JP2004106080A - Dry type chemicomechanical polishing method and device of substrate - Google Patents

Dry type chemicomechanical polishing method and device of substrate Download PDF

Info

Publication number
JP2004106080A
JP2004106080A JP2002269345A JP2002269345A JP2004106080A JP 2004106080 A JP2004106080 A JP 2004106080A JP 2002269345 A JP2002269345 A JP 2002269345A JP 2002269345 A JP2002269345 A JP 2002269345A JP 2004106080 A JP2004106080 A JP 2004106080A
Authority
JP
Japan
Prior art keywords
substrate
polishing
chemical mechanical
mechanical polishing
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002269345A
Other languages
Japanese (ja)
Inventor
Tomio Kubo
久保 富美夫
Akira Yamada
山田 暁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamoto Machine Tool Works Ltd
Original Assignee
Okamoto Machine Tool Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Machine Tool Works Ltd filed Critical Okamoto Machine Tool Works Ltd
Priority to JP2002269345A priority Critical patent/JP2004106080A/en
Publication of JP2004106080A publication Critical patent/JP2004106080A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a machining substrate with no micro scratch, no disturbance, and no defect by a dry type chemicomechanical polishing method by enhancing the polishing speed. <P>SOLUTION: This method includes steps of pushing grinding wheel 1 annularly provided with a plurality of polishing device members 2 formed by binding solid abrasive grains having Mohs' hardness similar to or softer than the Mohs' hardness of the substrate by binder against the surface of the substrate (w), sliding the substrate with the grinding wheel, and dryly and chemicomechanically polishing the substrate. After grinding chips and residues sandwiched in grinding streaks on the substrate plate to be dryly polished is removed by ultrasonic cleaning 10c beforehand, the substrate is dryly and chemicomechnaically polished. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体シリコン基板、シリコンベアウエハ、窒化珪素基板、GaAs基板、LiTaO基板、AlTiC基板等の基板表面を乾式(遊離砥粒である研磨剤スラリ−を用いない)で研磨する化学機械研磨方法およびそれに用いる乾式化学機械研磨装置に関する。
【0002】
【従来の技術】
インゴットをスライスして得られたシリコン基板やGaAs基板等の基板(ウエハ)の両面を研削加工し、必要によりラップ加工し、この加工面に研磨剤スラリ−を供給しつつ、研磨パッドを基板の研削加工面に押圧し、基板と研磨パッドの両者または一方を回転させて摺動することにより基板表面を鏡面に研磨加工することは行なわれている。また、半導体基板の裏面シリコン板を研削、研磨して鏡面化、または薄膜化することも行なわれている。
【0003】
これら基板表面ないし裏面を研磨する湿式研磨方法は、大量の研磨剤スラリ−を用いるので、砥粒を砥石やパッドに固定した研磨加工具を用い、研磨剤スラリ−を用いることなく乾式で基板を研磨する方法が提案されている(1998年度精密工学秋季大会講演論文集191頁、特開平9−1461号、特開2000−190228号、特開2000−198073号、特開2000−233375号、特開2000−237962号、特開2001−129764号、「砥粒加工学会誌 Vol.44 No.10 2000年10月号433−436頁」)。
【0004】
乾式化学機械研磨砥石(CMG)の研磨加工具部材は砥粒を結合材で結合したもので、かかる砥粒としては、シリカ、酸化セリウム、アルミナ、炭酸バリウム、炭酸カルシウム、酸化マグネシウム、酸化マンガン等が、結合材としては、フェノ−ル樹脂、エポキシ樹脂、ポリイミド樹脂、メラミン樹脂、ウレタン樹脂、アクリル樹脂、不飽和ポリエステル樹脂等が提案されている。
【0005】
具体的には、例えば、特開2000−198073号公報は、シリカ、酸化セリウム、アルミナ等の粒径1〜100nmの超微細砥粒を1000個以上凝集させた粒径1〜20μmの凝集砥粒を液状樹脂で結合させた樹脂に対する凝集砥粒の体積比率が15〜70容量%の研磨加工具部材を、環状の硬質アルミニウム基台上に間隔を置いて多数、環状に並べて貼付したカップ型研磨砥石を提案する。
【0006】
この砥石は、凝集粒子を用いたことにより研磨加工具表面の凹凸が大きくなり、基板と研磨加工具接触部との押圧が高まり、研磨加工能率を向上できるとともに、研磨加工具表面にチップポケットが形成され、砥石目詰まりの現象が抑制されるとともに、凝集粒子と樹脂結合剤との接着力に比較し凝集体を形成している一次粒子の凝集力が弱いので、研磨加工時には砥粒が凝集した二次粒子の一部に崩壊や変形が生じ、一次粒子の状態で基板の研磨に寄与することとなり、研磨速度が高い利点を有する。
【0007】
結合剤として粉末エポキシ樹脂を用い、このエポキシ結合材と酸化マンガン砥粒とを混合し、この混合物を粉砕後、粉砕物を型内に充填し、型内を−70〜−80kPaの負圧状態に導き、ついで型を圧縮して化学機械研磨砥石を得ることも知られている(特開2001−9731号公報)。
【0008】
【発明が解決しようとする課題】
これら従来提案されたシリコン基板のモ−ス硬度より低いモ−ス硬度を有する固型砥粒を含有する乾式研磨加工具部材は、マクロ的にはシリコン基板の条痕跡を消滅させ、鏡面を呈しているシリコン基板を提供すると報告されている。
しかし、学会誌や業界紙の報告および、セミコン ジャパン2001などの展示会で展示された加工シリコン基板を観察すると小さなマイクロスクラッチが見受けられ、無攪乱・無欠陥の鏡面光沢を有する加工シリコン基板は得られていない。
【0009】
本発明者等は、シリコンインゴットをスライスし、この両面を研削加工し、さらに一方の面を精研削加工した旋条痕を有する市販のシリコン基板、各社から裏面研削を依頼された半導体基板を各社から取り寄せて乾式研磨加工したところ、同一の化学機械研磨砥石(CMG)を用いたにも係わらず、加工シリコン基板の鏡面に発生したマイクロスクラッチの数が異なったり、長いスクラッチ傷が発生することが判明した。
【0010】
マイクロスクラッチが発生した基板の研磨状態を顕微鏡で観察、および乾式研磨される前の同種類の基板表面を顕微鏡で観察したところ、乾式研磨される前の基板の研削旋条痕内に挟まれている加工屑や残滓が乾式研磨により鏡面化された加工基板の表面にマイクロスクラッチを発生させる原因となることを見出した。
【0011】
本発明の目的は、基板の種類、加工履歴に限定されず、基板、例えばシリコン基板、GaAs基板、LiTaO基板、デバイスウエハなどを乾式で化学機械研磨加工してマイクロスクラッチ傷の無い無攪乱・無欠陥の鏡面光沢を有する加工基板を製造する方法を提供するものである。本発明の別の目的は、かかる無攪乱・無欠陥の鏡面光沢を有する加工基板を製造する装置の提供にある。
【0012】
【課題を解決するための手段】
本発明の請求項1は、基板表面を洗浄液で洗浄して基板の溝や研削旋条痕に挟まれている加工屑や残滓を除去した後、該基板表面に、該基板のモ−ス硬度と同等または柔らかいモ−ス硬度を有する固型砥粒を結合材で結合してなる研磨加工具部材の複数を環状に備えた砥石(CMG)を押し付け、相対運動させて基板表面を平坦化することを特徴とする乾式化学機械研磨方法を提供するものである。
【0013】
乾式化学機械研磨する前に基板の旋条痕の溝に挟まっていた加工屑や残滓を除去することにより、鏡面加工された基板表面にマイクロスクラッチが発生することがなく、無攪乱・無欠陥の鏡面を有する加工基板を乾式化学機械研磨方法で製造可能である。
【0014】
本発明の請求項2は、前記乾式化学機械研磨方法において、基板の洗浄が、高圧ジェット水洗浄または超音波洗浄でなされることを特徴とする。
【0015】
基板の旋条痕の溝に挟まっていた加工屑や残滓は、単なる純水供給スピン洗浄や、水槽内への基板浸漬洗浄、あるいはポリビニ−ルアルコ−ルスポンジの回転と純水供給スピン洗浄の組み合わせでは、除去することができなかったが、高圧ジェット水洗浄または超音波洗浄することにより、除去可能となった。
【0016】
本発明の請求項3は、前記乾式化学機械研磨方法において、砥石(CMG)の研磨加工具部材は、砥粒(a)、研磨促進剤(b)および平均重合度50〜400、平均粒径5〜150μmの結晶セルロ−スよりなる結合材(c)を含有する混合物を型内に充填し、常温で加圧成形して化学機械研磨加工具部材に賦型したものであることを特徴とする。
【0017】
結合材の結晶セルロ−スは、耐熱性が800℃以上あり、耐熱性が約400℃の樹脂結合材と較べると砥石の耐熱性が優れる。また、結晶セルロ−スに残されていた繊維の絡みにより研磨加工具部材に気孔が形成され、エア−ポケットを有するので研磨時に脱落した砥粒や研磨屑の避難場所となり、マイクロスクラッチは発生しない。
研磨促進剤が基板と化学反応を生じ、基板のうねりをより減少させ、無攪乱・無欠陥の鏡面光沢を呈する基板が得られる。研磨促進剤の添加により研磨速度は、1.4倍以上向上する。
【0018】
本発明の請求項4は、超音波洗浄機構、第1ダブルア−ム搬送ロボット、基板ホルダ−、基板ホルダ−の回転機構、基板ホルダ−の上方に設けられた研磨される基板のモ−ス硬度と同等または柔らかいモ−ス硬度を有する固型砥粒を結合材で結合してなる研磨加工具部材の複数を環状に備えた砥石を備える研磨ヘッド、該研磨ヘッドの昇降機構並びに回転機構、第2ダブルア−ム搬送ロボット、ならびに、基板洗浄スピナを具備する、乾式化学機械研磨装置を提供するものである。
【0019】
研磨剤スラリ−を用いることなく、乾式で基板を化学機械研磨加工できる装置である。
【0020】
【発明の実施の形態】
以下、図面を用いて本発明を詳細に説明する。
図1は、化学機械研磨加工具部材を底部に備えた研磨砥石の斜視図、図2は乾式化学機械研磨装置の断面図、および図3は乾式化学機械研磨装置の部分平面図である。
【0021】
図1において、1は研磨砥石、2は化学機械研磨加工具部材、3は硬質基台で、その底部に化学機械研磨加工具部材2を複数環状に固着している。
化学機械研磨加工具部材2は、固型砥粒および結合材を必須成分とし、必要により融点もしくは分解温度が60〜400℃の研磨促進剤、中空粒子またはマイクロカプセルを配合した混合物を、型内に充填し、次いで、硬化または常温で圧縮成形(打錠剤成型)して得られる。
【0022】
固型砥粒は、研磨される基板のモ−ス硬度と同等、またはそれより低いモ−ス硬度を有する砥粒が使用される。具体的には酸化珪素、酸化ニッケル、酸化亜鉛、酸化錫、酸化チタン、酸化セリウム、アルミナ、酸化マンガン等の金属酸化物、炭酸マグネシウム、炭酸カルシウム、炭酸ニッケル、炭酸マンガン等の金属炭酸塩、ゼオライト等の固型砥粒が単独で、または2種以上混合して使用される。特にIIa金属の炭酸塩が最適である。
シリコン基板(モ−ス硬度は約6)研磨に対する好ましい砥粒は、炭酸カルシウム(モ−ス硬度は約3)、酸化セリウム、炭酸マグネシウム、ゼオライト、炭酸バリウム、炭酸ニッケル、炭酸マンガン、酸化錫、アナタ−ゼ型酸化チタン、酸化珪素、酸化亜鉛、アルミナである。炭酸カルシウムは重質炭酸カルシウム、例えば白石工業株式会社のWhiton P−10(商品名)であっても軽質炭酸カルシウム、例えば白石工業株式会社の白艶華U(商品名)、Brilliant 1500(商品名)であってもよい。
【0023】
砥粒の粒径は、0.2nm〜10μmが好ましく、二次凝集していてもよい。砥粒のモ−ス硬度が基板のモ−ス硬度と同一、またはそれより低いので基板にスクラッチ傷を付けないので巨大凝集粒子が存在していてもよい。
【0024】
砥粒のモ−ス硬度が基板のモ−ス硬度と同等、またはそれより硬度が低いにもかかわらず、基板の研磨が進行するのは、メカニカルな研磨のみでなく、ケミカルな研磨も行われているものと推測される。
【0025】
研磨促進剤(b)は、20〜30℃の雰囲気で固体を呈し、融点(または熱分解温度)が60〜400℃、好ましくは150〜300℃である塩素基またはブロム基を有する化合物、Ia金属と炭酸基または重炭酸基を有する化合物、アンモニウム基と炭酸基または重炭酸基を有する化合物、塩素酸ソ−ダ、次亜塩素酸ソ−ダ、塩素酸カリ、次亜塩素酸カリ、過硫酸アンモニウムより選ばれた化合物が使用される。
【0026】
塩素基またはブロム基を有する化合物としては、例えば、塩化アンモニウム(融点184℃)、二塩化ヨ−素アンモニウム(融点162℃)、二塩化ヨ−素セシウム(融点229℃)、塩化タングステン(融点275℃)、塩化錫(融点246℃)等の無機塩素化塩、、塩素化イソシアヌル酸、塩素化イソシアヌル酸塩などのハロゲン基含有化合物が挙げられる。
【0027】
研磨促進剤として特に好ましいものは、安価な塩化アンモニウム(塩安)、塩素化イソシアヌル酸およびその塩(Na,K,Mg,Ca)、炭酸アンモニウム、炭酸水素アンモニウム、炭酸ソ−ダ、炭酸水素ナトリウム、塩素酸ソ−ダ、次亜塩素酸ソ−ダ、塩素酸カリ、次亜塩素酸カリ、過硫酸アンモニウムである。塩素化イソシアヌル酸としてはトリクロロイソシアヌル酸(有効塩素含量90.4%、熱分解温度225〜300℃)、ジクロロイソシアヌル酸(有効塩素含量63.5%、熱分解温度240〜250℃)が挙げられる。
【0028】
結合材としては、従来乾式砥石の結合材として提案されているエポキシ樹脂、フェノキシ樹脂、レゾ−ル樹脂、ウレタン樹脂、不飽和ポリエステル樹脂等の常温硬化性樹脂もしくは加熱硬化型樹脂、ポリビニ−ルアルコ−ル繊維あるいは光重合性アクリル樹脂でもよいが、加工具部材の耐熱性、気孔率の調整の面から、平均重合度50〜400、平均粒径5〜150μmの結晶セルロ−ス(耐熱性800℃)が好ましい。
【0029】
結合材として例示した前記の微粉結晶セルロ−スとしては、パルプセルロ−スやコットンリンタ−の粉砕物、平均重合度が50〜400、平均粒径が30〜150μmの結晶セルロ−スが挙げられる。特に、非晶物を除いた結晶セルロ−スが硬度の高い研磨加工具部材を与えるので好ましい。
【0030】
結晶セルロ−スは、製紙パルプ、溶解パルプ、コットンリンタ−等のセルロ−ス質を鉱酸またはアルカリの作用で加水分解し、パルプの非結晶セルロ−ス領域を溶解除去、ついで洗浄して結晶部分のみを取得し、これを機械粉砕して微結晶のセルロ−ス集合物をほぐし、乾燥することにより製造される(米国特許第2,978,446号、特開平6−316535号)。
重合度は、セルロ−ス分子を構成する基本分子(C10)の数であり、結晶セルロ−スは加水分解により重合度の異なったセルロ−スの混合物であるので、平均重合度はこれら結晶セルロ−ス混合物の重合度の平均を示す。平均重合度は、INDUSTRIAL AND ENGINEERING CHEMISTRY Vol.42,No.3,頁502〜507(1950年)に記載された銅安溶液粘度法により測定する。
【0031】
このような結晶セルロ−スは、真比重が約1.55、見掛比重が約0.15〜0.3、平均粒径30〜150μmの白色の粉末で、繊維が粉砕された構造を示し、フィブリル状構造を残している。この結晶セルロ−ス1g当りの水飽和度(JIS−K5101に準拠)は2〜3ml/gである。
【0032】
市販の結晶セルロ−スとしては、旭化成株式会社から販売されている結晶セルロ−ス アビセル(登録商標) PH−101、FD−F20(商品名)、セオラス ST−01(商品名)、米国FMC社の結晶セルロ−ス アビセル(登録商標) FD−101、PH−102、PH−103、PH−F20(商品名)等が利用できる。また、結晶セルロ−ス表面がCMCや天然多糖類で被覆されている旭化成株式会社から販売されている結晶セルロ−ス アビセル(登録商標)RC−N30、RC−N81、RC−591、CL−611(商品名)等も利用できる。平均重合度が高いほど加工具部材の硬度はより高くなる。
【0033】
結合材の結晶セルロ−スを用い、基板のモ−ス硬度と同等、またはそれより低いモ−ス硬度を有する砥粒を含む混合物を化学機械研磨加工具を打錠法で成型するには、平均重合度50〜400、平均粒径5〜150μmの結晶セルロ−ス 5〜50重量%、基板のモ−ス硬度と同等、またはそれより低いモ−ス硬度を有する砥粒 88.5〜49.5重量%、および融点が60〜400℃の研磨促進剤 0.5〜10重量%を含有する混合物を型内に充填し、100〜3,000kgf/cm、好ましくは200〜1,000kgf/cmの圧力で該混合物を常温で加圧して化学機械研磨加工具部材に賦型する。
【0034】
例えば、型として気体は透過するが固体は透過しない型を用い、粒径0.5〜500μmの微粉セルロ−ス、砥粒、研磨促進剤およびその他の添加物を含む均一混合物を型内に充填し、加熱することなく混合物を加圧して微粉セルロ−ス間の気体を型外へ逸散させつつ混合物を圧縮して厚み5〜30mmの円盤状、楕円板状、方角板状または長尺板状に賦型する。
【0035】
微粉セルロ−ス間および微粉セルロ−スと砥粒間の強固な結合は、微粉セルロ−ス固有の繊維の絡みおよび微粉セルロ−スが含有する水分および大気中の湿気が寄与しているものと推測される。よって、予め、微粉セルロ−スの表面に水を霧吹き(微粉セルロ−スに対し、水量は10重量%以下)した後、砥粒、研磨促進剤等と混合し、型内に充填し、常温で圧縮成型してもよい。
【0036】
必要により、滑剤を混合物組成中、0.05〜1重量%となる割合で配合して微粉セルロ−スの圧縮時の滑りを向上させて成型時間を短縮させてもよい。滑剤としては、酸化モリブテン、硫化モリブテン、ステアリン酸マグウネシウム、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アルミニウム、メラミン、尿素、メラミン・イソシアヌレ−ト付加物等が挙げられる。
【0037】
型は、雌型(固定型)と昇降高さを調整できる雄型(移動型)よりなる圧縮金型が使用される(例えば、特開2001−9731号)。雌型と雄型から形成されるキャビティ内に充填ガンで、ジェットミルで混合された混合物を充填し、雄型を移動(型締め)させてキャビティ容積を減少させて空気を一部追い出しながら、圧力が100〜1,000kgf/cmとなったところで該圧力を維持した状態で10〜60分間放置して賦型をなし、ついで雄型を移動(型開き)させて成型された加工具を取り出す。
型は、薬錠剤の打錠成型に用いる雌型(移動型)と雄型(移動型)よりなる圧縮金型を使用してもよい。
【0038】
賦型された化学機械研磨加工具部材2は、厚み5〜30mm、好ましくは5〜10mmの円盤状、楕円板状、方角板状または長尺板状である。円盤状物であるときの直径は、5〜30mmが好ましい。
【0039】
この基板用化学機械研磨加工具2の複数を、3〜25mmの間隔を置いて硬質基台3に接着剤あるいは粘着剤を用いて貼付して基板用化学機械研磨砥石1を作成する。
硬質基台3としては、アルミニウム剛板、ステンレス板、セラミック板、低熱膨張ガラス板等の剛性の高い板が使用できる。硬質基台の形状は円盤状、楕円板状、角方板状、長尺状板などが挙げられる。
【0040】
乾式化学機械研磨装置10は、図2、図3に示すように、研磨装置の上側を構成する研磨手段10aと、下側に設けられた基板wを保持するホルダ−機構10b、超音波洗浄機構10c、化学機械研磨加工具と基板表面が接触する加工点に冷却流体を供給するノズル10d、第1ダブルア−ム搬送ロボット10e、第2ダブルア−ム搬送ロボット10f、および基板洗浄スピナ10g、収納カセット10h、基板乾燥スピナ10iを備える。
【0041】
研磨手段10aは、化学機械研磨砥石1を備える研磨ヘッド6を備え、この研磨ヘッドは研磨装置10の上側のスピンドル4に水平方向に回転自在に軸承される。このヘッド6は、基台7上に立設した支持枠8の上部に設けたレ−ル9上を滑走するスライド部材を下面に有する函体に固定され、紙面に向かって前後方向に移動可能となっている。また、ヘッド6は、シリンダ22により昇降自在となっており、砥石1が基板wを定寸切り込み研削することを可能としている。スピンドル4は、モ−タ5の回転力をモ−タ軸5aに固定された滑車5b、プ−リ−5c、スピンドル4に固定された滑車5dを介して伝達する。
【0042】
基板wを保持するホルダ−機構10bは、モ−タ13により回転駆動されるスピンドル14に軸承された吸着板12上に基板wをバキュ−ム吸着させる。吸着板12は樹脂板に孔12aを多数穿孔したものであってもよいし、ポ−ラスセラミック板であってもよい。吸着板12下面にはチャンバ−15が設けられ、三方切替弁16の切り替えで流体、例えば空気、窒素ガスが自由に出入りする。チャンバ−15を減圧することにより基板wは吸着板12に固定される。チャンバ−15に加圧流体を供給することにより基板wは吸着板より押し上げられる。
吸着板12を冷却するためにポンプ17を用いて冷却水を吸着板12側壁の周りに供給する。
モ−タ13の駆動力は、クラッチ18を介してスピンドル14に伝達される。純水、空気等の用役の供給管19,19’はロ−タリ−バルブ20,21でスピンドル14内の管に結合される。
【0043】
この吸着板12は、インデックステ−ブル40の回転軸を中心に等間隔に3基設けられ、インデックステ−ブル40を回転軸中心に時計逆廻り方向に120度、120度、−240度回転させることにより元の位置に戻る。これら3基の吸着板は、インデックステ−ブル40上でロ−ディングゾ−ン、研磨ゾ−ン、アンロ−ディングゾ−ンに区分される。
【0044】
超音波洗浄機構10cは、水槽30内に昇降可能なカセット31を備え、水槽の底部に超音波発生器32が備えられている。
基板25枚を収納したカセット31を下降させて水に基板を浸漬させ、異なった周波数の超音波を交互に照射して水、基板を振動させ、加工屑や残滓を基板表面から除去する。
【0045】
比較的低い周波数(15〜50キロヘルツ)の振動は高いエネルギ−を有するので、粒径の大きい屑、残滓の除去に、比較的高い周波数(51〜150キロヘルツ)の振動は低いエネルギ−を有するので、粒径の小さい屑、残滓の除去に有効である。よって、少なくとも2つの異なった周波数の超音波を同時または交互に照射する。
【0046】
好ましい態様は、超音波の周波数として、15〜25キロヘルツの超音波、30〜60キロヘルツの超音波、および80〜120キロヘルツの超音波の3つの域の超音波を交互に0.1〜2分づつ、0.5〜2キロワットの強度で照射時間が全体で6〜24分間となるよう照射する。超音波の用いる周波数、照射時間は、基板表面に挟まれている加工屑、残滓に依存するので、基板が変る度ごとに適宜、実験で確認する。
【0047】
水槽30内の洗浄水にノニオン系界面活性剤を0.3〜2重量%含有させることは、超音波照射による屑、残滓の除去を促進させる上で有効である。ノニオン性界面活性剤としては、ポリオキシエチレンアルキルエ−テル、ポリオキシエチレンアルキルフェニルエ−テル、プルオニック系非イオン性界面活性剤(エチレンオキシドとプロピレンオキシドの付加反応物)、脂肪酸ポリオキシエチレンエステル、脂肪酸ポリオキシエチレンソルビタンエステル、ポリオキシエチレンひまし油、脂肪酸蔗糖エステル、ポリオキシエチレン・オキシプロピレンアルキルエ−テル等が挙げられる。
具体的には、ジラウリン酸ポリエチレングリコ−ルエステル、トリデシルポリオキシエチレンエ−テル、ノニルフェニルポリオキシエチレンエ−テル、モノステアリン酸ポリエチレングリコ−ル、等が挙げられる。好ましくは、HLBが10以上の化合物が好ましい。
【0048】
基板が超音波洗浄された後、カセット31を水槽30より上昇させ、第1ダブルア−ム搬送ロボット10eの一方のア−ムにより洗浄された基板を乾燥スピナ10iの回転板上に移送し、スピン乾燥させたのち、乾燥した基板を第1ダブルア−ム搬送ロボット10eの他方のア−ムによりホルダ−機構10bのロ−ディングゾ−ン位置にある吸着板12上に移送する。
【0049】
超音波洗浄機構10cに替えて高圧ジェット水噴射洗浄機構を用い、基板を1枚毎に洗浄するようにしてもよい。高圧ジェット水噴射洗浄機構では、スピナの回転板上に載置させた基板表面に圧力が20〜150kgf/cmの加圧洗浄水をノズルより吹き付けて研削旋条痕の溝に挟まっている細かな加工屑、残滓を除去する。
【0050】
前記洗浄・乾燥をされた基板は、第1ダブルア−ム式搬送ロボッド10eの他方のア−ムによりロ−ディングゾ−ン位置にある吸着板12に載置された後、インデックステ−ブル40を時計逆廻り方向に120度回転させることにより研磨ゾ−ンに移動される。そこで、スピンドル14を回転することにより基板は回転される。一方、スピンドル4を回転させることにより砥石1を回転させつつスピンドル4を下降させ、基板wに切り込みをかけながら基板と化学機械研磨加工具を摺擦させる乾式化学機械研磨を行う。
【0051】
スピンドル14の回転数は10〜400rpm、スピンドル4の回転数は100〜3000rpm、砥石1の基板wへの押圧は50〜300gf/cmが適している。基板の研磨時、基板と化学機械研磨加工具3との摩擦熱による基板の過加熱を防止するため、加工点に流体供給ノズル10dより10〜100℃の冷却空気を吹き付けるとよい。
乾式化学機械研磨を行った後、スピンドル4を上昇させて砥石を基板より遠ざけるとともに、スピンドル4およびスピンドル14の回転を止める。
【0052】
乾式化学機械研磨された基板は、第2ダブルア−ム搬送ロボット10fの一方のア−ムによりよりスピナ10gの回転板41上に移送され、回転板の回転により回転されつつ上方より洗浄水をノズル42から吹きつけられ、スピン洗浄される。ついで、洗浄水の供給が止められ、ノズルより空気が基板面に吹き付けるとともに回転板が回転されて基板はスピン乾燥される。スピン乾燥された加工基板は、第2ダブルア−ム搬送ロボット10fの他方のア−ムにより把持され、収納カセット10hの棚内に搬送される。
【0053】
このように洗浄、乾燥、乾式化学機械研磨および水洗された加工基板は、マイクロスクラッチが全くない無攪乱・無欠陥の鏡面光沢を有する基板である。
【実施例】
実施例1
旭化成株式会社製結晶セルロ−ス粉末 アビセル FD−101(平均重合度175、平均粒径30μm、真比重1.55、見掛比重0.3) 10重量部、ジクロロイソシアヌル酸Na 10重量部、および白石工業株式会社の炭酸カルシウム粒子 白艶華U 80重量部を10分かけて混合し、この混合物を相対湿度55%、温度30℃の部屋に30分間放置した。
【0054】
ついで、この混合物を気体は透過するが固体は透過しない株式会社菊水機械の手動型単発打錠機のキャビティ(温度30℃)内に充填し、雄型をゆっくりと移動させて圧力を叙々に高めてキャビティ内の空気を型外へ逃がした。型締圧力が600kgf/cmとなった時点で雄型の移動を停止し、該圧力下に20分間保ち、賦型を終了した。
雄型を移動することにより型開きし、気孔を有する厚み10mm、直径10mmの円柱状成型体(研磨加工具部材)を複数得た。
【0055】
これら円柱状成型体複数を厚み5mmアルミニウム製環状リング表面に5mmの等間隔で並べてエポキシ樹脂接着剤で貼付し、アルミニウム製環状リングを円盤状支持板に固定し、カップ型研磨砥石1を作成した。
【0056】
300mm径、厚み約600μmの両面が研削加工されたベアシリコンウエハ(Ra 126オングストロ−ム)25枚を収納するカセットを超音波洗浄機構の水槽内に貯蔵されたジラウリン酸ポリエチレングリコ−ルエステル1重量%含有させた純水内に浸漬し、周波数20キロヘルツの超音波、50キロヘルツの超音波、および100キロヘルツの超音波を交互に0.5分づつ、1.0キロワットの強度で照射時間が全体で24分間となるよう照射して超音波洗浄を行った。
【0057】
ついで、カセットを水槽より上昇させ、第1ダブルア−ム搬送ロボット10eの一方のア−ムにより洗浄された基板をスピナ10gの回転板上に移送し、スピン乾燥させたのち、乾燥した基板を第1ダブルア−ム搬送ロボット10eの他方のア−ムによりホルダ−機構10bのロ−ディングゾ−ン位置にある吸着板12上に移送し、チャック機構を減圧吸引して基板を固定した。
【0058】
インデックステ−ブル40を時計逆廻り方向に120度回転して基板を研磨ゾ−ンに移動し、研磨装置の前記カップ型研磨砥石を軸承したスピンドルを500rpmで回転させながら1.70μmの定寸切り込みの下降をさせ、300gf/cmの圧で押し当てながら、前記チャック機構の回転数を100rpmで回転(回転方向は逆方向)させつつ、前後方向に20mm幅揺動させる摺動を180秒行ってベアシリコンウエハ表面を研磨した後、カップ型研磨砥石1を軸承するスピンドル4を上昇させた。
この乾式化学機械研磨中に、加工点に80℃の空気をノズル10dより吹き続けた。
【0059】
チャック機構のスピンドル14の回転を停止し、チャック機構のチャンバ−の減圧を停止した後、チャンバ−に圧空を供給し、研磨加工したシリコンウエハの取り外しを容易とした。
【0060】
第2ダブルア−ム搬送ロボット10fの一方のア−ムで基板を把持し、スピナ10g上に移送させ、純水で洗浄、ついでスピン乾燥した。ついで、第2ダブルア−ム搬送ロボット10fの他方のア−ムでスピナ上の基板を把持し、収納カセット10hの棚内へと移送させた。
【0061】
得られた研磨加工シリコンウエハ表面は、ベアウエハの渦巻状研削跡が消滅し、マイクロスクラッチ傷、大スクラッチ傷とも見受けられず、表面粗さRaが12.6オングストロ−ムの無攪乱・無欠陥の鏡面を呈した。
【0062】
実施例2〜4
混合物の組成を表1に変更する(実施例2の砥粒は、白石工業株式会社のWhiton P−10、実施例3はBriliant−1500、実施例4はニッキ株式会社のHK−1)ほかは実施例1と同様にしてカップ型研磨砥石を成形し、シリコンベアウエハを研磨した。
得られた研磨加工シリコンウエハ表面は、ベアウエハの渦巻状研削跡が消滅し、マイクロスクラッチ傷、大スクラッチ傷とも見受けられない無攪乱・無欠陥の鏡面を呈していた。得られた研磨加工シリコンウエハ表面平均粗さ(Ra)を同表に示す。
【0063】
【表1】

Figure 2004106080
【0064】
参考例
300mm径、厚み約550μmのベアシリコンウエハを株式会社 岡本工作機械製作所の研磨装置SPP801ATの基板キャリアに減圧吸引して固定し、ロデ−ルの研磨布”SUBA#800(商品名)を表面に貼った研磨プラテンに300gf/cmの圧で押し当てながら、かつ、研磨布表面にデュポン株式会社のシリコン研磨剤スラリ− MAZIN(登録商標)SRS3(商品名)を200cc/分の量供給しつつ、前記キャリアの回転数を60rpm、研磨プラテンの回転数を60rpmで回転(回転方向は逆方向)させ、300秒摺動させることによりシリコンウエハ表面を研磨した。
研磨速度は0.74μm/分であり、得られた研磨加工シリコンウエハ表面にはマイクロスクラッチ傷、大スクラッチ傷とも見受けられない、無攪乱・無欠陥の鏡面を呈していた。表面粗さRaは、39.2オングストロ−ムであった。
【0065】
比較例1
実施例1において、基板の超音波洗浄を行わない他は同様にして乾式化学機械研磨加工を行ったところ、得られた研磨加工シリコンウエハ表面には大スクラッチ傷とも見受けられなかったが、4箇所にマイクロスクラッチ傷が見受けられた。表面粗さRaは、13.4オングストロ−ムであった。
【0066】
【発明の効果】
本発明の基板表面の研削旋条痕の溝に挟まっている肉眼では見えない程度の研削屑や残滓を予め超音波洗浄することにより取除いた後、基板を乾式化学機械研磨加工する方法は、スクラッチ傷のない、無攪乱・無欠陥の鏡面光沢を有する加工基板を与える。
【図面の簡単な説明】
【図1】本発明の研磨加工具部材の斜視図である。
【図2】研磨装置の正面図である。
【図3】研磨装置の部分平面図である。
【符号の説明】
1     研磨砥石
w     基板
2     化学機械研磨加工具部材
3     硬質基台
10a    研磨手段
10b    基板保持機構
10c    超音波洗浄機構[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a chemical machine for polishing a substrate surface such as a semiconductor silicon substrate, a silicon bare wafer, a silicon nitride substrate, a GaAs substrate, a LiTaO 3 substrate, and an AlTiC substrate by a dry method (without using an abrasive slurry as free abrasive grains). The present invention relates to a polishing method and a dry chemical mechanical polishing apparatus used for the polishing method.
[0002]
[Prior art]
Both surfaces of a substrate (wafer) such as a silicon substrate or a GaAs substrate obtained by slicing an ingot are ground and wrapped as necessary, and an abrasive slurry is supplied to the processed surface, and a polishing pad is formed on the substrate. 2. Description of the Related Art Polishing a substrate surface to a mirror surface by pressing against a grinding surface and rotating and sliding both or one of a substrate and a polishing pad has been performed. Further, a silicon substrate on the back surface of a semiconductor substrate is also ground or polished to be mirror-finished or thinned.
[0003]
Since the wet polishing method for polishing the front surface or the back surface of the substrate uses a large amount of abrasive slurry, the substrate is dry-processed without using the abrasive slurry by using an abrasive tool in which abrasive grains are fixed to a grindstone or a pad. Polishing methods have been proposed (Papers, pp. 191 of the 1998 Autumn Meeting of Precision Engineering, JP-A-9-1461, JP-A-2000-190228, JP-A-2000-198173, JP-A-2000-233375, JP-A-2000-237962, JP-A-2001-129664, “Journal of the Japan Society of Abrasive Processing Vol.44 No.10 October 2000, pp. 433-436”).
[0004]
The polishing tool member of the dry chemical mechanical polishing whetstone (CMG) is obtained by bonding abrasive grains with a binder, and such abrasive grains include silica, cerium oxide, alumina, barium carbonate, calcium carbonate, magnesium oxide, and manganese oxide. However, phenol resins, epoxy resins, polyimide resins, melamine resins, urethane resins, acrylic resins, unsaturated polyester resins, etc. have been proposed as binders.
[0005]
Specifically, for example, Japanese Patent Application Laid-Open No. 2000-198073 discloses an aggregated abrasive having a particle size of 1 to 20 μm in which 1,000 or more ultrafine abrasives having a particle size of 1 to 100 nm such as silica, cerium oxide, and alumina are aggregated. Cup-type polishing in which a large number of polishing tools having a volume ratio of agglomerated abrasive grains of 15 to 70% by volume with respect to a resin obtained by binding a liquid resin are annularly arranged and attached at intervals on an annular hard aluminum base. Suggest a whetstone.
[0006]
This grinding stone uses agglomerated particles to increase the unevenness of the polishing tool surface, increasing the pressure between the substrate and the contact portion of the polishing tool, improving the polishing efficiency, and having a chip pocket on the surface of the polishing tool. Formed, the phenomenon of grinding wheel clogging is suppressed, and since the cohesive force of the primary particles forming the agglomerate is weaker than the adhesive force between the agglomerated particles and the resin binder, the abrasive grains are agglomerated during polishing. Some of the secondary particles collapse or deform, and contribute to the polishing of the substrate in the state of the primary particles, which has an advantage of a high polishing rate.
[0007]
Using a powdered epoxy resin as a binder, mixing this epoxy binder and manganese oxide abrasive, pulverizing the mixture, filling the pulverized material into a mold, and applying a negative pressure of -70 to -80 kPa to the mold. It is also known that a chemical mechanical polishing grindstone is obtained by compressing a mold (Japanese Patent Laid-Open No. 2001-9731).
[0008]
[Problems to be solved by the invention]
The dry polishing tool member containing the solid abrasive grains having a Mohs hardness lower than the Mohs hardness of the conventionally proposed silicon substrate macroscopically eliminates traces of the silicon substrate and exhibits a mirror surface. It is reported that the silicon substrate is provided.
However, when observing processed silicon substrates exhibited in reports from academic journals and trade papers and at exhibitions such as SEMICON Japan 2001, small micro-scratches were observed, and processed silicon substrates having a non-disturbing and defect-free mirror gloss were obtained. Not been.
[0009]
The present inventors have sliced a silicon ingot, ground both surfaces thereof, and further finely ground one surface of the silicon ingot. And dry-polishing, the number of micro-scratches generated on the mirror surface of the processed silicon substrate may differ, or long scratches may occur, even though the same chemical mechanical polishing whetstone (CMG) was used. found.
[0010]
Microscopic observation of the polishing state of the substrate where micro scratches occurred, and observation of the same type of substrate surface before dry-polishing with a microscope, found that the substrate was sandwiched in the grinding traces of the substrate before dry polishing. It has been found that processing scraps and residues cause micro-scratch on the surface of the processed substrate mirror-finished by dry polishing.
[0011]
The object of the present invention is not limited to the type of the substrate and the processing history. The substrate, for example, a silicon substrate, a GaAs substrate, a LiTaO 3 substrate, a device wafer, etc. is dry-processed by chemical mechanical polishing to obtain a non-disruption-free micro scratch. An object of the present invention is to provide a method for manufacturing a processed substrate having a defect-free mirror gloss. Another object of the present invention is to provide an apparatus for manufacturing a processed substrate having such a non-disturbed and defect-free mirror gloss.
[0012]
[Means for Solving the Problems]
According to the first aspect of the present invention, the substrate surface is washed with a cleaning liquid to remove processing debris and residue sandwiched between grooves and grinding vestiges of the substrate. A plurality of grinding tools (CMG) each having a plurality of abrasive tools formed by bonding solid abrasive grains having the same or a softer Mohs hardness with a bonding material are pressed and relatively moved to flatten the substrate surface. It is intended to provide a dry chemical mechanical polishing method characterized by the above.
[0013]
By removing the processing debris and residue trapped in the grooves of the rifling traces on the substrate before dry chemical mechanical polishing, micro scratches do not occur on the mirror-finished substrate surface, and there is no disturbance and no defect. A processed substrate having a mirror surface can be manufactured by a dry chemical mechanical polishing method.
[0014]
According to a second aspect of the present invention, in the dry chemical mechanical polishing method, the cleaning of the substrate is performed by high-pressure jet water cleaning or ultrasonic cleaning.
[0015]
Processing debris and residues caught in the groove of the rift marks on the substrate can be removed by simple pure water supply spin cleaning, substrate immersion cleaning in a water tank, or a combination of polyvinyl alcohol sponge rotation and pure water supply spin cleaning. , But could be removed by high-pressure jet water cleaning or ultrasonic cleaning.
[0016]
According to a third aspect of the present invention, in the dry chemical mechanical polishing method, the polishing tool member of the grindstone (CMG) includes an abrasive (a), a polishing accelerator (b), an average degree of polymerization of 50 to 400, and an average particle size. A mixture containing a binder (c) consisting of crystalline cellulose of 5 to 150 μm is filled in a mold, molded at normal temperature under pressure, and shaped into a chemical mechanical polishing tool member. I do.
[0017]
The crystalline cellulose of the binder has a heat resistance of 800 ° C. or higher, and the grindstone has excellent heat resistance as compared with a resin binder having a heat resistance of about 400 ° C. In addition, pores are formed in the polishing tool member due to the entanglement of the fibers left in the crystal cellulose, and the polishing tool member has air pockets, so that it becomes an evacuation place for abrasive grains and polishing debris dropped during polishing, and micro scratches do not occur. .
The polishing accelerator causes a chemical reaction with the substrate to further reduce the undulation of the substrate, and a substrate having a non-disturbed and defect-free mirror gloss can be obtained. The polishing rate is improved by 1.4 times or more by the addition of the polishing accelerator.
[0018]
According to a fourth aspect of the present invention, there is provided an ultrasonic cleaning mechanism, a first double arm transfer robot, a substrate holder, a rotation mechanism of the substrate holder, and a Mohs hardness of a substrate to be polished provided above the substrate holder. A polishing head including a grindstone having a plurality of annularly formed polishing tool members obtained by combining solid abrasive grains having the same or a softer Mohs hardness with a binder, a lifting / lowering mechanism and a rotating mechanism for the polishing head, An object of the present invention is to provide a dry chemical mechanical polishing apparatus including a two-arm transfer robot and a substrate cleaning spinner.
[0019]
This is an apparatus that can perform chemical mechanical polishing of a substrate in a dry manner without using an abrasive slurry.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
1 is a perspective view of a polishing grindstone provided with a chemical mechanical polishing tool member at the bottom, FIG. 2 is a sectional view of a dry chemical mechanical polishing apparatus, and FIG. 3 is a partial plan view of the dry chemical mechanical polishing apparatus.
[0021]
In FIG. 1, reference numeral 1 denotes a grinding wheel, reference numeral 2 denotes a chemical mechanical polishing tool member, and reference numeral 3 denotes a hard base on which a plurality of chemical mechanical polishing tool members 2 are fixed in a ring shape.
The chemical mechanical polishing tool member 2 includes a mixture containing a solid abrasive grain and a binder as essential components, and a polishing accelerator, a hollow particle or a microcapsule having a melting point or a decomposition temperature of 60 to 400 ° C. if necessary. And then compression or compression molding (tabletting) at room temperature.
[0022]
As the solid abrasive, an abrasive having a Mohs hardness equal to or lower than the Mohs hardness of the substrate to be polished is used. Specifically, metal oxides such as silicon oxide, nickel oxide, zinc oxide, tin oxide, titanium oxide, cerium oxide, alumina, and manganese oxide; metal carbonates such as magnesium carbonate, calcium carbonate, nickel carbonate, and manganese carbonate; and zeolite And the like are used alone or in combination of two or more. Particularly, the carbonate of IIa metal is most suitable.
Preferred abrasives for polishing a silicon substrate (Mohs hardness is about 6) are calcium carbonate (Mohs hardness is about 3), cerium oxide, magnesium carbonate, zeolite, barium carbonate, nickel carbonate, manganese carbonate, tin oxide, Anatase type titanium oxide, silicon oxide, zinc oxide and alumina. Calcium carbonate is heavy calcium carbonate, for example, Whiteton P-10 (trade name) of Shiraishi Kogyo Co., Ltd., but light calcium carbonate, for example, Shiraishi Hana U (trade name), Brilliant 1500 (trade name) of Shiraishi Kogyo Co., Ltd. There may be.
[0023]
The particle size of the abrasive grains is preferably from 0.2 nm to 10 μm, and may be secondary aggregated. Since the Mohs hardness of the abrasive grains is equal to or lower than the Mohs hardness of the substrate, the substrate does not scratch the substrate, so that large agglomerated particles may be present.
[0024]
Despite the fact that the Mohs hardness of the abrasive grains is equal to or lower than the Mohs hardness of the substrate, the polishing of the substrate proceeds not only by mechanical polishing but also by chemical polishing. It is presumed that it is.
[0025]
The polishing accelerator (b) is a compound having a chlorine group or a bromo group having a melting point (or thermal decomposition temperature) of 60 to 400 ° C., preferably 150 to 300 ° C., which is a solid in an atmosphere of 20 to 30 ° C. Compounds having a metal and a carbonate or bicarbonate group, compounds having an ammonium group and a carbonate or bicarbonate group, sodium chlorate, sodium hypochlorite, potassium chlorate, potassium hypochlorite, A compound selected from ammonium sulfate is used.
[0026]
Examples of the compound having a chlorine group or a bromine group include ammonium chloride (melting point: 184 ° C), ammonium iodide chloride (melting point: 162 ° C), cesium iodide chloride (melting point: 229 ° C), and tungsten chloride (melting point: 275 ° C). ° C), tin chloride (melting point 246 ° C), and other inorganic chlorinated salts; and halogen-containing compounds such as chlorinated isocyanuric acid and chlorinated isocyanurate.
[0027]
Particularly preferred polishing accelerators are inexpensive ammonium chloride (ammonium chloride), chlorinated isocyanuric acid and its salts (Na, K, Mg, Ca), ammonium carbonate, ammonium hydrogen carbonate, sodium carbonate, sodium hydrogen carbonate. , Sodium chlorate, sodium hypochlorite, potassium chlorate, potassium hypochlorite, and ammonium persulfate. Examples of the chlorinated isocyanuric acid include trichloroisocyanuric acid (effective chlorine content: 90.4%, thermal decomposition temperature: 225 to 300 ° C), and dichloroisocyanuric acid (effective chlorine content: 63.5%, thermal decomposition temperature: 240 to 250 ° C). .
[0028]
Examples of the binder include a cold-setting resin such as an epoxy resin, a phenoxy resin, a resin, a urethane resin, an unsaturated polyester resin, a heat-curable resin, and a polyvinyl alcohol, which have been conventionally proposed as a binder for a dry grindstone. Fiber or photopolymerizable acrylic resin may be used, but from the viewpoint of adjusting the heat resistance and porosity of the processing tool member, crystalline cellulose having an average degree of polymerization of 50 to 400 and an average particle size of 5 to 150 μm (heat resistance 800 ° C.) Is preferred.
[0029]
Examples of the above-mentioned fine crystalline cellulose as a binder include pulverized cellulose pulp and cotton linter, and crystalline cellulose having an average degree of polymerization of 50 to 400 and an average particle size of 30 to 150 µm. In particular, crystalline cellulose from which an amorphous substance is removed is preferable because it gives a polishing tool member having high hardness.
[0030]
Crystallized cellulose is obtained by hydrolyzing cellulosic substances such as paper pulp, dissolved pulp and cotton linter by the action of a mineral acid or alkali, dissolving and removing the amorphous cellulose region of the pulp, and then washing and crystallizing. It is produced by obtaining only a portion, mechanically pulverizing the portion, loosening the microcrystalline cellulose aggregate, and drying (US Pat. No. 2,978,446, JP-A-6-316535).
The degree of polymerization is the number of basic molecules (C 6 H 10 O 5 ) constituting the cellulose molecule, and crystalline cellulose is a mixture of cellulose having different degrees of polymerization due to hydrolysis. The degree indicates the average of the degree of polymerization of these crystalline cellulose mixtures. The average degree of polymerization was determined according to INDUSTRIAL AND ENGINEERING CHEMISTRY Vol. 42, no. 3, 502-507 (1950).
[0031]
Such crystalline cellulose is a white powder having a true specific gravity of about 1.55, an apparent specific gravity of about 0.15 to 0.3, and an average particle size of 30 to 150 μm, and has a structure in which fibers are pulverized. , Leaving a fibril-like structure. The water saturation per 1 g of the crystalline cellulose (according to JIS-K5101) is 2-3 ml / g.
[0032]
Commercially available crystal celluloses include Crystal Cellulose Avicel (registered trademark) PH-101, FD-F20 (trade name), CEOLUS ST-01 (trade name), and FMC Company, USA, sold by Asahi Kasei Corporation. Crystal Cellulose Avicel (registered trademark) FD-101, PH-102, PH-103, PH-F20 (trade name) and the like can be used. Crystal Cellulose Avicel (registered trademark) RC-N30, RC-N81, RC-591, CL-611 sold by Asahi Kasei Co., Ltd., in which the crystal cellulose surface is coated with CMC or natural polysaccharide. (Product name) can also be used. The higher the average degree of polymerization, the higher the hardness of the processing tool member.
[0033]
To form a mixture containing abrasive grains having a Mohs hardness equal to or lower than the Mohs hardness of the substrate using a crystal cellulose of a binder by a tableting method using a chemical mechanical polishing tool, Abrasive grains having an average degree of polymerization of 50 to 400, an average particle size of 5 to 150 μm, crystal cellulose of 5 to 50% by weight, and a Moth hardness equal to or lower than the Mohs hardness of the substrate 88.5 to 49 A mixture containing 0.5% by weight and a polishing accelerator having a melting point of 60 to 400 ° C containing 0.5 to 10% by weight is filled in a mold, and 100 to 3,000 kgf / cm 2 , preferably 200 to 1,000 kgf. The mixture is pressurized at room temperature under a pressure of / cm 2 and shaped into a chemical mechanical polishing tool member.
[0034]
For example, use a mold that allows gas to permeate but does not allow solid to permeate, and fills the mold with a uniform mixture containing fine powdered cellulose having a particle size of 0.5 to 500 μm, abrasive grains, a polishing accelerator and other additives. Then, the mixture is compressed without heating, and the mixture is compressed while the gas between the fine powder cellulose is escaping out of the mold, and the mixture is compressed to form a disk, oval plate, square plate or long plate having a thickness of 5 to 30 mm. Form into a shape.
[0035]
The strong bonds between the fine cellulose and the fine cellulose and the abrasive grains are attributed to the entanglement of fibers inherent in the fine cellulose and the moisture contained in the fine cellulose and moisture in the atmosphere. Guessed. Therefore, water is previously sprayed on the surface of the fine powder cellulose (water content is 10% by weight or less with respect to the fine powder cellulose), then mixed with abrasive grains, a polishing accelerator, etc., filled in a mold, and cooled to room temperature. May be compression molded.
[0036]
If necessary, a lubricant may be blended at a ratio of 0.05 to 1% by weight in the mixture composition to improve the sliding of the fine powdered cellulose during compression and shorten the molding time. Examples of the lubricant include molybdenum oxide, molybdenum sulfide, magnesium stearate, zinc stearate, calcium stearate, aluminum stearate, melamine, urea, and melamine / isocyanurate adduct.
[0037]
As the mold, a compression mold composed of a female mold (fixed mold) and a male mold (movable mold) whose height can be adjusted is used (for example, JP-A-2001-9731). Filling the mixture mixed with a jet mill into the cavity formed by the female mold and the male mold with a jet mill, moving the male mold (clamping) to reduce the cavity volume and partially expel air, When the pressure reaches 100 to 1,000 kgf / cm 2 , the mold is left for 10 to 60 minutes while maintaining the pressure to perform shaping, and then the male tool is moved (opened) to form a processed tool. Take out.
As the mold, a compression mold composed of a female mold (movable mold) and a male mold (movable mold) used for tablet molding of drug tablets may be used.
[0038]
The shaped chemical mechanical polishing tool member 2 has a disk shape, an elliptical plate shape, a square plate shape or a long plate shape having a thickness of 5 to 30 mm, preferably 5 to 10 mm. The diameter of the disk-shaped material is preferably 5 to 30 mm.
[0039]
A plurality of the chemical mechanical polishing tools 2 for a substrate are attached to the hard base 3 with an adhesive or an adhesive at an interval of 3 to 25 mm to prepare a chemical mechanical polishing grindstone 1 for a substrate.
As the hard base 3, a plate having high rigidity such as an aluminum rigid plate, a stainless plate, a ceramic plate, or a low thermal expansion glass plate can be used. Examples of the shape of the rigid base include a disk shape, an elliptical plate shape, a square plate shape, and a long plate.
[0040]
As shown in FIGS. 2 and 3, the dry chemical mechanical polishing apparatus 10 includes a polishing means 10a constituting an upper side of the polishing apparatus, a holder mechanism 10b for holding a substrate w provided on a lower side, and an ultrasonic cleaning mechanism. 10c, a nozzle 10d for supplying a cooling fluid to a processing point at which the chemical mechanical polishing tool comes into contact with the substrate surface, a first double arm transfer robot 10e, a second double arm transfer robot 10f, a substrate cleaning spinner 10g, a storage cassette 10h, a substrate drying spinner 10i is provided.
[0041]
The polishing means 10a includes a polishing head 6 having a chemical mechanical polishing whetstone 1. The polishing head is rotatably supported on a spindle 4 on the upper side of the polishing apparatus 10 so as to be freely rotatable in a horizontal direction. The head 6 is fixed to a box having a slide member on a lower surface that slides on a rail 9 provided on an upper portion of a support frame 8 erected on a base 7 and is movable in the front-rear direction toward the paper surface. It has become. The head 6 can be moved up and down by a cylinder 22 so that the grindstone 1 can cut and grind the substrate w to a fixed size. The spindle 4 transmits the rotational force of the motor 5 through pulleys 5b and pulleys 5c fixed to the motor shaft 5a and pulleys 5d fixed to the spindle 4.
[0042]
The holder mechanism 10b for holding the substrate w vacuum sucks the substrate w onto the suction plate 12 which is supported by a spindle 14 rotated and driven by a motor 13. The suction plate 12 may be a resin plate in which a large number of holes 12a are formed, or may be a porous ceramic plate. A chamber 15 is provided on the lower surface of the suction plate 12, and fluid, for example, air and nitrogen gas can freely enter and exit by switching the three-way switching valve 16. The substrate w is fixed to the suction plate 12 by reducing the pressure in the chamber 15. By supplying a pressurized fluid to the chamber 15, the substrate w is pushed up from the suction plate.
Cooling water is supplied around the side wall of the suction plate 12 using a pump 17 to cool the suction plate 12.
The driving force of the motor 13 is transmitted to the spindle 14 via the clutch 18. The supply pipes 19, 19 'for utilities such as pure water and air are connected to the pipes in the spindle 14 by rotary valves 20, 21.
[0043]
The three suction plates 12 are provided at equal intervals around the rotation axis of the index table 40, and are rotated clockwise by 120 degrees, 120 degrees, and -240 degrees around the rotation axis of the index table 40. To return to the original position. These three suction plates are divided into a loading zone, a polishing zone, and an unloading zone on the index table 40.
[0044]
The ultrasonic cleaning mechanism 10c includes a cassette 31 that can be moved up and down in a water tank 30, and an ultrasonic generator 32 is provided at the bottom of the water tank.
The cassette 31 containing 25 substrates is lowered to immerse the substrates in water, and ultrasonic waves of different frequencies are alternately irradiated to vibrate the water and the substrates, thereby removing processing dust and residues from the substrate surface.
[0045]
Relatively low frequency (15 to 50 kHz) vibrations have high energy, so that relatively high frequency (51 to 150 kHz) vibrations have low energy for removing large particle size debris and residue. It is effective in removing small particles and debris. Therefore, at least two ultrasonic waves of different frequencies are irradiated simultaneously or alternately.
[0046]
In a preferred embodiment, as the frequency of the ultrasonic wave, ultrasonic waves in three regions of 15 to 25 kHz, 30 to 60 kHz, and 80 to 120 kHz are alternately used for 0.1 to 2 minutes. Then, irradiation is performed at an intensity of 0.5 to 2 kilowatts so that the irradiation time becomes 6 to 24 minutes in total. Since the frequency and the irradiation time of the ultrasonic wave depend on the processing chips and residues sandwiched between the substrate surfaces, they are appropriately confirmed by an experiment every time the substrate changes.
[0047]
Containing 0.3 to 2% by weight of the nonionic surfactant in the washing water in the water tank 30 is effective in promoting the removal of dust and residues by ultrasonic irradiation. Examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, pronic nonionic surfactant (addition reaction product of ethylene oxide and propylene oxide), fatty acid polyoxyethylene ester, Fatty acid polyoxyethylene sorbitan ester, polyoxyethylene castor oil, fatty acid sucrose ester, polyoxyethylene / oxypropylene alkyl ether, and the like.
Specific examples include polyethylene glycol dilaurate, tridecyl polyoxyethylene ether, nonylphenyl polyoxyethylene ether, and polyethylene glycol monostearate. Preferably, compounds having an HLB of 10 or more are preferred.
[0048]
After the substrate is ultrasonically cleaned, the cassette 31 is raised from the water tank 30 and the substrate cleaned by one arm of the first double arm transfer robot 10e is transferred onto the rotating plate of the drying spinner 10i, and the substrate is spinned. After drying, the dried substrate is transferred onto the suction plate 12 at the loading zone position of the holder mechanism 10b by the other arm of the first double arm transfer robot 10e.
[0049]
A high pressure jet water spray cleaning mechanism may be used instead of the ultrasonic cleaning mechanism 10c to clean the substrates one by one. In the high-pressure jet water jet cleaning mechanism, pressurized cleaning water having a pressure of 20 to 150 kgf / cm 2 is sprayed from a nozzle onto a surface of a substrate mounted on a rotating plate of a spinner, and the substrate is sandwiched between grooves of grinding lathe marks. Removes processing waste and residue.
[0050]
The washed and dried substrate is placed on the suction plate 12 at the loading zone position by the other arm of the first double arm type transfer robot 10e, and then the index table 40 is removed. By turning it 120 degrees clockwise, it is moved to the polishing zone. Then, the substrate is rotated by rotating the spindle 14. On the other hand, by rotating the spindle 4, the spindle 4 is lowered while rotating the grindstone 1, and dry chemical mechanical polishing is performed in which the substrate and the chemical mechanical polishing tool are rubbed while cutting the substrate w.
[0051]
The rotation speed of the spindle 14 is preferably 10 to 400 rpm, the rotation speed of the spindle 4 is preferably 100 to 3000 rpm, and the pressing of the whetstone 1 against the substrate w is suitably 50 to 300 gf / cm 2 . At the time of polishing the substrate, in order to prevent the substrate from being overheated due to frictional heat between the substrate and the chemical mechanical polishing tool 3, cooling air of 10 to 100 ° C may be blown from the fluid supply nozzle 10d to the processing point.
After the dry chemical mechanical polishing, the spindle 4 is raised to move the grindstone away from the substrate, and the rotation of the spindle 4 and the spindle 14 is stopped.
[0052]
The substrate subjected to dry chemical mechanical polishing is transferred onto the rotating plate 41 of the spinner 10g by one arm of the second double arm transfer robot 10f, and the washing water is sprayed from above by the rotation of the rotating plate. Sprayed from 42 and spin washed. Next, the supply of the cleaning water is stopped, air is blown from the nozzle onto the substrate surface, and the rotating plate is rotated to spin dry the substrate. The spin-dried processed substrate is gripped by the other arm of the second double arm transfer robot 10f and transferred to the shelf of the storage cassette 10h.
[0053]
The processed substrate thus washed, dried, dry-chemical-mechanically polished and washed with water is a substrate having no micro-scratch and having no disturbance and no defect and a mirror gloss.
【Example】
Example 1
Asahi Kasei Corporation crystalline cellulose powder Avicel FD-101 (average degree of polymerization 175, average particle diameter 30 μm, true specific gravity 1.55, apparent specific gravity 0.3) 10 parts by weight, 10 parts by weight of sodium dichloroisocyanurate, and 80 parts by weight of calcium carbonate particles Shiraishihana U of Shiraishi Industry Co., Ltd. were mixed for 10 minutes, and this mixture was left in a room at a relative humidity of 55% and a temperature of 30 ° C. for 30 minutes.
[0054]
Then, the mixture is filled into the cavity (temperature 30 ° C.) of a manual single-shot tableting machine of Kikusui Machinery Co., Ltd., which is permeable to gas but not solid, and the male mold is slowly moved to gradually increase the pressure. The air in the cavity was released outside the mold. When the mold clamping pressure reached 600 kgf / cm 2 , the movement of the male mold was stopped, and the mold was kept under the pressure for 20 minutes to complete the shaping.
The mold was opened by moving the male mold, and a plurality of columnar molded bodies (polishing tool members) having pores and a thickness of 10 mm and a diameter of 10 mm were obtained.
[0055]
A plurality of these columnar molded bodies were arranged at equal intervals of 5 mm on the surface of a 5 mm-thick aluminum annular ring and attached with an epoxy resin adhesive, and the aluminum annular ring was fixed to a disk-shaped support plate to prepare a cup-type polishing wheel 1. .
[0056]
A cassette containing 25 bare silicon wafers (Ra 126 angstroms) having a diameter of 300 mm and a thickness of about 600 μm, both surfaces of which have been ground, is stored in a water tank of an ultrasonic cleaning mechanism at 1% by weight of polyethylene glycol dilaurate. It is immersed in the contained pure water, and the irradiation time is 20 kilohertz, 50 kilohertz, and 100 kilohertz, alternately for 0.5 minute, at an intensity of 1.0 kilowatt, and the irradiation time is as a whole. Irradiation was performed for 24 minutes to perform ultrasonic cleaning.
[0057]
Then, the cassette is lifted from the water tank, and the substrate washed by one arm of the first double arm transfer robot 10e is transferred onto a rotating plate of a spinner 10g and spin-dried. The other arm of the one double arm transfer robot 10e was transferred onto the suction plate 12 at the loading zone position of the holder mechanism 10b, and the chuck mechanism was suctioned under reduced pressure to fix the substrate.
[0058]
The substrate is moved to the polishing zone by rotating the index table 40 clockwise 120 degrees in the counterclockwise direction, and the fixed size of 1.70 μm is rotated while rotating the spindle of the polishing apparatus, which supports the cup-shaped polishing wheel, at 500 rpm. While the notch is lowered and the chuck mechanism is pressed at a pressure of 300 gf / cm 2 , the chuck mechanism is rotated at 100 rpm (rotation direction is reverse direction), and the slide is made to swing by 20 mm in the front-rear direction for 180 seconds. After the polishing, the surface of the bare silicon wafer was polished, and the spindle 4 for bearing the cup-type polishing wheel 1 was raised.
During the dry chemical mechanical polishing, air at 80 ° C. was continuously blown to the processing point from the nozzle 10d.
[0059]
After the rotation of the spindle 14 of the chuck mechanism was stopped and the decompression of the chamber of the chuck mechanism was stopped, compressed air was supplied to the chamber to facilitate removal of the polished silicon wafer.
[0060]
The substrate was gripped by one arm of the second double-arm transfer robot 10f, transferred onto a spinner 10g, washed with pure water, and then spin-dried. Then, the substrate on the spinner was gripped by the other arm of the second double-arm transfer robot 10f and transferred to the shelf of the storage cassette 10h.
[0061]
On the obtained polished silicon wafer surface, the spiral grinding marks on the bare wafer disappeared, and no micro scratches or large scratch scratches were observed, and the surface roughness Ra was 12.6 angstroms. It had a mirror surface.
[0062]
Examples 2 to 4
The composition of the mixture was changed to Table 1 (the abrasive grains of Example 2 were Whiteton P-10 of Shiraishi Industry Co., Ltd., Example 3 was Brilliant-1500, and Example 4 was HK-1 of Nikki Corporation). A cup-shaped polishing wheel was formed in the same manner as in Example 1, and the silicon bare wafer was polished.
The surface of the obtained polished silicon wafer had a non-disturbed and defect-free mirror surface in which the spiral grinding marks of the bare wafer disappeared and no micro-scratch scratches or large scratches were found. The average roughness (Ra) of the obtained polished silicon wafer surface is shown in the table.
[0063]
[Table 1]
Figure 2004106080
[0064]
Reference Example A bare silicon wafer having a diameter of 300 mm and a thickness of about 550 μm was fixed by suction under reduced pressure to a substrate carrier of a polishing machine SPP801AT manufactured by Okamoto Machine Tool Works, Ltd., and a rolled polishing cloth “SUBA # 800 (trade name) was used. While pressing against the polishing platen stuck at 300 gf / cm 2 at a pressure of 300 gf / cm 2 , and supplying 200 cc / min of a silicon abrasive slurry MAZIN (registered trademark) SRS3 (trade name) manufactured by DuPont to the surface of the polishing cloth. The silicon wafer surface was polished by rotating the carrier at 60 rpm and the polishing platen at 60 rpm (rotation direction was opposite) and sliding for 300 seconds.
The polishing rate was 0.74 μm / min, and the surface of the obtained polished silicon wafer exhibited a non-disturbed and defect-free mirror surface which was not observed as micro scratches or large scratches. The surface roughness Ra was 39.2 angstroms.
[0065]
Comparative Example 1
In Example 1, when dry chemical mechanical polishing was performed in the same manner except that ultrasonic cleaning of the substrate was not performed, no large scratch was found on the surface of the obtained polished silicon wafer, but four scratches were found. Micro scratches were found on the surface. The surface roughness Ra was 13.4 angstroms.
[0066]
【The invention's effect】
The method of dry chemical mechanical polishing of the substrate after removing the grinding dust and residues invisible to the naked eye sandwiched in the grooves of the grinding streaks on the substrate surface of the present invention by ultrasonic cleaning in advance, A processed substrate having a scratch-free, non-disturbed and defect-free mirror gloss is provided.
[Brief description of the drawings]
FIG. 1 is a perspective view of a polishing tool member of the present invention.
FIG. 2 is a front view of the polishing apparatus.
FIG. 3 is a partial plan view of the polishing apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Polishing whetstone w Substrate 2 Chemical mechanical polishing tool member 3 Hard base 10a Polishing means 10b Substrate holding mechanism 10c Ultrasonic cleaning mechanism

Claims (4)

基板表面を洗浄液で洗浄して基板の溝や研削条痕に挟まれている加工屑や残滓を除去した後、該基板表面に、該基板のモ−ス硬度と同等または柔らかいモ−ス硬度を有する固型砥粒を結合材で結合してなる研磨加工具部材の複数を環状に備えた砥石を押し付け、相対運動させて基板表面を平坦化することを特徴とする乾式化学機械研磨方法。After the surface of the substrate is washed with a cleaning liquid to remove processing debris and residues sandwiched between grooves and grinding marks on the substrate, the substrate surface is given a Mohs hardness equal to or softer than the Mohs hardness of the substrate. A dry chemical mechanical polishing method characterized in that a plurality of polishing tools formed by bonding solid abrasive grains having a bonding material to each other are pressed against an annular grindstone, and relatively moved to flatten the substrate surface. 基板の洗浄が、高圧ジェット水洗浄または超音波洗浄でなされることを特徴とする請求項1に記載の基板の乾式化学機械研磨方法。2. The dry chemical mechanical polishing method for a substrate according to claim 1, wherein the cleaning of the substrate is performed by high pressure jet water cleaning or ultrasonic cleaning. 研磨加工具部材は、砥粒(a)、研磨促進剤(b)および平均重合度50〜400、平均粒径5〜150μmの結晶セルロ−スよりなる結合材(c)を含有する混合物を型内に充填し、常温で加圧成形して化学機械研磨加工具部材に賦型したものであることを特徴とする請求項1に記載の基板の乾式化学機械研磨方法。The polishing tool member is formed by molding a mixture containing abrasive grains (a), a polishing accelerator (b) and a binder (c) composed of crystalline cellulose having an average degree of polymerization of 50 to 400 and an average particle size of 5 to 150 μm. The dry chemical mechanical polishing method for a substrate according to claim 1, characterized in that the substrate is filled, pressure-molded at room temperature, and shaped into a chemical mechanical polishing tool member. 超音波洗浄機構、第1ダブルア−ム搬送ロボット、基板ホルダ−、基板ホルダ−の回転機構、基板ホルダ−の上方に設けられた研磨される基板のモ−ス硬度と同等または柔らかいモ−ス硬度を有する固型砥粒を結合材で結合してなる研磨加工具部材の複数を環状に備えた砥石を備える研磨ヘッド、該研磨ヘッドの昇降機構並びに回転機構、第2ダブルア−ム搬送ロボット、ならびに、基板洗浄スピナを具備する、乾式化学機械研磨装置。Ultrasonic cleaning mechanism, first double arm transfer robot, substrate holder, rotation mechanism of substrate holder, Mohs hardness equal to or softer than the Mohs hardness of substrate to be polished provided above substrate holder , A polishing head provided with an abrasive wheel having a plurality of annularly formed polishing tool members formed by bonding solid abrasive grains having a bonding material, a lifting mechanism and a rotating mechanism of the polishing head, a second double arm transport robot, and A dry chemical mechanical polishing apparatus equipped with a substrate cleaning spinner.
JP2002269345A 2002-09-17 2002-09-17 Dry type chemicomechanical polishing method and device of substrate Pending JP2004106080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269345A JP2004106080A (en) 2002-09-17 2002-09-17 Dry type chemicomechanical polishing method and device of substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269345A JP2004106080A (en) 2002-09-17 2002-09-17 Dry type chemicomechanical polishing method and device of substrate

Publications (1)

Publication Number Publication Date
JP2004106080A true JP2004106080A (en) 2004-04-08

Family

ID=32267293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269345A Pending JP2004106080A (en) 2002-09-17 2002-09-17 Dry type chemicomechanical polishing method and device of substrate

Country Status (1)

Country Link
JP (1) JP2004106080A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006085772A (en) * 2004-09-14 2006-03-30 Nakamura Tome Precision Ind Co Ltd Drying method of disk shaped work and disk processing apparatus
JP2008006559A (en) * 2006-06-30 2008-01-17 Hitachi Maxell Ltd Mirror-finishing method and machining body for mirror-finishing
US8430554B2 (en) 2008-11-05 2013-04-30 Sharp Kabushiki Kaisha Support unit, lighting device, and display device
CN114025916A (en) * 2019-07-02 2022-02-08 株式会社东京钻石工具制作所 Synthetic grindstone
US20220222765A1 (en) * 2019-05-27 2022-07-14 Rud. Starcke Gmbh & Co. Kg Method for coordinating an identification and the processing of a defect of a workpiece and device for carrying out the method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006085772A (en) * 2004-09-14 2006-03-30 Nakamura Tome Precision Ind Co Ltd Drying method of disk shaped work and disk processing apparatus
JP4516811B2 (en) * 2004-09-14 2010-08-04 中村留精密工業株式会社 Disc processing equipment
JP2008006559A (en) * 2006-06-30 2008-01-17 Hitachi Maxell Ltd Mirror-finishing method and machining body for mirror-finishing
US8430554B2 (en) 2008-11-05 2013-04-30 Sharp Kabushiki Kaisha Support unit, lighting device, and display device
US20220222765A1 (en) * 2019-05-27 2022-07-14 Rud. Starcke Gmbh & Co. Kg Method for coordinating an identification and the processing of a defect of a workpiece and device for carrying out the method
CN114025916A (en) * 2019-07-02 2022-02-08 株式会社东京钻石工具制作所 Synthetic grindstone

Similar Documents

Publication Publication Date Title
JP5123329B2 (en) Semiconductor substrate planarization processing apparatus and planarization processing method
KR101152462B1 (en) Method for polishing the edge of a semiconductor wafer
JP5412397B2 (en) Method for grinding a semiconductor wafer
WO1999055493A1 (en) Polishing grinding wheel and substrate polishing method with this grinding wheel
CN110076682A (en) A kind of Sapphire Substrate cmp method
JP6779540B1 (en) Synthetic whetstone
JP2009541077A (en) Compressible abrasive article
JP2004235201A (en) Chemical mechanical polishing method in dry condition and device therefor for substrate
CN105817976A (en) Efficient ultraprecise grinding method for nanometer depth damaged layer
CN115181498A (en) Polishing solution for KDP crystal and efficient grinding and polishing process
JP2011165994A (en) Flattening processing device of semiconductor substrate
JP2004106080A (en) Dry type chemicomechanical polishing method and device of substrate
JP2003165042A (en) Device and method for dry-grinding of substrate
JP2011124249A (en) Processing device and method for flattening semiconductor substrate
JP2004087912A (en) Dry chemical machanical polishing method for substrate, and device used therefor
CN102303268A (en) Ultra smooth non-destructive nano grinding method for soft and fragile film
TW201137962A (en) Method for polishing a semiconductor wafer
JP2013035079A (en) Method for cylindrical grinding of four round corner faces of square pole-like ingot
JP2010135524A (en) Cleaning method of silicon wafer having completed grinding process
JP5533355B2 (en) Glass substrate for magnetic recording medium, double-side polishing apparatus, glass substrate polishing method, and glass substrate manufacturing method
JP2004071918A (en) Chemical mechanical polishing tool for substrate and its forming method
JP2001237202A (en) Method of manufacturing semiconductor device
JP2011155095A (en) Apparatus for flattening semiconductor substrate, and temporary displacement surface plate used for the same
JP2004039834A (en) Substrate chemical mechanical polishing tool and method for molding the same
JP2004050297A (en) Chemo-mechanical polishing tool for substrate, and its molding method