JP2004109106A - 表面欠陥検査方法および表面欠陥検査装置 - Google Patents

表面欠陥検査方法および表面欠陥検査装置 Download PDF

Info

Publication number
JP2004109106A
JP2004109106A JP2002324877A JP2002324877A JP2004109106A JP 2004109106 A JP2004109106 A JP 2004109106A JP 2002324877 A JP2002324877 A JP 2002324877A JP 2002324877 A JP2002324877 A JP 2002324877A JP 2004109106 A JP2004109106 A JP 2004109106A
Authority
JP
Japan
Prior art keywords
target surface
inspection target
defect
inspection
line ccd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002324877A
Other languages
English (en)
Inventor
Moritoshi Ando
安藤 護俊
Satoru Sakai
酒井 覚
Yorihiro Sakashita
坂下 頼弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002324877A priority Critical patent/JP2004109106A/ja
Publication of JP2004109106A publication Critical patent/JP2004109106A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

【課題】蓄積型(TDI)ラインCCDを用いて、検査対象面の凹凸欠陥およびうねりを同時に検知すること。
【解決手段】鏡に見立てた検査対象面をTDIラインCCD26に直交する方向へ移動させながら、検査対象物31の表面に格子縞23を投影して反射させ、その反射像をTDIラインCCD26で観測する。検査対象面に格子縞を、反射像の縞模様が検査対象面の移動方向に対して斜めになるように投影する。反射像の、検査対象面の移動方向に繰り返される明部と暗部の繰り返しの最小単位を1周期としたときに、TDIラインCCD26の光量蓄積範囲を、たとえば1.5周期分とする。TDIラインCCD26から得られた信号強度をしきい値と比較して、凸欠陥を検知する。TDIラインCCD26から得られた信号強度パターンを標準パターンと比較し、うねりや凹欠陥を検知する。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、平坦な表面に存在する微小な凸凹や、広範囲にわたる厚みの異常などの欠陥を検査する表面欠陥検査方法および表面欠陥検査装置に関し、特にプラズマ表示装置の製造途中における表示パネルの外観検査や、セラミック基板の製造途中における中間層の基板検査に適用して好適な技術に関する。
【0002】
プラズマ表示装置の製造工程には、ガラス板にペースト状のガラス粉末を塗布する工程がある。ガラス粉末の塗布面は平坦でなければならないが、微小な凸部(以下、凸欠陥とする)や凹部(以下、凹欠陥とする)、あるいは広範囲にわたる厚みの異常(以下、うねりとする)などの欠陥が存在することがある。このような欠陥は、最終的に表示素子の欠陥となる。そのため、ガラス粉末の塗布直後に塗布面の検査をおこない、上述した欠陥が存在する基板を排除する必要がある。この段階で排除された基板を再処理すれば、製品化が可能であるため、歩留まりが向上する。
【0003】
【従来の技術】
従来より、ガラス粉末の塗布面の欠陥検査は、目視によりおこなわれている。ガラス粉末の塗布面には、パターンが何も形成されていないため、数百μm程度の深さの大きな傷を見つけるのは比較的容易である。
【0004】
ところで、平坦な表面の凹凸を検査する方法として、図31に示すように、検査対象面1に照明光源2の光を均一にあて、そのときにできる影をテレビカメラ3等により観測する方法がある。また、均一な照明光をあてる代わりに、検査対象面1に対して光ビームを走査し、その反射光量の分布を観測する方法も知られている。このような方法では、凸欠陥4の場合、光の照射方向の反対側に影5ができるため、検知することができる。なお、一例として図31に「凸欠陥」として示す欠陥4は、窪んだ部分6の中央が凸状に盛り上がったものであり、窪んだ部分6にも影7ができている。
【0005】
また、うねりを計測する方法として、モアレ干渉法や光干渉法などがある。これらの方法では、検査対象面に投影された格子縞をテレビカメラ等により観測するが、図32に示すように、うねりのある部分9で格子縞10の間隔が不均一になるため、検知することができる。また、テレビカメラ等に代えてラインCCDを用いた場合には、図33に示すように、格子縞の明部に対応する信号強度の高い部分11と、格子縞の暗部に対応する信号強度の低い部分12とからなる信号パターンが得られる。
【0006】
この信号パターンでは、うねりのある部分9(図32参照)に対応する部分では、図33に符号13で示すように、信号強度の高い部分の間隔が、点線で示す本来の間隔よりも広くなる(狭くなる場合もある)。また、図32に符号14で示す凸欠陥は、格子縞の明部にあるため、図33に示す信号パターンでは、符号15で示すように信号強度が一部低くなる。このように、モアレ干渉法等では、うねりや格子縞の明部にある凸欠陥を検知することができる。また、検査対象物の平坦面に、その移動方向に対して垂直な格子縞を投影して表面の凹凸を検査する方法(たとえば、特許文献1参照。)や、円筒状の検査対象物をその回転軸の回りに回転させ、その外周面に、回転軸に垂直な格子縞を投影して外周面の凹凸を検査する方法(たとえば、特許文献2参照。)が公知である。
【0007】
【特許文献1】
特開2001−349716号公報
【0008】
【特許文献2】
特開2002−148029号公報
【0009】
【発明が解決しようとする課題】
しかしながら、上述した目視検査では、検査員の技能に差があるため、数μmの深さの凹欠陥の発見にばらつきが生じるという問題点がある。また、図31に示すような検査対象面にできる影を観測する方法では、表面角度の変化が小さいうねり(図31に符号8で示す)や、なだらかな凹欠陥に光があたっても、影が生じないため、検知することができないという問題点がある。
【0010】
また、モアレ干渉法等においてテレビカメラを用いた場合には、カメラの画素数が500×500画素程度であり、検知可能な面積が小さすぎるため、プラズマ表示装置の表示パネル等の外観検査には適さない。モアレ干渉法等においてラインCCDを用いた場合には、図32に符号16で示すように格子縞の暗部にある欠陥は、その暗部から得られる信号強度が元々低いため、図33に符号17で示すように隠れてしまい、検知不可能であるという問題点がある。なお、図32では、格子縞の暗部が黒色であるため、暗部にある欠陥16を白抜きで示している。
【0011】
また、モアレ干渉法等においてラインCCDを用いた場合、検査対象の移動速度が変化したり、移動時の振動等により検査対象面の位置が上下方向に変化すると、図34に示すように、その変化した時点で格子縞10の全体の形状に変化が生じる。この格子縞10の全体の形状変化部分18(破線で囲む部分)に、欠陥による格子縞形状の局部的な歪み19が吸収されてしまうと、欠陥による格子縞形状の変化のみを抽出することは困難であるため、欠陥の検知が不可能になるという問題点がある。
【0012】
本発明は、上記問題点に鑑みてなされたものであって、複数のラインセンサが並列に並べられた構成の蓄積型(TDI)ラインCCDを用いて、凹凸欠陥およびうねりを同時に検知することが可能な表面欠陥検査方法および表面欠陥検査装置を提供することを目的とする。また、本発明の他の目的は、複数のラインセンサが並列に並べられた構成のラインCCDを用いるとともに、検査対象の移動速度や上下動の影響を受けずに、表面欠陥を検知することが可能な表面欠陥検査方法および表面欠陥検査装置を提供することである。
【0013】
【課題を解決するための手段】
上記目的を達成するため、本発明にかかる表面欠陥検査方法および表面欠陥検査装置は、鏡に見立てた検査対象面をTDIラインCCDに直交する方向へ移動させながら、検査対象面に格子縞を投影して反射させ、その反射像の光量をTDIラインCCDで蓄積するにあたり、検査対象面に格子縞を、反射像の縞模様が検査対象面の移動方向に対して斜め、たとえば45°になるように投影する。
【0014】
また、反射像の、検査対象面の移動方向に繰り返される明部と暗部の繰り返しの最小単位を1周期としたときに、TDIラインCCDの蓄積範囲を、1周期のn倍(nは自然数)に1周期未満の位相分αを付加した範囲、たとえば1.5周期分とする。そして、あらかじめ信号強度のしきい値を設定しておき、このしきい値と、実際にTDIラインCCDの各画素より得られた信号強度とを比較する。
【0015】
また、あらかじめ標準的な信号強度パターンを設定しておき、この標準パターンと、実際にTDIラインCCDの各画素より得られた信号強度パターンとを比較する。検査対象面が鏡のような反射面でない場合には、検査対象面に格子縞を直接投射し、検査対象面に写った格子縞をTDIラインCCDにより観測すればよい。
【0016】
この発明によれば、TDIラインCCDから直流成分に交流成分が重畳された信号が得られ、凸欠陥や微小な凹欠陥があると、TDIラインCCDの各画素より得られた信号の直流成分の強度がしきい値よりも低くなる。また、うねりやなだらかな凹欠陥があると、TDIラインCCDの各画素より得られた信号強度パターンの位相と標準パターンの位相とがずれる。
【0017】
また、上述した発明において、TDIラインCCDに代えて、n本の一般的なラインCDDを用いてもよい。この場合には、各ラインCCDから得られた、格子縞の明部と暗部の繰り返しに対応した周期的な信号が360/n度の位相差でずれるように、近接して互いに平行に配置すればよい。
【0018】
【発明の実施の形態】
以下に、本発明の実施の形態について図面を参照しつつ詳細に説明する。
【0019】
(実施の形態1)
図1は、本発明の実施の形態1にかかる表面欠陥検査方法の実施に使用される検査装置の構成を示す概略図である。図1に示すように、この検査装置には、検査対象物31を載せる図示しない移動ステージ、照明光源22、格子縞23が形成された格子板24、結像レンズ25およびTDIラインCCD26が備えられている。
【0020】
格子板24の格子縞23は、照明光源22により検査対象物31の表面に投影される。検査対象物31の表面が、ガラスペーストを塗布した面である場合、検査対象物31の表面は鏡となるので、投影された格子縞は検査対象物31の表面で反射する。その反射光は、結像レンズ25を通って、TDIラインCCD26のセンサ面に結像する。この結像光学系において、物点は格子板24の格子縞23であり、像点はTDIラインCCD26のセンサ面である。
【0021】
移動ステージは、特に図示しないが、搬送機構によって、TDIラインCCD26に対して直交する方向に、一定速度で移動する。それに伴って、移動ステージ上の検査対象物31も、TDIラインCCD26に対して直交する方向(図1に矢印イで示す方向)に、一定速度で移動し、それによって、検査対象物31の表面全体が検査される。
【0022】
照明光源22は線状の光源であり、その長さは検査対象物31の幅に対応している。ここで、検査対象物31の幅とは、矩形状の検査対象物31の、その移動方向に直交する方向の辺の長さである。照明光源22として、たとえば蛍光灯や反射テープつきロッドレンズや光ファイババンドルなどが用いられる。
【0023】
格子板24には、格子縞23が検査対象物31の表面に投影されたときの縞模様が、検査対象物31の移動方向に対して斜め、特に限定しないが、たとえば45°の角度をなすように、格子縞23が形成されている。格子縞23は、たとえば検査対象物31の幅に対応して形成されている。
【0024】
結像レンズ25の倍率は、後述するTDIラインCCD26の光量蓄積範囲に応じて適宜選択される。そして、この結像光学系において、物点、すなわち格子板24の格子縞23から検査対象物31の表面までの反射前の光軸が検査対象物31の表面に対してなす角度(以下、照明角とする)と、検査対象物31の表面から像点、すなわちTDIラインCCD26までの反射後の光軸が検査対象物31の表面に対してなす角度(以下、観測角とする)とは、同じで、かつなるべく小さい角度に設定される。たとえば、その設定角度は、検査対象物31の表面に対して15°以下であるのが望ましい。このように、照明角および観測角が小さいと、検査対象物31の上下動に対する焦点深度の影響が小さくなる。
【0025】
TDIラインCCD26は、図2に示すように、複数のラインセンサが平行に並べられた構成を有し、対象物、ここでは検査対象物31の移動速度に同期して、検知した電荷を次のラインに移す機能を具えている。すなわち、図2を参考にして説明すると、検査対象物31の表面の検査対象となる箇所が、同図において矢印ロで示すようにAからB、Cへと移動すると、それに対応する画像は、TDIラインCCD26上で、矢印ハで示すようにAからB、Cへと移動する。このTDIラインCCD26上での画像の移動速度に合わせて、各ラインセンサ内に蓄積された電荷が、矢印ニで示すように後列のラインに移動する。それによって、最後列のラインセンサから、矢印ホで示すように、積分された電荷が出力されるので、検知感度が向上する。
【0026】
ここで、図3に示すように、格子縞23が検査対象物31の表面に投影されたときの縞模様27において、検査対象物31の移動方向(図3、矢印イの方向)に繰り返される明部28と暗部29の繰り返しの最小単位を1周期(図3では、λに相当)とすると、TDIラインCCD26が反射光の光量を蓄積する範囲は、その1周期のn倍(nは自然数)に1周期未満の位相分αを付加した範囲である。好ましくは、nは1であり、αはおおよそ1/2周期である。図3に示す例では、nが1であり、αが1/2周期である。この場合、TDIラインCCD26の蓄積段数と分解能、位相との関係は、つぎの(1)式で表される。
【0027】
[蓄積段数]×[分解能]>1+α(周期) ・・・(1)
【0028】
TDIラインCCD26の光量蓄積範囲を、1周期未満の位相分αを付加した範囲とすることによって、TDIラインCCD26から、図4に示すように、直流成分に交流成分が重畳された信号が出力される。これは、図3に示す縞模様27において、TDIラインCCD26の、D−D’に沿って光量を蓄積する画素が、明部28よりも暗部29の方をより多く横切るのに対して、E−E’に沿って光量を蓄積する画素は、暗部29よりも明部28の方をより多く横切るので、図5に示すように、D−D’に沿って蓄積した光量の総和よりも、E−E’に沿って蓄積した光量の総和の方が高くなるからである。
【0029】
このように、図3に示す縞模様27を横切る位置によって、蓄積した光量の総和が周期的に異なるため、図4に示すような周期性を有する信号がTDIラインCCD26から出力されることになる。周期性を有する信号が得られることによって、位相に係わる情報が得られる。この位相は、検査対象面の高さや表面角度によって変化するため、位相情報を解析することにより検査対象面にある微細な欠陥の形状を観測することができる。
【0030】
それに対して、TDIラインCCD26の光量蓄積範囲を1周期とした場合には、TDIラインCCD26からは、図7に示すように、直流成分のみの信号が出力される。これは、図6に示すように、格子縞23が検査対象物31の表面に投影されたときの縞模様27において、TDIラインCCD26の、F−F’に沿って光量を蓄積する画素でも、G−G’に沿って光量を蓄積する画素でも、それらの光量蓄積開始の位相は異なるが、図8に示すように、蓄積光量の総和は同じになるからである。
【0031】
この場合には、検査対象面に欠陥がなければ、検査対象物31を移動させても、検査対象面の全域で均一な反射光量が得られる。しかし、検査対象面に欠陥があると、その欠陥の場所では反射光量が弱くなるので、信号強度が小さくなった点を観測することにより、欠陥を検知することができる。ただし、TDIラインCCD26からは、交流成分の信号が得られないため、位相に係わる情報が得られないので、検査対象面にある微細な欠陥の形状等を観測することはできない。
【0032】
上述した理由により、本実施の形態1では、TDIラインCCD26の光量蓄積範囲を1+α周期とする。この場合の欠陥の検知例について説明する。図9は、検査対象物31の表面に、凸欠陥32,33により反射しない部分がある場合を示している。この場合には、図10に示すように、凸欠陥32,33に対応する位置で信号強度がしきい値よりも低くなるので、欠陥を検知することができる。ここで、しきい値は、あらかじめ適当な値に設定される。
【0033】
図11は、検査対象物31の表面に、うねり34がある場合を示している。この場合には、図12に示すように、得られた信号強度のパターン(実線で示す)を、うねりのない正常な場合に得られると予想される標準的な信号強度のパターン(点線で示す)と比較すれば、うねり34に対応する位置で位相がずれるので、欠陥を検知することができる。また、位相差信号を求めることによって、つぎに説明するように、欠陥の高さや大きさなどの形状を知ることができる。ここで、標準的な信号強度のパターンは、あらかじめ設定される。
【0034】
つぎに、図13を参考にして、画像処理の流れを説明する。TDIラインCCD26により検知した画像は、同図(a)に示すように、縞パターンとなる。検査対象面に欠陥があると、その欠陥に対応する箇所の縞の間隔が変化する。検査対象面に欠陥がなければ、縞の間隔は一定となる。つづいて、図13(b)に示すように、検知した縞パターン(実線で示す)を標準的な縞のパターン(点線で示す)と比較する。標準的な縞のパターンは、あらかじめわかっている。そして、図13(c)に示すように、検知した縞パターンと標準的な縞のパターンとの差から位相差を検知する。この位相差に基づいて、図13(d)に示すように、実際の検査対象面の凹凸の大きさを求める。
【0035】
上述した画像処理をおこなう信号処理系は、図14に示すように、画像メモリ41、標準パターン発生回路42、しきい値発生回路43、移動ステージ速度検知回路44、位相比較回路45、強度比較回路46、第1および第2の形状計算回路47,48および結果出力回路49を備えている。標準パターン発生回路42は、上述した標準的な縞のパターンを記憶しており、その標準的な縞のパターンを位相比較回路45に供給する。しきい値発生回路43は、上述した信号強度のしきい値を記憶しており、そのしきい値を強度比較回路46に供給する。
【0036】
TDIラインCCD26から出力されたアナログ信号は、画像メモリ41に記憶され、位相比較回路45および強度比較回路46に供給される。位相比較回路45は、画像メモリ41から供給された画像と、標準パターン発生回路42から供給された標準的な縞のパターンとを比較して、位相差を検出する。第1の形状計算回路47は、位相比較回路45により検出された位相差に基づいて、欠陥の形状を計算して求める。
【0037】
また、強度比較回路46は、画像メモリ41から供給された画像と、しきい値発生回路43から供給されたしきい値とを比較する。第2の形状計算回路48は、強度比較回路46による比較結果に基づいて、欠陥の形状を計算して求める。第1および第2の形状計算回路47,48により求められた結果は、結果出力回路49から出力される。第1および第2の形状計算回路47,48において欠陥の形状を計算する際には、移動ステージ速度検知回路44により検知されたステージの移動速度に基づいて、欠陥のサイズが修正される。
【0038】
上述した実施の形態1によれば、TDIラインCCD26から直流成分に交流成分が重畳された信号が得られ、検査対象物31の表面に凸欠陥や微小な凹欠陥があると、TDIラインCCD26の各画素より得られた信号の直流成分の強度がしきい値よりも低くなる。また、検査対象物31の表面にうねりやなだらかな凹欠陥があると、TDIラインCCD26の各画素より得られた信号強度パターンの位相と標準パターンの位相とがずれる。したがって、凹凸欠陥およびうねりを同時に検知することができる。
【0039】
(実施の形態2)
本発明の実施の形態2にかかる表面欠陥検査方法は、表面が拡散性である検査対象物61の表面を検査する方法である。以下、実施の形態1と重複する説明を省略し、実施の形態1と異なる点のみ説明する。
【0040】
拡散性の表面は、実施の形態1のような鏡にはならない。そのため、図15に示すように、実施の形態2では、格子板24と検査対象物61との間にレンズ51を挿入し、そのレンズ51により、格子板24の格子縞23を検査対象物61の表面に直接投射することにより、検査対象物61の表面に、格子縞23による縞模様62を写す構成となっている。したがって、実施の形態2では、結像レンズ25の焦点は、検査対象物61の表面に写る縞模様62にあうように調整されている。そして、TDIラインCCD26により、検査対象物61の表面に写る縞模様62を観測する構成となっている。
【0041】
ここで、検査対象物61の表面に格子縞23を投射する角度は、特に限定しないが、たとえば45°であるのが望ましい。また、TDIラインCCD26のセンサ面と結像レンズ25の面と検査対象面は、シャインプルーフの関係を満たすように配置される。つまり、TDIラインCCD26のセンサ面を含む直線(図15、二点鎖線H)と、結像レンズ25の面を含む直線(図15、二点鎖線J)と、検査対象物61の表面を含む直線(図15、二点鎖線K)とが一点で交わるように配置される。このシャインプルーフの関係を満たすことによって、検査対象物61の表面とTDIラインCCD26のセンサ面とが一致する。
【0042】
上述した実施の形態2によれば、検査対象物61の表面が拡散性である場合にも、実施の形態1と同様に、TDIラインCCD26の各画素より得られた信号の強度をしきい値と比較し、また、TDIラインCCD26の各画素より得られた信号強度パターンの位相と標準パターンの位相とを比較することによって、拡散性の表面にある凹凸欠陥およびうねりを同時に検知することができる。
【0043】
(実施の形態3)
本発明の実施の形態3が、上述した実施の形態1と異なるのは、TDIラインCCDに代えて、ラインセンサとして一般的なラインCCDを特に数を限定しないが、たとえば3本、近接して互いに平行に配置して用いたことである。以下、実施の形態1と同様の構成については、実施の形態1と同一の符号を付すとともに、重複する説明を省略する。
【0044】
図16は、本発明の実施の形態3にかかる表面欠陥検査方法の実施に使用される検査装置の構成を概略的に示す斜視図であり、図17はその側面図である。図16および図17に示すように、この検査装置には、検査対象物31を載せる図示しない移動ステージ、照明光源22、格子縞23が形成された格子板24、結像レンズ25、および特にその数を限定しないが、たとえば3本のラインCCD71,72,73が備えられている。3本のラインCCD71,72,73は、各ラインCCDから得られた信号の処理をおこなう信号処理回路100に接続されている。
【0045】
実施の形態3では、実施の形態1と同様に、検査対象物31の表面は鏡状になっている。したがって、照明光源22により検査対象物31の表面に投影された格子縞は、検査対象物31の表面で反射し、結像レンズ25を通って、結像面上に配置されたラインCCD71,72,73に結像する。このようにすることによって、移動ステージががたついて移動中に検査対象物31の上下位置に変動しても、その上下動の影響が少なくなる。
【0046】
なお、図16では、ラインCCD71,72,73上に結像した格子縞の画像のイメージ(以下、格子縞画像とする)が、符号81で示されている。また、図17において、符号22’および24’は、それぞれ照明光源22および格子板24の鏡像である。
【0047】
格子縞23は、実施の形態1と同様に、検査対象物31の表面に投影されたときの縞模様が検査対象物31の移動方向に対して斜めになるように、形成されており、検査対象物31の上下動とともに、ゆるいうねりを検知することができるようになっている。格子のピッチは一定であり、検査対象物31の表面上に存在する欠陥よりも十分に小さい。格子のピッチは、特に限定しないが、たとえば検出したい欠陥の大きさの1/2程度である。
【0048】
3本のラインCCD71,72,73として、たとえば市販されているカラー画像検知用のラインセンサを用いることができる。一般に、カラー画像検知用ラインセンサは、3本のラインセンサが所定の間隔(〜100μm)で平行に並び、かつ各ラインセンサに赤、青、緑のような三原色(または補色)のカラーフィルタが取り付けられた構造となっている。実施の形態3では、検査対象の色は白色であるため、各ラインセンサの出力は、一定のND(Neutral Density)フィルタを介したものと見なされる。なお、カラーフィルタが設置されていないセンサを用いてもよい。
【0049】
実施の形態3では、検査対象物31の表面で反射した光、すなわち格子縞23の反射像は、3本のラインCCD71,72,73において同時に検知される。そして、信号処理回路100において、3本のラインCCD71,72,73で同時に検知された格子縞画像81に基づいて、検査対象物31の表面に存在する欠陥が判定される。このような構成となっていることによって、移動ステージの移動速度が変動したり、移動ステージが上下動しても、その影響を大きく受けずに、欠陥を検出することができる。
【0050】
つぎに、凹欠陥の検出感度と光学系との関係について説明する。図18は、格子板24における格子縞23の一部を示す図である。図18において、符号74および符号75は、それぞれ格子縞23の暗部および明部である。また、一点鎖線M−M’は、検査対象物31の表面に平行な面(水平面)を表す。図18に示すように、格子縞23の、水平面に対する傾き角度をψとし、格子縞23の暗部74の傾きに対して垂直な方向の格子間隔(つまり、実際の格子間隔)をPとすると、水平面M−M’に対して垂直な方向、つまり検査対象物31の移動方向に相当する方向の格子間隔(これを、見かけの格子間隔とする)pは、つぎの(2)式で表される。
【0051】
=P/cosψ ・・・(2)
【0052】
ここで、図19に示すように、検査対象物31の平坦な表面、すなわち欠陥のない表面を観測したときに、格子縞23の暗部74が観測されたと仮定する。検査対象物31の表面の観測範囲の大きさをDとし、光軸と検査対象物31の表面とのなす角、すなわち照明角をθとし、格子縞23と観測範囲との距離をlとし、格子縞23から結像レンズ25までの距離をLとし、しぼりの大きさをaとし、結像レンズ25の焦点距離をfとする。図19に示す状態において、観測範囲中心で光軸と直交する方向の観測範囲の大きさiは、つぎの(3)式で表される。また、比例関係から、つぎの(4)式が成り立つ。
【0053】
i=Dsinθ ・・・(3)
l/L=i/a ・・・(4)
【0054】
また、結像レンズ25のF値は、つぎの(5)式で表されるので、上記(3)式、(4)式および(5)式より、つぎの(6)式が導かれる。この(6)式より、観測範囲の大きさDに対する結像レンズ25のF値が決まる。
【0055】
F=f/a ・・・(5)
F=f×(l/L)×(1/i)=fl/(LDsinθ) ・・・(6)
【0056】
また、図20に示すように、検査対象物31の表面の観測範囲に深さhのすり鉢状の凹部76があり、それによって格子縞画像が曲がり、本来、格子縞23の暗部74を観測していた光路(図19参照)が格子縞23の明部75を観測するように変化したと仮定する。このときには明らかに、凹部76の検出が可能となる。格子縞画像が曲がる大きさ(距離)は、2×距離×角度であるので、見かけの格子間隔pに対して、つぎの(7)式が成り立つ。この(7)式を変形し、pに前記(2)式を代入すると、つぎの(8)式が得られる。
【0057】
/2=2l(2h/D) ・・・(7)
h=pD/8l=PD/(8lcosψ) ・・・(8)
【0058】
これより、直径数mm程度の大きさの欠陥を見つけるためには、実際の格子間隔が0.5mm程度であればよいことが分かる。したがって、直径Dの欠陥を見つけるためには、結像レンズ25のF値を前記(6)式を満たすように選択すればよい。そうすれば、実際の格子間隔がPで、格子縞23と観測範囲との距離がlのときに、深さhの欠陥を検知することができる。ここで、hはつぎの(9)式で表される。
【0059】
h=PD/(8lcosψ)=Pf/(8FLcosψsinθ) ・・・(9)
【0060】
凹部(欠陥)76の大きさが観測範囲(の大きさ)Dよりも小さくなると、観測範囲Dの中に、凹部76の他に、欠陥のない平坦な表面部分も存在する。そのため、凹部76からの反射光だけでなく、その平坦な表面部分からの反射光も含まれることになり、欠陥信号のS/N比が劣化することになる。したがって、結像レンズ25のしぼりを調整して、観測範囲の大きさDが、丁度、凹部(欠陥)76の大きさに一致するようにするのがよい。換言すれば、結像レンズ25のしぼりを調整することにより、検知したい欠陥の最小サイズを変更することができる。
【0061】
つぎに、結像面における格子縞画像81とラインCCD71,72,73との関係について説明する。図21は、格子縞画像81およびラインCCD71,72,73を示す図である。説明の便宜上、図21において、上から順に第1のラインCCD71、第2のラインCCD72、第3のラインCCD73とする。3本のラインCCD71,72,73は、検査対象物31の表面に平行な面、すなわち前記水平面M−M’(図18参照)に平行であり、第1のラインCCD71と第2のラインCCD72との間隔、および第2のラインCCD72と第3のラインCCD73との間隔は同じである。
【0062】
図21に示すように、格子縞画像81は、3本のラインCCD71,72,73に対して斜めに結像する。したがって、第1のラインCCD71では第2のラインCCD72よりもΔpだけ進んだ位置に、また第2のラインCCD72では第3のラインCCD73よりもΔpの距離だけ進んだ位置に、格子縞画像81の同一の暗部82または明部83が発生することになる。そして、格子縞画像81の、ラインCCD71,72,73に平行な方向のピッチは、欠陥のない表面で反射した部分では一定のpとなる。ここで、図21に示すように、欠陥のある表面で反射した部分では、格子縞画像81の、ラインCCD71,72,73に平行な方向のピッチは、p’に変化することになる。なお、図21に示す例は、欠陥により左から2番目の暗部82に変形が生じ、その変形部分を丁度、第2のラインCCD72により観測している状態である。
【0063】
図22は、図21に示す格子縞画像81を3本のラインCCD71,72,73で観測した場合のセンサ信号の波形を示す図である。図22に示すように、3本のラインCCD71,72,73から得られた各センサ信号S1,S2,S3は、前記Δpの距離に相当するΔP画素分だけずれている。各センサ信号の周期のピッチはP画素であるが、欠陥のある表面で反射した部分では、センサ信号の周期のピッチはP’に変化する。
【0064】
図23は、3本のラインCCD71,72,73から得られたセンサ信号の位相差を補正した波形を示す図である。ラインCCD上での移動距離ΔPは光学系の構成により決まる。そこで、図23に示すように、第2のラインCCD72からのセンサ信号S2をΔP画素分だけ左に移動させる。また、第1のラインCCD71からのセンサ信号S1を2ΔP画素分だけ左に移動させる。このようにすると、正常部分では3つのセンサ信号S1,S2,S3は一致するが、欠陥を含む第2のラインCCD72からのセンサ信号S2では、欠陥のある表面で反射した光を検知した箇所でΔP’画素分のずれが生じる。このずれによる信号差を検知することにより、検査対象物31の表面に存在する欠陥を検出することが可能となる。
【0065】
つぎに、ラインCCDから得られたセンサ信号の周期のずれを検知する具体的な方法の一例について説明する。たとえば図11に示すようなセンサ信号の場合、まず、その極大点(以下、ピークとする)になる位置と極小点(以下、ボトムとする)になる位置を求める。その求め方については、特に限定しないが、たとえば図24に示すようにピークしきい値とボトムしきい値を決め、ピーク位置の場合には、ピークしきい値よりも大きい信号のなかで最大値となる位置を求め、一方、ボトム位置の場合には、ボトムしきい値よりも小さい信号のなかで最小値となる位置を求めればよい。さらには、前述したようにして求めた最大値および最小値をそれぞれ仮の最大値および仮の最小値とし、仮の最大値が得られた画素の周辺(たとえば両脇)の画素の信号強度を含めた3〜5画素の重心を求めることにより補間的にピーク位置を求め、同様にして仮の最小値に基づいて補間的にボトム位置を求めるようにしてもよい。このようにすれば、ピーク位置およびボトム位置の精度が高くなる。
【0066】
ピーク位置およびボトム位置が求まったら、図25に示すように、各ピークに開始位置から数えた番号を付ける。また、各ボトムにも開始位置から数えた番号を付ける。便宜上、図25に示す例では、ピークの番号を[1]、[2]、・・・とし、ボトムの番号を<1>、<2>、・・・とした。これより、開始位置から数えて何番目のピークまたはボトムがどの位置にあるかというデータが得られる。
【0067】
そして、各ピークの番号および各ボトムの番号と、先ほど求めたそれらの位置とを対応させる。たとえば図26に示すように、ピークおよびボトムの番号を横軸にとり、ピークおよびボトムの位置を縦軸にとって、各番号に対する位置をプロットすると、検査対象物31の表面に欠陥がない場合には、プロットは所定の直線に一致する。しかし、検査対象物31の表面に欠陥が存在すると、その欠陥位置に対応して、プロットの位置と直線との間に差分ΔP’が生じる。そこで、この差分ΔP’を、あらかじめ設定されたしきい値と比較し、差分ΔP’がしきい値よりも大きい場合に、欠陥があると判断し、欠陥信号を発生する。差分ΔP’がしきい値よりも小さい場合には、欠陥の大きさが許容範囲であるので、欠陥なしと判断する。
【0068】
説明の便宜上、図26にグラフを示して説明したが、実際には、グラフを作成するのではなく、同様のことを計算でおこなう。その際、正常な場合のピーク位置の直線の式とボトム位置の直線の式を計算で求めることもできるし、正常部分の実際のセンサ信号に基づいて平均して求めることもできる。実際の信号から求めた場合には、結像レンズ25のひずみや、格子縞23のばらつきなどの光学系を含む固定的なひずみを補正することができる。なお、図21に示すように、複数のラインCCD71,72,73を用いた場合には、複数の差分ΔP’が生じることがあるが、その場合には、各差分ΔP’の絶対値をとり、それらの和を計算して差分信号とすればよい。
【0069】
上述した方法でセンサ信号の周期のずれを検知する場合には、万一、検査対象物31の表面にある欠陥が大きすぎて、格子縞画像81が途中で消えてしまっても、ピークまたはボトムの番号と検知された位置との差が著しく大きくなる(格子ピッチのn倍の差がでる)ので検知可能である。
【0070】
つぎに、複数のラインCCD71,72,73により検査対象物31の表面を同時に検知することによる利点について説明する。検査対象物31の表面の欠陥が大きい場合、図27に示すように、格子縞画像81の変形が大きくなり、複数のラインCCD72,73にわたって格子縞画像81の変形が検知されることがある。このような場合、検知した結果に間違いが入る余地が少なくなるという利点がある。特に、移動ステージの移動速度が変動したり、移動ステージが上下動しても、その影響を受けずに欠陥を検出することが可能となるので、これらに起因する間違いが減る。
【0071】
また、図28に示すように、検査対象物31の表面の欠陥が格子縞に対して十分に小さい場合、欠陥84が格子縞画像81の暗部82と第2のラインCCD72との交点に位置し、暗部82に隠れてしまうことがある。このような場合、たとえば図28において第2のラインCCD72しかないと仮定すると、この欠陥84を検知することは不可能である。しかし、実施の形態3では、第2のラインCCD72の他に、第1および第3のラインCCD71,73があるため、格子縞画像81に対して図28に矢印で示すように欠陥84が移動すると、この欠陥84を第1のラインCCD71や第3のラインCCD73により検知することができる。
【0072】
この場合、第1〜第3のラインCCD71,72,73から得られる各センサ信号S1,S2,S3の位相が120°ずつずれるようにする必要がある。一般化すれば、ラインCCDの数をnとすれば、各ラインCCDから得られるセンサ信号の位相が360/n度ずつずれるようにする。したがって、図29に示すように、2本のラインCCD71,72が設けられている場合には、格子縞の傾きとラインCCD71,72の間隔を調整して、第1および第2のラインCCD71,72から得られる各センサ信号S1,S2の位相が180°ずれるようにする必要がある。このようにすれば、一方のラインCCDが格子縞画像81の暗部82に対応しているときには、他方のラインCCDが格子縞画像81の明部83に対応することになるので、検知不能領域を減らすことができる。なお、ここでは、便宜上、格子縞画像81に対して欠陥84が移動するように説明したが、実際には欠陥84は検査対象物31とともに移動する。
【0073】
つぎに、上述した信号処理をおこなう信号処理回路100について、ラインCCDの数が3本である場合を例にして説明する。図30は、信号処理回路100の構成の一例を示すブロック図である。図30に示すように、信号処理回路100は、第1〜第3のラインCCD71,72,73に対応した3個のピーク/ボトム検知回路101,102,103、ピーク/ボトム位置記憶回路104、ピーク/ボトム基準位置計算回路105、位置差分計算回路106、差分判定回路107、欠陥信号発生回路108および欠陥マップ作成回路109を備えている。
【0074】
ピーク/ボトム検知回路101,102,103は、対応するラインCCD71,72,73から供給されたアナログ信号よりなるセンサ信号S1,S2,S3をそれぞれ記録するとともに、それぞれのセンサ信号S1,S2,S3のピーク位置およびボトム位置を検出する。ピーク/ボトム位置記憶回路104は、ピーク/ボトム検知回路101,102,103により検出されたピーク位置およびボトム位置を記憶する。ピーク/ボトム基準位置計算回路105は、基準となる正常なピーク位置およびボトム位置を発生させる。ここでは、ピーク/ボトム基準位置計算回路105は、正常部分の実際のセンサ信号から求められたピーク位置およびボトム位置のデータに基づいて、基準となる正常なピーク位置およびボトム位置を計算により求めている。
【0075】
位置差分計算回路106は、ピーク/ボトム位置記憶回路104に記憶されたピーク位置およびボトム位置を、ピーク/ボトム基準位置計算回路105により求められた基準となるピーク位置およびボトム位置と比較し、その差分を求める。差分判定回路107は、位置差分計算回路106により求められた差分を、あらかじめ設定されたしきい値と比較する。欠陥信号発生回路108は、差分判定回路107における比較結果に基づいて、欠陥信号を発生させる。欠陥マップ作成回路109は、欠陥信号に基づいて、欠陥位置のマッピングをおこなう。
【0076】
上述した実施の形態3によれば、複数のラインCCD71,72,73を、ラインCCDの数nに対してセンサ信号の周期が360/n度の位相差でずれるように、近接して互いに平行に配置し、それら複数のラインCCD71,72,73で同時に検査対象物31の表面の欠陥を検知することにより、検査対象物31の移動速度や上下動の影響を受けずに、表面欠陥を検知することができる。
【0077】
以上において本発明は、上述した実施の形態1〜3に限らず、種々変更可能である。
【0078】
(付記1)検査対象面を蓄積型ラインCCDに直交する方向へ移動させながら、前記検査対象面に格子縞を投影して反射させ、その反射像を前記蓄積型ラインCCDにより観測することにより、前記検査対象面の欠陥を検査する表面欠陥検査方法であって、
前記検査対象面に前記格子縞を、前記反射像の縞模様が前記検査対象面の移動方向に対して斜めになるように投影するとともに、前記反射像の、前記検査対象面の移動方向に繰り返される明部と暗部の繰り返しの最小単位を1周期としたときのその1周期のn倍(nは自然数)に1周期未満の位相分αを付加した範囲の反射像の光量を、前記蓄積型ラインCCDにより蓄積する工程と、
前記蓄積型ラインCCDの各画素に蓄積された光量に対応する信号強度および信号強度のパターンに基づいて、前記検査対象面の欠陥を検知する工程と、
を含むことを特徴とする表面欠陥検査方法。
【0079】
(付記2)前記検査対象面が、平坦な基板の表面にガラス粉のペーストを平面状に塗布したガラス粉末の塗布面である場合、前記格子縞の投影元および前記蓄積型ラインCCDをそれぞれ物点および像点とする結像光学系を用い、かつ、前記投影元から前記検査対象面までの反射前の光軸、および反射後の前記検査対象面から前記蓄積型ラインCCDまでの光軸のそれぞれと、前記検査対象面とのなす角度を15°以下とすることを特徴とする付記1に記載の表面欠陥検査方法。
【0080】
(付記3)検査対象面を蓄積型ラインCCDに直交する方向へ移動させながら、前記検査対象面に格子縞を投射し、前記検査対象面に写った格子縞を前記蓄積型ラインCCDにより観測することにより、前記検査対象面の欠陥を検査するにあたって、
前記検査対象面に前記格子縞を、前記検査対象面に写った格子縞の縞模様が前記検査対象面の移動方向に対して斜めになるように投射するとともに、前記検査対象面に写った格子縞の、前記検査対象面の移動方向に繰り返される明部と暗部の繰り返しの最小単位を1周期としたときのその1周期のn倍(nは自然数)に1周期未満の位相分αを付加した範囲の格子縞の光量を、前記蓄積型ラインCCDにより蓄積する工程と、
前記蓄積型ラインCCDの各画素に蓄積された光量に対応する信号強度および信号強度のパターンに基づいて、前記検査対象面の欠陥を検知する工程と、
を含むことを特徴とする表面欠陥検査方法。
【0081】
(付記4)前記蓄積型ラインCCDより得られた信号強度を、あらかじめ設定されたしきい値と比較し、前記検査対象面の、前記しきい値以下の信号強度が得られた領域を検知することを特徴とする付記1〜3のいずれか一つに記載の表面欠陥検査方法。
【0082】
(付記5)前記蓄積型ラインCCDより得られた信号強度パターンの位相を、あらかじめ設定された標準パターンの位相と比較し、前記検査対象面の、前記信号強度パターンの位相が前記標準パターンの位相からずれた領域を検知することを特徴とする付記1〜4のいずれか一つに記載の表面欠陥検査方法。
【0083】
(付記6)前記信号強度パターンと前記標準パターンとの位相差に基づいて、前記検査対象面に存在する欠陥のサイズを求めることを特徴とする付記5に記載の表面欠陥検査方法。
【0084】
(付記7)前記検査対象面に写った格子縞および前記蓄積型ラインCCDをそれぞれ物点および像点とする結像光学系を用い、当該結像光学系の結像レンズと前記検査対象面と前記蓄積型ラインCCDのセンサ面はシャインプルーフの関係を満たすことを特徴とする付記3に記載の表面欠陥検査方法。
【0085】
(付記8)前記nは1であり、かつ、前記αは1/2であることを特徴とする付記1〜7のいずれか一つに記載の表面欠陥検査方法。
【0086】
(付記9)検査対象面を移動させながら、前記検査対象面に格子縞を投影して反射させ、その反射像を観測することにより、前記検査対象面の欠陥を検査する表面欠陥検査装置であって、
前記反射像の縞模様が前記検査対象面の移動方向に対して斜めになるように前記格子縞を投影する投影手段と、
前記反射像の光量を一つまたは複数の蓄積型ラインCCDを用いて各画素ごとに蓄積する蓄積手段と、
前記蓄積手段の各画素に蓄積された光量に対応する信号強度および信号強度のパターンに基づいて、前記検査対象面の欠陥を検知する検知手段と、
を備えたことを特徴とする表面欠陥検査装置。
【0087】
(付記10)検査対象面を、互いに平行に配置された一つまたは複数のラインセンサに直交する方向へ移動させながら、前記検査対象面に格子縞を投影して反射させ、その反射像を複数の前記ラインセンサよりなるラインセンサ群で観測することにより、前記検査対象面の欠陥を検査する表面欠陥検査方法であって、
前記検査対象面に前記格子縞を、前記反射像の縞模様が前記検査対象面の移動方向に対して斜めになるように投影するとともに、前記ラインセンサ群のうち、少なくとも一つのラインセンサの任意の光検知点で前記反射像の暗部の光を検出し、また、その暗部の光を検出している前記光検知点を通り、かつ前記ラインセンサ群に垂直な直線上に位置する、残りのラインセンサの光検知点のうち、少なくとも一つの光検知点で前記反射像の明部の光を検出する工程と、
前記ラインセンサ群により検知された光に対応する信号強度および信号強度のパターンに基づいて、前記検査対象面の欠陥を検知する工程と、
を含むことを特徴とする表面欠陥検査方法。
【0088】
(付記11)前記ラインセンサ群の各ラインセンサで同時に検知された光に対応する信号に基づいて、前記検査対象面の欠陥の有無を判定することを特徴とする付記10に記載の表面欠陥検査方法。
【0089】
(付記12)前記検査対象面と、前記検査対象面で反射した反射光の光軸とのなす角度を15°以下とすることを特徴とする付記10または11に記載の表面欠陥検査方法。
【0090】
(付記13)前記各ラインセンサについて、各ラインセンサにより検知された光に対応する信号の極大点と極小点を求め、それら極大点および極小点の、本来の出現位置からのずれ量に基づいて、前記検査対象面の欠陥の有無を判定することを特徴とする付記10〜12のいずれか一つに記載の表面欠陥検査方法。
【0091】
(付記14)前記極大点および前記極小点のそれぞれの実際の出現位置に出現順に付した番号に対する実際の出現位置の関係と、前記極大点および前記極小点のそれぞれの本来の出現位置に出現順に付した番号に対する本来の出現位置の関係とを比較することにより、前記検査対象面の欠陥の有無を判定することを特徴とする付記13に記載の表面欠陥検査方法。
【0092】
(付記15)前記ラインセンサの数をn(nは2以上)とすると、各ラインセンサから得られる、前記反射像の明部と暗部の繰り返しによる周期的な信号は、互いに360/n度の位相差でずれていることを特徴とする付記10〜14のいずれか一つに記載の表面欠陥検査方法。
【0093】
(付記16)前記nは3であることを特徴とする付記15に記載の表面欠陥検査方法。
【0094】
(付記17)検査対象面を移動させながら、前記検査対象面に格子縞を投影して反射させ、その反射像を観測することにより、前記検査対象面の欠陥を検査する表面欠陥検査装置であって、
前記反射像の縞模様が前記検査対象面の移動方向に対して斜めになるように前記格子縞を投影する投影手段と、
互いに平行に配置された一つまたは複数のラインセンサを有し、少なくとも一つのラインセンサの任意の光検知点で前記反射像の暗部の光を検出し、また、その暗部の光を検出している前記光検知点を通り、かつ前記ラインセンサ群に垂直な直線上に位置する、残りのラインセンサの光検知点のうち、少なくとも一つの光検知点で前記反射像の明部の光を検出する観測手段と、
前記観測手段により検知された光に対応する信号強度および信号強度のパターンに基づいて、前記検査対象面の欠陥を検知する検知手段と、
を備えたことを特徴とする表面欠陥検査装置。
【0095】
(付記18)3本のラインセンサが、各ラインセンサから得られる、前記反射像の明部と暗部の繰り返しによる周期的な信号が互いに120°の位相差でずれるように、配置されていることを特徴とする付記17に記載の表面欠陥検査装置。
【0096】
【発明の効果】
本発明によれば、TDIラインCCDから直流成分に交流成分が重畳された信号が得られ、凸欠陥や微小な凹欠陥があると、TDIラインCCDの各画素より得られた信号の直流成分の強度がしきい値よりも低くなり、一方、うねりやなだらかな凹欠陥があると、TDIラインCCDの各画素より得られた信号強度パターンの位相と標準パターンの位相とがずれるので、凹凸欠陥およびうねりを同時に検知することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1にかかる表面欠陥検査方法の実施に使用される検査装置の構成を示す概略図である。
【図2】図1に示す構成の検査装置の蓄積型ラインCCDと検査対象物との関係を模式的に示す図である。
【図3】本発明の実施の形態1にかかる表面欠陥検査方法において格子縞が検査対象面に投影されたときの縞模様の一部を示す図である。
【図4】蓄積型ラインCCDの光量蓄積範囲を1+α周期としたときの出力信号を示す図である。
【図5】蓄積型ラインCCDの光量蓄積範囲を1+α周期としたときに各画素により蓄積光量が異なることを説明するための図である。
【図6】蓄積型ラインCCDの光量蓄積範囲を1周期としたときに直流成分の出力信号しか得られないことを説明するための図である。
【図7】蓄積型ラインCCDの光量蓄積範囲を1周期としたときの出力信号を示す図である。
【図8】蓄積型ラインCCDの光量蓄積範囲を1周期としたときに各画素の蓄積光量が等しくなることを説明するための図である。
【図9】検査対象面に凸欠陥がある状態を示す図である。
【図10】本発明の実施の形態1にかかる表面欠陥検査方法において凸欠陥がある場合の信号強度の変化を説明するための図である。
【図11】検査対象面にうねりがある状態を示す図である。
【図12】本発明の実施の形態1にかかる表面欠陥検査方法においてうねりがある場合の信号強度の変化を説明するための図である。
【図13】本発明の実施の形態1にかかる表面欠陥検査方法の画像処理の流れを説明するための図である。
【図14】本発明の実施の形態1にかかる表面欠陥検査方法の実施に使用される検査装置の信号処理系の構成を示すブロック図である。
【図15】本発明の実施の形態2にかかる表面欠陥検査方法の実施に使用される検査装置の構成を示す概略図である。
【図16】本発明の実施の形態3にかかる表面欠陥検査方法の実施に使用される検査装置の構成を示す概略図である。
【図17】図16に示す検査装置の要部の側面図である。
【図18】本発明の実施の形態3にかかる表面欠陥検査方法において凹欠陥の検出感度と光学系との関係について説明するために格子縞の一部を拡大して示す図である。
【図19】本発明の実施の形態3にかかる表面欠陥検査方法において欠陥がない場合の光学系を示す概略図である。
【図20】本発明の実施の形態3にかかる表面欠陥検査方法において凹欠陥がある場合の光学系を示す概略図である。
【図21】本発明の実施の形態3にかかる表面欠陥検査方法において格子縞画像とラインセンサとの関係を示す図である。
【図22】図21に示す格子縞画像を観測した場合のセンサ信号の波形を示す図である。
【図23】図22に示す各センサ信号の位相差を補正した波形を示す図である。
【図24】本発明の実施の形態3にかかる表面欠陥検査方法においてセンサ信号の周期のずれを検知する方法について説明するためにセンサ信号の波形を示す図である。
【図25】図24に示すセンサ信号のピークおよびボトムのそれぞれに番号を付した様子を示す図である。
【図26】センサ信号のピークおよびボトムに付した番号とピークおよびボトムの位置との関係を示すグラフである。
【図27】本発明の実施の形態3にかかる表面欠陥検査方法において格子縞画像とラインセンサとの関係を示す図である。
【図28】本発明の実施の形態3にかかる表面欠陥検査方法において格子縞画像とラインセンサとの関係を示す図である。
【図29】本発明の実施の形態3にかかる表面欠陥検査方法において格子縞画像とラインセンサとの関係の他の例を示す図である。
【図30】本発明の実施の形態3にかかる表面欠陥検査方法の実施に使用される検査装置の信号処理回路の構成を示すブロック図である。
【図31】従来の表面検査方法を説明するための図である。
【図32】従来のモアレ干渉法等における格子縞と欠陥との関係を説明するための図である。
【図33】従来のモアレ干渉法等により得られるラインCCDの信号パターンと欠陥との関係を説明するための図である。
【図34】従来のモアレ干渉法等により得られるラインCCDの信号パターンと欠陥との関係を説明するための図である。
【符号の説明】
23 格子縞
26 蓄積型ラインCCD
28 明部
29 暗部
31,61 検査対象物

Claims (5)

  1. 検査対象面を蓄積型ラインCCDに直交する方向へ移動させながら、前記検査対象面に格子縞を投影して反射させ、その反射像を前記蓄積型ラインCCDにより観測することにより、前記検査対象面の欠陥を検査する表面欠陥検査方法であって、
    前記検査対象面に前記格子縞を、前記反射像の縞模様が前記検査対象面の移動方向に対して斜めになるように投影するとともに、前記反射像の、前記検査対象面の移動方向に繰り返される明部と暗部の繰り返しの最小単位を1周期としたときのその1周期のn倍(nは自然数)に1周期未満の位相分αを付加した範囲の反射像の光量を、前記蓄積型ラインCCDにより蓄積する工程と、
    前記蓄積型ラインCCDの各画素に蓄積された光量に対応する信号強度および信号強度のパターンに基づいて、前記検査対象面の欠陥を検知する工程と、
    を含むことを特徴とする表面欠陥検査方法。
  2. 前記検査対象面が、平坦な基板の表面にガラス粉のペーストを平面状に塗布したガラス粉末の塗布面である場合、前記格子縞の投影元および前記蓄積型ラインCCDをそれぞれ物点および像点とする結像光学系を用い、かつ、前記投影元から前記検査対象面までの反射前の光軸、および反射後の前記検査対象面から前記蓄積型ラインCCDまでの光軸のそれぞれと、前記検査対象面とのなす角度を15°以下とすることを特徴とする請求項1に記載の表面欠陥検査方法。
  3. 検査対象面を蓄積型ラインCCDに直交する方向へ移動させながら、前記検査対象面に格子縞を投射し、前記検査対象面に写った格子縞を前記蓄積型ラインCCDにより観測することにより、前記検査対象面の欠陥を検査するにあたって、
    前記検査対象面に前記格子縞を、前記検査対象面に写った格子縞の縞模様が前記検査対象面の移動方向に対して斜めになるように投射するとともに、前記検査対象面に写った格子縞の、前記検査対象面の移動方向に繰り返される明部と暗部の繰り返しの最小単位を1周期としたときのその1周期のn倍(nは自然数)に1周期未満の位相分αを付加した範囲の格子縞の光量を、前記蓄積型ラインCCDにより蓄積する工程と、
    前記蓄積型ラインCCDの各画素に蓄積された光量に対応する信号強度および信号強度のパターンに基づいて、前記検査対象面の欠陥を検知する工程と、
    を含むことを特徴とする表面欠陥検査方法。
  4. 前記蓄積型ラインCCDより得られた信号強度を、あらかじめ設定されたしきい値と比較し、前記検査対象面の、前記しきい値以下の信号強度が得られた領域を検知することを特徴とする請求項1〜3のいずれか一つに記載の表面欠陥検査方法。
  5. 検査対象面を移動させながら、前記検査対象面に格子縞を投影して反射させ、その反射像を観測することにより、前記検査対象面の欠陥を検査する表面欠陥検査装置であって、
    前記反射像の縞模様が前記検査対象面の移動方向に対して斜めになるように前記格子縞を投影する投影手段と、
    前記反射像の光量を一つまたは複数の蓄積型ラインCCDを用いて各画素ごとに蓄積する蓄積手段と、
    前記蓄積手段の各画素に蓄積された光量に対応する信号強度および信号強度のパターンに基づいて、前記検査対象面の欠陥を検知する検知手段と、
    を備えたことを特徴とする表面欠陥検査装置。
JP2002324877A 2002-07-22 2002-11-08 表面欠陥検査方法および表面欠陥検査装置 Withdrawn JP2004109106A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002324877A JP2004109106A (ja) 2002-07-22 2002-11-08 表面欠陥検査方法および表面欠陥検査装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002213054 2002-07-22
JP2002324877A JP2004109106A (ja) 2002-07-22 2002-11-08 表面欠陥検査方法および表面欠陥検査装置

Publications (1)

Publication Number Publication Date
JP2004109106A true JP2004109106A (ja) 2004-04-08

Family

ID=32300433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324877A Withdrawn JP2004109106A (ja) 2002-07-22 2002-11-08 表面欠陥検査方法および表面欠陥検査装置

Country Status (1)

Country Link
JP (1) JP2004109106A (ja)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258140A (ja) * 2006-02-22 2007-10-04 Toray Ind Inc ディスプレイパネルの検査方法および検査装置ならびに製造方法
WO2008110061A1 (fr) * 2007-03-12 2008-09-18 3I Systems Corp Système d'auto-test de substrat plan et procédé afférent
KR100862637B1 (ko) 2006-05-30 2008-10-09 (주) 인텍플러스 광학식 검사 방법
WO2008136111A1 (ja) * 2007-04-26 2008-11-13 Fujitsu Limited 表面検査装置及び方法
KR100901036B1 (ko) 2008-01-25 2009-06-04 엘에스엠트론 주식회사 거울 반사 특성재료의 주름 검사장치
JP2009531674A (ja) * 2006-03-31 2009-09-03 ファロ テクノロジーズ インコーポレーテッド 領域を3dで取り込む装置および方法
JP2010539469A (ja) * 2007-09-16 2010-12-16 メイア ベン−レヴィ 周期パターン照明及びtdiによる結像測定システム
WO2011050197A2 (en) * 2009-10-21 2011-04-28 Beltronics Inc. Method and apparatus for detecting small reflectivity variations in electronic parts at high speed
JP2011099821A (ja) * 2009-11-09 2011-05-19 Sumitomo Metal Ind Ltd 板材の光学式形状測定方法及び測定装置
JP2012002650A (ja) * 2010-06-16 2012-01-05 Yuki Giken Kk 撮像装置
US8384914B2 (en) 2009-07-22 2013-02-26 Faro Technologies, Inc. Device for optically scanning and measuring an environment
JP2013092465A (ja) * 2011-10-26 2013-05-16 Fukuoka Institute Of Technology 三次元表面検査装置および三次元表面検査方法
CN103344651A (zh) * 2013-05-08 2013-10-09 中北大学 基于相位图像处理的玻璃缺陷检测方法
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
JP2014503824A (ja) * 2010-12-30 2014-02-13 ミルテク カンパニー リミテッド 視覚検査装置
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699036B2 (en) 2010-07-29 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
WO2014181625A1 (ja) * 2013-05-10 2014-11-13 株式会社 豊田自動織機 表面検査方法及び表面検査装置
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
JP2015040979A (ja) * 2013-08-22 2015-03-02 コニカミノルタ株式会社 画像形成装置
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US9074878B2 (en) 2012-09-06 2015-07-07 Faro Technologies, Inc. Laser scanner
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US9279662B2 (en) 2012-09-14 2016-03-08 Faro Technologies, Inc. Laser scanner
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
JP2016219746A (ja) * 2015-05-26 2016-12-22 株式会社Screenホールディングス 検査装置および基板処理装置
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
JP2017191003A (ja) * 2016-04-13 2017-10-19 旭硝子株式会社 透明板表面検査装置、透明板表面検査方法、およびガラス板の製造方法
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
CN109501667A (zh) * 2017-09-14 2019-03-22 株式会社斯巴鲁 车辆的路面判定装置
JP2019045346A (ja) * 2017-09-04 2019-03-22 アイシン精機株式会社 検査装置
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
JP2019178877A (ja) * 2018-03-30 2019-10-17 ダイハツ工業株式会社 表面検査装置
US10546766B2 (en) 2015-04-23 2020-01-28 SCREEN Holdings Co., Ltd. Inspection device and substrate processing apparatus
CN111279182A (zh) * 2019-01-18 2020-06-12 合刃科技(深圳)有限公司 一种金属表面检测的方法及***
WO2023047866A1 (ja) * 2021-09-27 2023-03-30 東レ株式会社 シート状物の凹凸測定装置、シート状物の凹凸測定方法

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258140A (ja) * 2006-02-22 2007-10-04 Toray Ind Inc ディスプレイパネルの検査方法および検査装置ならびに製造方法
JP2009531674A (ja) * 2006-03-31 2009-09-03 ファロ テクノロジーズ インコーポレーテッド 領域を3dで取り込む装置および方法
KR100862637B1 (ko) 2006-05-30 2008-10-09 (주) 인텍플러스 광학식 검사 방법
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
WO2008110061A1 (fr) * 2007-03-12 2008-09-18 3I Systems Corp Système d'auto-test de substrat plan et procédé afférent
WO2008136111A1 (ja) * 2007-04-26 2008-11-13 Fujitsu Limited 表面検査装置及び方法
JPWO2008136111A1 (ja) * 2007-04-26 2010-07-29 富士通株式会社 表面検査装置及び方法
JP4842376B2 (ja) * 2007-04-26 2011-12-21 富士通株式会社 表面検査装置及び方法
JP2010539469A (ja) * 2007-09-16 2010-12-16 メイア ベン−レヴィ 周期パターン照明及びtdiによる結像測定システム
KR100901036B1 (ko) 2008-01-25 2009-06-04 엘에스엠트론 주식회사 거울 반사 특성재료의 주름 검사장치
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US8384914B2 (en) 2009-07-22 2013-02-26 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
WO2011050197A2 (en) * 2009-10-21 2011-04-28 Beltronics Inc. Method and apparatus for detecting small reflectivity variations in electronic parts at high speed
WO2011050197A3 (en) * 2009-10-21 2011-08-18 Beltronics Inc. Method and apparatus for detecting small reflectivity variations in electronic parts at high speed
JP2011099821A (ja) * 2009-11-09 2011-05-19 Sumitomo Metal Ind Ltd 板材の光学式形状測定方法及び測定装置
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9684078B2 (en) 2010-05-10 2017-06-20 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
JP2012002650A (ja) * 2010-06-16 2012-01-05 Yuki Giken Kk 撮像装置
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699036B2 (en) 2010-07-29 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
JP2014503824A (ja) * 2010-12-30 2014-02-13 ミルテク カンパニー リミテッド 視覚検査装置
JP2013092465A (ja) * 2011-10-26 2013-05-16 Fukuoka Institute Of Technology 三次元表面検査装置および三次元表面検査方法
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9074878B2 (en) 2012-09-06 2015-07-07 Faro Technologies, Inc. Laser scanner
US10132611B2 (en) 2012-09-14 2018-11-20 Faro Technologies, Inc. Laser scanner
US9279662B2 (en) 2012-09-14 2016-03-08 Faro Technologies, Inc. Laser scanner
US10203413B2 (en) 2012-10-05 2019-02-12 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9739886B2 (en) 2012-10-05 2017-08-22 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US10739458B2 (en) 2012-10-05 2020-08-11 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US9746559B2 (en) 2012-10-05 2017-08-29 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US11035955B2 (en) 2012-10-05 2021-06-15 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US11112501B2 (en) 2012-10-05 2021-09-07 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US11815600B2 (en) 2012-10-05 2023-11-14 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
CN103344651A (zh) * 2013-05-08 2013-10-09 中北大学 基于相位图像处理的玻璃缺陷检测方法
WO2014181625A1 (ja) * 2013-05-10 2014-11-13 株式会社 豊田自動織機 表面検査方法及び表面検査装置
JP2015040979A (ja) * 2013-08-22 2015-03-02 コニカミノルタ株式会社 画像形成装置
US10546766B2 (en) 2015-04-23 2020-01-28 SCREEN Holdings Co., Ltd. Inspection device and substrate processing apparatus
JP2016219746A (ja) * 2015-05-26 2016-12-22 株式会社Screenホールディングス 検査装置および基板処理装置
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
JP2017191003A (ja) * 2016-04-13 2017-10-19 旭硝子株式会社 透明板表面検査装置、透明板表面検査方法、およびガラス板の製造方法
JP2019045346A (ja) * 2017-09-04 2019-03-22 アイシン精機株式会社 検査装置
JP7003502B2 (ja) 2017-09-04 2022-01-20 株式会社アイシン 検査装置
CN109501667A (zh) * 2017-09-14 2019-03-22 株式会社斯巴鲁 车辆的路面判定装置
JP2019178877A (ja) * 2018-03-30 2019-10-17 ダイハツ工業株式会社 表面検査装置
JP7173682B2 (ja) 2018-03-30 2022-11-16 ダイハツ工業株式会社 表面検査装置
WO2020147096A1 (zh) * 2019-01-18 2020-07-23 合刃科技(深圳)有限公司 一种金属表面检测的方法及***
CN111279182A (zh) * 2019-01-18 2020-06-12 合刃科技(深圳)有限公司 一种金属表面检测的方法及***
WO2023047866A1 (ja) * 2021-09-27 2023-03-30 東レ株式会社 シート状物の凹凸測定装置、シート状物の凹凸測定方法

Similar Documents

Publication Publication Date Title
JP2004109106A (ja) 表面欠陥検査方法および表面欠陥検査装置
JP4730836B2 (ja) 面歪の測定装置及び方法
US8199335B2 (en) Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, three-dimensional shape measuring program, and recording medium
JP3937024B2 (ja) モアレ縞を用いたずれ、パタ−ンの回転、ゆがみ、位置ずれ検出方法
CN101893428B (zh) 形状测量设备和形状测量方法
WO2011064969A1 (ja) 検査装置、三次元形状測定装置、構造物の製造方法
TWI403718B (zh) 週期性結構之檢查方法及系統
JP5375201B2 (ja) 三次元形状測定方法及び三次元形状測定装置
JP3411829B2 (ja) 表面形状の評価方法および評価装置
JP2007322162A (ja) 3次元形状測定装置及び3次元形状測定方法
JP2004184397A (ja) 帯状体の形状不良検査方法およびその装置
JP2009168454A (ja) 表面欠陥検査装置及び表面欠陥検査方法
CN116559179B (zh) 一种反光表面形貌与缺陷检测方法及其***
WO2014181625A1 (ja) 表面検査方法及び表面検査装置
JPH0875542A (ja) 表示画素の光量測定方法並びに表示画面の検査方法及び装置
JP7003669B2 (ja) 表面検査装置、及び表面検査方法
JP2006084286A (ja) 3次元計測方法とその計測装置
WO2007145224A1 (ja) 端部傾斜角測定方法、起伏を有する被検査物の検査方法および検査装置、照明手段の位置を決定する方法、ムラ検査装置、照明位置決定装置
JP4087146B2 (ja) 形状測定方法及び形状測定装置
KR20170124509A (ko) 검사 시스템 및 검사 방법
JP3921432B2 (ja) モアレ光学系を用いた形状測定装置及び形状測定方法
JP2008170282A (ja) 形状測定装置
JP2002148029A (ja) 円筒状被検物の表面凹凸検査装置及び方法
JP2006349351A (ja) 3次元微細形状測定方法
JP7062798B1 (ja) 検査システム及び検査方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110