such as copper or gold and have a thickness of 2 to 30 μm, and connect electronic components (not shown) mounted on the wiring board 7 to an external electric circuit (not shown). ) Has the function of electrically connecting the

 このような基体5は、例えば粒径が0.1〜10μm程度の酸化珪素等の無機絶縁粉末に、熱硬化性ポリフェニレンエーテル樹脂、溶剤、可塑剤、分散剤等を添加して得たペーストを、従来周知のドクタブレード法等のシート成型法により接着剤層2となるシートに成形した後、このシートとプラズマ処理等の表面処理を施した厚さが10乃至200μmの液晶ポリマーフィルム1とを複数枚積層し、さらに、最上層および最下層に配線導体4となる銅箔等の金属箔を積層し、これらを温度が150〜300℃で圧力が0.5〜10MPa(メガパスカル)の条件で30分〜24時間ホットプレスして完全硬化させることにより、上下両主面に金属箔が付いた基板を製作し、しかる後、従来周知のフォトレジストを用いてエッチングにより基板の金属箔をパターン加工した後、炭酸ガスレーザ,YAGレーザ,UV−YAGレーザ,金属蒸気レーザ,エキシマレーザ等を用いたレーザ加工により、配線導体4と液晶ポリマーフィルム1と接着剤層2とを貫通する貫通孔を形成し、さらにめっき法により貫通孔内面に導体層を形成することにより、上下主面の配線導体4同士を電気的に接続する貫通導体3を形成して製作される。 Such a base 5 is made of, for example, a paste obtained by adding a thermosetting polyphenylene ether resin, a solvent, a plasticizer, a dispersant, or the like to an inorganic insulating powder such as silicon oxide having a particle size of about 0.1 to 10 μm. After forming a sheet to be the adhesive layer 2 by a conventionally known sheet forming method such as a doctor blade method, the sheet and a liquid crystal polymer film 1 having a thickness of 10 to 200 μm subjected to a surface treatment such as a plasma treatment are combined. A plurality of sheets are laminated, and further, a metal foil such as a copper foil serving as the wiring conductor 4 is laminated on the uppermost layer and the lowermost layer, and these are subjected to conditions of a temperature of 150 to 300 ° C. and a pressure of 0.5 to 10 MPa (megapascal). Hot-pressing for 30 minutes to 24 hours to completely cure, thereby producing a substrate having metal foils on both upper and lower main surfaces. Thereafter, the substrate is etched by using a well-known photoresist. After the metal foil of the plate is patterned, the wiring conductor 4, the liquid crystal polymer film 1, and the adhesive layer 2 are subjected to laser processing using a carbon dioxide gas laser, a YAG laser, a UV-YAG laser, a metal vapor laser, an excimer laser, or the like. A through-hole is formed, and a conductive layer is formed on the inner surface of the through-hole by plating to form a through-conductor 3 that electrically connects the wiring conductors 4 on the upper and lower main surfaces.

 なお、金属箔のレーザ加工性を良くするために金属箔表面に粗化処理や黒化処理を施しても良い。また、めっき処理を良好にするために貫通孔を形成後、貫通孔内部に付着した樹脂を除くデスミア処理や超音波処理等で貫通孔内面を浄化しても良い。 The surface of the metal foil may be subjected to a roughening treatment or a blackening treatment in order to improve the laser workability of the metal foil. Further, after forming the through-hole to improve the plating process, the inner surface of the through-hole may be purified by desmearing, ultrasonic treatment, or the like for removing the resin adhered to the inside of the through-hole.

 また、貫通導体3の内側には、熱硬化性樹脂等から成る樹脂10が充填されている。このような樹脂10は、貫通導体3の空洞部に充填され、貫通導体3の内面を保護する機能を有し、エポキシ樹脂,シアネート樹脂,フェノール樹脂,熱硬化性ポリイミド樹脂,熱硬化性ポリフェニレンエーテル樹脂,ビスマレイミドトリアジン樹脂等が用いられる。 {Circle around (2)} The inside of the through conductor 3 is filled with a resin 10 made of a thermosetting resin or the like. Such a resin 10 is filled in the hollow portion of the through conductor 3 and has a function of protecting the inner surface of the through conductor 3, and is made of an epoxy resin, a cyanate resin, a phenol resin, a thermosetting polyimide resin, a thermosetting polyphenylene ether. Resin, bismaleimide triazine resin and the like are used.

 さらに、本発明の配線基板7は、基体5の主面に絶縁層6が積層されている。 {Circle around (4)} In the wiring board 7 of the present invention, the insulating layer 6 is laminated on the main surface of the base 5.

絶縁層6は、配線導体4を保護するための従来周知のソルダーレジストであっても良く、あるいは、配線をより高密度化するために配線導体8を1層あるいはそれ以上形成したビルドアップ部を形成するための絶縁層6であっても良い。 The insulating layer 6 may be a conventionally known solder resist for protecting the wiring conductor 4, or a build-up portion in which one or more wiring conductors 8 are formed to increase the density of the wiring. It may be an insulating layer 6 to be formed.

 このような絶縁層6は、エポキシ樹脂,シアネート樹脂,フェノール樹脂,熱硬化性ポリイミド樹脂,熱硬化性ポリフェニレンエーテル樹脂,ビスマレイミドトリアジン樹脂等の熱硬化性樹脂、またはポリフェニレンエーテル樹脂,ポリイミド樹脂等の熱可塑性樹脂が用いられ、とりわけ熱サイクル試験における信頼性や位置精度の観点から、エポキシ樹脂等の熱硬化性樹脂が好ましく用いられる。 Such an insulating layer 6 is made of a thermosetting resin such as an epoxy resin, a cyanate resin, a phenol resin, a thermosetting polyimide resin, a thermosetting polyphenylene ether resin, a bismaleimide triazine resin, or a polyphenylene ether resin or a polyimide resin. A thermoplastic resin is used, and a thermosetting resin such as an epoxy resin is preferably used from the viewpoint of reliability and positional accuracy in a thermal cycle test.

 さらに、絶縁層6は、弾性率を調整するためのゴム成分や熱安定性を改善するための酸化防止剤、耐光性を改善するための紫外線吸収剤等の光安定剤、難燃性を付加するためのハロゲン系もしくはリン酸系の難燃性剤、アンチモン系化合物,ホウ酸亜鉛,メタホウ酸バリウム,酸化ジルコニウム等の難燃助剤、潤滑性を改善するための高級脂肪酸,高級脂肪酸エステル,高級脂肪酸金属塩,フルオロカーボン系界面活性剤等の滑剤、熱膨張係数を調整したり機械的強度を向上するための酸化アルミニウム,酸化珪素,酸化チタン,酸化バリウム,酸化ストロンチウム,酸化ジルコニウム,酸化カルシウム,ゼオライト,窒化珪素,窒化アルミニウム,炭化珪素,チタン酸カリウム,チタン酸バリウム,チタン酸ストロンチウム,チタン酸カルシウム,ホウ酸アルミニウム,スズ酸バリウム,ジルコン酸バリウム,ジルコン酸ストロンチウム等の充填材、あるいは、充填材との親和性を高めこれらの接合性を向上させるためと機械的強度を高めるためのシラン系カップリング剤やチタネート系カップリング剤等のカップリング剤を含有してもよい。 Further, the insulating layer 6 has a rubber component for adjusting the elastic modulus, an antioxidant for improving thermal stability, a light stabilizer such as an ultraviolet absorber for improving light resistance, and flame retardancy. Halogen or phosphoric acid flame retardants, antimony compounds, zinc borate, barium metaborate, zirconium oxide, and other flame retardant aids, higher fatty acids to improve lubricity, higher fatty acid esters, Lubricants such as higher fatty acid metal salts and fluorocarbon surfactants, aluminum oxide, silicon oxide, titanium oxide, barium oxide, barium oxide, strontium oxide, zirconium oxide, calcium oxide, for adjusting the coefficient of thermal expansion and improving mechanical strength Zeolite, silicon nitride, aluminum nitride, silicon carbide, potassium titanate, barium titanate, strontium titanate, potassium titanate Fillers such as calcium, aluminum borate, barium stannate, barium zirconate, and strontium zirconate, or silane-based materials for improving the affinity with the fillers to improve their bondability and mechanical strength A coupling agent such as a coupling agent or a titanate coupling agent may be contained.

 また、ビルドアップ部を形成した場合、絶縁層6に形成される配線導体8や貫通導体9の導体層は、銅や金等の良導電性の金属から成るのがよく、配線基板7に搭載される電子部品を外部電気回路に良好に電気的に接続する機能を有する。 When the build-up portion is formed, the conductor layers of the wiring conductors 8 and the through conductors 9 formed on the insulating layer 6 are preferably made of a highly conductive metal such as copper or gold. Has a function of satisfactorily electrically connecting the electronic component to be connected to an external electric circuit.

このような配線導体8や貫通導体9の導体層は、基体5の主面に絶縁層6をラミネートあるいは塗布により形成した後、炭酸ガスレーザ,YAGレーザ,UV−YAGレーザ,金属蒸気レーザ,エキシマレーザ等を用いたレーザ加工により絶縁層6を貫通する貫通孔を形成し、しかる後、絶縁層6表面および貫通孔の内面にめっき法により形成することにより形成される。 Such a conductor layer of the wiring conductor 8 and the through conductor 9 is formed by laminating or coating an insulating layer 6 on the main surface of the base 5, and then a carbon dioxide laser, a YAG laser, a UV-YAG laser, a metal vapor laser, an excimer laser. A through hole penetrating the insulating layer 6 is formed by laser processing using, for example, and then formed on the surface of the insulating layer 6 and the inner surface of the through hole by a plating method.

 なお、基体5の表面や絶縁層6の表面、配線導体8の表面は、基体5と絶縁層6との密着性および絶縁層6と配線導体8との密着性を良くするために、バフ研磨,ブラスト研磨,ブラシ研磨,プラズマ処理,コロナ処理,紫外線処理,薬品処理等の表面処理等の方法により粗化しておくことが好ましい。 The surface of the base 5, the surface of the insulating layer 6, and the surface of the wiring conductor 8 are buffed to improve the adhesion between the base 5 and the insulating layer 6 and the adhesion between the insulating layer 6 and the wiring conductor 8. It is preferable that the surface is roughened by a method such as surface treatment such as blast polishing, brush polishing, plasma treatment, corona treatment, ultraviolet treatment, and chemical treatment.

 かくして、本発明の配線基板7によれば、上記構成の配線基板7の上面に形成した配線導体4、あるいは配線導体8の一部から成る接続パッドに半田等の導体バンプを介して半導体素子等の電子部品を電気的に接続するとともに、配線基板7の下面に形成した配線導体4、あるいは配線導体8の一部から成る接続パッドに半田等の導体バンプを形成することにより、配線密度が高く接続信頼性に優れた混成集積回路を製作することができる。 Thus, according to the wiring board 7 of the present invention, the semiconductor element or the like is connected to the wiring conductor 4 formed on the upper surface of the wiring board 7 having the above-described configuration or the connection pad formed of a part of the wiring conductor 8 via the conductor bump such as solder. By electrically connecting the electronic components described above, and by forming conductor bumps such as solder on the connection pads formed on the wiring conductor 4 or a part of the wiring conductor 8 formed on the lower surface of the wiring board 7, the wiring density can be increased. A hybrid integrated circuit having excellent connection reliability can be manufactured.

 先ず、熱硬化性ポリフェニレンエーテル樹脂に平均粒径が0.6μmの球状溶融シリカをその含有量が40体積%となるように加え、これに溶剤としてトルエン、さらに樹脂の硬化を促進させるための触媒(2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン)を添加し、1時間混練してワニスを作製した。次に、このワニスをPET(ポリエチレンテレフタレート)フィルム上面にドクターブレード法により塗布し、接着剤層2としてのシートを成形した。 First, spherical fused silica having an average particle diameter of 0.6 μm is added to a thermosetting polyphenylene ether resin so as to have a content of 40% by volume, toluene is used as a solvent, and a catalyst for accelerating the curing of the resin is further added. (2,5-Dimethyl-2,5-di (t-butylperoxy) hexane) was added and kneaded for 1 hour to prepare a varnish. Next, the varnish was applied to the upper surface of a PET (polyethylene terephthalate) film by a doctor blade method to form a sheet as the adhesive layer 2.

 そして、融点が290℃である種々の厚みの液晶ポリマーフィルム1を用意し、この上下面に、真空プラズマ装置を用いて電圧を27kV、雰囲気をOおよびCF(ガス流量がそれぞれ80cm/分)、片面15分×2回の条件で表面処理を施した。 Then, a liquid crystal polymer film 1 having a melting point of 290 ° C. and various thicknesses is prepared, and a voltage of 27 kV and an atmosphere of O 2 and CF 4 (gas flow rates of 80 cm 3 / Minutes), surface treatment was performed under the condition of 15 minutes per side × 2 times.

 次に、上記の接着剤層2としてのシートと液晶ポリマーフィルム1とを交互に積層し、さらに最上層および最下層のシートに厚みが12μmの銅箔を積層した後、温度が200℃で圧力が3MPaの条件で完全硬化させるとともに銅箔を接着させた。 Next, the above-mentioned sheet as the adhesive layer 2 and the liquid crystal polymer film 1 are alternately laminated, and further, a copper foil having a thickness of 12 μm is laminated on the uppermost layer and the lowermost layer. Was completely cured under the condition of 3 MPa and a copper foil was adhered.

 そして、フォトレジストを用いて、回路パターンを形成するように銅箔をエッチング処理し、これに炭酸ガスレーザを照射して直径が100μmで間隔が200μmの貫通孔を形成後、無電解めっき法および電解めっき法で貫通孔内に導体層(Cu)を被着して貫通導体3を形成することにより基体5を製作した。 Then, using a photoresist, the copper foil is etched to form a circuit pattern, and irradiated with a carbon dioxide gas laser to form through holes having a diameter of 100 μm and an interval of 200 μm. The base 5 was manufactured by forming a through conductor 3 by applying a conductor layer (Cu) in the through hole by plating.

 さらに、この基体5の上下主面にエポキシ樹脂から成る絶縁層6をラミネートして熱硬化させ、これに炭酸ガスレーザで基体5上の配線導体4が一部露出するように貫通孔を穿設後、無電解めっき法および電解めっき法により配線導体8(Cu)および貫通孔内に導体層(Cu)を形成した。 Further, an insulating layer 6 made of an epoxy resin is laminated on the upper and lower main surfaces of the base 5 and thermally cured, and a through-hole is formed on the insulating layer 6 with a carbon dioxide laser so that the wiring conductor 4 on the base 5 is partially exposed. The wiring conductor 8 (Cu) and the conductor layer (Cu) were formed in the through holes by electroless plating and electrolytic plating.

 さらにまた、これらの工程を繰り返して、絶縁層6が2層のビルドアップ部を形成し、配線基板7を製作した。 Furthermore, these steps were repeated to form a two-layer build-up portion of the insulating layer 6, and the wiring board 7 was manufactured.

 また、比較例として、400μmの厚みの液晶ポリマーフィルム1の上下主面に12μmの銅箔を積層した後、温度が300℃で圧力が3MPaの条件で銅箔を接着させた後、上記と同様の方法で回路パターンの形成とビルドアップ部の形成を行い、接着剤層2がない配線基板7を製作した。 As a comparative example, after laminating a 12 μm copper foil on the upper and lower main surfaces of the liquid crystal polymer film 1 having a thickness of 400 μm, bonding the copper foil at a temperature of 300 ° C. and a pressure of 3 MPa, the same as above. The circuit pattern was formed and the build-up portion was formed by the method described above, and a wiring board 7 having no adhesive layer 2 was manufactured.

 なお、接続信頼性の評価は、貫通導体3を介して電気的に接続された配線基板7上下の配線導体4のパッド間の導通抵抗を測定し、次に配線基板7を260℃の半田槽に30秒浸漬することを10回繰り返した後の導通抵抗を測定し、導通抵抗の変化率を算出することにより評価した。接続信頼性の良否の判断は、導通抵抗の変化率が15%以下であるものを良とし、15%を超えるものを不良とした。 The connection reliability was evaluated by measuring the conduction resistance between the pads of the wiring conductors 4 above and below the wiring board 7 electrically connected via the through conductor 3, and then placing the wiring board 7 in a solder bath at 260 ° C. The resistance was measured by repeating the immersion in the sample for 30 seconds 10 times, and the rate of change in the resistance was calculated. The connection reliability was judged good if the rate of change in conduction resistance was 15% or less, and bad if the rate exceeded 15%.

 また、積層信頼性の評価、即ち最上層または最下層の接着剤層2と配線導体4との間が剥がれたり、最上層または最下層の接着剤層2と絶縁層6との間が剥がれて水分等に起因したマイグレーションによって貫通導体3間の絶縁性が劣化したか否かの評価は、試料を温度が130℃で相対湿度が85%の条件で、印加電圧5.5Vの高温バイアス試験を行ない、試験後の絶縁抵抗を測定することにより行なった。積層信頼性の良否の判断は、絶縁抵抗が1.0×10Ω以上を良とし、1.0×10Ω未満を不良とした。 In addition, the evaluation of lamination reliability, that is, peeling between the uppermost or lowermost adhesive layer 2 and the wiring conductor 4 or peeling between the uppermost or lowermost adhesive layer 2 and the insulating layer 6. In order to evaluate whether or not the insulation between the penetrating conductors 3 has deteriorated due to migration caused by moisture or the like, the sample was subjected to a high-temperature bias test at an applied voltage of 5.5 V under the conditions of a temperature of 130 ° C. and a relative humidity of 85%. The test was performed by measuring the insulation resistance after the test. The lamination reliability was judged as good when the insulation resistance was 1.0 × 10 8 Ω or more and poor when the insulation resistance was less than 1.0 × 10 8 Ω.

 表1に接続信頼性および積層信頼性の結果を示す。

Figure 2004111945
Table 1 shows the results of connection reliability and stacking reliability.
Figure 2004111945

 表1より、液晶ポリマーフィルム1の厚みが10μm未満のもの(試料1)では配線基板7の強度が弱く、配線基板7が製作中に破損してしまった。また、液晶ポリマーフィルム1の厚みが200μmを超えるもの(試料7〜10)は、導通抵抗の変化率が15%を超え、接続信頼性に劣ることがわかった。 According to Table 1, when the thickness of the liquid crystal polymer film 1 was less than 10 μm (sample 1), the strength of the wiring board 7 was low, and the wiring board 7 was damaged during the production. In addition, those having a thickness of the liquid crystal polymer film 1 of more than 200 μm (samples 7 to 10) had a change rate of the conduction resistance of more than 15%, which was inferior in connection reliability.

 それらに対して、本発明の配線基板7(試料2〜6)では、導通抵抗の変化率が15%以下であり、接続信頼性に優れていることがわかった。 に 対 し て In contrast, in the wiring board 7 (samples 2 to 6) of the present invention, the rate of change of the conduction resistance was 15% or less, indicating that the connection reliability was excellent.

 さらに、積層信頼性においても、本発明の配線基板7(試料2〜6)は、高温バイアス試験後でも絶縁抵抗が高く優れていることがわかった。 Further, with respect to the lamination reliability, it was found that the wiring board 7 of the present invention (samples 2 to 6) had high insulation resistance even after the high-temperature bias test, and was excellent.

 接着剤層2の厚みを種々に変化させて実施例1と同様にして各種配線基板7を製作した。なお、絶縁層6に形成した貫通導体9は、配線基板7の上側では直径が40μmで間隔が150μmのものとしたのに対し、下側では直径が100μmで間隔が400μmのものとすることにより、上下の配線密度の差を大きくして反りやすい条件にした。 各種 Various wiring boards 7 were manufactured in the same manner as in Example 1 except that the thickness of the adhesive layer 2 was changed variously. The through conductor 9 formed in the insulating layer 6 has a diameter of 40 μm and an interval of 150 μm on the upper side of the wiring board 7, while a diameter of 100 μm and an interval of 400 μm on the lower side. The difference between the upper and lower wiring densities was increased so as to be easily warped.

 また、比較例として、400μmおよび800μmの厚みの液晶ポリマーフィルム1の上下主面に12μmの銅箔を積層した後、温度が300℃で圧力が3MPaの条件で銅箔を接着させた後、実施例1と同様にして回路パターンの形成とビルドアップ部の形成を行い、接着剤層2がない配線基板7を製作した。 As a comparative example, after laminating a 12 μm copper foil on the upper and lower main surfaces of the liquid crystal polymer film 1 having a thickness of 400 μm and 800 μm, bonding the copper foil under the condition of a temperature of 300 ° C. and a pressure of 3 MPa. A circuit pattern and a build-up portion were formed in the same manner as in Example 1, and a wiring board 7 having no adhesive layer 2 was manufactured.

 そして、この配線基板7に半導体素子を半田バンプを介して搭載し、260℃のリフロー炉に投入することにより電気的接続を行なった。 (5) Then, a semiconductor element was mounted on the wiring board 7 via solder bumps, and the semiconductor element was placed in a reflow furnace at 260 ° C. to perform electrical connection.

 これらをリフロー炉に投入した後の試料の外観および切断断面を観察した結果を表2に示す。

Figure 2004111945
Table 2 shows the results of observing the appearance and cut cross section of the sample after putting them into the reflow furnace.
Figure 2004111945

 表2より、接着剤層2のない配線基板7(試料19,20)では、配線基板7に反りが発生し、半導体素子との接続部において接続不良が発生した。また、接着剤層2の厚みが液晶ポリマーフィルム1の厚み以上のもの(試料13,14,17,18)では、接着剤層2にクラックが発生していることがわかった。 According to Table 2, in the wiring board 7 without the adhesive layer 2 (samples 19 and 20), the wiring board 7 was warped, and a connection failure occurred at a connection portion with the semiconductor element. Also, it was found that cracks occurred in the adhesive layer 2 when the thickness of the adhesive layer 2 was equal to or greater than the thickness of the liquid crystal polymer film 1 (samples 13, 14, 17, and 18).

 それらに対して、配線基板7(試料11,12,15,16)では、反りが発生して半導体素子との接続部で接続不良が発生することがなく、また、接着剤層2にクラックが発生することもなく、優れていることがわかった。 On the other hand, in the wiring board 7 (samples 11, 12, 15, and 16), warpage does not occur and a connection failure does not occur at a connection portion with the semiconductor element, and cracks are formed in the adhesive layer 2. It was found to be excellent without any occurrence.

 なお、本発明の配線基板7は上述の実施の形態および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。例えば、上述の実施例では3層の液晶ポリマーフィルム1を積層することによって基体5を製作したが、2層あるいは4層以上の液晶ポリマーフィルム1を積層して基体5を製作してもよい。また、本発明の配線基板7の上下表面に積層された絶縁層6は、1層や3層以上であってもよい。 The wiring board 7 of the present invention is not limited to the above-described embodiments and examples, and various changes can be made without departing from the gist of the present invention. For example, in the above-described embodiment, the base 5 is manufactured by laminating the three liquid crystal polymer films 1, but the base 5 may be manufactured by laminating two or four or more layers of the liquid crystal polymer film 1. Further, the insulating layer 6 laminated on the upper and lower surfaces of the wiring board 7 of the present invention may be one layer or three or more layers.

 液晶ポリマーフィルム1の厚みと、熱膨張係数、そして、接着剤層2の厚み、無機充填剤の含有量、樹脂の種類と積層枚数を表3に示すように変化させ、実施例1と同様にして各種配線基板7を製作した。そして、実施例1、2と同様の評価を行った。また、この配線基板7にダミーチップを半田実装して、実装後のダミーチップの状態を確認した。その結果を表3に示す。

Figure 2004111945
The thickness of the liquid crystal polymer film 1, the coefficient of thermal expansion, the thickness of the adhesive layer 2, the content of the inorganic filler, the type of the resin and the number of laminated layers were changed as shown in Table 3, and the same as in Example 1 was performed. Thus, various wiring boards 7 were manufactured. Then, the same evaluation as in Examples 1 and 2 was performed. Further, a dummy chip was solder-mounted on the wiring board 7, and the state of the dummy chip after the mounting was confirmed. Table 3 shows the results.
Figure 2004111945

 表3より、接着剤層2の厚さと、接着剤層2の厚さと液晶ポリマーフィルム1の厚みとの和との比を変化させた試料No.21〜25のうち、前記の比が5〜30%の範囲にある試料No.22〜25では、いずれの評価項目においても良好な結果が得られたが、前記の比が30%を越えた試料No.21では、ダミーチップにわずかなクラックが認められた。 よ り From Table 3, it is found that Sample No. in which the ratio of the thickness of adhesive layer 2 and the sum of the thickness of adhesive layer 2 and the thickness of liquid crystal polymer film 1 was changed. Of the sample Nos. 21 to 25, the ratio was in the range of 5 to 30%. In Sample Nos. 22 to 25, good results were obtained in all of the evaluation items. In No. 21, a slight crack was observed in the dummy chip.

 液晶ポリマーフィルム1の熱膨張係数を変化させた試料No.26〜30においては、液晶ポリマーフィルム1の熱膨張係数が負の値を示す試料No.26〜29においては、いずれの評価項目においても良好な結果が得られたが、液晶ポリマーフィルム1の熱膨張係数が5×10−6/℃である試料No.30では、ダミーチップにわずかなクラックが認められた。 Sample No. 1 in which the thermal expansion coefficient of liquid crystal polymer film 1 was changed In Samples Nos. 26 to 30, Sample No. 26 in which the coefficient of thermal expansion of the liquid crystal polymer film 1 showed a negative value. In Nos. 26 to 29, good results were obtained in any of the evaluation items. However, in Sample No. 26 in which the liquid crystal polymer film 1 had a coefficient of thermal expansion of 5 × 10 −6 / ° C. In No. 30, slight cracks were observed in the dummy chip.

 また、接着剤層2の無機充填剤として非晶質の球状シリカを添加して、その含有量を10〜70体積%の範囲で変化させた試料No.31〜34では、無機充填剤の添加量の変化に伴い接着剤層2の熱膨張係数も変化した。これらの試料では、いずれの評価項目においても良好な結果が得られた。 {Circle around (2)} Sample No. 1 in which amorphous spherical silica was added as an inorganic filler of the adhesive layer 2 and the content thereof was changed in the range of 10 to 70% by volume. In Nos. 31 to 34, the coefficient of thermal expansion of the adhesive layer 2 also changed with the change in the amount of the inorganic filler added. In these samples, good results were obtained in any of the evaluation items.

 また、接着剤層2として種々の樹脂を用いた試料No.35〜41においても、すべての評価項目で良好な結果が得られた。 試 料 Sample No. 1 using various resins as the adhesive layer 2 In 35 to 41, good results were obtained in all evaluation items.

本発明の配線基板の実施の形態の一例を示す断面図である。FIG. 2 is a cross-sectional view illustrating an example of an embodiment of a wiring board according to the present invention.

符号の説明Explanation of reference numerals

 1・・・・・・・・液晶ポリマーフィルム
 2・・・・・・・・接着剤層
 3・・・・・・・・貫通導体
 4・・・・・・・・配線導体
 5・・・・・・・・基体
 6・・・・・・・・絶縁層
 7・・・・・・・・配線基板
1... Liquid crystal polymer film 2... Adhesive layer 3... Penetrating conductor 4. ..... Base 6 ..... Insulating layer 7 ........... Wiring board

Claims (12)

厚みが10乃至200μmの液晶ポリマーフィルムが接着剤層を介して複数積層されているとともに最上層および最下層が前記接着剤層とされ、両主面に貫通導体を介して互いに電気的に接続された配線導体がそれぞれ形成されている基体と、該基体の主面に積層された絶縁層とを具備したことを特徴とする配線基板。 A plurality of liquid crystal polymer films having a thickness of 10 to 200 μm are laminated via an adhesive layer, the uppermost layer and the lowermost layer are the adhesive layers, and both main surfaces are electrically connected to each other via through conductors. A wiring board, comprising: a base on which each of the wiring conductors is formed; and an insulating layer laminated on a main surface of the base. 前記液晶ポリマーフィルムが、前記接着剤層よりも厚いことを特徴とする請求項1記載の配線基板。 The wiring board according to claim 1, wherein the liquid crystal polymer film is thicker than the adhesive layer. 前記液晶ポリマーフィルムの総厚みと前記接着剤層の総厚みの和に対して、前記接着剤層の総厚みが5〜30%であることを特徴とする請求項1又は2に記載の配線基板。 The wiring board according to claim 1, wherein a total thickness of the adhesive layer is 5 to 30% with respect to a sum of a total thickness of the liquid crystal polymer film and a total thickness of the adhesive layer. . 前記液晶ポリマーフィルムの平面方向の熱膨張率が、25〜200℃の温度範囲で負であることを特徴とする請求項1乃至3のうちいずれかに記載の配線基板。 4. The wiring substrate according to claim 1, wherein the coefficient of thermal expansion in the planar direction of the liquid crystal polymer film is negative in a temperature range of 25 to 200 [deg.] C. 金属層が金、銀、銅のうちいずれかを主成分としてなることを特徴とする請求項1乃至4のうちいずれかに記載の配線基板。 The wiring board according to any one of claims 1 to 4, wherein the metal layer contains one of gold, silver, and copper as a main component. 接着剤層がエポキシ系樹脂を主成分とすることを特徴とする請求項1乃至5のうちいずれかに記載の配線基板。 6. The wiring board according to claim 1, wherein the adhesive layer contains an epoxy resin as a main component. 接着剤層がPPE系樹脂又はPPO系樹脂を主成分とすることを特徴とする請求項1乃至6のうちいずれかに記載の配線基板。 7. The wiring board according to claim 1, wherein the adhesive layer contains a PPE resin or a PPO resin as a main component. 接着剤層が、無機充填材を10〜70体積%含有することを特徴とする請求項7に記載の配線基板。 The wiring board according to claim 7, wherein the adhesive layer contains 10 to 70% by volume of an inorganic filler. 無機充填材が酸化珪素、酸化アルミニウム、炭化珪素、窒化アルミニウムから選ばれるいずれかを主成分とすることを特徴とする請求項7又は8に記載の配線基板。 The wiring substrate according to claim 7, wherein the inorganic filler contains any one of silicon oxide, aluminum oxide, silicon carbide, and aluminum nitride as a main component. 接着剤層の硬化後の25〜200℃の熱膨張係数が50×10−6/℃以下であることを特徴とする請求項1乃至9のうちいずれかに記載の配線基板。 The wiring board according to any one of claims 1 to 9, wherein a thermal expansion coefficient of the adhesive layer at 25 to 200C after curing is 50 10-6 / C or less. 請求項1乃至10のうちいずれかに記載の配線基板を製造するための製造方法であって、
(a)液晶ポリマーフィルムの少なくとも片面に接着剤層を具備する絶縁フィルムに貫通孔を形成する工程と、
(b)前記貫通孔にビアを形成する工程と、
(c)(a)、(c)の工程で作製したビアを具備する絶縁フィルムを複数層積層する工程とを具備することを、
特徴とする配線基板の製造方法。
A manufacturing method for manufacturing the wiring board according to claim 1,
(A) forming a through hole in an insulating film having an adhesive layer on at least one side of a liquid crystal polymer film;
(B) forming a via in the through hole;
(C) laminating a plurality of insulating films having vias formed in the steps (a) and (c).
A method for manufacturing a wiring board, which is characterized by the following.
レーザー光により貫通孔を形成することを特徴とする請求項11に記載の配線基板の製造方法。 The method according to claim 11, wherein the through hole is formed by a laser beam.
JP2003302929A 2002-08-28 2003-08-27 Wiring board and manufacturing method thereof Expired - Fee Related JP4462872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003302929A JP4462872B2 (en) 2002-08-28 2003-08-27 Wiring board and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002248706 2002-08-28
JP2003302929A JP4462872B2 (en) 2002-08-28 2003-08-27 Wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004111945A true JP2004111945A (en) 2004-04-08
JP4462872B2 JP4462872B2 (en) 2010-05-12

Family

ID=32301244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003302929A Expired - Fee Related JP4462872B2 (en) 2002-08-28 2003-08-27 Wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4462872B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003631A (en) * 2004-06-17 2006-01-05 Canon Electronics Inc Blade and optical path opening/closing device using the same
JP2006019636A (en) * 2004-07-05 2006-01-19 Renesas Technology Corp Semiconductor apparatus
JP2007201453A (en) * 2005-12-28 2007-08-09 Sumitomo Bakelite Co Ltd Wiring board and insulating resin composition for solder resist used for same
JP2007266560A (en) * 2006-02-28 2007-10-11 Hitachi Chem Co Ltd Film-shaped adhesive for circuit connection
JP2008085105A (en) * 2006-09-28 2008-04-10 Kyocera Corp Wiring board and semiconductor device mounting structure using the same
JP2010219552A (en) * 2010-06-03 2010-09-30 Nippon Mektron Ltd Method of manufacturing wiring board
JP2010256371A (en) * 2010-08-10 2010-11-11 Renesas Electronics Corp Method of inspecting semiconductor wafer, and method of manufacturing semiconductor device
JP2012134567A (en) * 2005-12-28 2012-07-12 Sumitomo Bakelite Co Ltd Wiring board, and insulating resin composition for solder resist used for wiring board

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003631A (en) * 2004-06-17 2006-01-05 Canon Electronics Inc Blade and optical path opening/closing device using the same
JP4571827B2 (en) * 2004-06-17 2010-10-27 キヤノン電子株式会社 Optical path switch
JP2006019636A (en) * 2004-07-05 2006-01-19 Renesas Technology Corp Semiconductor apparatus
JP2007201453A (en) * 2005-12-28 2007-08-09 Sumitomo Bakelite Co Ltd Wiring board and insulating resin composition for solder resist used for same
JP2012134567A (en) * 2005-12-28 2012-07-12 Sumitomo Bakelite Co Ltd Wiring board, and insulating resin composition for solder resist used for wiring board
JP2007266560A (en) * 2006-02-28 2007-10-11 Hitachi Chem Co Ltd Film-shaped adhesive for circuit connection
JP4687576B2 (en) * 2006-02-28 2011-05-25 日立化成工業株式会社 Film adhesive for circuit connection
JP2008085105A (en) * 2006-09-28 2008-04-10 Kyocera Corp Wiring board and semiconductor device mounting structure using the same
JP2010219552A (en) * 2010-06-03 2010-09-30 Nippon Mektron Ltd Method of manufacturing wiring board
JP2010256371A (en) * 2010-08-10 2010-11-11 Renesas Electronics Corp Method of inspecting semiconductor wafer, and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP4462872B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
EP1445994B1 (en) Manufacturing method for a wiring board sheet and manufacturing method for a multilayer board
US20050224985A1 (en) Circuitized substrate, method of making same, electrical assembly utilizing same, and information handling system utilizing same
US20050224767A1 (en) Dielectric composition for forming dielectric layer for use in circuitized substrates
JP2005072328A (en) Multilayer wiring board
JP4462872B2 (en) Wiring board and manufacturing method thereof
JP2005019686A (en) Multilayer circuit board incorporating capacitor element
JP4025695B2 (en) Insulating layer with protective film and method for producing wiring board
JP2006191145A (en) Multilayer wiring board
JP2004119732A (en) Multilayer wiring board with built-in capacitor
JP3872360B2 (en) Multilayer wiring board
JP2002261453A (en) Multilayer interconnection board
JP2005050877A (en) Wiring board
JP4959066B2 (en) Insulating film and multilayer wiring board using the same
JP2003347454A (en) Multilayer wiring board
JP2005153358A (en) Insulating layer with protective film and method for producing wiring board
JP3694673B2 (en) Insulating film and multilayer wiring board using the same
JP2003069237A (en) Insulation film and multilayer interconnection board using the same
JP3878832B2 (en) Multilayer wiring board
JP2004179011A (en) Insulating film and multilayer wiring board using this
JP2003046259A (en) Multilayer interconnection board
JP2003062942A (en) Insulating film and multilayered wiring board using the same
JP2005072398A (en) Multilayer wiring board
JP2006191146A (en) Method of manufacturing multilayer wiring board
JP2004296574A (en) Multilayer wiring board with built-in electronic element
JP2003218543A (en) Multilayered wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4462872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees