JP2004101362A - Stage position measurement and positioning device - Google Patents

Stage position measurement and positioning device Download PDF

Info

Publication number
JP2004101362A
JP2004101362A JP2002263489A JP2002263489A JP2004101362A JP 2004101362 A JP2004101362 A JP 2004101362A JP 2002263489 A JP2002263489 A JP 2002263489A JP 2002263489 A JP2002263489 A JP 2002263489A JP 2004101362 A JP2004101362 A JP 2004101362A
Authority
JP
Japan
Prior art keywords
stage
laser interferometer
measuring
positioning
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002263489A
Other languages
Japanese (ja)
Inventor
Hideo Matsumoto
松本 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002263489A priority Critical patent/JP2004101362A/en
Publication of JP2004101362A publication Critical patent/JP2004101362A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the effect of gas fluctuation and improve measurement accuracy, by eliminating both of positioning error of measurement with an interferometer and an error due to principles of Abbe by position detection sensor using diffraction grating. <P>SOLUTION: The device has stages 1 and 2 having a direct action guiding mechanism, laser interferometers 3a and 3b and two positioning measurement means in the axial direction of position detection sensors 8a, 9a; 8b, 9b, which are less likely to be affected by the variations in the refractivity of gas, as compared with the laser interferometer. For the shift of the target of stage positioning which is indicated by signals of two position measurement means, the position shift indicated by the opto-electric signal of the laser interferometers 3a and 3b is used for positioning control of the low-frequency region, and the position shift indicated by signals of the position detection sensors 8a, 9a; 8b, 9b is used for positioning control of the high-frequency region. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体露光装置、精密計測機、精密加工機等のように高精度な加工、計測精度が要求される装置に適用され得るステージ位置計測および位置決め装置に関するものである。
【0002】
【従来の技術】
精密計測機、半導体露光装置、精密加工機には、高いステージ位置決め精度が要求される。こうした要求に対して、レーザー干渉計は、計測点や加工点に光軸を一致させることでアッベの原理に基づくステージの姿勢による計測誤差(サインエラー)を無くせるという利点を持ち、そのような高いステージ位置決め精度が要求される装置には広く利用されている。しかし、レーザー干渉計は、測長光路中の気体の温度、湿度、圧力の変化に起因する屈折率変化(ゆらぎ)に影響されやすい欠点を持っている。その為、通常、精密装置内には、装置構成体の温度を一定に保つ為の恒温化された雰囲気を必要とする。その雰囲気を作り出す手段としては、装置内に、温度を一定にコントロールした気体を流すという方法が用いられている。しかし、通常、装置内にはセンサーやモーターなどの多くの発熱体が存在しており、装置内構成部品に当って複雑に変化した気体流が、これらの発熱体にて暖められた気体と混ざり合っている為、測長光路の温度の分布は変化し続け一定にすることは難しい。その結果、レーザー干渉計からの光電信号にはこの気体ゆらぎによる計測ノイズが流入しやすく、正確な位置計測を妨げる原因となる。
【0003】
この光路中の気体のゆらぎによる計測精度の劣化を防ぐ従来技術の第一の方法として、次の方法がある(例えば、特許文献1参照)。これは、光軸方向に伸縮可能なカバーを設けたり、2枚の平行平板で光路を挟んだりして、外部から光路内への気体の流入を防ぎカバー内の空気の流れを停止すること、または、その空間に気体を層流状態にて流すことで、光路内の気体の屈折率安定化を図る提案である。
【0004】
また、第二の方法として、次の方法がある(例えば、特許文献2参照)。これは、光路近傍に空気流を送る導風手段を配置し、所定の角度から光路に、直接、温度や湿度を一定に保った空気を局所的に送風して、光路内の気体の屈折率安定化を図る提案である。
【0005】
さらに、第三の方法として、回折格子と、回折格子にビームを当てて回折光を受光する光電検出手段で位置を計測する方法がある。この方法による装置は、1nm以下の高分解能を有する物を製作することが可能であることが知られ、広く市販されている。また、光源から回折格子までの光路長がレーザー干渉計に比べて非常に短い為、気体のゆらぎの影響を受け難い特徴がある。
【0006】
【特許文献1】
特開平8−82509号公報
【特許文献2】
特開平10−82610号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記第一の従来例では、光路カバーがステージの移動を制限してしまうという問題や、ステージの移動によりカバー内に周辺の気体が流入し、内部気体の屈折率を変化させてしまうという欠点があった。また、上記第二の従来例では、ステージや装置の構造物が光路近傍に存在する場合や、送風口から光路までの距離が遠くなる場合、気体の流速が空間によって異なり、同一の屈折率を有する気体を全ての光路に均一に流すことは難しく乱流状態が発生し、そのことによって送風空間以外の周囲の気体を巻き込む為、光路内でゆらぎが発生する可能性が高い。また、温度、湿度を高精度に一定に保った気体を送風するには、その為の大掛かりな気体コントロール供給装置が必要になり、高コストになるという欠点もあった。
【0008】
以上のような従来技術の測長システムでは、光路中の気体のゆらぎによるノイズが干渉計に流入し、あたかもステージが動いているかのような光電信号が、目標位置に対する偏差成分として制御システムに流入し、結果として、ステージはその誤差分だけ動いてしまうということが問題となっている。
【0009】
一方、上記第三の従来例として、気体のゆらぎ成分に対して影響を受け難い測長手段である回折格子を用いた位置計測方法があることを述べた。しかし、この方法により精密な位置計測を行う為には、アッベの原理に基づいて、計測機ならば計測点、加工機ならば加工点での位置計測を行うことが不可欠であるので、回折格子と受光体は移動体と固定体が近接する位置に配置しなければならないが、その位置に配置するのは難しい。また、回折格子を用いた測長方法は、通常一方向の変位計測しかできないため、例えば、平面上を二次元的に稼動するXYステージで要請される様な計測必要点の2軸以上の同時計測は不可能である。その為、回折格子を用いた位置計測では、ステージの傾き成分に比例した計測誤差を発生してしまう。
【0010】
本発明は、上記の課題に鑑み、上記第一と第二の従来例の干渉計による計測方法が抱えていたゆらぎによる計測位置決め誤差と、第三の従来例の回折格子による計測方法が抱えていたアッベの原理に基づく誤差(サインエラー)との両者を排除し、気体ゆらぎの影響低減と計測精度の向上を図ることができるステージ位置計測および位置決め装置を提供することを目的とする。
【0011】
【課題を解決する為の手段および作用】
上記目的を達成する本発明のステージ位置計測および位置決め装置は、直動案内機構を有するステージと、レーザー干渉計と、該レーザー干渉計よりも気体の屈折率変化に影響を受け難い位置検出センサーという一軸方向に2つの位置計測手段を有するステージにおいて、ステージ位置決め目標に対する前記2種類の位置計測手段の信号から得られるずれ量(偏差量)について、レーザー干渉計の光電信号から得られる位置ずれ量は、0Hzから所定の周波数までの低周波数領域のフィードバック位置決め制御に用い、また、位置検出センサーの信号から得られる位置ずれ量は、前記所定の周波数以上の高周波数領域のフィードバック位置決め制御に用いる様に構成されたことを特徴とする。この構成において、ステージの移動制御は、得られる共役関係にある2つの測長値の目標値に対する偏差成分のうち、レーザー干渉計の光電信号から得られる位置偏差成分は0Hzから低周波数領域のフィードバック位置決め制御に用い、位置検出センサーの、例えば、回折格子の光電信号から得られる位置偏差成分は高周波数領域のフィードバック位置決め制御に用いて行なわれる。
【0012】
上記基本構成において、前記位置検出センサーは、ステージ上に設けられた回折格子と、この回折格子にビームを照射し、発生する回折光をステージ外に設けられた受光体にて受光してステージ位置を計測する測長装置であったり、回転モーターの回転軸に設けられた円盤型回折格子と、この回折格子にビームを照射し、発生する回折光を非回転側に設けられた受光体にて受光して回転モーターの回転角度からステージ位置を計測する測長装置であったりする。また、前記レーザー干渉計は、基準となる固定物上に設けられたミラーと、このミラーにレーザーを照射して反射してくる計測光とステージ上ミラーからの参照光との干渉縞の光電信号によりステージ位置を計測するステージ上に設けられたレーザー干渉計であったり、ステージ上に設けられたミラーと、このミラーにレーザーを照射して反射してくる計測光と基準となる固定物上に設けられたミラーからの参照光との干渉縞の光電信号によりステージ位置を計測する基準固定物上に設けられたレーザー干渉計であったりする。
【0013】
また、非常に長い周期で変動する空気ゆらぎ成分に対しては、レーザー干渉計光路近傍の空気温度、湿度、圧力を各種センサにてモニターしたり、真空光路と空気中の波長差を検出して空気の屈折率変化を検知する波長トラッカーを用いたりして、レーザー干渉計の波長の補正を行ってもよい。
【0014】
上記各構成の作用として、ステージの位置決め時において、床振動などの実際にステージを動かす外乱と、気体ゆらぎが原因となる干渉計ノイズとの分離が可能となり、光路上に存在している気体がゆらぎ成分を有していても、ステージ位置計測値への影響を取り除くことができる。その結果、極めて高精度な位置計測と位置決め制御が可能となる。
【0015】
また、前記手段を有し、かつ、光路を含む装置内雰囲気を撹拌する手段を有することを特徴としても良い。その作用としては、レーザー干渉計に流入する空気のゆらぎ成分が原因のノイズ量は増大するが、そのノイズの周波数を上げることが可能となり、0Hzから低周波数領域を計測するレーザー干渉計を用いた位置計測時のフィードバック位置決め制御に用いる位置偏差量のサンプリングの時間間隔を、短くすることが可能となり、計測時間を短縮できる。
【0016】
【発明の実施の形態】
以下に、本発明の位置計測および位置決め装置の実施の形態を明らかにすべく実施例を図面に沿って説明する。
【0017】
(第一の実施例)
図1、図2は、本発明の第一の実施例に係る2軸ステージ装置を示す。図1は正面図、図2は側面図である。このステージ装置は、2つの可動軸を有し、案内にはエアースライド10を用いている。各軸にはアクチュエータであるリニアモーター6a,6b,7a,7bを備えている。
【0018】
第二軸ステージ2上には、HeNeレーザーを光源とする第一軸のレーザー干渉計3a、第二軸のレーザー干渉計3bが第二軸ステージ2上の位置計測点11に光軸4a,4bを一致させるように配置してあり、また、各軸には、位置計測の基準点に固定されたミラー5a,5bが配置してある。これにより、レーザー干渉計3a,3bは、距離変動するミラー5a,5bとステージ2間の光軸4a,4bの光路と、第二軸ステージ2上または干渉計3a,3b内部に設けられた距離変動しない参照光路(不図示)とのビームの干渉縞の変化にて、第二軸ステージ2の移動量を検出することができる。
【0019】
一方、このステージ装置には、第一軸のリニアスケール8a,9aが第一軸ステージ1と固定部であるヨーイング方向案内面13の間に配置され、第二軸のリニアスケール8b,9bが第二軸ステージ2と第一軸ステージ1の間に配置されている。これらは、回折格子にレーザーを照射し、発生する回折光を受光して光電信号を得る測長装置で、回折格子と受光体の相対位置変化を検出することができる。
【0020】
そして、このステージ装置には、温度が或る範囲内で変動するゆらぎ成分を持つ空気を、送風口12からレーザー光路4a,4bを含むステージ装置の周辺空間へ向けて強制的に送風する機構を備え、ステージ構成部品であるリニアモーター6a,6b,7a,7bやセンサ類(不図示)の様な発熱体の周囲に存在する屈折率の違う空気の塊(空気ゆらぎ)を撹拌し、光路中に特定の屈折率の異なる空気が長時間留まることを防いでいる。これの目的は、レーザー干渉計3a,3bに流入する空気ゆらぎに起因する計測ノイズ自体は軽減できず、むしろ増大させてしまうが、そのノイズ成分の周波数を或る一定以上の領域に上げることである。
【0021】
以上の構成にて、ステージの位置決めにおいて、目標値に対する偏差成分のうち、或る周波数以上の高周波数領域はリニアスケール8a,8b,9a,9bの光電信号から得られる位置偏差量を用いてフィードバック制御し、0Hzから或る周波数以下の低周波数領域はレーザー干渉計3a,3bの光電信号から得られる位置偏差量を用いてフィードバック制御を行う。この或る周波数とは、レーザー干渉計3a,3bに流入する空気ゆらぎに起因するノイズを周波数変換して、ノイズレベルが大きくなり始める周波数を意味し、その周波数は、レーザー干渉計3a,3b光路上のゆらぎ成分を撹拌する風速に左右される因子であり、その時の風速に合わせて変更する。もしくは、送風口12の風速を調整することにより、ノイズの発生する周波数を変更してもよい。これら高周波数領域と低周波数領域は明確に区別できる領域であるので、第一軸及び第二軸について各フィードバック制御は、各位置偏差量を各々適当間隔でサンプリングして、独立的に行われ得て、目標値に向かって各位置偏差量を無くす方向にステージの位置決め制御ができる。
【0022】
また、非常に長い周期で変動する空気ゆらぎ成分に対しては、レーザー干渉計光路4a,4b近傍の空気温度、湿度、圧力を各種センサ(不図示)にてモニターしたり、レーザー干渉計で用いるレーザーから分岐させて別光路を設けて真空光路とその光路との波長差を検出して空気の屈折率変化を検知する波長トラッカー14a,14bを用いたりして、波長の補正を適当な期間を置いて行うこともできる。これにより、非常に長い周期で変動するレーザー干渉計3a,3bの測長ノイズが補正できる。
【0023】
以上のように、リニアスケール8a,8b,9a,9bとレーザー干渉計3a,3bからの信号を周波数によって使い分けて夫々独立的にフィードバック位置決め制御に用いることにより、第二軸ステージ2の実際の挙動によるリニアスケール8a,8b,9a,9bのノイズと、空気ゆらぎの影響によるレーザー干渉計3a,3bのノイズを分離することが可能になり、空気ゆらぎの影響を極小化した位置計測および位置決め制御が可能となる。
【0024】
なお、上述の実施例では、送風方向は第一軸ステージ1の可動方向に平行にしているが、レーザー干渉計光路4a,4bのゆらぎを撹拌することが目的である為、任意の方向からステージ装置へ向けて送風を行ってもよい。
【0025】
また、上述の実施例では、空気ゆらぎの周波数を上げる為に送風を行っているが、これはステージ位置決め時のレーザー干渉計3a,3bでの計測時間を短縮するのが目的であり、短縮する必要が無ければ、上記送風口12のような、ステージ周辺空間の空気を撹拌する手段は必要としない。
【0026】
(第二の実施例)
図3、図4は本発明の第二の実施例に係るステージ装置を示す図であり、図1、図2と同一用途部分には同一の符号を付けている。図3が正面図であり、図4が側面図である。このステージ装置では、案内に転動スライド20を用い、第二のステージ位置計測手段として、リニアスケールではなく、ロータリーエンコーダー21a,21bにて回転モーター22a,22bの回転を検知し、送りねじ23a,23bにて回転を直動変換してステージ1,2を駆動している点が、前述の第一の実施例との相違点である。
【0027】
このロータリーエンコーダー21a,21bからの光電信号を、前述のリニアスケールの光電信号と同様に、或る周波数以上の高周波数領域のみのステージ1,2の位置偏差量として用いて、ステージ位置をフィードバック制御し、0Hzから或る周波数以下の低周波数領域はレーザー干渉計3a,3bの光電信号から得られる位置偏差量を用いてフィードバック制御を行う。このことにより、前述の実施例と同様の効果が得られ、空気ゆらぎの影響を極小化した位置計測および位置決め制御が可能となる。
【0028】
(第三の実施例)
図5、図6は本発明の第三の実施例に係るステージ装置を示す図であり、図1、図2と同一部分には同一の符号を付けている。図5が正面図であり、図6が側面図である。これは、加工機や半導体露光装置で好適に用いられる、加工物や計測対象物をステージ1,2にて可動させる用途で用いられる構成である。基準の固定側にレーザー干渉計3a,3bを設け、第二ステージ軸2上にミラー5a,5bを設けている点が前述の実施例と異なっている。この構成でも前述の第一、第二の実施例と同様の効果を得られ、空気ゆらぎの影響を極小化した位置計測および位置決め制御が可能となる。
【0029】
【発明の効果】
以上のように、本発明によれば、レーザー干渉計光路の空気ゆらぎの影響を低減でき、nm単位での位置計測と位置決めの高精度化を実現することが可能になる。また、気体を層流状態にて流す工夫や、温度、湿度を高精度に一定に保った気体を送風するのに必要な大掛かりな気体コントロール供給装置が必要でなくなり、コスト削減も実現できる。
【図面の簡単な説明】
【図1】本発明の第1の実施例に係るステージ位置計測および位置決め装置を説明する為の正面図である。
【図2】本発明の第1の実施例に係るステージ位置計測および位置決め装置を説明する為の側面図である。
【図3】本発明の第2の実施例に係るステージ位置計測および位置決め装置を説明する為の正面図である。
【図4】本発明の第2の実施例に係るステージ位置計測および位置決め装置を説明する為の側面図である。
【図5】本発明の第3の実施例に係るステージ位置計測および位置決め装置を説明する為の正面図である。
【図6】本発明の第3の実施例に係るステージ位置計測および位置決め装置を説明する為の側面図である。
【符号の説明】
1:第一軸ステージ
2:第二軸ステージ
3a:第一軸レーザー干渉計
3b:第二軸レーザー干渉計
4a:第一軸レーザー測長光軸
4b:第二軸レーザー測長光軸
5a:第一軸レーザー測長用ミラー
5b:第二軸レーザー測長用ミラー
6a、6b:第二軸リニアモーター
7a、7b:第一軸リニアモーター
8a:第一軸リニアスケール用投光受光体
8b:第二軸リニアスケール用投光受光体
9a:第一軸リニアスケール回折格子
9b:第二軸リニアスケール回折格子
10:エアースライド
11:計測対象点
12:気体送風装置
13:第一軸ヨーイング方向静圧案内面
14a:第一軸波長トラッカー
14b:第二軸波長トラッカー
20:転動スライド
21a:第一軸ロータリーエンコーダー
21b:第二軸ロータリーエンコーダー
22a:第一軸回転モーター
22b:第二軸回転モーター
23a:第一軸送りねじ
23b:第二軸送りねじ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a stage position measurement and positioning device that can be applied to a device that requires high-precision processing and measurement accuracy, such as a semiconductor exposure apparatus, a precision measuring machine, and a precision processing machine.
[0002]
[Prior art]
High precision stage positioning accuracy is required for precision measuring machines, semiconductor exposure apparatuses, and precision processing machines. In response to such demands, laser interferometers have the advantage of eliminating measurement errors (sine errors) due to the stage orientation based on Abbe's principle by aligning the optical axis with the measurement and processing points. It is widely used for devices that require high stage positioning accuracy. However, the laser interferometer has a disadvantage that it is susceptible to a change in refractive index (fluctuation) caused by a change in temperature, humidity, and pressure of a gas in a length measuring optical path. For this reason, a precision device usually requires a constant temperature atmosphere for keeping the temperature of the device components constant. As a means for creating the atmosphere, a method of flowing a gas whose temperature is controlled to be constant in the apparatus is used. However, there are usually many heating elements such as sensors and motors in the equipment, and the gas flow that has changed in a complex manner by hitting the components inside the equipment mixes with the gas heated by these heating elements. Therefore, it is difficult to keep the temperature distribution in the length measuring optical path constant and constant. As a result, measurement noise due to the gas fluctuation tends to flow into the photoelectric signal from the laser interferometer, which hinders accurate position measurement.
[0003]
As a first method of the related art for preventing the deterioration of the measurement accuracy due to the fluctuation of the gas in the optical path, there is the following method (for example, see Patent Document 1). This is to provide a cover that can expand and contract in the optical axis direction, or to sandwich the optical path between two parallel flat plates, to prevent gas from flowing into the optical path from the outside, and to stop the flow of air in the cover. Another proposal is to stabilize the refractive index of the gas in the optical path by flowing the gas in the space in a laminar flow state.
[0004]
Further, as a second method, there is the following method (for example, see Patent Document 2). This is achieved by arranging a baffle for sending an air flow near the optical path, directly blowing air with a constant temperature and humidity to the optical path directly from a predetermined angle, and adjusting the refractive index of the gas in the optical path. This is a proposal for stabilization.
[0005]
Further, as a third method, there is a method of measuring a position by a diffraction grating and photoelectric detection means for receiving a diffracted light by applying a beam to the diffraction grating. An apparatus according to this method is known to be capable of producing a product having a high resolution of 1 nm or less, and is widely marketed. Further, since the optical path length from the light source to the diffraction grating is much shorter than that of the laser interferometer, there is a feature that it is hardly affected by gas fluctuation.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 8-82509 [Patent Document 2]
JP-A-10-82610
[Problems to be solved by the invention]
However, in the first conventional example, there is a problem that the optical path cover restricts the movement of the stage, and a surrounding gas flows into the cover due to the movement of the stage, thereby changing the refractive index of the internal gas. There were drawbacks. Further, in the second conventional example, when the structure of the stage or the device is present in the vicinity of the optical path, or when the distance from the air outlet to the optical path is long, the gas flow velocity differs depending on the space, and the same refractive index is obtained. It is difficult to make the flowing gas uniformly flow in all the optical paths, and a turbulent state is generated. As a result, surrounding gas other than the ventilation space is involved, so that there is a high possibility that fluctuations occur in the optical path. Further, in order to blow a gas whose temperature and humidity are kept constant with high accuracy, a large-scale gas control and supply device is required for this purpose, and there is a disadvantage that the cost is high.
[0008]
In the conventional measuring system described above, noise due to the fluctuation of gas in the optical path flows into the interferometer, and a photoelectric signal as if the stage is moving flows into the control system as a deviation component from the target position. However, as a result, there is a problem that the stage moves by the error.
[0009]
On the other hand, as the third conventional example, it has been described that there is a position measuring method using a diffraction grating which is a length measuring means which is hardly affected by a fluctuation component of gas. However, in order to perform precise position measurement by this method, it is indispensable to perform position measurement at a measurement point for a measuring machine and at a processing point for a processing machine based on Abbe's principle. And the photoreceptor must be arranged at a position where the moving body and the fixed body are close to each other, but it is difficult to arrange at that position. In addition, since the length measurement method using a diffraction grating can only measure displacement in one direction in general, for example, simultaneous measurement of two or more axes of required measurement points required by an XY stage operating two-dimensionally on a plane is required. Measurement is not possible. Therefore, in position measurement using a diffraction grating, a measurement error proportional to the tilt component of the stage occurs.
[0010]
In view of the above problems, the present invention has a measurement positioning error due to fluctuations that the first and second conventional interferometer measurement methods have, and a third conventional diffraction grating measurement method. It is an object of the present invention to provide a stage position measuring and positioning device capable of eliminating both errors (sine errors) based on Abbe's principle and reducing the influence of gas fluctuation and improving measurement accuracy.
[0011]
[Means and actions for solving the problem]
The stage position measuring and positioning apparatus of the present invention that achieves the above object includes a stage having a linear motion guide mechanism, a laser interferometer, and a position detection sensor that is less affected by a change in the refractive index of gas than the laser interferometer. In a stage having two position measuring means in one axis direction, with respect to a shift amount (deviation amount) obtained from signals of the two types of position measuring means with respect to a stage positioning target, a position shift amount obtained from a photoelectric signal of a laser interferometer is , Used for feedback positioning control in a low frequency region from 0 Hz to a predetermined frequency, and the amount of positional deviation obtained from the signal of the position detection sensor is used for feedback positioning control in a high frequency region above the predetermined frequency. It is characterized by comprising. In this configuration, the stage movement control is performed such that, among the deviation components of the two measured values having a conjugate relationship with respect to the target value, the position deviation component obtained from the photoelectric signal of the laser interferometer is feedback from 0 Hz to a low frequency region. A position deviation component obtained from a photoelectric signal of, for example, a diffraction grating of a position detection sensor used for positioning control is used for feedback positioning control in a high frequency region.
[0012]
In the above-described basic configuration, the position detection sensor includes a diffraction grating provided on a stage, a beam emitted to the diffraction grating, and a generated light received by a photoreceptor provided outside the stage to receive a stage position. Or a disc-shaped diffraction grating provided on the rotating shaft of a rotary motor, and irradiating this diffraction grating with a beam, and generating the diffracted light with a photoreceptor provided on the non-rotating side. It may be a length measuring device that receives light and measures the stage position from the rotation angle of the rotating motor. Further, the laser interferometer includes a mirror provided on a fixed object serving as a reference, and a photoelectric signal of an interference fringe between a measurement light reflected by irradiating the mirror with the laser and a reference light from a mirror on the stage. A laser interferometer provided on the stage that measures the stage position by using a mirror provided on the stage, and a mirror that irradiates laser to the mirror and the measurement light reflected from the mirror and the reference fixed object It may be a laser interferometer provided on a reference fixed object for measuring a stage position by a photoelectric signal of an interference fringe with reference light from a provided mirror.
[0013]
For air fluctuation components that fluctuate in a very long cycle, the air temperature, humidity, and pressure near the laser interferometer optical path are monitored by various sensors, and the wavelength difference between the vacuum optical path and the air is detected. The wavelength of the laser interferometer may be corrected by using a wavelength tracker that detects a change in the refractive index of air.
[0014]
As an operation of each of the above configurations, when positioning the stage, it is possible to separate disturbance that actually moves the stage, such as floor vibration, from interferometer noise caused by gas fluctuation, and gas present on the optical path is removed. Even if it has a fluctuation component, the influence on the stage position measurement value can be removed. As a result, extremely accurate position measurement and positioning control can be performed.
[0015]
Further, the apparatus may be characterized in that the apparatus has the above-mentioned means and further has means for stirring the atmosphere in the apparatus including the optical path. As the effect, the amount of noise caused by the fluctuation component of the air flowing into the laser interferometer increases, but the frequency of the noise can be increased, and a laser interferometer that measures a low frequency region from 0 Hz is used. The time interval for sampling the position deviation amount used for the feedback positioning control at the time of position measurement can be shortened, and the measurement time can be shortened.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment will be described with reference to the drawings to clarify an embodiment of the position measurement and positioning device of the present invention.
[0017]
(First embodiment)
1 and 2 show a two-axis stage device according to a first embodiment of the present invention. 1 is a front view, and FIG. 2 is a side view. This stage device has two movable shafts, and uses an air slide 10 for guidance. Each axis is provided with a linear motor 6a, 6b, 7a, 7b as an actuator.
[0018]
On the second axis stage 2, a first axis laser interferometer 3a using a HeNe laser as a light source and a second axis laser interferometer 3b are provided at the position measurement points 11 on the second axis stage 2 with optical axes 4a and 4b. And mirrors 5a and 5b fixed to reference points for position measurement are arranged on each axis. As a result, the laser interferometers 3a and 3b are separated from the optical paths of the optical axes 4a and 4b between the mirrors 5a and 5b and the stage 2 whose distance varies, and the distance provided on the second axis stage 2 or inside the interferometers 3a and 3b. The amount of movement of the second axis stage 2 can be detected by a change in the interference fringe of the beam with a reference light path (not shown) that does not change.
[0019]
On the other hand, in this stage device, the first axis linear scales 8a, 9a are arranged between the first axis stage 1 and the yawing direction guide surface 13, which is a fixed part, and the second axis linear scales 8b, 9b are arranged. It is arranged between the two-axis stage 2 and the first-axis stage 1. These are length measuring devices that irradiate the diffraction grating with a laser and receive the generated diffracted light to obtain a photoelectric signal, which can detect a change in the relative position between the diffraction grating and the photoreceptor.
[0020]
The stage device has a mechanism for forcibly blowing air having a fluctuation component whose temperature fluctuates within a certain range from the air outlet 12 toward the space around the stage device including the laser optical paths 4a and 4b. A stirrer separates air masses (air fluctuations) having different refractive indexes around heating elements such as linear motors 6a, 6b, 7a, 7b and sensors (not shown) as stage components. To prevent air with a different refractive index from staying for a long time. The purpose of this is to reduce the measurement noise itself due to the air fluctuation flowing into the laser interferometers 3a and 3b, but rather to increase it, but to raise the frequency of the noise component to a certain range or more. is there.
[0021]
With the above configuration, in the positioning of the stage, among the deviation components with respect to the target value, the high frequency region above a certain frequency is fed back using the position deviation amount obtained from the photoelectric signals of the linear scales 8a, 8b, 9a, 9b. In the low frequency range from 0 Hz to a certain frequency or less, feedback control is performed using the positional deviation obtained from the photoelectric signals of the laser interferometers 3a and 3b. The certain frequency means a frequency at which noise caused by air fluctuation flowing into the laser interferometers 3a and 3b is frequency-converted and the noise level starts to increase, and the frequency is the light of the laser interferometers 3a and 3b. It is a factor that depends on the wind speed at which the fluctuation components on the road are stirred, and is changed according to the wind speed at that time. Alternatively, the frequency at which noise occurs may be changed by adjusting the wind speed of the air outlet 12. Since the high frequency region and the low frequency region are regions that can be clearly distinguished, each feedback control for the first axis and the second axis can be performed independently by sampling each position deviation amount at an appropriate interval. Thus, the positioning of the stage can be controlled in a direction to eliminate each positional deviation amount toward the target value.
[0022]
For air fluctuation components that fluctuate in a very long cycle, the air temperature, humidity, and pressure near the laser interferometer optical paths 4a and 4b are monitored by various sensors (not shown) or used in a laser interferometer. A separate optical path is provided by branching from the laser, and wavelength correction is performed for an appropriate period by using wavelength trackers 14a and 14b for detecting a wavelength difference between the vacuum optical path and the optical path and detecting a change in the refractive index of air. It can also be done. Thereby, the length measurement noise of the laser interferometers 3a and 3b which fluctuate in a very long cycle can be corrected.
[0023]
As described above, the signals from the linear scales 8a, 8b, 9a, 9b and the signals from the laser interferometers 3a, 3b are selectively used depending on the frequency and used independently for feedback positioning control, thereby realizing the actual behavior of the second axis stage 2. And the noise of the laser interferometers 3a and 3b due to the influence of the air fluctuation can be separated from the noise of the linear scales 8a, 8b, 9a and 9b, and the position measurement and the positioning control with the influence of the air fluctuation minimized. It becomes possible.
[0024]
In the above-described embodiment, the air blowing direction is parallel to the movable direction of the first axis stage 1. However, since the purpose is to agitate the fluctuations of the laser interferometer optical paths 4a and 4b, the stage is moved from any direction. Blowing may be performed toward the device.
[0025]
In the above-described embodiment, the air is blown to increase the frequency of the air fluctuation, but this is for the purpose of shortening the measurement time by the laser interferometers 3a and 3b at the time of positioning the stage, which is shortened. If it is not necessary, there is no need for a means for stirring the air in the space around the stage, such as the blowing port 12.
[0026]
(Second embodiment)
FIGS. 3 and 4 are views showing a stage device according to a second embodiment of the present invention, in which the same reference numerals are given to portions having the same uses as in FIGS. FIG. 3 is a front view, and FIG. 4 is a side view. In this stage device, the rolling slide 20 is used for guidance, and the rotation of the rotary motors 22a, 22b is detected by a rotary encoder 21a, 21b instead of a linear scale as a second stage position measuring means. The point that the stages 1 and 2 are driven by converting the rotation into a linear motion at 23b is a difference from the first embodiment.
[0027]
Using the photoelectric signals from the rotary encoders 21a and 21b as the positional deviation amounts of the stages 1 and 2 only in a high frequency region above a certain frequency, as in the case of the above-described linear scale photoelectric signals, the stage position is feedback controlled. In a low frequency range from 0 Hz to a certain frequency or less, feedback control is performed using the position deviation obtained from the photoelectric signals of the laser interferometers 3a and 3b. As a result, the same effects as in the above-described embodiment can be obtained, and position measurement and positioning control with the influence of air fluctuation minimized can be performed.
[0028]
(Third embodiment)
FIGS. 5 and 6 are views showing a stage device according to a third embodiment of the present invention, and the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals. FIG. 5 is a front view, and FIG. 6 is a side view. This is a configuration preferably used in a processing machine or a semiconductor exposure apparatus, and used for moving a workpiece or a measurement object on the stages 1 and 2. Laser interferometers 3a and 3b are provided on the fixed side of the reference, and mirrors 5a and 5b are provided on the second stage shaft 2, which is different from the above-described embodiment. With this configuration as well, the same effects as those of the first and second embodiments can be obtained, and position measurement and positioning control that minimizes the influence of air fluctuations can be performed.
[0029]
【The invention's effect】
As described above, according to the present invention, it is possible to reduce the influence of air fluctuations in the optical path of the laser interferometer, and to achieve high-precision position measurement and positioning in nm units. In addition, it is not necessary to devise a device for flowing gas in a laminar flow state or to provide a large-scale gas control and supply device required to blow gas having a constant temperature and humidity with high precision, thereby realizing cost reduction.
[Brief description of the drawings]
FIG. 1 is a front view for explaining a stage position measuring and positioning device according to a first embodiment of the present invention.
FIG. 2 is a side view for explaining a stage position measuring and positioning device according to the first embodiment of the present invention.
FIG. 3 is a front view for explaining a stage position measuring and positioning device according to a second embodiment of the present invention.
FIG. 4 is a side view for explaining a stage position measuring and positioning device according to a second embodiment of the present invention.
FIG. 5 is a front view for explaining a stage position measuring and positioning device according to a third embodiment of the present invention.
FIG. 6 is a side view for explaining a stage position measuring and positioning device according to a third embodiment of the present invention.
[Explanation of symbols]
1: First axis stage 2: Second axis stage 3a: First axis laser interferometer 3b: Second axis laser interferometer 4a: First axis laser measuring optical axis 4b: Second axis laser measuring optical axis 5a: First axis laser length measuring mirror 5b: Second axis laser length measuring mirrors 6a, 6b: Second axis linear motors 7a, 7b: First axis linear motor 8a: First axis linear scale light emitting / receiving body 8b: Light emitting / receiving body 9a for second axis linear scale: first axis linear scale diffraction grating 9b: second axis linear scale diffraction grating 10: air slide 11: measurement point 12: gas blower 13: first axis yawing direction static Pressure guide surface 14a: first axis wavelength tracker 14b: second axis wavelength tracker 20: rolling slide 21a: first axis rotary encoder 21b: second axis rotary encoder 22a: first axis Rolling motor 22b: second axis rotating motor 23a: first axis feed screw 23b: second axis feed screw

Claims (7)

直動案内機構を有するステージと、レーザー干渉計と、該レーザー干渉計よりも気体の屈折率変化に影響を受け難い位置検出センサーという一軸方向に2つの位置計測手段を有するステージにおいて、ステージ位置決め目標に対する前記2種類の位置計測手段の信号から得られるずれ量について、レーザー干渉計の光電信号から得られる位置ずれ量は、0Hzから所定の周波数までの低周波数領域のフィードバック位置決め制御に用い、また、位置検出センサーの信号から得られる位置ずれ量は、前記所定の周波数以上の高周波数領域のフィードバック位置決め制御に用いる様に構成されたことを特徴とするステージ位置計測および位置決め装置。A stage having a linear motion guide mechanism, a laser interferometer, and a position detection sensor which is less susceptible to a change in the refractive index of gas than the laser interferometer. With respect to the shift amount obtained from the signals of the two types of position measuring means, the shift amount obtained from the photoelectric signal of the laser interferometer is used for feedback positioning control in a low frequency region from 0 Hz to a predetermined frequency, A stage position measuring and positioning device, wherein a position shift amount obtained from a signal of a position detecting sensor is used for feedback positioning control in a high frequency region above the predetermined frequency. 前記位置検出センサーは、ステージ上に設けられた回折格子と、この回折格子にビームを照射し、発生する回折光をステージ外に設けられた受光体にて受光してステージ位置を計測する測長装置であり、回折格子の光電信号から得られる位置ずれ量は、前記所定の周波数以上の高周波数領域のフィードバック位置決め制御に用いることを特徴とする請求項1記載のステージ位置計測および位置決め装置。The position detection sensor is a diffraction grating provided on the stage, and a length measuring device that irradiates the diffraction grating with a beam, receives a generated diffracted light with a photoreceptor provided outside the stage, and measures the stage position. 2. The stage position measuring and positioning device according to claim 1, wherein the position shift amount obtained from the photoelectric signal of the diffraction grating is used for feedback positioning control in a high frequency region equal to or higher than the predetermined frequency. 前記位置検出センサーは、回転モーターの回転軸に設けられた円盤型回折格子と、この回折格子にビームを照射し、発生する回折光を非回転側に設けられた受光体にて受光して回転モーターの回転角度からステージ位置を計測する測長装置であり、回折格子の光電信号から得られる位置ずれ量は、前記所定の周波数以上の高周波数領域のフィードバック位置決め制御に用いることを特徴とする請求項1記載のステージ位置計測および位置決め装置。The position detection sensor is a disk-shaped diffraction grating provided on the rotation axis of a rotating motor, and irradiates a beam to the diffraction grating, and receives a generated diffracted light by a photoreceptor provided on a non-rotation side and rotates the light. A length measuring device for measuring a stage position from a rotation angle of a motor, wherein a displacement amount obtained from a photoelectric signal of a diffraction grating is used for feedback positioning control in a high frequency region above the predetermined frequency. Item 3. The stage position measuring and positioning device according to Item 1. 前記レーザー干渉計は、基準となる固定物上に設けられたミラーと、このミラーにレーザーを照射して反射してくる計測光とステージ上ミラーからの参照光との干渉縞の光電信号によりステージ位置を計測するステージ上に設けられたレーザー干渉計であることを特徴とする請求項1、2または3記載のステージ位置計測および位置決め装置。The laser interferometer is provided with a mirror provided on a fixed object serving as a reference, and a stage provided by a photoelectric signal of an interference fringe between a measurement light reflected by irradiating a laser to the mirror and reference light from a mirror on the stage. The stage position measuring and positioning apparatus according to claim 1, 2 or 3, wherein the apparatus is a laser interferometer provided on a stage for measuring a position. 前記レーザー干渉計は、ステージ上に設けられたミラーと、このミラーにレーザーを照射して反射してくる計測光と基準となる固定物上に設けられたミラーからの参照光との干渉縞の光電信号によりステージ位置を計測する基準固定物上に設けられたレーザー干渉計であることを特徴とする請求項1、2または3記載のステージ位置計測および位置決め装置。The laser interferometer has a mirror provided on a stage, and interference fringes between measurement light reflected by irradiating the mirror with the laser and reference light from a mirror provided on a reference fixed object. 4. The stage position measuring and positioning device according to claim 1, wherein the device is a laser interferometer provided on a reference fixed object for measuring a stage position by a photoelectric signal. 前記レーザー干渉計光路を含むステージ空間に存在する気体を撹拌する手段を備えることを特徴とする請求項1乃至5の何れかに記載のステージ位置計測および位置決め装置。The stage position measurement and positioning device according to claim 1, further comprising a unit that stirs a gas existing in a stage space including the laser interferometer optical path. 前記攪拌手段は、気体を任意の方向から流入させ、レーザー干渉計光路を含むステージ空間に存在する気体を撹拌することを特徴とする請求項7記載のステージ位置計測および位置決め装置。8. The stage position measurement and positioning device according to claim 7, wherein said stirring means causes a gas to flow from an arbitrary direction and stirs a gas existing in a stage space including a laser interferometer optical path.
JP2002263489A 2002-09-10 2002-09-10 Stage position measurement and positioning device Pending JP2004101362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263489A JP2004101362A (en) 2002-09-10 2002-09-10 Stage position measurement and positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263489A JP2004101362A (en) 2002-09-10 2002-09-10 Stage position measurement and positioning device

Publications (1)

Publication Number Publication Date
JP2004101362A true JP2004101362A (en) 2004-04-02

Family

ID=32263189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263489A Pending JP2004101362A (en) 2002-09-10 2002-09-10 Stage position measurement and positioning device

Country Status (1)

Country Link
JP (1) JP2004101362A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127625A (en) * 2005-09-15 2007-05-24 Asml Netherlands Bv Position measurement unit, measurement system, and lithographic apparatus comprising such position measurement unit
WO2007142351A1 (en) 2006-06-09 2007-12-13 Nikon Corporation Apparatus with mobile body, exposure apparatus, exposure method and device manufacturing method
WO2008026739A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008026732A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
WO2008026742A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008029758A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
WO2008029757A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method
WO2008038752A1 (en) 2006-09-29 2008-04-03 Nikon Corporation Mobile unit system, pattern forming device, exposing device, exposing method, and device manufacturing method
WO2009075103A1 (en) * 2007-12-11 2009-06-18 Nikon Corporation Moving body device, exposure device, pattern formation device, and device manufacturing method
WO2009098891A1 (en) * 2008-02-08 2009-08-13 Nikon Corporation Position measuring system and position measuring method, mobile body device, mobile body driving method, exposure device and exposure method, pattern forming device, and device manufacturing method
JP2010238933A (en) * 2009-03-31 2010-10-21 Advanced Mask Inspection Technology Kk Xy stage device
US7839485B2 (en) 2006-01-19 2010-11-23 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
JP2011091298A (en) * 2009-10-26 2011-05-06 Canon Inc Stage device
JP2011211173A (en) * 2010-03-03 2011-10-20 Asml Netherlands Bv Lithographic apparatus and method for measuring position
JP2012002731A (en) * 2010-06-18 2012-01-05 Nuflare Technology Inc Inspection apparatus and inspection method
WO2013100202A1 (en) * 2011-12-29 2013-07-04 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2015105829A (en) * 2013-11-28 2015-06-08 株式会社ニコン Scale for encoder, encoder, driving device, and stage device
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9529280B2 (en) 2013-12-06 2016-12-27 Kla-Tencor Corporation Stage apparatus for semiconductor inspection and lithography systems
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2021012273A (en) * 2019-07-05 2021-02-04 キヤノン株式会社 Measuring apparatus, stage positioning apparatus, exposure apparatus, manufacturing method of articles and computer program

Cited By (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP4614929B2 (en) * 2005-09-15 2011-01-19 エーエスエムエル ネザーランズ ビー.ブイ. Position measuring unit, measuring system, and lithographic apparatus comprising the position measuring unit
JP2007127625A (en) * 2005-09-15 2007-05-24 Asml Netherlands Bv Position measurement unit, measurement system, and lithographic apparatus comprising such position measurement unit
US10203613B2 (en) 2006-01-19 2019-02-12 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10185228B2 (en) 2006-01-19 2019-01-22 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10185227B2 (en) 2006-01-19 2019-01-22 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10133195B2 (en) 2006-01-19 2018-11-20 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US7839485B2 (en) 2006-01-19 2010-11-23 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10088759B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10139738B2 (en) 2006-02-21 2018-11-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9989859B2 (en) 2006-02-21 2018-06-05 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10088343B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10132658B2 (en) 2006-02-21 2018-11-20 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10012913B2 (en) 2006-02-21 2018-07-03 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10409173B2 (en) 2006-02-21 2019-09-10 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US10345121B2 (en) 2006-02-21 2019-07-09 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10234773B2 (en) 2006-02-21 2019-03-19 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US8390780B2 (en) 2006-06-09 2013-03-05 Nikon Corporation Movable-body apparatus, exposure apparatus, exposure method, and device manufacturing method
WO2007142351A1 (en) 2006-06-09 2007-12-13 Nikon Corporation Apparatus with mobile body, exposure apparatus, exposure method and device manufacturing method
US10067428B2 (en) 2006-08-31 2018-09-04 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
EP3279738A1 (en) 2006-08-31 2018-02-07 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8937710B2 (en) 2006-08-31 2015-01-20 Nikon Corporation Exposure method and apparatus compensating measuring error of encoder due to grating section and displacement of movable body in Z direction
US8947639B2 (en) 2006-08-31 2015-02-03 Nikon Corporation Exposure method and apparatus measuring position of movable body based on information on flatness of encoder grating section
WO2008026739A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10353301B2 (en) 2006-08-31 2019-07-16 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
KR20150092342A (en) 2006-08-31 2015-08-12 가부시키가이샤 니콘 Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10353302B2 (en) 2006-08-31 2019-07-16 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
KR20160006238A (en) 2006-08-31 2016-01-18 가부시키가이샤 니콘 Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
KR20160006237A (en) 2006-08-31 2016-01-18 가부시키가이샤 니콘 Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
KR20160006805A (en) 2006-08-31 2016-01-19 가부시키가이샤 니콘 Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
KR20160006804A (en) 2006-08-31 2016-01-19 가부시키가이샤 니콘 Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP2988320A1 (en) 2006-08-31 2016-02-24 Nikon Corporation Exposure apparatus, exposure method, and device manufactuing method
EP2991101A2 (en) 2006-08-31 2016-03-02 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP2990872A2 (en) 2006-08-31 2016-03-02 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008026732A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
US10338482B2 (en) 2006-08-31 2019-07-02 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP2993688A2 (en) 2006-08-31 2016-03-09 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008026742A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP3418807A1 (en) 2006-08-31 2018-12-26 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US10162274B2 (en) 2006-08-31 2018-12-25 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
EP2738608A1 (en) 2006-08-31 2014-06-04 Nikon Corporation Method and system for driving a movable body in an exposure apparatus
EP3064999A1 (en) 2006-08-31 2016-09-07 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP3067748A1 (en) 2006-08-31 2016-09-14 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US10101673B2 (en) 2006-08-31 2018-10-16 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
KR20170007549A (en) 2006-08-31 2017-01-18 가부시키가이샤 니콘 Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10073359B2 (en) 2006-08-31 2018-09-11 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
US8203697B2 (en) 2006-08-31 2012-06-19 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
US9983486B2 (en) 2006-08-31 2018-05-29 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP3312676A1 (en) 2006-08-31 2018-04-25 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP3291010A1 (en) 2006-08-31 2018-03-07 Nikon Corporation Exposure apparatus and method, and device manufacturing method
CN102749813A (en) * 2006-09-01 2012-10-24 株式会社尼康 Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP2993523A2 (en) 2006-09-01 2016-03-09 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
JPWO2008029757A1 (en) * 2006-09-01 2010-01-21 株式会社ニコン Moving body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9846374B2 (en) 2006-09-01 2017-12-19 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
JP2015111695A (en) * 2006-09-01 2015-06-18 株式会社ニコン Exposure method and exposure device, and method of manufacturing device
US9377698B2 (en) 2006-09-01 2016-06-28 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9874822B2 (en) 2006-09-01 2018-01-23 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
JP2015008306A (en) * 2006-09-01 2015-01-15 株式会社ニコン Exposure method, exposure apparatus and device manufacturing method
JP5035247B2 (en) * 2006-09-01 2012-09-26 株式会社ニコン Moving body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
EP2993524A2 (en) 2006-09-01 2016-03-09 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
JP2012169655A (en) * 2006-09-01 2012-09-06 Nikon Corp Mobile body driving method
US9740114B2 (en) 2006-09-01 2017-08-22 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9760021B2 (en) 2006-09-01 2017-09-12 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9971253B2 (en) 2006-09-01 2018-05-15 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
WO2008029757A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method
US10197924B2 (en) 2006-09-01 2019-02-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
WO2008029758A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
US10289010B2 (en) 2006-09-01 2019-05-14 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP3361317A1 (en) 2006-09-01 2018-08-15 Nikon Corporation Exposure apparatus and exposure method
US10289012B2 (en) 2006-09-01 2019-05-14 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9625834B2 (en) 2006-09-01 2017-04-18 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US7999918B2 (en) 2006-09-29 2011-08-16 Nikon Corporation Movable body system, pattern formation apparatus, exposure apparatus and exposure method, and device manufacturing method
WO2008038752A1 (en) 2006-09-29 2008-04-03 Nikon Corporation Mobile unit system, pattern forming device, exposing device, exposing method, and device manufacturing method
US8514373B2 (en) 2006-09-29 2013-08-20 Nikon Corporation Movable body system, pattern formation apparatus, exposure apparatus and exposure method, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8760622B2 (en) 2007-12-11 2014-06-24 Nikon Corporation Movable body apparatus, exposure apparatus and pattern formation apparatus, and device manufacturing method
JP5403263B2 (en) * 2007-12-11 2014-01-29 株式会社ニコン MOBILE DEVICE, EXPOSURE APPARATUS, PATTERN FORMING APPARATUS, AND DEVICE MANUFACTURING METHOD
JPWO2009075103A1 (en) * 2007-12-11 2011-04-28 株式会社ニコン MOBILE DEVICE, EXPOSURE APPARATUS, PATTERN FORMING APPARATUS, AND DEVICE MANUFACTURING METHOD
WO2009075103A1 (en) * 2007-12-11 2009-06-18 Nikon Corporation Moving body device, exposure device, pattern formation device, and device manufacturing method
JP5344180B2 (en) * 2008-02-08 2013-11-20 株式会社ニコン POSITION MEASUREMENT SYSTEM AND POSITION MEASUREMENT METHOD, MOBILE DEVICE, MOBILE BODY DRIVING METHOD, EXPOSURE DEVICE AND EXPOSURE METHOD, PATTERN FORMING DEVICE, AND DEVICE MANUFACTURING METHOD
WO2009098891A1 (en) * 2008-02-08 2009-08-13 Nikon Corporation Position measuring system and position measuring method, mobile body device, mobile body driving method, exposure device and exposure method, pattern forming device, and device manufacturing method
CN101796614B (en) * 2008-02-08 2012-01-18 株式会社尼康 Position measuring system and position measuring method, mobile body device, mobile body driving method, exposure device and exposure method, pattern forming device, and device manufacturing method
US8208128B2 (en) 2008-02-08 2012-06-26 Nikon Corporation Position measuring system and position measuring method, Movable body apparatus, movable body drive method, exposure apparatus and exposure method, pattern forming apparatus, and device manufacturing method
JP2010238933A (en) * 2009-03-31 2010-10-21 Advanced Mask Inspection Technology Kk Xy stage device
JP2011091298A (en) * 2009-10-26 2011-05-06 Canon Inc Stage device
US9746312B2 (en) 2010-03-03 2017-08-29 Asml Netherlands B.V. Lithographic apparatus and method for measuring a position
JP2011211173A (en) * 2010-03-03 2011-10-20 Asml Netherlands Bv Lithographic apparatus and method for measuring position
JP2012002731A (en) * 2010-06-18 2012-01-05 Nuflare Technology Inc Inspection apparatus and inspection method
US9207549B2 (en) 2011-12-29 2015-12-08 Nikon Corporation Exposure apparatus and exposure method, and device manufacturing method with encoder of higher reliability for position measurement
WO2013100202A1 (en) * 2011-12-29 2013-07-04 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP2015105829A (en) * 2013-11-28 2015-06-08 株式会社ニコン Scale for encoder, encoder, driving device, and stage device
US9529280B2 (en) 2013-12-06 2016-12-27 Kla-Tencor Corporation Stage apparatus for semiconductor inspection and lithography systems
JP2021012273A (en) * 2019-07-05 2021-02-04 キヤノン株式会社 Measuring apparatus, stage positioning apparatus, exposure apparatus, manufacturing method of articles and computer program
JP7341754B2 (en) 2019-07-05 2023-09-11 キヤノン株式会社 Measuring device, stage positioning device, exposure device, article manufacturing method, and computer program

Similar Documents

Publication Publication Date Title
JP2004101362A (en) Stage position measurement and positioning device
EP1750085B1 (en) Laser tracking interferometer
TWI459153B (en) Measuring method, measuring apparatus, lithographic apparatus and device manufacturing method
JP4776473B2 (en) Optical axis deflection laser interferometer, its calibration method, correction method, and measurement method
JP4878831B2 (en) Lithographic apparatus and device manufacturing method
US8278616B2 (en) Position detector and exposure apparatus
JP2001188017A (en) Optical rotary encoder and motor controller
JP5784150B2 (en) Method and apparatus for measuring surface with high accuracy
KR20110046357A (en) Lithographic Apparatus and Patterning Device
JP5517062B2 (en) Normal vector tracking type ultra-precision shape measurement method
JP2010243241A (en) Instrument and method for measuring refractive index
JP6680997B2 (en) Encoder apparatus and method of using the same, optical apparatus, exposure apparatus, and device manufacturing method
JP2967939B2 (en) Laser marking device
JP2001044112A (en) Atmospheric pressure control method and device thereof, laser measuring device using the same, and aligner
JPH01274001A (en) Length measuring apparatus
JP2002054987A (en) Three-dimensional laser doppler vibrograph
JP2593483B2 (en) Initial setting method of XYθ table
JP3795646B2 (en) Position measuring device
WO2023084952A1 (en) Wafer thickness measurement device and method for same
JPH1194700A (en) Measuring device and method for lens
JP3237022B2 (en) Projection exposure equipment
JPH1074687A (en) Stage device
US9176391B2 (en) Method and arrangement for displacement
JPH0320062B2 (en)
JP3239094B2 (en) Athletic body posture control device