JP2004107737A - Circuit board and wiring formation method therefor - Google Patents

Circuit board and wiring formation method therefor Download PDF

Info

Publication number
JP2004107737A
JP2004107737A JP2002273093A JP2002273093A JP2004107737A JP 2004107737 A JP2004107737 A JP 2004107737A JP 2002273093 A JP2002273093 A JP 2002273093A JP 2002273093 A JP2002273093 A JP 2002273093A JP 2004107737 A JP2004107737 A JP 2004107737A
Authority
JP
Japan
Prior art keywords
metal
fine particles
wiring
metal fine
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002273093A
Other languages
Japanese (ja)
Other versions
JP3870883B2 (en
Inventor
Yoshimasa Hayashi
林芳昌
Takayuki Takahagi
高萩隆行
Shozo Niimiyabara
新宮原正三
Hiroyuki Sakagami
坂上弘之
Masakazu Hosoda
細田雅和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002273093A priority Critical patent/JP3870883B2/en
Publication of JP2004107737A publication Critical patent/JP2004107737A/en
Application granted granted Critical
Publication of JP3870883B2 publication Critical patent/JP3870883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring formation method by which metal wiring free from voids can be formed even for fine grooves and holes each having a high aspect ratio, and to provide a circuit board therefor. <P>SOLUTION: In the method, metal fine particles are deposited on the wiring forming face of a circuit board, and, metal wiring is formed by an electroless plating method by using the metal fine particles as a catalyst. In this case, the wiring forming face is coated with a metal colloidal solution obtained by dispersing metal fine particles having a particle diameter smaller than that of the colloidal particles into a solvent having a polar value of ≥50 kcal/mol at a concentration of ≥1×10<SP>17</SP>pieces/m<SP>3</SP>, is dried, and then the electroless plating is performed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、微細な金属配線を有する集積回路などの回路基板とその金属配線の形成方法に関する。
【0002】
【従来の技術】
従来、回路基板の金属配線を形成する方法としては、金属蒸着法、スパッタ法、CVD法などの気相法が主に実施されいたが、最近では電解メッキや無電解メッキなどの液相法も実施されている。
【0003】
【発明が解決しようとする課題】
集積回路の高密度化の進展に伴って、微細溝やコンタクトホール、スルーホールなどの微細化が進み、回路面にアスペクト比の大きな微細溝やホールが形成されている。このようなアスペクト比の大きな微細溝やホールを有する回路面に配線を形成する場合、気相法ではホールのエッジ部分に膜が生成し易いため、アスペクト比が大きくなるとホール内部に膜が付いていない部分(ボイド)が発生し易くなる。また、電解メッキを行う場合にも微細溝やホール内部に予め気相法でシード層を形成しており、このためアスペクト比の大きい微細溝やホールについて配線不良を生じやすい問題がある。
【0004】
また、金属パラジウムを回路形成面に付着させた後に無電解メッキを施す場合、パラジウム触媒の粒子サイズが大きいために付着密度が低くなる問題を解消するために、銀活性化処理を行った後にパラジウム活性化処理を行う方法も知られている(特開2000−336486)。
【0005】
しかし、最近の高密度回路における微細溝やホールのように、溝幅やホール径がサブミクロンレベルの場合、パラジウム触媒などの金属粒子径を単に小さいしても溶媒の液性や金属粒子の濃度などの影響によって溝やホールの深部に金属微粒子が十分に付着せず、メッキが不良になる場合がある。
【0006】
本発明は従来の配線形成方法における上記問題を解消したものであり、アスペクト比の高いサブミクロンレベルの微細な溝やホールについても信頼性の高い配線を形成することができる方法を提供する。
【0007】
本発明によれば、以下の構成からなる配線形成方法とその回路基板が提供される。
(1)回路基板の配線形成面に金属微粒子を付着させ、この金属微粒子を触媒として無電解メッキ法によって金属配線を形成する方法において、粒径がコロイド粒子以下の金属微粒子を、50kcal/mol以上の極性値を有する溶媒に、1×1017個/m以上の濃度で分散させた金属コロイド液を上記配線形成面に塗布し乾燥させて無電解メッキを行うことを特徴とする回路基板の配線形成方法。
(2)平均粒径20nm以下の金属微粒子を用いる上記(1)の配線形成方法。
(3)金属微粒子の濃度が1×1017〜1×1022個/mである金属コロイド液を用いる上記(1)または(2)の方法。
(4)金属微粒子として金、白金、またはパラジウムの微粒子を用いる上記(1)、(2)または(3)の配線形成方法。
(5)上記(1)〜(4)の何れかの方法によって形成された回路基板。
【0008】
【具体的な説明】
本発明に係る回路基板の配線形成方法は、回路基板の配線形成面に金属微粒子を付着させ、この金属微粒子を触媒として無電解メッキ法によって金属配線を形成する方法において、粒径がコロイド粒子以下の金属微粒子を、50kcal/mol以上の極性値を有する溶媒に、1×1017個/m以上の濃度で分散させた金属コロイド液を上記配線形成面に塗布し、乾燥させて無電解メッキを行うことを特徴とする方法である。
【0009】
回路基板の配線形成面は基板の絶縁体面またはシード層などの高融点金属面などである。配線形成面に電極を形成する場合、微細孔やホールに触媒として作用する金属微粒子を付着させ、直に無電解メッキで電極を形成する方法や、触媒の金属微粒子を付着させた後に無電解メッキでシード層を形成し、その上側に電解メッキで電極を形成する方法などが知られているが、本発明の方法は何れの場合にも適用することができる。
【0010】
配線形成面に付着させる金属微粒子としては触媒作用が強い金、白金、またはパラジウムの微粒子が好適に用いられる。この金属微粒子は粒径がコロイド粒子以下、すなわち1μm以下のものが用いられ、サブミクロンレベルのアスペクト比の大きい微細溝やホールに対しては平均粒径20nm以下の微粒子ものを用いるのが好ましい。
【0011】
これらの金属微粒子を分散させる溶媒としては、50kcal/mol以上の極性値を有するものが用いられる。具体的には、水、エタノール、1−プロパノール、1−ブタノールなどが挙げられる。クロロホルム、ベンゼン、シクロヘキサン、ヘキサンなどは極性値が上記値より小さいので好ましくない。極性値が上記値より大きい溶媒では金属微粒子が凝集せずに分散し易いが、極性値が上記値より小さい溶媒では金属微粒子が凝集し易い。金属微粒子が凝集するとその比表面積が小さくなるので触媒効果が低下し、また凝集粒子径が大きくなるので微細孔やホールに入り込み難くなり、無電解メッキによる電極形成が不十分になる。
【0012】
上記溶媒中の金属微粒子の濃度は1×1017個/m以上が必要であり、1×1017〜1×1022個/mが好ましい。これより金属微粒子の濃度が少ないと、回路形成面に付着する金属量が不足して、十分な触媒作用を得ることができなくなる。なお、溶媒中の金属微粒子の濃度が上記範囲より高くても触媒効果は大差ないので金属微粒子の濃度は上記範囲が適当である。
【0013】
上記金属微粒子のコロイド液を回路形成面に塗布して乾燥させ、アスペクト比の大きい微細溝やホール内部に金属微粒子を触媒として付着させて無電解メッキを行い、金属配線を形成することにより、微細溝やホール内部にボイドのない金属配線を形成することができる。
【0014】
無電解メッキの一例として、銅メッキ液の一般的な組成を以下に示す。
〔金属塩〕:無電解銅メッキでは液中の銅イオンの還元によって金属銅を析出させるので、液中に十分な銅イオンが必要となる。この供給源としては一般に硫酸銅(CuSO・5H0)や塩化銅(CuC1・2H0)が用いられる。
〔還元剤〕:金属銅を還元析出させるに必要な電子を供給するための還元剤は銅の還元電位より電気化学的に卑な酸化還元電位を持っている必要がある。銅より酸化還元電位が低い還元剤としては、ホルムアルデヒド(HCHO)、ヒドラジン(N)、ジメチルアミンボラン(C10BN)、ホスフイン酸塩(HPO)、グリオキシル酸(CHOCOOH)等が挙げられる。
〔pH調整剤〕:還元剤の酸化反応を促進させるためには液のpHを高くする必要がある。一方、pHが高すぎると反応が活発すぎて液が自己分解反応を起こすので、銅塩溶液から銅を還元析出するには液のpHを11〜12.5に調整するのが好ましい。一般にpH調整剤には水酸化ナトリウム、水酸化カリウムなどが挙げられるが、これらに含まれるアルカリ土類金属はシリコン中への拡散が速く、シリコンデバイスプロセスには向かない。そこで、シリコン基板の回路形成には水酸化テトラメチルアンモニウム五水和物(TMAH:[CH]4NOH・5H0)が好ましい。
【0015】
〔錯化剤〕:銅塩溶液は高pH域で水に不溶性の水酸化銅沈澱(Cu(OH))を生じるので、錯化剤を添加して銅イオンを錯イオンにして沈殿を防止する必要がある。この錯化剤として−般にはエチレンジアミン四酢酸(C16)等が使用される。
〔界面活性剤〕:無電解銅メッキでは反応の進行に伴い水素ガスが発生する。この水素ガスがメッキ膜中に拡散して、メッキ膜の物性を悪化する。発生した水素ガスがメッキ面に留まらず速やかに離脱すればメッキ膜の劣化が少なくなる。このためにはメッキ浴の界面張力を下げることが必要であり、この界面活性剤として一般に分子量1000程度のポリエチレングリコールが使用される。
【0016】
【実施例】
本発明の実施例および比較例を以下に示す。
表1に示す平均粒径と溶液組成および濃度の金コロイド液を用い、これをシリコン回路基板の配線形成面に滴下し、乾燥した後にメッキ液に浸漬して無電解メッキを行った。形成された配線の状態を表1に示した。またメッキ液の条件を表2に示した。
この結果に示すように、本発明に係る試料No.1〜7は良好な配線が形成される。一方、溶媒の組成、金属微粒子の平均粒径および濃度が本発明の好適な範囲から外れる試料No.8〜13は、形成された配線が断線しており、良好な配線が形成されない。
【0017】
【表1】

Figure 2004107737
【0018】
【表2】
Figure 2004107737
【0019】
【発明の効果】
本発明の回路形成方法によれば、アスペクト比の大きい微細溝やホール内部にボイドのない金属配線を形成することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a circuit board such as an integrated circuit having fine metal wiring and a method for forming the metal wiring.
[0002]
[Prior art]
Conventionally, as a method of forming metal wiring on a circuit board, a vapor phase method such as a metal vapor deposition method, a sputtering method, and a CVD method has been mainly performed, but recently, a liquid phase method such as electrolytic plating and electroless plating has also been used. It has been implemented.
[0003]
[Problems to be solved by the invention]
As the density of integrated circuits has increased, miniaturization of fine grooves, contact holes, and through holes has progressed, and fine grooves and holes having a large aspect ratio have been formed on the circuit surface. When wiring is formed on a circuit surface having such fine grooves and holes having a large aspect ratio, a film is easily formed at the edge portion of the hole by the vapor phase method. Missing portions (voids) are likely to occur. Also, in the case of performing electrolytic plating, a seed layer is formed in advance in a fine groove or hole by a vapor phase method, and therefore, there is a problem that a wiring failure easily occurs in the fine groove or hole having a large aspect ratio.
[0004]
Also, when electroless plating is performed after metal palladium is adhered to the circuit formation surface, in order to eliminate the problem that the adhesion density is low due to the large particle size of the palladium catalyst, palladium is activated after performing silver activation treatment. A method of performing an activation process is also known (JP-A-2000-336486).
[0005]
However, when the groove width and hole diameter are on the submicron level, such as fine grooves and holes in recent high-density circuits, even if the metal particle diameter of a palladium catalyst or the like is simply reduced, the solvent properties and the concentration of the metal particles can be reduced. In some cases, metal fine particles do not sufficiently adhere to the deep portion of the groove or hole due to the influence of the above, and plating may be defective.
[0006]
The present invention has solved the above-mentioned problem in the conventional wiring forming method, and provides a method capable of forming a highly reliable wiring even in a sub-micron level fine groove or hole having a high aspect ratio.
[0007]
According to the present invention, a wiring forming method having the following configuration and a circuit board thereof are provided.
(1) In a method in which metal fine particles are adhered to a wiring forming surface of a circuit board and metal wiring is formed by electroless plating using the metal fine particles as a catalyst, the metal fine particles having a particle size of not more than colloid particles are reduced to 50 kcal / mol or more. A metal colloid liquid dispersed in a solvent having a polarity value of 1 × 10 17 particles / m 3 or more on the wiring forming surface, followed by drying to perform electroless plating. Wiring formation method.
(2) The wiring forming method according to the above (1), wherein metal fine particles having an average particle diameter of 20 nm or less are used.
(3) The method according to the above (1) or (2), wherein a metal colloid liquid having a metal fine particle concentration of 1 × 10 17 to 1 × 10 22 particles / m 3 is used.
(4) The wiring forming method according to the above (1), (2) or (3), wherein fine particles of gold, platinum or palladium are used as the metal fine particles.
(5) A circuit board formed by any one of the above (1) to (4).
[0008]
[Specific explanation]
The method for forming a wiring on a circuit board according to the present invention is a method for forming metal wiring by electroless plating using metal fine particles as a catalyst by attaching metal fine particles to the wiring forming surface of the circuit board. A metal colloid liquid obtained by dispersing metal fine particles in a solvent having a polarity value of 50 kcal / mol or more at a concentration of 1 × 10 17 particles / m 3 or more is applied to the wiring forming surface, dried, and subjected to electroless plating. Is performed.
[0009]
The wiring formation surface of the circuit board is an insulator surface of the substrate or a high melting point metal surface such as a seed layer. When forming an electrode on the wiring formation surface, a method of attaching metal fine particles acting as a catalyst to the fine holes and holes and directly forming the electrode by electroless plating, or electroless plating after attaching the metal fine particles of the catalyst A method is known in which a seed layer is formed on the substrate and an electrode is formed on the seed layer by electrolytic plating. However, the method of the present invention can be applied to any case.
[0010]
As the metal fine particles adhered to the wiring forming surface, fine particles of gold, platinum, or palladium having a strong catalytic action are preferably used. The metal fine particles have a particle size equal to or less than colloidal particles, that is, 1 μm or less, and it is preferable to use fine particles having an average particle size of 20 nm or less for fine grooves and holes having a large aspect ratio on the submicron level.
[0011]
As a solvent for dispersing these metal fine particles, a solvent having a polarity value of 50 kcal / mol or more is used. Specific examples include water, ethanol, 1-propanol, 1-butanol and the like. Chloroform, benzene, cyclohexane, hexane and the like are not preferred because their polar values are smaller than the above values. In a solvent having a polarity value larger than the above value, the metal fine particles are easily dispersed without being aggregated, but in a solvent having a polarity value smaller than the above value, the metal fine particles are easily aggregated. When the metal fine particles are aggregated, the specific surface area is reduced, so that the catalytic effect is reduced. In addition, since the aggregated particle diameter is large, it is difficult to enter fine holes or holes, and electrode formation by electroless plating becomes insufficient.
[0012]
The concentration of the metal fine particles in the solvent should be 1 × 10 17 particles / m 3 or more, and preferably 1 × 10 17 to 1 × 10 22 particles / m 3 . If the concentration of the metal fine particles is lower than this, the amount of metal adhering to the circuit forming surface becomes insufficient, and it becomes impossible to obtain a sufficient catalytic action. In addition, even if the concentration of the metal fine particles in the solvent is higher than the above range, the catalytic effect is not significantly different, so the concentration of the metal fine particles is appropriate in the above range.
[0013]
The colloidal liquid of the metal fine particles is applied to the circuit forming surface and dried, and the fine metal particles are adhered to the inside of the fine grooves and holes having a large aspect ratio as a catalyst, and electroless plating is performed to form metal wiring. A metal wiring without voids can be formed inside a groove or a hole.
[0014]
As an example of electroless plating, a general composition of a copper plating solution is shown below.
[Metal salt]: In electroless copper plating, metallic copper is precipitated by reduction of copper ions in the liquid, so that sufficient copper ions are required in the liquid. The general copper sulfate (CuSO 4 · 5H 2 0) and copper chloride (CuC1 2 · 2H 2 0) is used as a source.
[Reducing agent]: A reducing agent for supplying electrons required for reducing and depositing metallic copper needs to have an oxidation-reduction potential electrochemically lower than that of copper. As a reducing agent having a redox potential lower than that of copper, formaldehyde (HCHO), hydrazine (N 2 H 4 ), dimethylamine borane (C 2 H 10 BN), phosphinate (H 3 PO 2 ), glyoxylic acid (CHOCOOH) ) And the like.
[PH adjuster]: It is necessary to increase the pH of the solution in order to promote the oxidation reaction of the reducing agent. On the other hand, if the pH is too high, the reaction becomes too active and the liquid undergoes a self-decomposition reaction. Therefore, in order to reduce and precipitate copper from the copper salt solution, it is preferable to adjust the pH of the liquid to 11 to 12.5. Generally, pH adjusters include sodium hydroxide, potassium hydroxide and the like, but the alkaline earth metal contained therein diffuses rapidly into silicon and is not suitable for silicon device processes. Therefore, tetramethylammonium hydroxide pentahydrate in circuit formation of the silicon substrate (TMAH: [CH 3] 4NOH · 5H 2 0) is preferable.
[0015]
[Complexing agent]: Since a copper salt solution produces a water-insoluble copper hydroxide precipitate (Cu (OH) 2 ) in a high pH range, a complexing agent is added to convert copper ions into complex ions to prevent precipitation. There is a need to. As the complexing agent - ethylenediaminetetraacetic acid (C 6 H 16 N 2 0 8) or the like is used for the general.
[Surfactant]: In electroless copper plating, hydrogen gas is generated as the reaction proceeds. This hydrogen gas diffuses into the plating film and deteriorates the physical properties of the plating film. If the generated hydrogen gas does not stay on the plating surface and is quickly released, the deterioration of the plating film is reduced. For this purpose, it is necessary to lower the interfacial tension of the plating bath, and polyethylene glycol having a molecular weight of about 1,000 is generally used as the surfactant.
[0016]
【Example】
Examples of the present invention and comparative examples are shown below.
A gold colloid solution having an average particle diameter, a solution composition and a concentration shown in Table 1 was dropped on a wiring forming surface of a silicon circuit board, dried, immersed in a plating solution, and subjected to electroless plating. Table 1 shows the state of the formed wiring. Table 2 shows the conditions of the plating solution.
As shown in the results, the sample No. Nos. 1 to 7 form good wiring. On the other hand, the sample No. 3 in which the composition of the solvent, the average particle diameter and the concentration of the metal fine particles are out of the preferred ranges of the present invention. In Nos. 8 to 13, the formed wiring is broken, and good wiring is not formed.
[0017]
[Table 1]
Figure 2004107737
[0018]
[Table 2]
Figure 2004107737
[0019]
【The invention's effect】
According to the circuit forming method of the present invention, it is possible to form a metal wiring having no void inside a fine groove or hole having a large aspect ratio.

Claims (5)

回路基板の配線形成面に金属微粒子を付着させ、この金属微粒子を触媒として無電解メッキ法によって金属配線を形成する方法において、粒径がコロイド粒子以下の金属微粒子を、50kcal/mol以上の極性値を有する溶媒に、1×1017個/m以上の濃度で分散させた金属コロイド液を、上記配線形成面に塗布し乾燥させて無電解メッキを行うことを特徴とする回路基板の配線形成方法。In a method in which metal fine particles are adhered to a wiring forming surface of a circuit board and metal wiring is formed by electroless plating using the metal fine particles as a catalyst, a metal fine particle having a particle size equal to or less than colloid particles is converted to a polarity value of 50 kcal / mol or more. A metal colloid liquid dispersed in a solvent having a concentration of 1 × 10 17 particles / m 3 or more on the wiring forming surface, followed by drying and electroless plating to perform electroless plating. Method. 平均粒径20nm以下の金属微粒子を用いる請求項1の配線形成方法。2. The wiring forming method according to claim 1, wherein metal fine particles having an average particle diameter of 20 nm or less are used. 金属微粒子の濃度が1×1017〜1×1022個/mである金属コロイド液を用いる請求項1または2の方法。The method according to claim 1, wherein a metal colloid liquid having a metal fine particle concentration of 1 × 10 17 to 1 × 10 22 particles / m 3 is used. 金属微粒子として金、白金、またはパラジウムの微粒子を用いる請求項1、2または3の配線形成方法。4. The method according to claim 1, wherein fine particles of gold, platinum or palladium are used as the metal fine particles. 請求項1〜4の何れかの方法によって形成された回路基板。A circuit board formed by the method according to claim 1.
JP2002273093A 2002-09-19 2002-09-19 Circuit board and wiring formation method thereof Expired - Fee Related JP3870883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002273093A JP3870883B2 (en) 2002-09-19 2002-09-19 Circuit board and wiring formation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002273093A JP3870883B2 (en) 2002-09-19 2002-09-19 Circuit board and wiring formation method thereof

Publications (2)

Publication Number Publication Date
JP2004107737A true JP2004107737A (en) 2004-04-08
JP3870883B2 JP3870883B2 (en) 2007-01-24

Family

ID=32269937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002273093A Expired - Fee Related JP3870883B2 (en) 2002-09-19 2002-09-19 Circuit board and wiring formation method thereof

Country Status (1)

Country Link
JP (1) JP3870883B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154307A (en) * 2005-11-08 2007-06-21 Univ Waseda Electroless copper plating liquid, electroless copper plating method, and ulsi copper wiring formation method
WO2013035480A1 (en) * 2011-09-09 2013-03-14 学校法人 関西大学 Catalyst adsorption method and adsorption device
KR101783163B1 (en) 2014-07-17 2017-09-28 니혼 엘렉트로플레이팅 엔지니어스 가부시키가이샤 Pretreatment solution for electroless plating and electroless plating method
CN108463576A (en) * 2016-01-29 2018-08-28 株式会社杰希优 The method that circuit is formed on substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154307A (en) * 2005-11-08 2007-06-21 Univ Waseda Electroless copper plating liquid, electroless copper plating method, and ulsi copper wiring formation method
WO2013035480A1 (en) * 2011-09-09 2013-03-14 学校法人 関西大学 Catalyst adsorption method and adsorption device
KR101783163B1 (en) 2014-07-17 2017-09-28 니혼 엘렉트로플레이팅 엔지니어스 가부시키가이샤 Pretreatment solution for electroless plating and electroless plating method
CN108463576A (en) * 2016-01-29 2018-08-28 株式会社杰希优 The method that circuit is formed on substrate
CN108463576B (en) * 2016-01-29 2021-07-23 株式会社杰希优 Method of forming circuit on substrate

Also Published As

Publication number Publication date
JP3870883B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
Shacham-Diamand et al. Electroless copper deposition for ULSI
JP5568811B2 (en) Substrate intermediate, substrate and through via electrode forming method
JP5136746B2 (en) Surface treatment method of aluminum or aluminum alloy
JP4376959B2 (en) Plating object in which metal thin film is formed by electroless plating and manufacturing method thereof
US7622382B2 (en) Filling narrow and high aspect ratio openings with electroless deposition
TWI431153B (en) Plated article having a metallic thin film form by electroless plating and method for making such plated article
US20020197404A1 (en) Method of activating non-conductive substrate for use in electroless deposition
JP2012114152A (en) Substrate for printed wiring board, printed wiring board, and method for manufacturing substrate for printed wiring board
US20050148174A1 (en) Contact-connection of nanotubes
TWI332999B (en) Cobalt-based alloy electroless plating solution and electroless plating method using the same
TW201012967A (en) Plated product with copper film formed by non-electrolytic plating
TWI646216B (en) Method for depositing a copper seed layer onto a barrier layer
JP3870883B2 (en) Circuit board and wiring formation method thereof
JP2004019003A (en) Printed circuit board and plating method thereon
JP2007084850A (en) Method for forming pattern of circuit
TW200901293A (en) Improved method for producing a copper layer on a substrate in a flat panel display manufacturing process
JP2004200273A (en) Process for fabricating semiconductor device
KR101493358B1 (en) Method of fabricating copper plating layer using electroless copper plating solution
KR100532515B1 (en) Method for electroless deposition and patterning of a metal on a substrate
JP2572430B2 (en) Method of providing metal locally on the surface of a substrate
JP3143707B2 (en) Mild basic accelerator for direct electroplating
JPH11256349A (en) Plating method with high adhesion property on resin base and copper plating liquid to be used for that
TW200900531A (en) Manufacturing method of conductive ball using eletroless plating
JP2000178753A (en) Electroless plating method
KR100535977B1 (en) Electroless Plating Method Using Additive for Electroplating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees