JPH0320062B2 - - Google Patents

Info

Publication number
JPH0320062B2
JPH0320062B2 JP59258562A JP25856284A JPH0320062B2 JP H0320062 B2 JPH0320062 B2 JP H0320062B2 JP 59258562 A JP59258562 A JP 59258562A JP 25856284 A JP25856284 A JP 25856284A JP H0320062 B2 JPH0320062 B2 JP H0320062B2
Authority
JP
Japan
Prior art keywords
temperature
wafer
humidity
changes
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59258562A
Other languages
Japanese (ja)
Other versions
JPS61136227A (en
Inventor
Masakatsu Oota
Shuichi Yabu
Junichi Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59258562A priority Critical patent/JPS61136227A/en
Priority to DE19843447488 priority patent/DE3447488A1/en
Priority to FR848419987A priority patent/FR2572197B1/en
Priority to GB8432820A priority patent/GB2166879B/en
Publication of JPS61136227A publication Critical patent/JPS61136227A/en
Priority to US07/220,440 priority patent/US4998821A/en
Priority to FR888816238A priority patent/FR2623304B1/en
Publication of JPH0320062B2 publication Critical patent/JPH0320062B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は第1物体のパターンを光学系を介して
第2物体上に投影する装置、特にIC、LSI、
VLSI等の半導体装置を製造する際に用いられる
投影装置に関する。
Detailed Description of the Invention (Technical Field) The present invention relates to an apparatus for projecting a pattern of a first object onto a second object via an optical system, particularly an IC, LSI,
The present invention relates to a projection device used when manufacturing semiconductor devices such as VLSI.

(従来技術) 近年、半導体装置においては、素子の高集積化
に応じて回路パターンの微細化が進んでいる。こ
のため、マスクもしくはレチクル上に描かれた回
路パターンをウエハー上に焼付けるための焼付装
置も、従来のコンタクト方式やプロキシミテイ方
式からプロジエクシヨン方式を採用したものが主
流となりつつある。プロジエクシヨン方式の焼付
装置としては、投影光学系をミラー系としたもの
やレンズ系としたものがある。
(Prior Art) In recent years, in semiconductor devices, circuit patterns have become finer as elements become more highly integrated. For this reason, printing apparatuses for printing circuit patterns drawn on masks or reticles onto wafers are becoming mainstream, replacing the conventional contact and proximity methods with projection methods. Projection type printing apparatuses include those in which the projection optical system is a mirror system or a lens system.

ところで、レンズプロジエクシヨン方式の焼付
装置では、レンズ系のピント位置にウエハ表面を
自動的に位置させるためにオートフオーカス機構
を設けるのが一般的であるが、現在のオートフオ
ーカス機構はレンズ系の端面から所定の距離に基
準面を設定し、この基準面からウエハ表面までの
距離を一定に保つものがほとんどで、レンズ系の
ピント位置が一定の時には極めて高い精度でウエ
ハ表面をピント位置に合わせることができるが、
何らかの影響でレンズ系のピント位置が変化する
と、ウエワ表面をピント位置に合わせることがで
きなくなつてしまう。
Incidentally, lens projection type printing equipment is generally equipped with an autofocus mechanism to automatically position the wafer surface at the focus position of the lens system, but the current autofocus mechanism is In most systems, a reference plane is set at a predetermined distance from the end face of the system, and the distance from this reference plane to the wafer surface is kept constant.When the focus position of the lens system is constant, the wafer surface can be brought into focus with extremely high accuracy. It can be adjusted to
If the focus position of the lens system changes for some reason, it becomes impossible to align the wafer surface with the focus position.

この点を更に説明する。一般に、プロジエクシ
ヨン方式の焼付装置の限界解像力Lは、λを焼付
波長、Fnoを投影光学系の明るさとして、 L=1.6λFno ……(1) で与えられるので、この種の装置において、解像
力Lを上げるためには波長λを短くするか、Fno
値を小さく(投影光学系を明るく)することが必
要となる。しかし、光学系の焦点深度Dは同様
に、 D=±λFno2(λ/8基準) ……(2) で与えられるので、斯る装置において、解像力L
を上げると、即ち波長λを短くし、Fno値を小さ
くすると、焦点深度が浅くなる。例えば、焼付波
長をg線(λ=436mm)とし、Fno値を1.43程度
とした場合の焦点深度Dは±0.9μmに過ぎない。
従つて、上述のオートフオーカス機構を採用する
レンズプロジエクシヨン方式の焼付装置では、何
等かの理由でレンズ系のピント位置が変化すると
ウエハ表面に正確にパターンを投影することが不
可能となる。
This point will be further explained. Generally, the critical resolution L of a projection type printing device is given by L=1.6λFno (1), where λ is the printing wavelength and Fno is the brightness of the projection optical system, so in this type of device, In order to increase the resolution L, the wavelength λ must be shortened or the Fno
It is necessary to reduce the value (brighten the projection optical system). However, since the depth of focus D of the optical system is similarly given by D=±λFno 2 (λ/8 standard)...(2), in such an apparatus, the resolving power L
If the Fno value is increased, that is, if the wavelength λ is shortened and the Fno value is decreased, the depth of focus becomes shallow. For example, when the printing wavelength is g-line (λ=436 mm) and the Fno value is about 1.43, the depth of focus D is only ±0.9 μm.
Therefore, in a lens projection type printing device that employs the above-mentioned autofocus mechanism, if the focus position of the lens system changes for some reason, it becomes impossible to accurately project a pattern onto the wafer surface. .

投影光学系のピント位置を変える要因として考
えられるものはレチクルとウエハとの間の空気
の温度変化および投影光学系中の硝材の温度変
化、レチクルとウエハとの間の空気の大気圧、
およびレチクルとウエハとの間の空気の湿度等
である。
Factors that can be considered to change the focus position of the projection optical system are changes in the temperature of the air between the reticle and the wafer, changes in the temperature of the glass material in the projection optical system, atmospheric pressure of the air between the reticle and the wafer,
and the humidity of the air between the reticle and the wafer.

の空気および硝材の温度変化に対して投影光
学系構成要素の中で変わり得るものはレンズ面の
曲率半径、レンズ面間の間隔、および空気と硝子
の相対屈折率であり、これ等の構成要素の変化に
より投影光学系のピント位置は変わる。このよう
な温度変化によるピント位置の変化は、係数的に
は、上記3つの要因の中で最も大きい。従来は、
エアコンデイシヨニング等の手段により装置の環
境および装置内の温度を制御してピント位置の変
化量を抑えていた。
The components of the projection optical system that can change due to temperature changes in the air and glass are the radius of curvature of the lens surface, the distance between the lens surfaces, and the relative refractive index of the air and glass. The focus position of the projection optical system changes depending on the change in . The change in focus position due to such a temperature change is coefficient-wise the largest among the above three factors. conventionally,
The amount of change in focus position was suppressed by controlling the environment of the device and the temperature inside the device using means such as air conditioning.

一方、の空気の大気圧およびの空気の湿度
の変化に対しては、ジエー・シー・オーエンス
(J.C.Owens)が詳しく研究しアプライドオプチ
ツクス1967年第1号(APPLIEDOPTICS 1967
No.1)に発表しているように、空気の大気圧また
は湿度が変化すると空気の屈折率が変化すること
が知られている。この場合、硝材の屈折率は実質
的に変化していないから屈折面での相対屈折率が
変化することになる。
On the other hand, changes in the atmospheric pressure and humidity of the air are studied in detail by JCOwens and published in Applied Optics No. 1, 1967.
No. 1), it is known that the refractive index of air changes when the atmospheric pressure or humidity of the air changes. In this case, since the refractive index of the glass material does not substantially change, the relative refractive index at the refractive surface changes.

空気の絶対屈折率をnA、硝材の絶対屈折率を
nG、硝子と空気の相対屈折率をnとすると n=nG/nA で与えられ、nAがΔnA変化するとnの変化量Δn
はnA≒1より Δn≒nG・ΔnA につて与えられる。通常、nGは約1.5であるから、 Δn=1.5ΔnA となり、空気の屈折率変化が硝材と空気の相対屈
折率変化に与える影響は空気の屈折率変化自身の
1.5倍の量となる。例えば大気圧が5mmHg変化す
ると空気の屈折率は約1.8×10-6変化するが、こ
れは硝材と空気の相対屈折率の2.7×10-6に相当
し、投影光学系の個々の性質により変つてくる
が、ピント変化としては0.5〜1.5μmに相当する。
この値は前述の焦点深度の値が±0.9μmであるこ
とからもわかるように装置の性能上、充分問題と
なる変化量である。
Let n A be the absolute refractive index of air, and let n A be the absolute refractive index of the glass material.
When n G is the relative refractive index of glass and air, it is given by n=n G /n A , and when n A changes by Δn A , the amount of change in n is Δn
is given for Δn≒n G・Δn A since n A ≒1. Normally, n G is approximately 1.5, so Δn = 1.5Δn A , and the effect that the change in the refractive index of air has on the relative change in the refractive index between the glass material and the air is due to the change in the refractive index of the air itself.
The amount will be 1.5 times as much. For example, if the atmospheric pressure changes by 5 mmHg, the refractive index of air changes by approximately 1.8×10 -6 , which corresponds to the relative refractive index of glass material and air of 2.7×10 -6 , which varies depending on the individual properties of the projection optical system. However, this corresponds to a change in focus of 0.5 to 1.5 μm.
As can be seen from the above-mentioned depth of focus value of ±0.9 μm, this value is enough to cause a problem in terms of the performance of the apparatus.

また、このような変化が生じている際には、投
影光学系によつてウエハ表面上に投影されている
パターンには倍率誤差が生じていることが考えら
れる。一般に、半導体装置はウエハに複数の異な
つたパターンが焼付けられて形成されるが、焼付
けのために投影されたパターンごとに倍率が変化
すると、ウエハ上における各パターンの正確なア
ライメントが困難となり、製造された半導体装置
の信頼性を低下させるので、好ましくない。
Further, when such a change occurs, it is considered that a magnification error occurs in the pattern projected onto the wafer surface by the projection optical system. Semiconductor devices are generally formed by printing multiple different patterns onto a wafer, but if the magnification changes for each pattern projected for printing, it becomes difficult to accurately align each pattern on the wafer. This is not preferable because it reduces the reliability of the semiconductor device.

このようにプロジエクシヨン方式の焼付装置で
は、気圧、温度、湿度等の外的環境の変化により
ピント誤差並びに倍率誤差による不都合が生じる
が、従来は3日に1回程度の焼付テストを行なう
ことで、ウエハ上に焼付けられるパターンを最良
とするように装置を調整するに過ぎなかつた。
As described above, projection type printing equipment suffers from inconveniences due to focus errors and magnification errors due to changes in the external environment such as atmospheric pressure, temperature, humidity, etc. Conventionally, printing tests were performed about once every three days. All they had to do was adjust the equipment to optimize the pattern printed onto the wafer.

(目的) 本発明の目的は、第1物体のパターンを光学系
を介して第2物体上に投影する装置において、湿
度等の外的環境が変化してもパターンを第2物体
上に正確に投影することのできる投影装置を提供
することにある。
(Objective) An object of the present invention is to provide an apparatus for projecting a pattern of a first object onto a second object through an optical system so that the pattern can be accurately projected onto the second object even if the external environment such as humidity changes. An object of the present invention is to provide a projection device capable of projecting images.

(実施例) 以下、図に示した実施例に基づいて本発明を説
明するが、以下の説明において、本実施例はIC、
LSI、VLSI等の半導体装置を製造する際に用い
られ、レチクルもしくはマスク上に描かれた回路
パターンをレンズ光学系を介してウエハー上に縮
小して投影することによりウエハー上にパターン
を焼付ける装置、所謂ステツパを前提としてい
る。また、第1図の説明では、説明を容易にする
ために、投影光学系の光軸方向をZ方向、投影光
学系の光軸と垂直に交わる平面内で、図の左右方
向をX方向、図に対して垂直な方向をY方向とそ
れぞれ記す。
(Example) The present invention will be explained below based on the example shown in the drawings.
A device used when manufacturing semiconductor devices such as LSI and VLSI, and prints the pattern on the wafer by reducing and projecting the circuit pattern drawn on a reticle or mask onto the wafer through a lens optical system. , is based on the so-called stepper. In the explanation of FIG. 1, for ease of explanation, the optical axis direction of the projection optical system is referred to as the Z direction, and the left and right direction of the figure is referred to as the X direction within a plane perpendicular to the optical axis of the projection optical system. The direction perpendicular to the figure is referred to as the Y direction.

第1図において、1は半導体装置のためのパタ
ーンが描かれているレチクル、2はレチクル1上
のパターンを投影するためのレンズ光学系、3は
レンズ光学系2を支持する鏡筒、4は感光剤が表
面に塗布されたシリコンからなるウエハー、5は
座標原点7とウエハー4との間隔をセンスするた
めのギヤツプセンサーで、このギヤツプセンサー
5の出力に応じてウエハー4がZ方向に移動さ
れ、自動的にレンズ光学系2のピント位置に合わ
せられる。本実施例ではギヤツプセンサー5とし
て、ノズルから一定の圧のエアーを物体に向けて
噴射した際の背圧の変化に応じてノズル端面と物
体との間隔を検出する所謂エアーマイクロを用い
ている。なお、レンズ光学系2は複数のレンズ成
分から構成されている。
In FIG. 1, 1 is a reticle on which a pattern for a semiconductor device is drawn, 2 is a lens optical system for projecting the pattern on the reticle 1, 3 is a lens barrel that supports the lens optical system 2, and 4 is a lens barrel for supporting the lens optical system 2. A wafer made of silicon with a photosensitive agent coated on its surface. Reference numeral 5 is a gap sensor for sensing the distance between the coordinate origin 7 and the wafer 4. The wafer 4 is moved in the Z direction according to the output of the gap sensor 5, and the wafer 4 is automatically moved. The focus position of the lens optical system 2 can be adjusted precisely. In this embodiment, a so-called air micro is used as the gap sensor 5, which detects the distance between the nozzle end face and the object according to the change in back pressure when air at a constant pressure is jetted toward the object from the nozzle. Note that the lens optical system 2 is composed of a plurality of lens components.

21は不図示の光源からの光でレクチル1を照
明するための照明光学系で、この光学系21から
の光によつてレチクル1上の回路パターンはレン
ズ光学系2を介してウエハ4上に縮小されて焼付
けられる。22はレチクル1とウエハ4のXY面
における位置ずれ状態を観察するためのアライメ
ントスコープ、23はレチクル1を保持するレチ
クルステージ、24はレンズ光学系2を鏡筒3を
介して支持する支持台、28はウエハ4を保持す
るウエハステージで、ウエハ4のZ方向の位置を
調整するための圧電素子27とレンズ光学系2の
光軸(Z軸)を中心としたθ方向の位置を調整す
るためのθ駆動装置(不図示)を有している。3
0はモータ、31はウエハステージ28を載置し
ているX−Yステージで、モータ30の回転によ
りX方向の位置が調整されると共に、不図示のモ
ータの回転によりY方向の位置が調整される。3
2は装置全体を支持するための基礎定盤である。
Reference numeral 21 denotes an illumination optical system for illuminating the reticle 1 with light from a light source (not shown). The circuit pattern on the reticle 1 is illuminated on the wafer 4 via the lens optical system 2 by the light from this optical system 21. Reduced and printed. 22 is an alignment scope for observing the positional deviation state of the reticle 1 and the wafer 4 in the XY plane; 23 is a reticle stage that holds the reticle 1; 24 is a support base that supports the lens optical system 2 via the lens barrel 3; 28 is a wafer stage that holds the wafer 4, and includes a piezoelectric element 27 for adjusting the position of the wafer 4 in the Z direction, and a wafer stage 28 for adjusting the position of the lens optical system 2 in the θ direction about the optical axis (Z axis). It has a θ drive device (not shown). 3
0 is a motor, and 31 is an X-Y stage on which the wafer stage 28 is placed.The position in the X direction is adjusted by the rotation of the motor 30, and the position in the Y direction is adjusted by the rotation of a motor (not shown). Ru. 3
2 is a base plate for supporting the entire device.

33は一定周波数のレーザ光LBを発生するレ
ーザ光源、34はビームスプリツタ(不図示)と
参照用反射鏡(不図示)で構成されている干渉
計、35はX−Yステージ31上に固着されてい
る測長用反射鏡、36は干渉計34を通過してく
るレーザ光の強度変化を検出するためのレシー
バ、37はレシーバ36、気圧センサ11、湿度
センサ13、温度センサ40のそれぞれの出力に
基づいて反射鏡35、即ちX−Yステージ31の
X方向の移動距離を測定する測定器で、これらで
周知のレーザ精密測定システムを構成している。
なお、図示してはいないが、このレーザ精密測定
システムはX−Yステージ31のY方向の移動距
離を測定するために、もう一組設けられている。
33 is a laser light source that generates a laser beam LB of a constant frequency, 34 is an interferometer consisting of a beam splitter (not shown) and a reference reflector (not shown), and 35 is fixed on the X-Y stage 31. 36 is a receiver for detecting a change in the intensity of the laser beam passing through the interferometer 34, and 37 is a mirror for each of the receiver 36, the atmospheric pressure sensor 11, the humidity sensor 13, and the temperature sensor 40. This measuring device measures the moving distance of the reflecting mirror 35, that is, the X-Y stage 31 in the X direction based on the output, and together constitutes a well-known laser precision measurement system.
Although not shown, another set of this laser precision measurement system is provided in order to measure the moving distance of the XY stage 31 in the Y direction.

ここでレーザ精密測定システムの原理を簡単に
説明する。レーザ光源33からのレーザ光LBは
干渉計34の一部を構成するビームスプリツタで
2つの光に分割され、一方は測長用反射鏡35に
向うと共に、他方は干渉計34の一部を構成する
参照用反射鏡へ向う。これらの光は各反射鏡で反
射された後、ビームスプリツタで重なり合うの
で、各反射光の位相差に応じて干渉が生じる。こ
の位相差は反射鏡35がレーザ光LBの半波長分
移動するごとに360゜ずれるので、干渉計34を通
過してくるレーザ光LBの強度は反射鏡35がレ
ーザ光LBの半波長分移動するごとに強弱を繰り
返す。従つて、1回の強度変化で反射鏡35のレ
ーザ光LBの半波長分の移動が判ることになり、
レーザ光LBの波長が正確に判つていれば、強度
変化の回数をレシーバ36を介して計数すること
で、反射鏡35の移動距離を測定することが可能
となる。なお、レーザ光LBの波長は真空中では
一定であるが、空気中では空気の屈折率の増加に
ともなつて減少し、この屈折率は気温、気圧、湿
度によつて変化する。従つて、本実施例では、レ
シーバ36からの強度変化の回数とレーザ光LB
の半波長の積からX−Yステージ31の移動距離
を測定器37で求める際、測定器37内に設定さ
れているレーザ光LBの半波長の値を気圧センサ
11、湿度センサ13、温度センサ40でセンス
した基準値に対する気圧、湿度、温度の変化分に
応じて補正するようなしている。
Here, the principle of the laser precision measurement system will be briefly explained. The laser beam LB from the laser light source 33 is split into two beams by a beam splitter that constitutes a part of the interferometer 34. One beam is directed toward the length measuring reflector 35, and the other beam is directed toward a part of the interferometer 34. Head towards the reference reflector to configure. These lights are reflected by each reflecting mirror and then overlapped by a beam splitter, so that interference occurs depending on the phase difference of each reflected light. This phase difference shifts by 360 degrees every time the reflecting mirror 35 moves by a half wavelength of the laser beam LB, so the intensity of the laser beam LB passing through the interferometer 34 changes as the reflecting mirror 35 moves by a half wavelength of the laser beam LB. Repeat the strength and weakness each time. Therefore, one change in intensity indicates the movement of the laser beam LB of the reflecting mirror 35 by half a wavelength.
If the wavelength of the laser beam LB is accurately known, by counting the number of changes in intensity via the receiver 36, it is possible to measure the moving distance of the reflecting mirror 35. Note that the wavelength of the laser beam LB is constant in a vacuum, but decreases in air as the refractive index of the air increases, and this refractive index changes depending on the temperature, air pressure, and humidity. Therefore, in this embodiment, the number of intensity changes from the receiver 36 and the laser beam LB
When calculating the moving distance of the X-Y stage 31 using the measuring device 37 from the product of half wavelengths of Correction is made in accordance with changes in atmospheric pressure, humidity, and temperature with respect to the reference value sensed at step 40.

42はレチクルステージ23と支持台24の間
を略密閉状態に覆うカバーで、レンズ光学系2の
大部分はこのカバー42で覆われた空間内に位置
している。43はカバー42で覆われた空間内の
温度を調整する温調ユニツトで、ダクト44を介
してカバー42内にカバー42内の温度が所定の
値となるように冷却もしくは熱せられた空気を流
入する。温度センサ12はこのカバー42内の温
度をセンスする。45は支持台24と定盤32の
間を略密閉状態に覆うカバーで、このカバー45
で覆われた空間内にはレンズ光学系2の一部、ギ
ヤツプセンサ5、ウエハステージ28、X−Yス
テージ31、モータ30、干渉計34、測長用反
射鏡35、温度センサ40が少なくとも位置して
いる。46はカバー45内の温度を調整する空調
ユニツトで、空調ユニツト43と同様にダクト4
7を介して冷却もしくは熱せられた空気をカバー
45内に流入させる。
Reference numeral 42 denotes a cover that covers the space between the reticle stage 23 and the support base 24 in a substantially hermetically sealed state, and most of the lens optical system 2 is located within the space covered by this cover 42. 43 is a temperature control unit that adjusts the temperature in the space covered by the cover 42, and cooled or heated air flows into the cover 42 through a duct 44 so that the temperature inside the cover 42 reaches a predetermined value. do. The temperature sensor 12 senses the temperature inside this cover 42. Reference numeral 45 denotes a cover that covers the space between the support base 24 and the surface plate 32 in a substantially airtight state.
At least a part of the lens optical system 2, a gap sensor 5, a wafer stage 28, an X-Y stage 31, a motor 30, an interferometer 34, a length measuring reflector 35, and a temperature sensor 40 are located in the space covered by ing. 46 is an air conditioning unit that adjusts the temperature inside the cover 45, and like the air conditioning unit 43, it is connected to the duct 4.
Cooled or heated air is allowed to flow into the cover 45 via the cover 45.

次に、第2図において、15はその内部に設定
された各種のルーチンによつて本実施例の動作を
制御するマイクロプロセツサで、このマイクロプ
ロセツサ15にはメインルーチン以外にメインル
ーチンからの指令に基づいて作動するX方向駆動
ルーチン、Y方向駆動ルーチン、Z方向駆動ルー
チン、補正量算出ルーチン等を有している。X方
向、Y方向駆動ルーチンはウエハ4のXY面にお
ける位置をX−Yステージ31を介して制御する
ためのものであり、Z方向駆動ルーチンはウエハ
4のZ方向の位置をウエハステージ28を介して
制御するためのものである。また、補正量算出ル
ーチンは、外部操作可能な基準情報設定器50に
設定された基準気圧P0、基準温度T02、基準湿度
H0のそれぞれに応じた信号と、気圧センサ11、
温度センサ12、湿度センサ13でセンサされた
環境気圧P、環境温度T2、環境湿度Hのそれぞ
れに応じた信号を入力し、これに基づいて環境条
件の変化によつて生じるピント誤差と倍率誤差を
補正するためのZ駆動補正量ΔZdと温度補正量
ΔT2を算出する。なお、第1図の装置は環境気圧
P、環境温度T2、環境湿度Hがそれぞれ基準気
圧P0、基準温度T02、基準湿度H0に一致している
時、レンズ光学系2のピント位置がギヤツプセン
サ5の座標原点7(第1図参照)と一致すると共
に、レンズ光学系2によつてウエハ4上に投影さ
れたレチクル1のパターンの倍率が所望の倍率、
例えば1/5倍となるように設定されている。また、
設定器50に設定される基準温度T01はカバー4
5内の環境温度T1を指定するために用いられる。
Next, in FIG. 2, numeral 15 is a microprocessor that controls the operation of this embodiment by various routines set inside it. It has an X-direction drive routine, a Y-direction drive routine, a Z-direction drive routine, a correction amount calculation routine, etc. that operate based on commands. The X-direction and Y-direction drive routines are for controlling the position of the wafer 4 in the XY plane via the X-Y stage 31, and the Z-direction drive routine is for controlling the position of the wafer 4 in the Z direction via the wafer stage 28. This is to control the In addition, the correction amount calculation routine includes reference atmospheric pressure P 0 , reference temperature T 02 , and reference humidity set in the externally operable reference information setting device 50.
A signal corresponding to each of H 0 and an atmospheric pressure sensor 11,
Signals corresponding to the environmental pressure P, environmental temperature T 2 , and environmental humidity H detected by the temperature sensor 12 and humidity sensor 13 are input, and based on these signals, focus errors and magnification errors caused by changes in environmental conditions are calculated. A Z drive correction amount ΔZd and a temperature correction amount ΔT 2 for correcting are calculated. Note that the device shown in FIG. 1 changes the focus position of the lens optical system 2 when the environmental pressure P, the environmental temperature T 2 , and the environmental humidity H match the reference atmospheric pressure P 0 , the reference temperature T 02 , and the reference humidity H 0 , respectively. coincides with the coordinate origin 7 of the gap sensor 5 (see FIG. 1), and the magnification of the pattern of the reticle 1 projected onto the wafer 4 by the lens optical system 2 is the desired magnification.
For example, it is set to 1/5 times. Also,
The reference temperature T 01 set in the setting device 50 is the cover 4.
Used to specify the environmental temperature T 1 within 5.

マイクロプロセツサ15の補正量算出ルーチン
において、Z駆動補正量△Zdは環境条件の基準
条件に対する変化量をそれぞれ△T、△P、△H
として、 △Zd=K1・△T+K2・△P+K3・△H ……(3) △T=T2−T02 △P=P−P0 △H=H−H0 で求められる。ここで、K1、K2、K3は定数で、
ギヤツプセンサー5がエアマイクロである場合に
は、環境の変化に応じた光学性能の変化とギヤツ
プセンサ5の出力の変化を考慮して決定される。
定数K1、K2、K3は、計算により求めても良い
が、実験で求めるのがより実際的である。なお、
上式では△P、△T、△Hの1次式により△Zd
を求めるようにしているが、理論的には2次以上
の高次の項の影響も考えられる。しかし、△P、
△T、△Hの値が実際には小さいので、1次式で
も充分である。
In the correction amount calculation routine of the microprocessor 15, the Z drive correction amount △Zd represents the amount of change in the environmental condition with respect to the reference condition, respectively △T, △P, and △H.
As, △Zd=K 1 △T+K 2 △P+K 3 △H ... (3) △T=T 2 -T 02 △P=P-P 0 △H=H-H 0 . Here, K 1 , K 2 , K 3 are constants,
When the gap sensor 5 is an air micro sensor, it is determined by taking into consideration changes in optical performance in response to changes in the environment and changes in the output of the gap sensor 5.
The constants K 1 , K 2 , and K 3 may be determined by calculation, but it is more practical to determine them by experiment. In addition,
In the above equation, △Zd is determined by the linear equation of △P, △T, and △H.
However, theoretically, it is possible to consider the influence of higher-order terms such as second order or higher. However, △P,
Since the values of ΔT and ΔH are actually small, a linear equation is sufficient.

また、環境条件の変化に応じた投影倍率の変化
量、即ち倍率誤差△βは、前述の△Zdの場合と
同様に△T、△P、△Hを用いて、 △β=k1・△T+k2・△P+k3・△H ……(4) で与えられるので、環境に変化が生じても投影倍
率を常に一定とするためには、常に △β=k1・△T+k2・△P+k3・△H=0 が成り立てば良い。従つて、補正量算出ルーチン
は温度補正量△Tdを △Td=−k2/k1・△P−k3/k1・△H =k4・△P+k5・△H ……(5) k4=−k2/k1、k5=−k3/k1 と算出する。ここで、k1、k2、k3は環境の変化に
応じた光学性能の変化によつて決定される定数
で、定数k1、k2、k3と同様に実験で求めるのが良
い。
In addition, the amount of change in projection magnification according to changes in environmental conditions, that is, the magnification error △β, is calculated using △T, △P, and △H as in the case of △Zd above, and is calculated as follows: △β=k 1・△ T+k 2・△P+k 3・△H ...(4) Therefore, in order to always keep the projection magnification constant even if the environment changes, △β=k 1・△T+k 2・△P+k It is sufficient if 3・△H=0 holds true. Therefore, the correction amount calculation routine calculates the temperature correction amount △Td as △Td=-k 2 /k 1・△P−k 3 /k 1・△H =k 4・△P+k 5・△H ……(5) Calculate k 4 = -k 2 /k 1 and k 5 = -k 3 /k 1 . Here, k 1 , k 2 , and k 3 are constants that are determined by changes in optical performance in response to changes in the environment, and are preferably determined through experiments like the constants k 1 , k 2 , and k 3 .

補正量算出ルーチンで求められたZ駆動補正量
△ZdをZ方向駆動ルーチンに与える。これによ
りZ方向駆動ルーチンはギヤツプセンサ5の座標
原点7(第1図参照)からZ方向に△Zdだけず
れた位置を示す指令値を出力する。一方、ギヤツ
プセンサ5は座標原点7からウエハ4の表面まで
の距離Zsを示す信号をマイクロプロセツサ15
に与えている。マイクロプロセツサ15はZ方向
駆動ルーチンからの補正量△Zdとギヤツプセン
サ5からの距離Zsとの差をZ駆動制御部26に
与える。Z駆動制御部26はこの差に応じてウエ
ハ4の移動量Zdを示す信号を圧電素子27に与
え、ウエハステージ28上のウエハ4をZdだけ
移動させる。この動作によりギヤツプセンサ5で
検出されている座標原点7からウエハ4の表面ま
での距離ZSが補正量△Zdに等しくなり、差が零
となつたところでZ駆動制御部26はウエハ4の
Z方向の移動を停止する。これでウエハ4の表面
は現在のカバー42内の環境気温T2、環境気圧
P、環境湿度Hによつて決定されているレンズ光
学系2のピント位置に正確に合わされたことにな
る。Z駆動制御部26、圧電素子27、ウエハス
テージ28でZ駆動装置16を構成している。
The Z drive correction amount ΔZd obtained in the correction amount calculation routine is given to the Z direction drive routine. As a result, the Z direction drive routine outputs a command value indicating a position shifted by ΔZd in the Z direction from the coordinate origin 7 of the gap sensor 5 (see FIG. 1). On the other hand, the gap sensor 5 sends a signal indicating the distance Zs from the coordinate origin 7 to the surface of the wafer 4 to the microprocessor 15.
is giving to The microprocessor 15 provides the difference between the correction amount ΔZd from the Z-direction drive routine and the distance Zs from the gap sensor 5 to the Z-drive control section 26. The Z drive control section 26 gives a signal indicating the amount of movement Zd of the wafer 4 to the piezoelectric element 27 in accordance with this difference, and moves the wafer 4 on the wafer stage 28 by Zd. Through this operation, the distance ZS from the coordinate origin 7 detected by the gap sensor 5 to the surface of the wafer 4 becomes equal to the correction amount ΔZd, and when the difference becomes zero, the Z drive control unit 26 moves the wafer 4 in the Z direction. Stop moving. This means that the surface of the wafer 4 is accurately aligned with the focus position of the lens optical system 2, which is determined by the current environmental temperature T 2 , environmental pressure P, and environmental humidity H inside the cover 42. The Z drive control unit 26, the piezoelectric element 27, and the wafer stage 28 constitute the Z drive device 16.

一方、補正量算出ルーチンで求められた温度補
正量△Zdはマイクロプロセツサ15内で設定器
50に設定されている基準温度T02に加算され、
指令温度Td(=T02+△Td)としてマイクロプロ
セツサ15から減算器51へ出力される。減算器
51は温度センサ12でセンスしているカバー4
2内の環境温度T2と指令温度Tdの差を演算し、
この差を空調制御部52へ与える。空調制御部5
2はこの差に基づいて空調装置53を制御し、環
境温度T2と指令温度Tdとの差が零となるよう
に、ダクト44を介してカバー42内に流入され
る空気を冷却もしくは熱する。この動作によりカ
バー42内の温度T2は指令温度Tdに等しくなる
ので、環境気圧P、環境湿度Hの変化に応じたレ
ンズ光学系の倍率誤差は補正される。減算器5
1、空調制御部52、空調装置53で空調ユニツ
ト43が構成されている。
On the other hand, the temperature correction amount ΔZd obtained in the correction amount calculation routine is added to the reference temperature T 02 set in the setting device 50 within the microprocessor 15.
The microprocessor 15 outputs the command temperature Td (=T 02 +ΔTd) to the subtracter 51. The subtractor 51 is the cover 4 sensed by the temperature sensor 12.
Calculate the difference between the environmental temperature T 2 and the command temperature Td in 2,
This difference is given to the air conditioning control section 52. Air conditioning control section 5
2 controls the air conditioner 53 based on this difference, and cools or heats the air flowing into the cover 42 through the duct 44 so that the difference between the environmental temperature T 2 and the command temperature Td becomes zero. . As a result of this operation, the temperature T 2 inside the cover 42 becomes equal to the command temperature Td, so that the magnification error of the lens optical system according to changes in the environmental pressure P and the environmental humidity H is corrected. Subtractor 5
1, an air conditioning control section 52, and an air conditioner 53 constitute an air conditioning unit 43.

この状態で本実施例はレチクル1上の回路パタ
ーンをレンズ光学系2を介してウエハ4上に投影
して焼付ける動作を行なうが、この焼付け動作は
ウエハ4をX−Yステージ31を介してステツプ
的に移動させながら繰り返し行なわれる。マイク
ロプロセツサ15のX方向駆動ルーチン、Y方向
駆動ルーチンは焼付け動作と交互に繰り返えされ
るウエハ4のステツプ移動を制御するために設け
られている。なお、X方向駆動ルーチンに基づい
てウエハ4をX方向にステツプ駆動する構成と、
Y方向駆動ルーチンに基づいてウエハ4をY方向
にステツプ駆動する構成は同一なので、以下の説
明ではX方向駆動ルーチンに関連する部分のみを
説明する。
In this state, in this embodiment, the circuit pattern on the reticle 1 is projected onto the wafer 4 via the lens optical system 2 and printed. This is done repeatedly while moving in steps. The X direction drive routine and the Y direction drive routine of the microprocessor 15 are provided to control the step movement of the wafer 4 which is repeated alternately with the printing operation. Note that the wafer 4 is step-driven in the X direction based on the X direction drive routine;
Since the configuration for step-driving the wafer 4 in the Y direction based on the Y-direction drive routine is the same, only the portions related to the X-direction drive routine will be explained below.

ウエハ4の所定部分への焼付けが終了すると、
X方向駆動ルーチンはウエハ4上の他の部分をレ
ンズ光学系2の投影領域に位置させるための移動
量を指示する。マイクロプロセツサ15はこの指
示移動量と測定器37からのX−Yステージ31
の実際の移動量との差を演算し、これをX駆動制
御部29へ出力する。X駆動制御部29はこの差
に基づいて必要な移動量Xdを求め、このXdに応
じた信号でモータ30の駆動を制御し、X−Yス
テージ31を介してウエハ4をX方向に移動させ
る。X−Yステージ31がX方向に移動すると、
X−Yステージ31上の反射鏡35が光源33か
らのレーザ光LBの半波長分移動するごとに、干
渉計34で干渉が生じ、レシーバ36の入射光の
強度が変化する。この強度変化が生じるたびにレ
シーバ36は検出信号Xrを測定器37に出力し、
測定器37はこの強度変化の回数と測定器37内
にレーザ光LBの半波長分の長さとして設定され
ている値との積を移動量XSとして出力する。こ
の動作は測定器37からの移動量XSがX方向移
動ルーチンからの設定移動量に等しくなつて、X
駆動制御部29の出力Xdが零となるまで行なわ
れる。
When the baking on the predetermined portion of the wafer 4 is completed,
The X-direction drive routine instructs the amount of movement for positioning other parts on the wafer 4 in the projection area of the lens optical system 2. The microprocessor 15 receives this instruction movement amount and the X-Y stage 31 from the measuring device 37.
The difference between the actual movement amount and the actual movement amount is calculated and outputted to the X drive control section 29. The X drive control unit 29 calculates the necessary movement amount Xd based on this difference, controls the drive of the motor 30 with a signal corresponding to this Xd, and moves the wafer 4 in the X direction via the XY stage 31. . When the X-Y stage 31 moves in the X direction,
Every time the reflecting mirror 35 on the XY stage 31 moves by a half wavelength of the laser beam LB from the light source 33, interference occurs in the interferometer 34, and the intensity of the incident light on the receiver 36 changes. Every time this intensity change occurs, the receiver 36 outputs a detection signal Xr to the measuring device 37,
The measuring device 37 outputs the product of the number of intensity changes and the value set in the measuring device 37 as a length corresponding to a half wavelength of the laser beam LB as the amount of movement XS . This operation is performed when the amount of movement X S from the measuring instrument 37 becomes equal to the amount of movement set from the X direction movement routine, and
This is continued until the output Xd of the drive control section 29 becomes zero.

ところで、レーザ光LBの波長は前述した如く
環境条件によつて空気の屈折率が変化すると変わ
るので、測定器37にはその内部に設定されてい
るレーザ光LBの半波長としての値を補正するた
めに温度センサ40からカバー45内の環境温度
T1、気圧センサ11から環境気圧P、湿度セン
サ13から環境湿度Hの各情報が入力されてい
る。なお、この各センサ40,11,13からの
環境条件はY方向駆動ルーチンに対応する測定器
(不図示)にも入力されている。
By the way, as mentioned above, the wavelength of the laser beam LB changes when the refractive index of the air changes depending on the environmental conditions, so the measuring device 37 has a value set inside it that corrects the value as the half wavelength of the laser beam LB. Therefore, the environmental temperature inside the cover 45 from the temperature sensor 40
T 1 , environmental pressure P from the atmospheric pressure sensor 11, and environmental humidity H from the humidity sensor 13 are input. Note that the environmental conditions from each of the sensors 40, 11, and 13 are also input to a measuring device (not shown) corresponding to the Y-direction drive routine.

また、温度センサ40でセンサされたカバー4
5内の環境温度T1に応じた信号TS1は減算器54
に入力される。減算器54はこの環境温度T1
設定器50に設定されている基準温度T01との差
を演算する。空調制御部55はこの差に基づいて
空調装置56を制御し、ダクト47を介してカバ
ー45内に流入される空気を冷却もしくは熱し、
カバー45内の環境温度T1を基準温度T01に等し
くする。減算器54、空調制御部55、空調装置
56で空調ユニツト46を構成している。この実
施例において、PS、TS2、HS、TS1は各センサ1
1,12,13,40の検出信号を示す。
Also, the cover 4 detected by the temperature sensor 40
The signal T S1 corresponding to the environmental temperature T 1 in the subtracter 54
is input. The subtracter 54 calculates the difference between this environmental temperature T 1 and the reference temperature T 01 set in the setting device 50. The air conditioning control unit 55 controls the air conditioning device 56 based on this difference to cool or heat the air flowing into the cover 45 through the duct 47.
The environmental temperature T 1 inside the cover 45 is made equal to the reference temperature T 01 . The subtracter 54, the air conditioning control section 55, and the air conditioner 56 constitute an air conditioning unit 46. In this example, P S , T S2 , H S , T S1 are each sensor 1
Detection signals of 1, 12, 13, and 40 are shown.

なお、本発明は前述の実施例に限定されること
なく適宜変形して実施することができる。例え
ば、前記実施例ではギヤツプセンサとしてエアー
マイクロを用いているが、これは非接触式電気マ
イクロメータを用いてもよく、あるいは、レーザ
光の走査またはテレビの映像処理による方法等光
学的な検出方法を用いた装置でもよい。また、前
記実施例では所定の演算式を用いてZ駆動補正量
△Zdと温度補正量△Tdを求めるようにしている
が、気圧、温度、湿度等の環境条件に対応する各
補正量を予めメモリに記憶させておき、環境条件
情報を用いて各補正量を読み出すようにしてもよ
い。
Note that the present invention is not limited to the above-described embodiments, and can be implemented with appropriate modifications. For example, although an air micrometer is used as the gap sensor in the above embodiment, a non-contact electric micrometer may also be used, or an optical detection method such as a method using laser light scanning or television image processing may be used. The device used may be used. Furthermore, in the above embodiment, the Z drive correction amount △Zd and the temperature correction amount △Td are determined using predetermined calculation formulas, but each correction amount corresponding to environmental conditions such as atmospheric pressure, temperature, humidity, etc. is determined in advance. It is also possible to store it in a memory and read out each correction amount using environmental condition information.

また、上述においては、本発明を半導体焼付装
置に適用する場合について説明しているが、本発
明は、ホログラム作成装置や複写機等、他のパタ
ーン転写装置に対しても適用することができるこ
とは勿論である。
Further, in the above description, the case where the present invention is applied to a semiconductor printing device is explained, but the present invention can also be applied to other pattern transfer devices such as a hologram creation device and a copying machine. Of course.

(効果) 以上のごとく、本発明によれば、湿度の変化を
検出し、この検出結果に基づいて投影レンズ系を
収納した空間の温調を行なつてパターン投影倍率
を補正するよう装置を構成しているため、周囲の
湿度の変化に係わらず、常にほぼ一定の投影倍率
でパターンの投影が行なえるという効果が有る。
(Effects) As described above, according to the present invention, the device is configured to detect a change in humidity, adjust the temperature of the space in which the projection lens system is housed based on the detection result, and correct the pattern projection magnification. Therefore, the pattern can be projected at a substantially constant projection magnification regardless of changes in ambient humidity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の投影装置の一実施例を示す
図、第2図は本実施例の制御系の一例を示す図で
ある。 1……レクチル、2……レンズ光学系、4……
ウエハ、5……ギヤツプセンサ、11……気圧セ
ンサ、12……温度センサ、13……湿度セン
サ、15……マイクロプロセツサ、40……温度
センサ、43,46……空調ユニツト。
FIG. 1 is a diagram showing an embodiment of a projection apparatus of the present invention, and FIG. 2 is a diagram showing an example of a control system of this embodiment. 1... Reticle, 2... Lens optical system, 4...
Wafer, 5... Gap sensor, 11... Air pressure sensor, 12... Temperature sensor, 13... Humidity sensor, 15... Microprocessor, 40... Temperature sensor, 43, 46... Air conditioning unit.

Claims (1)

【特許請求の範囲】[Claims] 1 第1物体を照明する照明手段と、該第1物体
のパターンを第2物体上に投影する投影レンズ系
と、該投影レンズ系による上記パターンの投影倍
率を調整する倍率調整手段とを有する投影装置に
おいて、上記倍率調整手段が上記投影レンズ系を
収納した空間の温度を調整する温度調整手段を備
え、更に、湿度の変化を検出する湿度検出手段を
有し、該湿度検出手段からの湿度に応じた信号に
基づいて、上記湿度の変化に伴い生じる上記投影
倍率の変化を補正するよう上記温度調整手段によ
り上記空間の温度を調整することを特徴とする投
影装置。
1. Projection comprising an illumination means for illuminating a first object, a projection lens system for projecting a pattern of the first object onto a second object, and a magnification adjustment means for adjusting the projection magnification of the pattern by the projection lens system. In the apparatus, the magnification adjustment means includes a temperature adjustment means for adjusting the temperature of a space in which the projection lens system is housed, and further includes a humidity detection means for detecting a change in humidity, and the magnification adjustment means further includes a humidity detection means for detecting a change in humidity, and the magnification adjustment means further includes a humidity detection means for detecting a change in humidity. The projection device is characterized in that the temperature adjustment means adjusts the temperature of the space based on a corresponding signal so as to correct a change in the projection magnification caused by a change in the humidity.
JP59258562A 1984-10-19 1984-12-07 Projecting device Granted JPS61136227A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59258562A JPS61136227A (en) 1984-12-07 1984-12-07 Projecting device
DE19843447488 DE3447488A1 (en) 1984-10-19 1984-12-27 PROJECTION DEVICE
FR848419987A FR2572197B1 (en) 1984-10-19 1984-12-28 PROJECTION APPARATUS
GB8432820A GB2166879B (en) 1984-10-19 1984-12-31 A projection apparatus
US07/220,440 US4998821A (en) 1984-10-19 1988-07-13 Projection apparatus
FR888816238A FR2623304B1 (en) 1984-10-19 1988-12-09 APPARATUS FOR PROJECTING BY A OPTICAL SYSTEM A DRAWING CARRIED BY A FIRST OBJECT ON A SECOND OBJECT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59258562A JPS61136227A (en) 1984-12-07 1984-12-07 Projecting device

Publications (2)

Publication Number Publication Date
JPS61136227A JPS61136227A (en) 1986-06-24
JPH0320062B2 true JPH0320062B2 (en) 1991-03-18

Family

ID=17321954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59258562A Granted JPS61136227A (en) 1984-10-19 1984-12-07 Projecting device

Country Status (1)

Country Link
JP (1) JPS61136227A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2821795B2 (en) * 1990-05-17 1998-11-05 キヤノン株式会社 Semiconductor exposure equipment
JP2864060B2 (en) * 1991-09-04 1999-03-03 キヤノン株式会社 Reduction projection type exposure apparatus and method
AU2327800A (en) 1999-02-12 2000-08-29 Nikon Corporation Exposure method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159748A (en) * 1984-01-30 1985-08-21 Nippon Kogaku Kk <Nikon> Projection exposing device
JPS60261137A (en) * 1984-06-08 1985-12-24 Hitachi Ltd Projection exposing method and device thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159748A (en) * 1984-01-30 1985-08-21 Nippon Kogaku Kk <Nikon> Projection exposing device
JPS60261137A (en) * 1984-06-08 1985-12-24 Hitachi Ltd Projection exposing method and device thereof

Also Published As

Publication number Publication date
JPS61136227A (en) 1986-06-24

Similar Documents

Publication Publication Date Title
US4998821A (en) Projection apparatus
KR101914536B1 (en) Lithographic apparatus
KR0139039B1 (en) Exposure apparatus and device manufacturing method using the same
JP3308063B2 (en) Projection exposure method and apparatus
JP2001035784A (en) Device for detecting alignment of first member and second member and determining method and lithography apparatus
JP2004266264A (en) Optical system, aligner, method for manufacturing device
US9639008B2 (en) Lithography apparatus, and article manufacturing method
JPH03233925A (en) Automatic focus adjustment and control apparatus
JPH0578008B2 (en)
JP2002190438A (en) Projection aligner
US7471372B2 (en) Exposure apparatus and production method of device using the same
WO1985001834A1 (en) Optical exposure apparatus
JP2897345B2 (en) Projection exposure equipment
JP3506155B2 (en) Projection exposure equipment
JP3006346B2 (en) Positioning device and method of manufacturing semiconductor device using the same
JP4424739B2 (en) Stage equipment
JPH07326567A (en) Unmagnified projection aligner
JPH0320062B2 (en)
US6049372A (en) Exposure apparatus
JPH1083954A (en) Exposure device
JP2777931B2 (en) Exposure equipment
JPH10247617A (en) Method and device of projection aligner
JPS60177625A (en) Projection exposure device
JPH08227845A (en) Method for inspecting projection optical system and projection exposure apparatus for executing method thereof
JPH1074687A (en) Stage device