JP2004103280A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2004103280A
JP2004103280A JP2002259869A JP2002259869A JP2004103280A JP 2004103280 A JP2004103280 A JP 2004103280A JP 2002259869 A JP2002259869 A JP 2002259869A JP 2002259869 A JP2002259869 A JP 2002259869A JP 2004103280 A JP2004103280 A JP 2004103280A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
electrode plate
battery
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002259869A
Other languages
Japanese (ja)
Other versions
JP2004103280A5 (en
Inventor
Tomoko Koto
小東  朋子
Hideki Sasaki
佐々木  秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002259869A priority Critical patent/JP2004103280A/en
Publication of JP2004103280A publication Critical patent/JP2004103280A/en
Publication of JP2004103280A5 publication Critical patent/JP2004103280A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery of a high energy density and high voltage. <P>SOLUTION: The nonaqueous electrolyte battery is provided with a positive electrode plate containing lithium-nickel-manganese complex oxide with a BET specific surface area of 10m<SP>2</SP>/g or less and a number average particle size of 2 to 30μm, with a discharge potential having flat part within the range of 4.5 to 4.9 Vvs.Li/Li<SP>+</SP>. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はリチウム・ニッケル・マンガン複合酸化物を含む正極板を備えた非水電解質電池に関するものである。
【0002】
【従来の技術】
非水電解質電池用正極活物質材料として、すでに一次電池用として二酸化マンガンが、二次電池用としてはバナジウム酸化物(V)、リチウムコバルト酸化物(LiCoO)等が実用に供されているが、その他にもリチウムニッケル酸化物(LiNiO)やリチウムマンガン酸化物(LiMn)をはじめとして、多くの物質が提案されている。
【0003】
最近、特表2000−515672で報告のあるように、リチウムマンガン酸化物(LiMn)のMnの一部をNiで置換した5V級のリチウム・ニッケル・マンガン複合酸化物が見出されているが、性能上の問題点としては、高温下、たとえば60℃では著しく可逆性が失われることが報告(第41回電池討論会講演要旨集、450ページ)されている。
【0004】
その対策として、ZnOの表面コートが有効であるという報告(Electrochemical and Solid−State Letters, 5(5)A99−102(2002))もあるが、実用上の問題点はほとんど明らかになっていないばかりか、このリチウム・ニッケル・マンガン複合酸化物粒子を実用化するための最適な表面積・粒子径については明らかでなく、実用電池にするために重要な、不可逆容量が大きいことや寿命性能が短いといった問題も明らかではない。また、組電池の寿命性能の向上に関しては全くというほど報告例がなく、現在まで実用化にいたっていない。
【0005】
【発明が解決しようとする課題】
上述のように、リチウム・ニッケル・マンガン複合酸化物を備えた正極板を用いた5V級電池の実用化は、このような高電圧では電解液が分解しやすいという側面もあり、その粒子の性状、とくに表面積・粒子径というような因子がその正極板に与える影響については、ほとんど解明する努力が払われず、実際の電池へ適用した場合の具体的な課題でさえ明らかでないという実状であった。その一方、携帯機器・ハイブリッド電気自動車用の電池としては、高エネルギー密度で、高電圧電池の実用化が強く求められている。
【0006】
本発明は、系統的に、多くの実験によって、この電池の実用化を阻む問題点を明らかにし、その問題点を解決したもので、その目的は、高エネルギー密度で高電圧の、非水電解質電池を提供することにある。
【0007】
【課題を解決するための手段】
請求項1の発明は、非水電解質電池において、BET比表面積の値が10m/g以下であってかつ4.5〜4.9Vvs.Li/Liの範囲に放電電位平坦部のあるリチウム・ニッケル・マンガン複合酸化物を含む正極板を備えたことを特徴とする。
【0008】
請求項2の発明は、非水電解質電池において、数平均粒子径が2〜30μmでかつ4.5〜4.9Vvs.Li/Liの範囲に放電電位平坦部のあるリチウム・ニッケル・マンガン複合酸化物を含む正極板を備えたことを特徴とする。
【0009】
請求項1または請求項2の発明によれば、正極活物質の不可逆容量を減少させることができ、また、正極活物質の電解液中への溶解を抑制することができ、高エネルギー密度で高電圧の、非水電解質電池を得ることができる。
【0010】
請求項3の発明は、請求項1または2記載の非水電解質電池において、正極板または負極板の少なくとも一方に多孔性リチウムイオン伝導ポリマー電解質を備えたことを特徴とする。
【0011】
請求項3の発明によれば、正極活物質の電解液中への溶解を抑制することができ、また、電解液中に溶解した正極活物質と負極活物質との反応を抑制することができ、長寿命の非水電解質電池を得ることができる。
【0012】
【発明の実施の形態】
本発明の非水電解質電池は、BET比表面積の値が10m/g以下または数平均粒子径が2〜30μmであって、4.5〜4.9Vvs.Li/Liの範囲に放電電位平坦部のあるリチウム・ニッケル・マンガン複合酸化物を含む正極板を備えるものである。
【0013】
本発明は、非水電解質電池用の正極活物質として、リチウム・ニッケル・マンガン複合酸化物を用い、そのBET比表面積および数平均粒子径という二つの因子を特定することで、それを用いた正極板の性能を向上させ、その正極板を用いた非水電解質電池および組電池の充放電サイクル寿命性能を向上させたものである。
【0014】
この活物質を用いた正極板は、従来のリチウムイオン電池に用いられているリチウムコバルト酸化物を備えた正極板とは異なり、その不可逆容量が大きく30mAh/gにもなるという問題点のあることがわかった。この値は、理論容量(147mAh/g)の20%にも相当し、高電圧であることからエネルギー損失が大きく、その値を極力少なくしなければ実用上の利点が少なくなる。
【0015】
そこで、発明者は、表面積および数平均粒子径の値の異なる様々な正極活物質としてのリチウム・ニッケル・マンガン複合酸化物を、製造方法や添加材の種類等を変えて合成して、鋭意実験を繰り返し検討した結果、不可逆容量は正極活物質のBET比表面積の値と関連があり、BET比表面積が10m/g以下、特に8m/g以下になると大きく減少することを見出した。さらに、不可逆容量は正極活物質の数平均粒子径の値とも関連し、数平均粒子径が2μm以上、特に10μm以上になると、不可逆容量が著しく抑制されることがわかった。
【0016】
さらに、正極活物質の電解液への溶解性を調べたところ、BET比表面積の値が10m/g以下、特に8m/g以下になると、また、数平均粒子径の値が2μm以上になると、正極活物質の電解液への溶解量は著しく抑制されることがわかった。
【0017】
このような、活物質の性状は、実用電池として重要な放電特性や寿命性能にも大きな影響を与えることも見出すことができた。すなわち、これらの2つの因子が電池性能に与える影響を精査したところ、特にBET比表面積の値が10m/g以下、特に8m/g以下で、かつ数平均粒子径が3〜30μmという2つの因子を満たす活物質を使用した正極板を備えた非水電解質電池は、さらに寿命性能が向上することがわかった。
【0018】
しかしながら活物質の数平均粒子径が30μmを超えると、集電体への塗工が難しくなる等の問題がおこった。また、これらの因子が不可逆容量および溶解度に与える影響の現れ方は、単純ではなく異なることもわかった。
【0019】
本発明の正極活物質であるリチウム・ニッケル・マンガン複合酸化物は、4.5〜4.9Vvs.Li/Liの範囲に放電電位平坦部をもつ。ここで「放電電位平坦部」とは、図5(太田ら、第41回電池討論会講演要旨集、453ページのFig.1)に示したLiMn1.5Ni0.5の充放電曲線の、放電曲線に見られる、約4.7Vの電圧プラトーのように、放電容量(定電流放電の場合は時間)に対して放電電圧がほとんど変化しない部分をさす。
【0020】
また、本発明は、上記の非水電解質電池において、正極板または負極板の少なとも一方に多孔性リチウムイオン伝導性ポリマー電解質を備えたことを特徴とする。
【0021】
多孔性リチウムイオン伝導性ポリマー電解質は、正極板または負極板の表面もしくは孔内に保持させることにより、長寿命の非水電解質電池を得ることができる。多孔性リチウムイオン伝導性ポリマー電解質の製造方法としては、特開平10−199515、U.S.P6,027,836、EP0838873B1に記載されている多孔化処理の方法に準じて製造することができる。
【0022】
正極活物質としてのリチウム・ニッケル・マンガン複合酸化物は電解液に溶解するが、特にマンガンが溶解し易いことがわかっている。したがって、正極板に多孔性リチウムイオン伝導ポリマー電解質を備えることにより、正極活物質と電解液との接触面積を減少させ、電解液中への正極活物質、特にマンガンの溶解を抑制することができる。また、負極板に多孔性リチウムイオン伝導ポリマー電解質を備えることにより、負極活物質と電解液との接触面積を減少させ、電解液中に溶解した正極活物質、特にマンガンと負極活物質との反応を抑制することができる。その結果、寿命性能が著しく向上した非水電解質電池を得ることができる。
【0023】
さらに、正極板または負極板の少なとも一方に多孔性リチウムイオン伝導性ポリマー電解質を備えることにより、電池内の電解液を減少させることができ、異常時の電解液の分解を抑制することができ、信頼性・長寿命・安全性を兼ね備えた従来にない高性能非水電解質電池を得ることができる。
【0024】
特に、本発明の活物質を備えた正極板と炭素負極板とを備えた非水電解質電池は高温下においても長寿命性能を示す高エネルギー密度電池となる。
【0025】
なお、このような電極板孔中に備える多孔性ポリマー電解質としては、形状変化の可能な柔軟性を有するものが好ましく、さらに、ポリマーが電解液で湿潤または膨潤するリチウムイオン伝導性ポリマーを用いることが好ましい。具体的なポリマー材質としては、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリビニリデンフルオライド、ポリテトラフルオロエチレン、ポリビニルフルオライド、ポリアクリロニトリル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメチルメタクリレート、ポリメチルアクリレート、ポリビニルアルコール、ポリメタクリロニトリル、ポリビニルアセテート、ポリビニルピロリドン、ポリカーボネート、ポリエチレンテレフタレート、ポリヘキサメチレンアジパミド、ポリカプロラクタム、ポリウレタン、ポリエチレンイミン、ポリブタジエン、ポリスチレン、ポリイソプレンおよびこれらの誘導体を、単独であるいは混合して用いることができる。また、上記ポリマーを構成する各種モノマーを含むポリマーを用いてもよい。
【0026】
このポリマー材質を多孔化する方法としては、U.S.P6,027,836や特開平10−199515に記載されている公知の方法を適用できる。とくに、多孔化処理を施さなくとも正極板の孔にポリマー材質を溶解させた溶媒を含浸させてから、溶媒を蒸発させると、ポリマー材質が収縮して、クラックが生じて細孔が形成するが、キャスティング・エクストラクション法等の多孔化処理をすると孔径が均質なものが形成されるためにより好ましい
また、この電池を複数個、直列に接続した組電池では、さらに効果が現れ、実用電池にとって重要なばらつきの少ない安定した高性能非水電解質電池となることも判明した。したがって、ポータブルコンピュータ・電動工具・ハイブリッド電気自動車用電源等パワーが必要な用途に最適であることがわかった。
【0027】
本発明のリチウム・ニッケル・マンガン複合酸化物は、一般的には、例えば、リチウム源、マンガン源、ニッケル源となる化合物同士を混合して、焼成する固相法により合成することができるが、特表2000−515672に示されるようなゾルゲル法によっても合成することができる。
【0028】
リチウム源としては、例えば、水酸化リチウム・一水和物、硝酸リチウム、炭酸リチウム、酢酸リチウム、臭化リチウム、塩化リチウム、クエン酸リチウム、フッ化リチウム、ヨウ化リチウム、乳酸リチウム、シュウ酸リチウム、リン酸リチウム、ピルビン酸リチウム、硫酸リチウム、酸化リチウムなどが挙げられる。また、マンガン源としては、例えば、二酸化マンガン、酸化マンガン、水酸化マンガン、炭酸マンガン、硝酸マンガン、硫酸マンガン、シュウ酸マンガンなどが挙げられ、それらの中でも二酸化マンガンが特に好ましい。さらに、ニッケル源としては、例えば硝酸ニッケル、炭酸ニッケル、酸化ニッケルなどが挙げることができる。
【0029】
また合成方法において、本発明の範囲の比表面積および粒子径の値の活物質を得るために、焼成する温度は、700〜900℃の範囲であることが望ましい。
【0030】
また、本発明の正極活物質は、Ni、Mnの2つの遷移金属元素から構成されるが、発明の意図するところは、BET比表面積と数平均粒子径を特定範囲にすることにより正極合剤に含まれる導電剤や結着剤との密着性を確保し、良好な放電特性、充放電サイクル特性を得ることにある。したがって、発明の意図するところを変えずに、正極活物質が、Al、Ti、Fe、Nb、MoやW等の他の金属元素を若干量含んで構成されてもよい。
【0031】
BET比表面積は、JIS R 1626に基づく、ファインセラミックス粉体の気体吸着BET法にる比表面積の測定方法によって測定することができる。また、数平均粒子径は、JIS R 1629に基づく、ファインセラミックス原料のレーザー回折・散乱法による粒子径分布測定法によって測定することができる。
【0032】
本発明の非水電解質電池に用いる負極材料としては、金属リチウムおよびリチウムイオンを挿入・脱離することが可能な物質が用いられる。リチウムイオンを挿入・脱離することが可能な物質としては、黒鉛、非晶質炭素等の炭素材料、酸化物、窒化物、およびリチウム合金が例示される。リチウム合金としては例えばリチウムとアルミニウム、亜鉛、ビスマス、カドミウム、アンチモン、シリコン、鉛、錫等との合金を用いることができる。また、これらのリチウム合金は、種々の炭素材料と混合あるいは坦持させて用いることができる。
【0033】
本発明の非水電解質電池に用いるセパレータとしては、ポリエチレン等のポリオレフィン樹脂などからなる微多孔膜が用いられ、材料、重量平均分子量や空孔率の異なる複数の微多孔膜が積層してなるものや、これらの微多孔膜に各種の可塑剤、酸化防止剤、難燃剤などの添加剤を適量含有しているものであっても良い。
【0034】
本発明の非水電解質電池に用いる電解液の有機溶媒には、特に制限はなく、例えばエーテル類、ケトン類、ラクトン類、ニトリル類、アミン類、アミド類、硫黄化合物、ハロゲン化炭化水素類、エステル類、カーボネート類、ニトロ化合物、リン酸エステル系化合物、スルホラン系炭化水素類等を用いることができるが、これらのうちでもエーテル類、ケトン類、エステル類、ラクトン類、ハロゲン化炭化水素類、カーボネート類、スルホラン系炭化水素類が好ましい。
【0035】
これらの例としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、アニソール、モノグライム、4−メチル−2−ペンタノン、酢酸エチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル、1,2−ジクロロエタン、γ−ブチロラクトン、ジメトキシエタン、メチルフォルメイト、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルチオホルムアミド、スルホラン、3−メチル−スルホラン、リン酸トリメチル、リン酸トリエチルおよびこれらの混合溶媒等を挙げることができるが、必ずしもこれらに限定されるものではない。好ましくは環状カーボネート類および環状エステル類である。もっとも好ましくは、エチレンカーボネート、プロピレンカーボネート、メチルエチルカーボネート、およびジエチルカーボネートのうち、1種または2種以上選択した混合物の有機溶媒である。
【0036】
また、本発明の非水電解質二次電池に用いる電解質塩としては、特に制限はないが、LiClO、LiBF、LiAsF、CFSOLi、LiPF、LiN(CFSO、LiN(CSO、LiI、LiAlCl、LiBC等およびそれらの混合物が挙げられる。
【0037】
また、上記電解質には固体のイオン伝導性電解質を用いることもできる。この場合、非水電解質電池の構成としては、正極板、負極板およびセパレータと有機または無機の固体電解質と上記非水電解液との組み合わせ、または正極板、負極板およびセパレータとしての有機または無機の固体電解質膜と上記非水電解液との組み合わせがあげられる。ポリマー電解質膜がポリエチレンオキシド、ポリアクリロニトリルまたはポリエチレングリコールおよびこれらの変成体などの場合には、軽量で柔軟性があり、巻回極板に使用する場合に有利である。特に、多孔性のポリマー電解質を用いると、サイクル寿命性能が向上するという効果が得られる。さらに、ポリマー電解質以外にも、無機固体電解質あるいは有機ポリマー電解質と無機固体電解質との混合材料などを使用することができる。
【0038】
【実施例】
[BET比表面積および数平均粒子径と不可逆容量の関係]
リチウム・ニッケル・マンガン複合酸化物活物質に必要とする性状の表面積をBET比表面積で、またその粒子径を数平均粒子径にて特定することにした。ここで、BET比表面積は、島津製作所製Gemini2375、V4.01を用い、JIS R 1262に基づいて測定した。数平均粒子径は、島津製作所製SALD−2000J(SALD−2000−WJA2:V1.01)を用い、JIS R 1229に基づいて測定した。
【0039】
まず、好適なBET比表面積・数平均粒子径の大きさを決定するために、出発物質の比表面積・数平均粒子径の異なるものを選定したが、合成方法としては、基本的には固相法を使用し、特にBET比表面積の大きなものや数平均粒子径の小さなものは必要に応じてゾルゲル法(特表2000−515672)も使用した。
【0040】
出発物質には水酸化リチウム一水和物、種々の性状の電解二酸化マンガン、硝酸ニッケルを用いた。それぞれモル比でLi:Mn:Ni=1:1.5:0.5になるように秤量し、それらを混合した後、ペレット成型後、空気中400〜600℃で12時間仮焼した。その後、粉砕、再成型して、酸素中700〜1000℃で12〜30時間焼成することで本発明の活物質を得た。BET比表面積・数平均粒子径の微調整には、機械的な粉砕機を使用した。
【0041】
試料の同定には、粉末X線回折測定、イオンクロマトグラフおよび原子吸光分析を用いた。その結果、得られた試料はすべてLiNi0.5Mn1.5を基本組成とする5V級リチウム・ニッケル・マンガン複合酸化物であることを確認した。さらにBET比表面積、粒度分布測定をおこない二つの因子の値を特定した。
【0042】
つぎに得られたBET比表面積および数平均粒子径の異なる正極活物質を用いた正極板を作製した。リチウム・ニッケル・マンガン複合酸化物88Wt%に、導電剤としてアセチレンブラック6Wt%を、結着剤としてポリフッ化ビニリデン(PVdF)6Wt%を、さらに溶剤であるN−メチル−2ピロリドンを加えて湿式混合してスラリー状にした。このスラリー状の塗液を、集電体であるアルミニウムメッシュの両面に塗布し、80℃で乾燥して正極板を得た。1ton/cmで加圧成形し、つぎに真空下にて150℃で乾燥することによって、大きさ15mm×15mm×0.5mmの正極板を作製した。
【0043】
上記の正極板を用いてフラッデドタイプの電池を作製した。負極板には金属リチウム、非水電解液には1.0MのLiPFが溶解した、エチレンカーボネートとジエチルカーボネートとの体積比率1:1の混合溶媒を用いた。
【0044】
作製した電池の評価を行うため、正極活物質の理論容量を基準として、0.2C率の定電流で5Vまで充電したのち、同率で3.5Vまで放電をおこない、初期放電容量の確認をしたところ、BET比表面積の値が10m/g以下の活物質を用いた場合に120mAh/g以上の放電容量が得られ、また数平均粒子径の値が2μm以上であれば、同様な値が得られることがわかった。
【0045】
製造法・合成条件の差異に関係なく、BET比表面積および数平均粒子径という二つの因子と実用電池に極めて重要な不可逆容量との関係を求めた。ここで「不可逆容量」とは、[(1サイクル目の充電電気量−1サイクル目の放電容量)/活物質質量]により求められる容量である。
【0046】
図1にBET比表面積と不可逆容量の関係を、また、図2に数平均粒子径と不可逆容量の関係を示した。これらの図から次のような重要な知見が得られた。すなわち、不可逆容量とこれら二つの因子には極めて強い関係曲線が現れている。
【0047】
図1から、不可逆容量は、BET比表面積が10m/g以下になると急激に小さくなり、特に8m/g以下になると20mAh/gよりも小さくなり、その値は理論容量(147mAh/g)の14%以下となる。この値は、リチウムイオン電池の負極活物質として使用される炭素材料のグラファイトの値30〜60mAh/gよりも小さくなり、電池設計からも好ましい。
【0048】
一方、図2から、数平均粒子径が2μm以上になると不可逆容量の値は低下して30mAh/g以下に、また3μm以上で20mAh/g以下に、10μm以上になると7mAh/gとほぼ一定となり、著しく抑制されることがわかった。しかしながら活物質の数平均粒子径が30μmを超えると、集電体へのプレスや塗布が難しくなる等の製造工程上の問題がおこるので好ましくなかった。
【0049】
不可逆容量の値に与えるBET比表面積の影響と数平均粒子径の影響には、その効果の現れ方に違いが現れたが、結論的にはこの二つの因子は、リチウム・ニッケル・マンガン複合酸化物の不可逆容量の値を制御できる大きな因子であることがわかった。
【0050】
[BET比表面積および数平均粒子径とマンガン溶出量の関係]
つぎに、この正極活物質の高温下における安定性を調べるために、BET比表面積および数平均粒子径とマンガン溶出量の関係を求めた。正極活物質を、1.0MのLiPFが溶解したエチレンカーボネートとジエチルカーボネート(体積比率1:1)の混合溶媒中、60℃で6日間保存し、その後、ICP組成分析により、電解液中のMn溶解量を調べた。
【0051】
図3にBET比表面積と電解液中のMn濃度の関係を、また、図4に数平均粒子径と電解液中のMn濃度の関係を示した。不可逆容量の場合と同様に、BET比表面積および数平均粒子径と電解液中のMn濃度は強い相関関係が現れた。
【0052】
図3から、電解液中のMn濃度は、BET比表面積の値が10m/g以下になると急激に小さくなり、特に8m/g以下になると、25ppm以下のきわめて小さくなることがわかった。また、図4から、数平均粒子径が3μm以下になると、電解液中のMn濃度は急激に大きくなることがわかった。すなわち、リチウム・ニッケル・マンガン複合酸化物正極板の高温安定性は、数平均粒子径およびBET比表面積の影響を受けることが判明した。高温安定性としては、BET比表面積の値が8m/g以下、数平均粒子径の大きさは3μm以上が好適であるということがわかった。
【0053】
[実施例1〜3および比較例1]
正極活物質として、BET比表面積と数平均粒子径の異なる4種類のリチウム・ニッケル・マンガン複合酸化物を用いた非水電解質電池を作製した。その内容を表1にまとめた。
【0054】
【表1】

Figure 2004103280
【0055】
これらの正極板は、リチウム・ニッケル・マンガン複合酸化物86wt%、アセチレンブラック4wt%、PVdF10wt%を混合してペーストとし、このペーストを厚さ20μmのアルミニウム箔に塗布し、80℃で乾燥した。その後、極板の厚さを270μmから165μmまでプレスしてから、150℃で5時間以上、真空乾燥して製作した。
【0056】
負極板は、炭素材料としての黒鉛化炭素50wt%、PVdF5wt%、NMP45wt%を混合してペーストとし、このペーストを厚さ10μmの銅箔に塗布し、100℃で乾燥した。その後、極板の厚さを250μmから195μmまでプレスしてから、130℃で5時間以上、真空乾燥して得た。電池A〜Dではすべてこの負極板を用いた。
【0057】
つぎに、これらの正・負極板を用いて直径が約20mm、厚さが約3mm、公称容量4mAhのコインタイプ電池を作製した。ここでセパレータには厚さ25μmポリオレフィン微多孔質セパレータ、非水電解液としては1.0MのLiPF6が溶解した、エチレンカーボネートとジエチルカーボネートとの体積比率1:1の混合溶媒を用いた。
【0058】
[実施例4〜6]
正極活物質として、BET比表面積が1m/g、数平均粒子径が15μmであるリチウム・ニッケル・マンガン複合酸化物を用い、実施例1と同様の方法で作製した正極板と、実施例1で用いたのと同様の負極を用い、正極板または負極板の少なくとも一方に多孔性リチウムイオン伝導ポリマー電解質を備えた非水電解質電池を作製した。その内容を表2にまとめた。
【0059】
【表2】
Figure 2004103280
【0060】
正極板または負極板に、PVdF12wt%をNMP88wt%に溶解した高分子ペーストを塗布し、浸透圧によって活物質層の孔中に浸透させた後に、極板表面に付着している高分子ペーストを除去した。この極板を水中に浸漬させて、NMPを水で置換するという溶媒抽出法を用いて、連通多孔化処理を施し、その後PVdFを固化して、多孔性ポリマーを備えた極板を製作した。この極板の切断面を顕微鏡で観察した結果、PVdFは活物質層の全体に均一に分布しており、活物質層の深部へも十分に充填されていた。
【0061】
つぎに、表2に示したように、正極板と負極板とを組合せ、非水電解液として1.0MのLiPFが溶解した、エチレンカーボネートとジエチルカーボネートとの体積比率1:1の混合溶媒を注液した後、密封し、公称容量が4mAhの実施例4〜6の電池E〜Gを作製した。電解液を注液した後、極板に備えた多孔性ポリマーは、ポリマー部分は電解液で膨潤し、同時に孔部分に電解液を保持し、ポリマー部分も孔部分もリチウムイオン伝導性をもつ多孔性リチウムイオン伝導ポリマー電解質となる。
【0062】
[充放電サイクル試験]
これらのコインタイプ電池A〜Gを、50℃において、4mA定電流で5Vまで充電した後、4mA定電流で3.5Vまで放電するという充放電サイクル試験をおこない、その時の正極活物質1g当たりの放電容量を表3に、また放電容量維持率を表4にまとめた。
【0063】
なお、ここで「50サイクル後の放電容量維持率」とは、1サイクル目の放電容量に対する50サイクル目の放電容量の比率(%)とする。「100サイクル後の放電容量維持率」等も同様である。
【0064】
【表3】
Figure 2004103280
【0065】
【表4】
Figure 2004103280
【0066】
表4からわかるように、100サイクル後の放電容量維持率は、電池Aで約42%、電池Bで約38%、電池Cで約77%、また、正極板にのみ多孔性リチウムイオン伝導ポリマー電解質を備えた電池Eでは約88%、負極板にのみ多孔性リチウムイオン伝導ポリマー電解質を備えた電池Fでは約83%、正極板および負極板の両方に多孔性リチウムイオン伝導ポリマー電解質を備えた電池Gでは約90%と高い値を示した。しかし、比較例1の電池Dでは、50サイクル後の放電容量保持率が42%になり、その後、可逆機能を消失した。
【0067】
以上から、本発明の非水電解質電池の性能が著しく向上したのは、正極活物質のBET比表面積および数平均粒子径性状を本発明の範囲に調整すること、および電極に多孔性リチウムイオン伝導ポリマー電解質を備えることにより、正極板の不可逆容量が減少し、さらにマンガン等の溶出にともなう性能劣化が抑制されたためと考えられる。
【0068】
[組電池]
つぎに、電池を3個直列に接続した組電池を試作した。電池Cを3個直列に接続したものを組電池X、電池Dを3個直列に接続したものを組電池Y、電池Eを3個直列に接続したものを組電池Zとした。これらの組電池を、25℃において、2mA定電流で15Vまで充電し、その後、2mA定電流で10.5Vまで放電する充放電サイクル試験をおこない、その時の正極活物質1g当たりの放電容量を表5に、また放電容量維持率を表6にまとめた。
【0069】
【表5】
Figure 2004103280
【0070】
【表6】
Figure 2004103280
【0071】
表6から、本発明の電池Cを用いた組電池Xおよび本発明の電池Eを用いた組電池Yでは、表4に示した単セルでの結果と同様に、優れた容量維持率が得られ、充放電に伴う各セルの容量のばらつきが少ない高性能な組電池となることがわかった。これらの結果から、本発明の非水電解質電池は電動工具・ハイブリッド電気自動車用電源等のパワーが必要な組電池用途として実用化も可能となることがわかった。
【0072】
【発明の効果】
本発明の、リチウム・ニッケル・マンガン複合酸化物を含む正極板を用いた非水電解質電池は、不可逆容量、さらに高温下での活物質の溶解が著しく抑制され、充放電サイクル寿命性能が改善されること、かつ高電圧な非水電解質電池を提供できることがわかった。したがって、本発明の工業的価値は極めて大きい。
【図面の簡単な説明】
【図1】リチウム・ニッケル・マンガン複合酸化物のBET比表面積と不可逆容量の関係を示す図。
【図2】リチウム・ニッケル・マンガン複合酸化物の数平均粒子径と不可逆容量の関係を示す図。
【図3】リチウム・ニッケル・マンガン複合酸化物のBET比表面積と電解液中のマンガン濃度との関係を示す図。
【図4】リチウム・ニッケル・マンガン複合酸化物の数平均粒子径と電解液中のマンガン濃度との関係を示す図。
【図5】LiMn1.5Ni0.5の充放電曲線を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-aqueous electrolyte battery provided with a positive electrode plate containing a lithium-nickel-manganese composite oxide.
[0002]
[Prior art]
Manganese dioxide has already been used as a positive electrode active material for nonaqueous electrolyte batteries for primary batteries, and vanadium oxide (V 2 O 5 ), Lithium cobalt oxide (LiCoO) 2 ) Etc. are practically used, but other lithium nickel oxides (LiNiO 2 ) And lithium manganese oxide (LiMn) 2 O 4 ) And many other substances have been proposed.
[0003]
Recently, as reported in JP-T-2000-515672, lithium manganese oxide (LiMn) 2 O 4 5) A lithium nickel nickel manganese composite oxide in which a part of Mn is replaced with Ni has been found, but the problem with performance is that reversibility is remarkably lost at high temperatures, for example, at 60 ° C. It has been reported that it will be done (Abstracts of the 41st Battery Symposium, 450 pages).
[0004]
As a countermeasure, there is a report that a surface coat of ZnO is effective (Electrochemical and Solid-State Letters, 5 (5) A99-102 (2002)), but practical problems are hardly clarified. However, it is not clear about the optimal surface area and particle size for practical use of the lithium-nickel-manganese composite oxide particles, and it is important for practical batteries to have large irreversible capacity and short life performance. The problem is not clear. Further, there is no report on the improvement of the life performance of the assembled battery, and it has not been put to practical use until now.
[0005]
[Problems to be solved by the invention]
As described above, the practical use of a 5V-class battery using a positive electrode plate provided with a lithium-nickel-manganese composite oxide has the aspect that the electrolyte is easily decomposed at such a high voltage, and the properties of the particles are In particular, little effort has been made to elucidate the effects of factors such as surface area and particle size on the positive electrode plate, and the fact is that even a specific problem when applied to an actual battery is not clear. On the other hand, as batteries for portable devices and hybrid electric vehicles, practical application of high-energy batteries with high energy density is strongly demanded.
[0006]
The present invention systematically, through many experiments, has clarified the problems that hinder the practical application of this battery and has solved the problems. The purpose of the present invention is to provide a high energy density, high voltage, non-aqueous electrolyte. It is to provide a battery.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, in the nonaqueous electrolyte battery, the value of the BET specific surface area is 10 m. 2 / G or less and 4.5-4.9 Vvs. Li / Li + And a positive electrode plate containing a lithium-nickel-manganese composite oxide having a discharge potential flat portion in the range.
[0008]
According to a second aspect of the present invention, in the non-aqueous electrolyte battery, the number average particle diameter is 2 to 30 μm and 4.5 to 4.9 Vvs. Li / Li + And a positive electrode plate containing a lithium-nickel-manganese composite oxide having a discharge potential flat portion in the range.
[0009]
According to the first or second aspect of the present invention, the irreversible capacity of the positive electrode active material can be reduced, and the dissolution of the positive electrode active material in the electrolytic solution can be suppressed. A non-aqueous electrolyte battery with a high voltage can be obtained.
[0010]
According to a third aspect of the present invention, in the nonaqueous electrolyte battery according to the first or second aspect, at least one of the positive electrode plate and the negative electrode plate is provided with a porous lithium ion conductive polymer electrolyte.
[0011]
According to the invention of claim 3, it is possible to suppress the dissolution of the positive electrode active material in the electrolytic solution, and to suppress the reaction between the positive electrode active material and the negative electrode active material dissolved in the electrolytic solution. Thus, a long-life non-aqueous electrolyte battery can be obtained.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The nonaqueous electrolyte battery of the present invention has a BET specific surface area of 10 m. 2 / G or less or a number average particle diameter of 2 to 30 µm, and 4.5 to 4.9 Vvs. Li / Li + And a positive electrode plate containing a lithium-nickel-manganese composite oxide having a discharge potential flat portion in the range of.
[0013]
The present invention uses a lithium-nickel-manganese composite oxide as a positive electrode active material for a non-aqueous electrolyte battery, and specifies two factors, a BET specific surface area and a number average particle diameter, of the positive electrode using the same. The performance of the plate is improved, and the charge / discharge cycle life performance of a nonaqueous electrolyte battery and an assembled battery using the positive electrode plate is improved.
[0014]
The positive electrode plate using this active material has a problem that the irreversible capacity is as large as 30 mAh / g, unlike the positive electrode plate provided with lithium cobalt oxide used in a conventional lithium ion battery. I understood. This value is equivalent to 20% of the theoretical capacity (147 mAh / g), and the energy loss is large because of the high voltage. Practical advantages are reduced unless the value is reduced as much as possible.
[0015]
Therefore, the inventor synthesized lithium nickel manganese composite oxides as various positive electrode active materials having different values of the surface area and the number average particle diameter by changing the manufacturing method, the type of the additive, and the like. Was repeatedly examined, the irreversible capacity was related to the value of the BET specific surface area of the positive electrode active material, and the BET specific surface area was 10 m 2 / G or less, especially 8 m 2 / G or less. Furthermore, the irreversible capacity was also related to the value of the number average particle diameter of the positive electrode active material, and it was found that the irreversible capacity was significantly suppressed when the number average particle diameter was 2 μm or more, particularly 10 μm or more.
[0016]
Further, when the solubility of the positive electrode active material in the electrolytic solution was examined, the value of the BET specific surface area was 10 m. 2 / G or less, especially 8 m 2 / G or less, or when the value of the number average particle diameter is 2 μm or more, the amount of the positive electrode active material dissolved in the electrolytic solution is significantly suppressed.
[0017]
It has also been found that such properties of the active material have a significant effect on the discharge characteristics and life performance that are important for a practical battery. That is, when the influence of these two factors on the battery performance was closely examined, the value of the BET specific surface area was particularly 10 m. 2 / G or less, especially 8 m 2 It has been found that a nonaqueous electrolyte battery provided with a positive electrode plate using an active material satisfying the two factors of not more than / g and a number average particle diameter of 3 to 30 μm has further improved life performance.
[0018]
However, when the number average particle diameter of the active material exceeds 30 μm, problems such as difficulty in coating the current collector are caused. It was also found that the effects of these factors on irreversible capacity and solubility were not simple but different.
[0019]
The lithium-nickel-manganese composite oxide, which is the positive electrode active material of the present invention, has a composition of 4.5 to 4.9 Vvs. Li / Li + Has a discharge potential flat portion. Here, the “discharge potential flat portion” refers to the LiMn shown in FIG. 5 (Ota et al., Abstract of the 41st Battery Symposium, FIG. 1 on page 453). 1.5 Ni 0.5 O 4 Of the charge / discharge curve of FIG. 4 shows a portion where the discharge voltage hardly changes with respect to the discharge capacity (time in the case of constant current discharge) like a voltage plateau of about 4.7 V seen in the discharge curve.
[0020]
Further, the present invention is characterized in that in the above nonaqueous electrolyte battery, at least one of the positive electrode plate and the negative electrode plate is provided with a porous lithium ion conductive polymer electrolyte.
[0021]
By holding the porous lithium ion conductive polymer electrolyte on the surface or in the pores of the positive electrode plate or the negative electrode plate, a long-life nonaqueous electrolyte battery can be obtained. A method for producing a porous lithium ion conductive polymer electrolyte is disclosed in JP-A-10-199515, U.S. Pat. S. P6, 027, 836, EP0838873B1, and can be produced according to the method of a porous treatment.
[0022]
Lithium-nickel-manganese composite oxide as a positive electrode active material is soluble in an electrolytic solution, but it has been found that manganese is particularly easy to dissolve. Accordingly, by providing the positive electrode plate with the porous lithium ion conductive polymer electrolyte, the contact area between the positive electrode active material and the electrolyte can be reduced, and the dissolution of the positive electrode active material, particularly manganese, in the electrolyte can be suppressed. . In addition, by providing a porous lithium ion conductive polymer electrolyte on the negative electrode plate, the contact area between the negative electrode active material and the electrolyte is reduced, and the reaction between the positive electrode active material dissolved in the electrolyte, particularly manganese, and the negative electrode active material is reduced. Can be suppressed. As a result, a non-aqueous electrolyte battery having significantly improved life performance can be obtained.
[0023]
Furthermore, by providing a porous lithium ion conductive polymer electrolyte on at least one of the positive electrode plate and the negative electrode plate, the electrolyte in the battery can be reduced, and the decomposition of the electrolyte in the event of an abnormality can be suppressed. In addition, a high performance non-aqueous electrolyte battery, which has never before been obtained, having reliability, long life and safety can be obtained.
[0024]
In particular, a nonaqueous electrolyte battery provided with a positive electrode plate provided with the active material of the present invention and a carbon negative electrode plate is a high energy density battery exhibiting long life performance even at high temperatures.
[0025]
In addition, as the porous polymer electrolyte provided in such an electrode plate hole, it is preferable that the porous polymer electrolyte has flexibility capable of changing the shape, and further, a lithium ion conductive polymer in which the polymer is wet or swells with the electrolyte is used. Is preferred. As specific polymer materials, polyethylene oxide, polyether such as polypropylene oxide, polyethylene, polyolefin such as polypropylene, polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl fluoride, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, Polymethyl methacrylate, polymethyl acrylate, polyvinyl alcohol, polymethacrylonitrile, polyvinyl acetate, polyvinyl pyrrolidone, polycarbonate, polyethylene terephthalate, polyhexamethylene adipamide, polycaprolactam, polyurethane, polyethylene imine, polybutadiene, polystyrene, polyisoprene and these Can be used alone or as a mixture. Further, a polymer containing various monomers constituting the above polymer may be used.
[0026]
As a method for making this polymer material porous, U.S. Pat. S. A known method described in P6, 027, 836 or JP-A-10-199515 can be applied. In particular, if the solvent in which the polymer material is dissolved is impregnated into the holes of the positive electrode plate without performing the porous treatment, and then the solvent is evaporated, the polymer material shrinks, cracks are generated, and pores are formed. It is more preferable to perform a porous treatment such as a casting / extraction method since a uniform pore size is formed.
It has also been found that a battery pack in which a plurality of these batteries are connected in series has a further effect, and is a stable high-performance nonaqueous electrolyte battery with little variation that is important for a practical battery. Therefore, it was found that it is most suitable for applications requiring power, such as a portable computer, a power tool, and a power supply for a hybrid electric vehicle.
[0027]
The lithium-nickel-manganese composite oxide of the present invention is generally, for example, a lithium source, a manganese source, and a mixture of compounds serving as nickel sources, and can be synthesized by a solid phase method of firing. It can also be synthesized by a sol-gel method as shown in JP-T-2000-515672.
[0028]
Examples of lithium sources include lithium hydroxide monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide, lithium chloride, lithium citrate, lithium fluoride, lithium iodide, lithium lactate, and lithium oxalate. , Lithium phosphate, lithium pyruvate, lithium sulfate, lithium oxide and the like. Examples of the manganese source include manganese dioxide, manganese oxide, manganese hydroxide, manganese carbonate, manganese nitrate, manganese sulfate, and manganese oxalate. Of these, manganese dioxide is particularly preferable. Further, examples of the nickel source include nickel nitrate, nickel carbonate, nickel oxide and the like.
[0029]
In the synthesis method, the firing temperature is preferably in the range of 700 to 900 ° C. in order to obtain an active material having a specific surface area and a particle diameter in the range of the present invention.
[0030]
The positive electrode active material of the present invention is composed of two transition metal elements, Ni and Mn. The intention of the present invention is to adjust the BET specific surface area and the number average particle diameter to a specific range to thereby prepare a positive electrode mixture. The object of the present invention is to ensure good adhesion to a conductive agent and a binder contained in the metal oxide and obtain good discharge characteristics and charge / discharge cycle characteristics. Therefore, the cathode active material may be configured to contain a small amount of other metal elements such as Al, Ti, Fe, Nb, Mo and W without changing the intention of the invention.
[0031]
The BET specific surface area can be measured by a method for measuring a specific surface area by a gas adsorption BET method of fine ceramic powder based on JIS R 1626. The number average particle diameter can be measured by a particle diameter distribution measuring method based on JIS R 1629 by a laser diffraction / scattering method for fine ceramic raw materials.
[0032]
As the negative electrode material used for the nonaqueous electrolyte battery of the present invention, a substance capable of inserting and removing metallic lithium and lithium ions is used. Examples of the substance into which lithium ions can be inserted and desorbed include carbon materials such as graphite and amorphous carbon, oxides, nitrides, and lithium alloys. As the lithium alloy, for example, an alloy of lithium, aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, or the like can be used. Further, these lithium alloys can be used by being mixed or supported with various carbon materials.
[0033]
As the separator used in the nonaqueous electrolyte battery of the present invention, a microporous membrane made of a polyolefin resin such as polyethylene is used, and a plurality of microporous membranes having different materials, weight average molecular weights and porosity are laminated. Alternatively, these microporous films may contain additives such as various plasticizers, antioxidants, and flame retardants in appropriate amounts.
[0034]
The organic solvent of the electrolytic solution used in the non-aqueous electrolyte battery of the present invention is not particularly limited, and examples thereof include ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, halogenated hydrocarbons, Esters, carbonates, nitro compounds, phosphoric ester compounds, sulfolane hydrocarbons and the like can be used, and among them, ethers, ketones, esters, lactones, halogenated hydrocarbons, Carbonates and sulfolane hydrocarbons are preferred.
[0035]
Examples of these include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, anisole, monoglyme, 4-methyl-2-pentanone, ethyl acetate, methyl acetate, methyl propionate, ethyl propionate, 1,2-dichloroethane , Γ-butyrolactone, dimethoxyethane, methyl formate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethylformamide, dimethylsulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfolane, phosphorus Examples thereof include, but are not limited to, trimethyl acid, triethyl phosphate, a mixed solvent thereof and the like. Preferred are cyclic carbonates and cyclic esters. Most preferably, it is an organic solvent of a mixture selected from one or more of ethylene carbonate, propylene carbonate, methyl ethyl carbonate, and diethyl carbonate.
[0036]
The electrolyte salt used in the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, but may be LiClO 2. 4 , LiBF 4 , LiAsF 6 , CF 3 SO 3 Li, LiPF 6 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiI, LiAlCl 4 , LiBC 4 O 8 And mixtures thereof.
[0037]
In addition, a solid ion conductive electrolyte can be used as the electrolyte. In this case, the configuration of the nonaqueous electrolyte battery includes a combination of a positive electrode plate, a negative electrode plate and a separator with an organic or inorganic solid electrolyte and the above nonaqueous electrolyte, or a positive electrode plate, a negative electrode plate and an organic or inorganic solid electrolyte as a separator. A combination of a solid electrolyte membrane and the above-mentioned non-aqueous electrolyte is exemplified. When the polymer electrolyte membrane is made of polyethylene oxide, polyacrylonitrile, polyethylene glycol, or a modified product thereof, it is lightweight and flexible, which is advantageous when used for a wound electrode plate. In particular, when a porous polymer electrolyte is used, the effect that cycle life performance is improved can be obtained. Further, in addition to the polymer electrolyte, an inorganic solid electrolyte or a mixed material of an organic polymer electrolyte and an inorganic solid electrolyte can be used.
[0038]
【Example】
[Relationship between BET specific surface area and number average particle diameter and irreversible capacity]
The surface area of the properties required for the lithium-nickel-manganese composite oxide active material is specified by the BET specific surface area, and the particle diameter is specified by the number average particle diameter. Here, the BET specific surface area was measured based on JIS R 1262 using Gemini 2375, V4.01 manufactured by Shimadzu Corporation. The number average particle diameter was measured based on JIS R1229 using Shimadzu SALD-2000J (SALD-2000-WJA2: V1.01).
[0039]
First, in order to determine a preferable BET specific surface area and number average particle size, starting materials having different specific surface areas and number average particle sizes were selected. The sol-gel method (Table 2000-515672) was used as necessary, especially for those having a large BET specific surface area and those having a small number average particle diameter.
[0040]
As starting materials, lithium hydroxide monohydrate, electrolytic manganese dioxide of various properties, and nickel nitrate were used. Li: Mn: Ni = 1: 1.5: 0.5 was weighed in each molar ratio, and after mixing, they were molded into pellets and calcined in air at 400 to 600 ° C for 12 hours. Thereafter, the active material of the present invention was obtained by pulverizing and re-molding, and calcining in oxygen at 700 to 1000 ° C for 12 to 30 hours. For fine adjustment of the BET specific surface area and the number average particle diameter, a mechanical pulverizer was used.
[0041]
For the identification of the sample, powder X-ray diffraction measurement, ion chromatography and atomic absorption analysis were used. As a result, all the obtained samples were LiNi 0.5 Mn 1.5 O 4 It was confirmed to be a 5V-class lithium-nickel-manganese composite oxide having a basic composition of Further, the BET specific surface area and the particle size distribution were measured, and the values of two factors were specified.
[0042]
Next, a positive electrode plate using the obtained positive electrode active materials having different BET specific surface areas and number average particle diameters was prepared. To 88 Wt% of lithium-nickel-manganese composite oxide, 6 Wt% of acetylene black as a conductive agent, 6 Wt% of polyvinylidene fluoride (PVdF) as a binder, and N-methyl-2-pyrrolidone as a solvent are added and wet mixed. To a slurry. This slurry-like coating liquid was applied to both sides of an aluminum mesh as a current collector, and dried at 80 ° C. to obtain a positive electrode plate. 1 ton / cm 2 , And then dried at 150 ° C. under vacuum to produce a positive electrode plate having a size of 15 mm × 15 mm × 0.5 mm.
[0043]
A flooded type battery was manufactured using the above positive electrode plate. Metallic lithium for negative electrode plate, 1.0M LiPF for non-aqueous electrolyte 6 Was used, and a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 was used.
[0044]
In order to evaluate the produced battery, the battery was charged up to 5 V at a constant current of 0.2 C rate based on the theoretical capacity of the positive electrode active material, and then discharged up to 3.5 V at the same rate, and the initial discharge capacity was confirmed. However, the value of the BET specific surface area is 10 m 2 It was found that a discharge capacity of 120 mAh / g or more was obtained when an active material of not more than / g was used, and similar values were obtained when the value of the number average particle diameter was 2 μm or more.
[0045]
Regardless of the difference in the production method and the synthesis conditions, the relationship between the two factors, the BET specific surface area and the number average particle diameter, and the irreversible capacity which is extremely important for practical batteries was determined. Here, the “irreversible capacity” is the capacity determined by [(the amount of charge in the first cycle—the discharge capacity in the first cycle) / the mass of the active material].
[0046]
FIG. 1 shows the relationship between the BET specific surface area and the irreversible capacity, and FIG. 2 shows the relationship between the number average particle diameter and the irreversible capacity. The following important findings were obtained from these figures. That is, an extremely strong relationship curve appears between the irreversible capacity and these two factors.
[0047]
From FIG. 1, the irreversible capacity has a BET specific surface area of 10 m. 2 / G or less, it rapidly decreases, especially 8 m 2 / G or less, it becomes smaller than 20 mAh / g, and the value becomes 14% or less of the theoretical capacity (147 mAh / g). This value is smaller than the value of 30 to 60 mAh / g of graphite of a carbon material used as a negative electrode active material of a lithium ion battery, which is preferable from the viewpoint of battery design.
[0048]
On the other hand, it can be seen from FIG. 2 that the value of the irreversible capacity decreases when the number average particle diameter is 2 μm or more, becomes 30 mAh / g or less, and becomes 3 mA or more, and 20 mAh / g or less. Was found to be significantly suppressed. However, when the number average particle diameter of the active material exceeds 30 μm, it is not preferable because problems such as difficulty in pressing and coating the current collector occur in the production process.
[0049]
The effect of the BET specific surface area and the number average particle size on the value of the irreversible capacity differed in the appearance of the effect. In conclusion, these two factors are due to the lithium-nickel-manganese composite oxide. It turned out to be a major factor that can control the value of the irreversible capacity of the object.
[0050]
[Relationship between BET specific surface area and number average particle diameter and manganese elution amount]
Next, in order to examine the stability of this positive electrode active material at high temperatures, the relationship between the BET specific surface area, the number average particle diameter, and the manganese elution amount was determined. The positive electrode active material was 1.0 M LiPF 6 Was stored at 60 ° C. for 6 days in a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 1) in which was dissolved, and then the amount of Mn dissolved in the electrolytic solution was determined by ICP composition analysis.
[0051]
FIG. 3 shows the relationship between the BET specific surface area and the Mn concentration in the electrolyte, and FIG. 4 shows the relationship between the number average particle diameter and the Mn concentration in the electrolyte. As in the case of the irreversible capacity, a strong correlation appeared between the BET specific surface area and the number average particle diameter and the Mn concentration in the electrolytic solution.
[0052]
From FIG. 3, the Mn concentration in the electrolytic solution is such that the value of BET specific surface area is 10 m 2 / G or less, it rapidly decreases, especially 8 m 2 / G or less, it was found to be extremely small at 25 ppm or less. Further, from FIG. 4, it was found that when the number average particle diameter became 3 μm or less, the Mn concentration in the electrolytic solution rapidly increased. That is, it was found that the high-temperature stability of the lithium-nickel-manganese composite oxide positive electrode plate was affected by the number average particle diameter and the BET specific surface area. As the high temperature stability, the value of the BET specific surface area is 8 m. 2 / G or less, and the number average particle size is preferably 3 μm or more.
[0053]
[Examples 1 to 3 and Comparative Example 1]
Nonaqueous electrolyte batteries using four types of lithium-nickel-manganese composite oxides having different BET specific surface areas and different number average particle diameters as positive electrode active materials were produced. The contents are summarized in Table 1.
[0054]
[Table 1]
Figure 2004103280
[0055]
These positive plates were prepared by mixing 86 wt% of a lithium-nickel-manganese composite oxide, 4 wt% of acetylene black, and 10 wt% of PVdF to form a paste. The paste was applied to an aluminum foil having a thickness of 20 μm and dried at 80 ° C. Then, after the thickness of the electrode plate was pressed from 270 μm to 165 μm, it was manufactured by vacuum drying at 150 ° C. for 5 hours or more.
[0056]
The negative electrode plate was prepared by mixing 50 wt% of graphitized carbon as a carbon material, 5 wt% of PVdF, and 45 wt% of NMP to form a paste. The paste was applied to a 10-μm-thick copper foil and dried at 100 ° C. Thereafter, the thickness of the electrode plate was pressed from 250 μm to 195 μm, and then vacuum drying was performed at 130 ° C. for 5 hours or more. This negative electrode plate was used in all of the batteries A to D.
[0057]
Next, a coin type battery having a diameter of about 20 mm, a thickness of about 3 mm, and a nominal capacity of 4 mAh was prepared using these positive and negative electrode plates. Here, a 25 μm thick polyolefin microporous separator was used as the separator, and a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 in which 1.0 M of LiPF6 was dissolved was used as the non-aqueous electrolyte.
[0058]
[Examples 4 to 6]
BET specific surface area is 1m as positive electrode active material 2 / G, using a lithium-nickel-manganese composite oxide having a number average particle size of 15 μm, using a positive electrode plate manufactured in the same manner as in Example 1, and using a negative electrode similar to that used in Example 1, A non-aqueous electrolyte battery provided with a porous lithium ion conductive polymer electrolyte on at least one of the positive electrode plate and the negative electrode plate was manufactured. The contents are summarized in Table 2.
[0059]
[Table 2]
Figure 2004103280
[0060]
A polymer paste obtained by dissolving PVdF (12 wt%) in NMP (88 wt%) is applied to a positive electrode plate or a negative electrode plate, and the polymer paste is permeated into pores of the active material layer by osmotic pressure. did. This electrode plate was immersed in water, subjected to a continuous porous treatment using a solvent extraction method of replacing NMP with water, and then PVdF was solidified to produce an electrode plate having a porous polymer. As a result of observing the cut surface of this electrode plate with a microscope, PVdF was uniformly distributed throughout the active material layer, and was sufficiently filled also in the deep part of the active material layer.
[0061]
Next, as shown in Table 2, a positive electrode plate and a negative electrode plate were combined, and 1.0 M LiPF was used as a non-aqueous electrolyte. 6 After dissolving a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 in which was dissolved, the cells were sealed to produce batteries EG of Examples 4 to 6 having a nominal capacity of 4 mAh. After injecting the electrolyte, the porous polymer provided on the electrode plate swells with the electrolyte while holding the electrolyte in the pores, and the polymer and the pores have lithium ion conductivity. It becomes a lithium ion conductive polymer electrolyte.
[0062]
[Charge / discharge cycle test]
The coin type batteries A to G were charged at 50 ° C. to 4 V at a constant current of 4 mA, and then discharged to 3.5 V at a constant current of 4 mA to perform a charge / discharge cycle test. Table 3 summarizes the discharge capacity, and Table 4 summarizes the discharge capacity retention ratio.
[0063]
Here, the “discharge capacity retention rate after 50 cycles” is the ratio (%) of the discharge capacity at the 50th cycle to the discharge capacity at the 1st cycle. The same applies to the “discharge capacity retention rate after 100 cycles”.
[0064]
[Table 3]
Figure 2004103280
[0065]
[Table 4]
Figure 2004103280
[0066]
As can be seen from Table 4, the discharge capacity retention rate after 100 cycles is about 42% for Battery A, about 38% for Battery B, about 77% for Battery C, and the porous lithium ion conductive polymer is only in the positive electrode plate. About 88% for battery E with electrolyte, about 83% for battery F with only negative electrode plate with porous lithium ion conductive polymer electrolyte, both with positive and negative electrode plates with porous lithium ion conductive polymer electrolyte Battery G showed a high value of about 90%. However, in the battery D of Comparative Example 1, the discharge capacity retention after 50 cycles became 42%, and thereafter, the reversible function was lost.
[0067]
From the above, the performance of the non-aqueous electrolyte battery of the present invention was remarkably improved because the BET specific surface area and the number average particle size of the positive electrode active material were adjusted within the range of the present invention, and the porous lithium ion conductive material was used for the electrode. It is considered that the provision of the polymer electrolyte reduced the irreversible capacity of the positive electrode plate, and further suppressed the performance deterioration due to elution of manganese and the like.
[0068]
[Battery pack]
Next, an assembled battery in which three batteries were connected in series was prototyped. A battery X in which three batteries C were connected in series was referred to as an assembled battery X, a battery in which three batteries D were connected in series was referred to as an assembled battery Y, and a battery in which three batteries E were connected in series was referred to as an assembled battery Z. These assembled batteries were charged at 25 ° C. to 15 V at a constant current of 2 mA, and then subjected to a charge / discharge cycle test of discharging to 10.5 V at a constant current of 2 mA. The discharge capacity per gram of the positive electrode active material at that time was shown. Table 5 summarizes the discharge capacity retention ratio.
[0069]
[Table 5]
Figure 2004103280
[0070]
[Table 6]
Figure 2004103280
[0071]
From Table 6, in the assembled battery X using the battery C of the present invention and the assembled battery Y using the battery E of the present invention, excellent capacity retention rates were obtained as in the case of the single cell shown in Table 4. As a result, it was found that a high-performance assembled battery with little variation in the capacity of each cell due to charge and discharge was obtained. From these results, it was found that the nonaqueous electrolyte battery of the present invention can be put to practical use as an assembled battery application requiring power such as a power source for a power tool or a hybrid electric vehicle.
[0072]
【The invention's effect】
The nonaqueous electrolyte battery using the positive electrode plate containing the lithium-nickel-manganese composite oxide of the present invention has an irreversible capacity, and furthermore, the dissolution of the active material at a high temperature is significantly suppressed, and the charge-discharge cycle life performance is improved. And a high-voltage non-aqueous electrolyte battery can be provided. Therefore, the industrial value of the present invention is extremely large.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a BET specific surface area and an irreversible capacity of a lithium-nickel-manganese composite oxide.
FIG. 2 is a graph showing the relationship between the number average particle diameter and the irreversible capacity of a lithium-nickel-manganese composite oxide.
FIG. 3 is a graph showing a relationship between a BET specific surface area of a lithium-nickel-manganese composite oxide and a manganese concentration in an electrolytic solution.
FIG. 4 is a graph showing a relationship between a number average particle diameter of a lithium-nickel-manganese composite oxide and a manganese concentration in an electrolytic solution.
FIG. 5: LiMn 1.5 Ni 0.5 O 4 The figure which shows the charge / discharge curve of.

Claims (3)

BET比表面積の値が10m/g以下であってかつ4.5〜4.9Vvs.Li/Liの範囲に放電電位平坦部のあるリチウム・ニッケル・マンガン複合酸化物を含む正極板を備えたことを特徴とする非水電解質電池。When the value of the BET specific surface area is 10 m 2 / g or less and 4.5 to 4.9 Vvs. A non-aqueous electrolyte battery comprising a positive electrode plate containing a lithium-nickel-manganese composite oxide having a discharge potential flat portion in a range of Li / Li + . 数平均粒子径が2〜30μmでかつ4.5〜4.9Vvs.Li/Liの範囲に放電電位平坦部のあるリチウム・ニッケル・マンガン複合酸化物を含む正極板を備えたことを特徴とする非水電解質電池。Number average particle diameter is 2 to 30 μm and 4.5 to 4.9 Vvs. A non-aqueous electrolyte battery comprising a positive electrode plate containing a lithium-nickel-manganese composite oxide having a discharge potential flat portion in a range of Li / Li + . 正極板または負極板の少なくとも一方に多孔性リチウムイオン伝導ポリマー電解質を備えたことを特徴とする請求項1または2記載の非水電解質電池。3. The non-aqueous electrolyte battery according to claim 1, wherein at least one of the positive electrode plate and the negative electrode plate is provided with a porous lithium ion conductive polymer electrolyte.
JP2002259869A 2002-09-05 2002-09-05 Nonaqueous electrolyte battery Pending JP2004103280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002259869A JP2004103280A (en) 2002-09-05 2002-09-05 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002259869A JP2004103280A (en) 2002-09-05 2002-09-05 Nonaqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2004103280A true JP2004103280A (en) 2004-04-02
JP2004103280A5 JP2004103280A5 (en) 2005-10-27

Family

ID=32260746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259869A Pending JP2004103280A (en) 2002-09-05 2002-09-05 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2004103280A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100864506B1 (en) * 2007-04-16 2008-10-20 (주) 아이엔텍 Multiple frequency radar detector
JP2015201335A (en) * 2014-04-08 2015-11-12 日立化成株式会社 lithium ion battery
CN110197926A (en) * 2018-02-25 2019-09-03 力信(江苏)能源科技有限责任公司 A kind of high-energy density lithium battery of high security

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100864506B1 (en) * 2007-04-16 2008-10-20 (주) 아이엔텍 Multiple frequency radar detector
JP2015201335A (en) * 2014-04-08 2015-11-12 日立化成株式会社 lithium ion battery
CN110197926A (en) * 2018-02-25 2019-09-03 力信(江苏)能源科技有限责任公司 A kind of high-energy density lithium battery of high security

Similar Documents

Publication Publication Date Title
CN107615550B (en) Secondary battery and preparation method thereof
JP5268134B2 (en) Method for producing positive electrode active material and non-aqueous electrolyte battery using the same
KR101767304B1 (en) Lithium secondary battery, method for producing the same, and vehicle including the same
KR101621646B1 (en) Lithium secondary battery, method for producing the same, and vehicle including the same
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP7215423B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery and manufacturing method thereof
EP2597706B1 (en) Lithium ion secondary battery
JP2007250433A (en) Nonaqueous electrolyte battery
WO2009096255A1 (en) Positive electrode active material, positive electrode, and nonaqueous rechargeable battery
WO2006082719A1 (en) Positive electrode and nonaqueous electrolyte secondary battery
JP2008262768A (en) Lithium ion secondary battery
KR101488576B1 (en) Method for evaluating positive electrode active material
CN105830250A (en) Rectangular secondary battery
JP2011216477A (en) Power storage device and manufacturing method thereof
JP2016081866A (en) Lithium ferromanganese phosphate positive electrode active material and manufacturing method thereof
JP6163613B2 (en) Lithium secondary battery
KR101502898B1 (en) Composite anode active material for lithium rechargeable battery, its preparation and lithium battery using same
JP2005116306A (en) Nonaqueous electrolyte secondary battery
JPWO2016132963A1 (en) Lithium iron manganese composite oxide and lithium ion secondary battery using the same
JP2020115484A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6733139B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
KR20180028797A (en) Anode with improved swelling phenomenon and Lithium secondary battery comprising the anode
JP2002117845A (en) Lithium iron complex oxide for lithium secondary battery positive electrode active material
JP2003168427A (en) Nonaqueous electrolyte battery
JP2004103280A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050830

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081015