JP2004100776A - Rolling mechanical device using spherical roller - Google Patents

Rolling mechanical device using spherical roller Download PDF

Info

Publication number
JP2004100776A
JP2004100776A JP2002261995A JP2002261995A JP2004100776A JP 2004100776 A JP2004100776 A JP 2004100776A JP 2002261995 A JP2002261995 A JP 2002261995A JP 2002261995 A JP2002261995 A JP 2002261995A JP 2004100776 A JP2004100776 A JP 2004100776A
Authority
JP
Japan
Prior art keywords
spherical roller
raceway surface
spherical
guide block
rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002261995A
Other languages
Japanese (ja)
Inventor
Shigeo Shimizu
清水 茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji University
Original Assignee
Meiji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji University filed Critical Meiji University
Priority to JP2002261995A priority Critical patent/JP2004100776A/en
Publication of JP2004100776A publication Critical patent/JP2004100776A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • F16C29/0635Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end
    • F16C29/065Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with rollers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To greatly improve the rigidity while retaining a loading capacity by forming a track surface shape of the combination between arc parts having radius to be the fitting state with the spherical roller and straight line parts and forming a contact area between the spherical roller and the track surface of a combination of two semiellipses and a rectangle in the rolling mechanical device using the spherical roller. <P>SOLUTION: This rolling mechanical device is so constituted that the spherical roller 16 rolls on the track surface 18. This rolling mechanical device is characterized in that the arc parts 18a having the same radius as the outline radius of the spherical roller 16 and having cross section fitted with the spherical roller 16, and the straight line parts 18b having cross section to be tangents relative to the arc parts 18a in the both ends of the arc parts 18a form the track surface 18 formed by extending in the track direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、球面ころ使用転がり機械要素に係り、特に軌道面形状を球面ころとはめあい状態となる半径の円弧部と直線部との組合せにすることによって、球面ころと軌道面との接触面積が2つの半楕円及び1つの矩形の組合せとなるようにして、負荷容量を維持しつつ剛性を飛躍的に向上させることができるようにした球面ころ使用転がり機械要素に関する。
【0002】
【従来の技術】
従来の転がり機械要素には、図13に示すような、転動体として円筒ころ1を用いた円筒ころ軸受2、図15に示すような、球面ころ3を用いた自動調心軸受4及び玉を用いた玉軸受(図示せず)等、種々のものがある。
【0003】円筒ころ軸受2は、例えば幅Bの内輪5と外輪6の間に直径がφDw 、長さがLw の円筒ころ1を配置し、ピッチ円直径をdmとしたものであり、軌道面5a,6aは、共に平面となっている。しかし円筒ころ軸受2には、図14に示すように、円筒ころ1の両端にエッジプレッシャが作用して軌道面5a,6aに大きな応力σmax が発生するため、角部にクラウニングを設けてエッジプレッシャの軽減を図っている。
【0004】球面ころ3を用いた自動調心軸受4は、例えば幅Bの内輪8と外輪9の間に輪郭半径がRw 、直径がDw の球面ころ3を左右に角度αずつ傾けて2列配置したものであり、軌道面8aは、半径Rの2つの曲面で形成され、軌道面9aは半径Rの単一曲面で形成されている。輪郭半径Rw と軌道面8a,9aの半径Rとの比ΦをOscuration(接触率)と呼び、その値は例えば0.98である。
【0005】外輪9にラジアル方向に荷重Fが作用したとすると、各球面ころ3の直径方向成分は、F/2cosαとなる。このとき球面ころ3と軌道面8a,9aとの接触状態は点接触となり、接触面積は、図16に示すように、長軸の長さa、短軸の長さbの楕円形となり、応力分布10も断面楕円弧形となっていた。また応力分布10の中央に最大ヘルツ応力σmax が生じていた。
【0006】一方、図17に示す玉軸受11、円筒ころ軸受12及び球面ころ軸受13について、変位量δとラジアル荷重Qの関係を図18に、変位量δと最大ヘルツ応力σmax の関係を図19に夫々示す。値の算出には、パルムグレン(以下Palmgren)による定格荷重の計算式とISOの定格荷重の計算式を用いて比較している。
【0007】転動体(玉、円筒ころ及び球面ころ)の直径は、夫々φ7.7mm、円筒ころ及び球面ころの長さは7.7mm、円筒ころの有効長さla は5mmである。また球面ころ軸受13の輪郭半径Rw は45.1mm、軌道面の半径Rは46.02mm、接触率Φは0.98である。
【0008】図18において、球面ころ軸受が最も高剛性であり、円筒ころ軸受、玉軸受の順に剛性が低いことがわかる。またPalmgren荷重とISO荷重とでは、ある程度の差が生じている。また図19においては、ある一定の変位量δに対する最大ヘルツ応力σmax は、球面ころ軸受が最も小さく、玉軸受、円筒ころ軸受の順に大きくなることがわかる。Palmgren応力とISO応力とでは、図18と同様に、ある程度の差が生じている。
【0009】このように、玉軸受、円筒ころ軸受及び球面ころ軸受では、球面ころ軸受が最も剛性が高く、最大ヘルツ応力σmax も小さい。しかし従来の球面ころ軸受では、接触率Φを1に近づけると、負荷容量が大きくなる反面、差動滑りも大きくなって摩擦抵抗が増大することになり、接触率Φを1から遠ざけると、差動滑りは少なくなる反面、負荷容量も小さくなるという問題があり、従来の点接触球面ころでは、更なる高剛性化、長寿命化を図ることが困難であった。
【特許文献1】
特開2001−221237号公報
【0010】
【発明が解決しようとする課題】
本発明は、上記した従来技術の欠点を除くためになされたものであって、その目的とするところは、球面ころの輪郭半径と半径が同一であり該球面ころと嵌合する断面形状の円弧部と該円弧部の両端において該円弧部に対し接線となる断面形状の直線部とを軌道方向に連続的に形成することによって、差動滑りを増加させずに球面ころと軌道面との接触面積を増加させて接触部の最大応力を低下させ、元来大きな剛性を有する球面ころ使用転がり機械要素軌道面の剛性を、高い負荷容量を維持しつつ更に増大させることである。
【0011】また他の目的は、球面ころが軌道面上を転動するように構成された球面ころ使用転がり機械要素において、球面ころの輪郭半径と半径が同一であり該球面ころと嵌合する断面形状の円弧部と該円弧部の両端において該円弧部に対し接線となる断面形状の直線部とが軌道方向に連続してなる軌道面を形成することによって、元来大きな剛性を有する球面ころ使用転がり機械要素の剛性を、負荷容量を維持しつつ更に増大させることであり、またこれによって転動体を小型化しても十分な剛性を持つ転がり支え要素を提供することである。
【0012】更に他の目的は、ガイドブロック内を循環移動可能に保持された転動体がガイドブロック軌道面及びレール軌道面の間に介在することでレールに沿ってガイドブロックが走行可能に構成されたガイド装置において、転動体に球面ころを使用することによって、玉を転動体として用いるよりも負荷容量を大きくしてガイド装置の長寿命化、高剛性化を図ることであり、またこれによってガイド装置を小型化しても十分な耐久性が得られるようにして、ガイド装置を使用した種々の装置の軽量化を可能にすることである。
【0013】また他の目的は、ガイドブロック内を循環移動可能に保持された転動体がガイドブロック軌道面及びレール軌道面の間に介在することでレールに沿ってガイドブロックが走行可能に構成されたガイド装置において、転動体に球面ころを用い、該球面ころの輪郭半径と半径が同一であり該球面ころと嵌合する断面形状の円弧部と該円弧部の両端において該円弧部に対し接線となる断面形状の直線部とが軌道方向に連続してなるガイドブロック軌道面及びレール軌道面をガイドブロック及びレールに夫々形成することによって、単に球面ころを転動体として用いる場合よりも、更に剛性を増大させ、小型化及び軽量化を可能にすることである。
【0014】
【課題を解決するための手段】
要するに本発明(請求項1)は、球面ころの輪郭半径と半径が同一であり該球面ころと嵌合する断面形状の円弧部と該円弧部の両端において該円弧部に対し接線となる断面形状の直線部とを軌道方向に連続的に形成してなることを特徴とするものである。
【0015】また本発明(請求項2)は、球面ころが軌道面上を転動するように構成された球面ころ使用転がり機械要素において、球面ころの輪郭半径と半径が同一であり該球面ころと嵌合する断面形状の円弧部と該円弧部の両端において該円弧部に対し接線となる断面形状の直線部とが軌道方向に連続してなる軌道面を形成したことを特徴とするものである。
【0016】また本発明(請求項3)は、ガイドブロック内を循環移動可能に保持された転動体がガイドブロック軌道面及びレール軌道面の間に介在することでレールに沿って前記ガイドブロックが走行可能に構成されたガイド装置において、転動体に球面ころを使用したことを特徴とするものである。
【0017】また本発明(請求項4)は、ガイドブロック内を循環移動可能に保持された転動体がガイドブロック軌道面及びレール軌道面の間に介在することでレールに沿って前記ガイドブロックが走行可能に構成されたガイド装置において、前記転動体に球面ころを用い、該球面ころの輪郭半径と半径が同一であり該球面ころと嵌合する断面形状の円弧部と該円弧部の両端において該円弧部に対し接線となる断面形状の直線部とが軌道方向に連続してなる前記ガイドブロック軌道面及び前記レール軌道面を前記ガイドブロック及び前記レールに夫々形成したことを特徴とするものである。
【0018】
【発明の実施の形態】
以下本発明を図面に示す実施例に基いて説明する。本発明の第1実施例に係る球面ころ使用転がり機械要素の一例たる球面ころ軸受15は、図1及び図2において、球面ころが軌道面上を転動するように構成された球面ころ使用転がり機械要素において、球面ころ16の輪郭半径と半径が同一であり、該球面ころ16と嵌合する断面形状の円弧部18aと該円弧部18aの両端において該円弧部18aに対し接線となる断面形状の直線部18bとが軌道方向に連続してなる軌道面18を形成したものであり、球面ころ16が軌道面18上を転動するように構成されている。
【0019】球面ころ16の長さLw に対し、軌道面18の円弧部18aに当接する部分の長さは、図2に示すように、長さLw の例えば0.5乃至0.7倍が好ましい。あまり長いと差動滑りが過大となるからである。図3において、球面ころ16は、直径Dw であることを示している。
【0020】軌道面18は、球面ころ16を挾む内輪19及び外輪20に夫々形成されており、図1から図3に示すように、円弧部18aが中心o ,o を中心として角度2θ の範囲に形成され、そこから直線部18bが更に角度θa まで形成されている。円弧部18aの半径をRとすると、直線部18bの長さは、Rθa となる。なお、円弧部半径Rは、球面ころ16の輪郭半径Rと同一である。なお、実際には公差が必要になるが、できるだけ同一であることが望ましい。
【0021】軌道面18の方向は、球面ころ軸受15以外の、例えば直動形のガイド装置(図示せず)の場合には、直線状でもよく、またボールねじ(図示せず)の場合には、螺旋状であってもよい。即ち軌道面18の方向は、いかなるものであってもよい。
【0022】本発明の第2実施例に係るガイド装置21は、図9及び図10において、ガイドブロック22内を循環移動可能に保持された転動体の一例たる球面ころ23がガイドブロック軌道面22a及びレール軌道面24aの間に介在することでレール23に沿ってガイドブロック22が走行可能に構成されたものであって、転動体として球面ころ23を使用している。
【0023】球面ころ23の輪郭半径をRw とし、ガイドブロック軌道面22a及びレール軌道面24aの曲率半径をRとすると、例えば接触率Φ=Rw /R=0.98であり、球面ころ23の輪郭半径Rw の方がわずかに小さく形成され、点接触するように構成されている。
【0024】ガイドブロック22内には、球面ころ23が循環するための通路21b、取付け用のねじ穴21c等が形成されている。またレール23には取り付け用のねじ(図示せず)を通すための段付き穴23bが形成されている。
【0025】本発明の第3実施例に係るガイド装置30は、図11及び図12において、転動体に球面ころ32を用い、該球面ころ32の輪郭半径Rと半径が同一であり、該球面ころ32と嵌合する断面形状の円弧部31d,33dと該円弧部の両端において該円弧部に対し接線となる断面形状の直線部31e,33eとが軌道方向に連続してなるガイドブロック軌道面31a及びレール軌道面33aを有し、該軌道面31a,33aがガイドブロック31及びレール33に夫々形成されている。
【0026】球面ころ及び軌道面31a,33aの形状や接触状態は、本発明の第1実施例と同様である。また第2実施例と同様に、ガイドブロック31内には、球面ころ32が循環するための通路31b、取付け用のねじ穴31c等が形成され、レール33には取り付け用のねじ(図示せず)を通すための段付き穴33bが形成されている。
【0027】本発明は、上記のように構成されており、以下その作用について説明する。まず本発明の第1実施例に係る球面ころ軸受15においては、図4に示すように、例えば外輪19が下降する方向にラジアル荷重が作用して、球面ころ軸受15は球面ころ16と内輪19及び外輪20との夫々の接触点、即ち軌道面18において弾性変形し、外輪20が下方に変位量δだけ移動すると考える。円弧部18aと直線部18bとの境界、即ち角度θ の位置では、球面ころ16の直径方向の変位量はδr となる。
【0028】このとき球面ころ16と軌道面18との接触面積25は、図6に示すように、幅が2Rθ 、高さが2bの1つの矩形状領域25aと、長軸の長さがaで短軸の長さがbである2つの半楕円状領域25bが組み合わされものとなる。矩形状領域25aは、軌道面18の円弧部18aに生じ、半楕円状領域25bは直線部18bに生ずる。
【0029】半楕円状領域25bに生ずるヘルツ応力分布26は、図5及び図6に示すように、最大ヘルツ応力σmax を頂点とする球面形又は楕円面形の分布となり、矩形状領域25aに生ずるヘルツ応力分布28は、同様に最大ヘルツ応力がσmax である半円筒形(蒲鉾形)の分布となる。半楕円状領域25bと矩形状領域25aとの境界では、応力分布は連続しているので、ヘルツ応力分布は同一であり、エッジプレッシャは生じない。スラスト荷重もある程度受け持つことが可能であり、また球面ころ16の長さLw のほとんどすべてを有効長さとして使うことが可能である。
【0030】ここで、従来例に係る図18及び図19と同じ要領で、理論計算を行ったので、該計算によって得られた変位量δとラジアル荷重Qの関係を図7に、変位量δと最大ヘルツ応力σmax との関係を図8に夫々示す。
【0031】計算条件としては、図8中にも示されているように、球面ころの直径Dw =長さLw =7.7mm、輪郭半径R=45.1mm、角度2θ =6.35°とした。
【0032】図18における球面ころの結果と、図7におけるQの結果を比較してみると、本発明では4倍を超える剛性の向上が見られる。また横軸のスケールが大きくなったことによって、Palmgren荷重とISO荷重との差が縮まったように見えるのも従来例と異なる。
【0033】一方、図19と図8とを比較してみると、同一の変位量δに対する最大ヘルツ応力σmax は本発明の方が若干上昇する結果となったが、これは剛性の向上に伴うものである。なおPalmgren応力とISO応力との差は従来例よりも縮まっている。
【0034】次に本発明の第2実施例に係るガイド装置21の作用について説明すると、図9及び図10において、ガイドブロック22とレール24との間には、例えば4列の球面ころ23が配置されているので、上下方向及び左右方向の荷重やモーメントに対して高い剛性を有しており、ガイドブロック22をレール軌道面24aの方向に円滑に移動させることが可能である。なお、上下方向の変位量δに対する上下方向荷重Qsrの計算結果を表1に示す。計算条件は、球面ころの直径Dw =7.7mm、輪郭半径R=45.1mm、軌道面曲率半径=46mm、接触率Φ=0.98である。
【0035】
【表1】

Figure 2004100776
【0036】表1には、平面と球面ころが接触している場合(Q1  θ s=0 )と、円筒ころを転動体として用いた場合(Qcr)等についても示しているが、例えば変位量δ=10μm変形させるためには、平面と球面ころの場合と比較して5倍弱の荷重を必要とすることから、それだけ高剛性であることがわかる。また変位量δ=10μmにおいて円筒ころと比較した場合には、円筒ころの方が多くの荷重を要するが、δ=30μm以上では本実施例の方が多くの荷重を要し、高剛性となることがわかる。
【0037】次に本発明の第3実施例に係るガイド装置30の作用について説明すると、図11及び図12において、ガイドブロック31とレール33との間には、例えば4列の球面ころ32が配置されているので、上下方向及び左右方向の荷重やモーメントに対して高い剛性を有しており、ガイドブロック31をレール軌道面33aの方向に円滑に移動させることが可能である。
【0038】表1には、本実施例に係る変位量δと荷重Q1( θ s),Q2(2 θ s),Qについての理論計算結果を示している。計算条件は、球面ころの直径Dw =7.7mm、輪郭半径R=45.1mm、角度θ =3.1777°とした。
【0039】なお、Q1  θ s=0 とは、θ を0とした場合についての転動体荷重の合計であり、即ち軌道面31a,33aに円弧部31d,33dがなく、平面と球面ころ32との接触状態における転動体荷重であることを示している。
【0040】またQ1( θ s) は、接触面積の半楕円状領域(第1実施例における図6参照)に生ずる転動体荷重の上下方向成分を示しており、Q2(2 θ s)は、矩形状領域(第1実施例における図6参照)に生ずる転動体荷重の上下方向方向成分を示している。そしてQは、Q1( θ s) とQ2(2 θ s) との和である。
【0041】最も右の3列には、本実施例の場合の荷重Qと従来例(平面と球面ころ、円筒ころ)及び第2実施例に係る球面ころの場合の荷重との比を示している。
【0042】例えば変位量δ=10μmで見てみると、平面と球面ころに対する本実施例の荷重比は35.0、曲面と球面ころに対する荷重比は7.6、そして円筒ころに対する荷重比は5.0となっている。この荷重比は、同じ変位量δだけ変形させるために必要な荷重の比であるので、本実施例の方がはるかに大きな荷重を必要とし、即ち高剛性であることがわかる。
【0043】
【発明の効果】
本発明は、上記のように球面ころの輪郭半径と半径が同一であり該球面ころと嵌合する断面形状の円弧部と該円弧部の両端において該円弧部に対し接線となる断面形状の直線部とを軌道方向に連続的に形成したので、差動滑りを増加させずに球面ころと軌道面との接触面積を増加させて接触部の最大応力を低下させ、元来大きな剛性を有する球面ころ使用転がり機械要素軌道面の剛性を、高い負荷容量を維持しつつ更に増大させることができる効果がある。
【0044】また球面ころが軌道面上を転動するように構成された球面ころ使用転がり機械要素において、球面ころの輪郭半径と半径が同一であり該球面ころと嵌合する断面形状の円弧部と該円弧部の両端において該円弧部に対し接線となる断面形状の直線部とが軌道方向に連続してなる軌道面を形成したので、元来大きな剛性を有する球面ころ使用転がり機械要素の剛性を、負荷容量を維持しつつ更に増大させることができ、またこの結果転動体を小型化しても十分な剛性を持つ転がり支え要素を提供し得る効果が得られる。
【0045】更には、ガイドブロック内を循環移動可能に保持された転動体がガイドブロック軌道面及びレール軌道面の間に介在することでレールに沿ってガイドブロックが走行可能に構成されたガイド装置において、転動体に球面ころを使用したので、玉を転動体として用いるよりも負荷容量を大きくしてガイド装置の長寿命化、高剛性化を図ることができ、またこの結果ガイド装置を小型化しても十分な耐久性が得られるようになり、ガイド装置を使用した種々の装置の軽量化を可能にし得る効果がある。
【0046】またガイドブロック内を循環移動可能に保持された転動体がガイドブロック軌道面及びレール軌道面の間に介在することでレールに沿ってガイドブロックが走行可能に構成されたガイド装置において、転動体に球面ころを用い、該球面ころの輪郭半径と半径が同一であり該球面ころと嵌合する断面形状の円弧部と該円弧部の両端において該円弧部に対し接線となる断面形状の直線部とが軌道方向に連続してなるガイドブロック軌道面及びレール軌道面をガイドブロック及びレールに夫々形成したので、単に球面ころを転動体として用いる場合よりも、更に剛性を増大させ、小型化及び軽量化を可能にし得る効果がある。
【図面の簡単な説明】
【図1】図1から図7は、本発明の第1実施例に係り、図1は球面ころ軸受の形状及び寸法を示す縦断面図である。
【図2】球面ころ軸受の形状及び寸法を示す縦断面図である。
【図3】球面ころの形状及び寸法を示す正面図である。
【図4】球面ころ軸受におけるラジアル荷重作用時の球面ころと軌道面間の変位状態を示す縦断面図である。
【図5】ラジアル荷重作用時の応力分布状態を示す縦断面図である。
【図6】球面ころと軌道面との接触面積及び該接触面積に生ずるヘルツ応力分布を示す平面図及び側面図である。
【図7】変位量δとラジアル荷重Qとの関係(理論値)を示す線図である。
【図8】変位量δと最大ヘルツ応力σmax  との関係(理論値)を示す線図である。
【図9】図9及び図10は、本発明の第2実施例に係り、図9はガイド装置の部分縦断面正面図である。
【図10】ガイドブロック及びレールの軌道面と球面ころとの接触状態及び軌道面寸法を示す拡大縦断面図である。
【図11】図11及び図12は、本発明の第3実施例に係り、図11はガイド装置の部分縦断面正面図である。
【図12】ガイドブロック及びレールの軌道面と球面ころとの接触状態及び軌道面寸法を示す拡大縦断面図である。
【図13】図13から図19は、従来例に係り、図13は、円筒ころ軸受の形状及び寸法を示す縦断面図である。
【図14】円筒ころと軌道面との接触面における応力分布を示す線図である。
【図15】球面ころを使用した自動調心軸受の形状及び寸法を示す縦断面図である。
【図16】球面ころと軌道面との接触面における応力分布を示す線図である。
【図17】図18及び図19の線図を作成する際の玉軸受、円筒ころ軸受及び球面ころ軸受の寸法を示す一覧図である。
【図18】変位量δとラジアル荷重Qとの関係(理論値)を示す線図である。
【図19】変位量δと最大ヘルツ応力σmax との関係(理論値)を示す線図である。
【符号の説明】
15  球面ころ使用転がり機械要素の一例たる球面ころ軸受
16  球面ころ
18  軌道面
18a 円弧部
18b 直線部
21  球面ころ使用転がり機械要素の一例たるガイド装置
22  ガイドブロック
22a ガイドブロック軌道面
23  球面ころ
24  レール
24a レール軌道面
30  球面ころ使用転がり機械要素の一例たるガイド装置
31  ガイドブロック
31a ガイドブロック軌道面
32  球面ころ
33  レール
33a レール軌道面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rolling machine element using a spherical roller, and particularly, a contact area between a spherical roller and a raceway surface is improved by combining a raceway surface shape with a circular arc portion and a linear portion having a radius that can be fitted with the spherical roller. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolling machine element using a spherical roller, which has a combination of two semi-ellipses and one rectangle, and can dramatically improve rigidity while maintaining load capacity.
[0002]
[Prior art]
Conventional rolling machine elements include a cylindrical roller bearing 2 using a cylindrical roller 1 as a rolling element as shown in FIG. 13, a self-aligning bearing 4 using a spherical roller 3 as shown in FIG. There are various types such as used ball bearings (not shown).
The cylindrical roller bearing 2 is, for example, a cylinder roller 1 having a diameter φDw and a length Lw disposed between an inner ring 5 and an outer ring 6 having a width B, and having a pitch circle diameter of dm. 5a and 6a are both flat. However, as shown in FIG. 14, the edge pressure acts on both ends of the cylindrical roller 1 to generate a large stress σ max on the raceway surfaces 5a and 6a. The pressure is reduced.
The self-aligning bearing 4 using the spherical rollers 3 is, for example, two rows in which the spherical rollers 3 having a contour radius Rw and a diameter Dw are inclined left and right by an angle α between an inner ring 8 and an outer ring 9 having a width B. The track surface 8a is formed by two curved surfaces having a radius R, and the track surface 9a is formed by a single curved surface having a radius R. The ratio Φ between the contour radius Rw and the radius R of the raceway surfaces 8a and 9a is called Oscuration (contact ratio), and its value is, for example, 0.98.
If a load F acts on the outer ring 9 in the radial direction, the diametrical component of each spherical roller 3 is F / 2 cos α. At this time, the contact state between the spherical roller 3 and the raceway surfaces 8a and 9a is a point contact, and the contact area is an ellipse having a major axis length a and a minor axis length b as shown in FIG. The distribution 10 also had an elliptical arc cross section. In addition, the maximum Hertz stress σ max occurred at the center of the stress distribution 10.
On the other hand, for the ball bearing 11, cylindrical roller bearing 12, and spherical roller bearing 13 shown in FIG. 17, the relationship between the displacement δ and the radial load Q is shown in FIG. 18, and the relationship between the displacement δ and the maximum Hertz stress σ max is shown. Each is shown in FIG. The calculation of the value is performed using a formula for calculating the rated load by Palmgren (hereinafter referred to as Palmgren) and a formula for calculating the rated load of ISO.
The diameters of the rolling elements (balls, cylindrical rollers and spherical rollers) are φ7.7 mm, the lengths of the cylindrical rollers and spherical rollers are 7.7 mm, and the effective length la of the cylindrical rollers is 5 mm. The contour radius Rw of the spherical roller bearing 13 is 45.1 mm, the radius R of the raceway surface is 46.02 mm, and the contact ratio Φ is 0.98.
FIG. 18 shows that the spherical roller bearing has the highest rigidity, and the rigidity is lower in the order of the cylindrical roller bearing and the ball bearing. There is a certain difference between the Palmgren load and the ISO load. Further, in FIG. 19, it can be seen that the maximum Hertz stress σ max for a certain displacement amount δ is smallest in the spherical roller bearing, and increases in the order of the ball bearing and the cylindrical roller bearing. There is a certain difference between the Palmgren stress and the ISO stress, as in FIG.
As described above, among the ball bearings, the cylindrical roller bearings, and the spherical roller bearings, the spherical roller bearing has the highest rigidity and the smallest maximum Hertz stress σ max . However, in the conventional spherical roller bearing, when the contact ratio Φ approaches 1, the load capacity increases, but on the other hand, the differential slip increases and the frictional resistance increases. Although the dynamic slip is reduced, there is a problem that the load capacity is also reduced, and it has been difficult to further increase the rigidity and extend the life of the conventional point contact spherical roller.
[Patent Document 1]
JP 2001-221237 A
[Problems to be solved by the invention]
The present invention has been made to eliminate the above-mentioned disadvantages of the prior art, and it is an object of the present invention to provide a circular arc having a cross-sectional shape that is the same as the contour radius of a spherical roller and is fitted with the spherical roller. Contact portion between the spherical roller and the raceway surface without increasing differential slip by continuously forming in the orbital direction a linear portion having a cross-sectional shape tangent to the circular arc portion at both ends of the circular arc portion. An object of the present invention is to increase the area to reduce the maximum stress of the contact portion, and to further increase the rigidity of the raceway surface of a rolling machine element using a spherical roller having originally large rigidity while maintaining a high load capacity.
Another object of the present invention is to provide a rolling element using a spherical roller in which a spherical roller is configured to roll on a raceway surface, wherein the contour radius and the radius of the spherical roller are the same, and the spherical roller is fitted. A spherical roller having originally large rigidity by forming a raceway surface in which an arc portion having a cross-sectional shape and a straight portion having a cross-sectional shape which is tangent to the arc portion at both ends of the arc portion are continuous in the orbital direction. An object of the present invention is to further increase the rigidity of the rolling element used while maintaining the load capacity, and to provide a rolling support element having sufficient rigidity even if the rolling element is downsized.
Still another object is that a rolling element held so as to be able to circulate in the guide block is interposed between the guide block raceway surface and the rail raceway surface so that the guide block can run along the rail. By using spherical rollers for the rolling elements in the guide device, the load capacity is increased compared to using the balls as the rolling elements to extend the service life and rigidity of the guide device. An object of the present invention is to make it possible to obtain sufficient durability even if the device is downsized, and to reduce the weight of various devices using the guide device.
Another object is that a rolling element held so as to be able to circulate in the guide block is interposed between the guide block raceway surface and the rail raceway surface so that the guide block can run along the rail. In the guide device, a spherical roller is used as a rolling element, and the contour radius and the radius of the spherical roller are the same, and an arc portion having a cross-sectional shape fitting with the spherical roller and tangent to the arc portion at both ends of the arc portion. By forming the guide block raceway surface and the rail raceway surface, in which the linear portion of the cross-sectional shape is continuous in the track direction, on the guide block and the rail, respectively, the rigidity is higher than when simply using spherical rollers as rolling elements. And enable miniaturization and weight reduction.
[0014]
[Means for Solving the Problems]
In short, the present invention (Claim 1) relates to an arcuate section having the same contour radius and radius as a spherical roller and having a cross-sectional shape fitted with the spherical roller, and a cross-sectional shape at both ends of the arcuate part tangent to the arcuate part. Are formed continuously in the orbital direction.
Further, the present invention (claim 2) provides a rolling machine element using a spherical roller configured so that the spherical roller rolls on a raceway surface, wherein the spherical roller has the same contour radius and radius as the spherical roller. And an orbital surface having a cross-sectional shape that fits with the straight portion having a cross-sectional shape that is tangent to the circular-arc portion at both ends of the circular-arc portion. is there.
Further, according to the present invention (claim 3), since the rolling element held so as to be able to circulate in the guide block is interposed between the guide block raceway surface and the rail raceway surface, the guide block is formed along the rail. In a guide device configured to be able to run, a spherical roller is used as a rolling element.
Further, according to the present invention (claim 4), the rolling element held so as to circulate in the guide block is interposed between the guide block raceway surface and the rail raceway surface, so that the guide block is formed along the rail. In the guide device configured to be able to run, a spherical roller is used for the rolling element, and the contour radius and the radius of the spherical roller are the same, and an arc portion having a cross-sectional shape fitted with the spherical roller and both ends of the arc portion are provided. The guide block raceway surface and the rail raceway surface, in which a linear portion having a cross-sectional shape tangent to the arc portion is continuous in the track direction, are formed on the guide block and the rail, respectively. is there.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on embodiments shown in the drawings. A spherical roller bearing 15 as an example of a rolling machine element using a spherical roller according to the first embodiment of the present invention is a rolling element using a spherical roller configured such that a spherical roller rolls on a raceway surface in FIGS. 1 and 2. In the mechanical element, the contour radius and the radius of the spherical roller 16 are the same, and an arc portion 18a having a cross-sectional shape fitted with the spherical roller 16 and a cross-sectional shape which is tangent to the arc portion 18a at both ends of the arc portion 18a And a straight line portion 18b of the spherical roller 16 forms a raceway surface 18 that is continuous in the orbital direction. The spherical roller 16 is configured to roll on the raceway surface 18.
As shown in FIG. 2, the length of the portion of the raceway surface 18 that contacts the arc portion 18a is, for example, 0.5 to 0.7 times the length Lw of the spherical roller 16 as shown in FIG. preferable. If the length is too long, the differential slip becomes excessive. FIG. 3 shows that the spherical roller 16 has a diameter Dw.
The angular raceways 18 are respectively formed on the inner ring 19 and outer ring 20 sandwich the spherical roller 16, as shown in FIGS. 1-3, an arc portion 18a around the center o i, o o is formed in a range of 2 [Theta] s, the linear portion 18b is formed further to the angle θa therefrom. Assuming that the radius of the circular arc portion 18a is R, the length of the linear portion 18b is Rθa. The radius R of the arc portion is the same as the contour radius R of the spherical roller 16. In addition, although a tolerance is actually required, it is desirable that they be as identical as possible.
The direction of the raceway surface 18 may be linear, for example, in the case of a linear guide device (not shown) other than the spherical roller bearing 15, or in the case of a ball screw (not shown). May be spiral. That is, the direction of the raceway surface 18 may be any direction.
9 and 10, a guide device 21 according to a second embodiment of the present invention has a spherical roller 23 as an example of a rolling element held so as to be able to circulate in a guide block 22, and a guide block raceway surface 22a. The guide block 22 is configured to be able to travel along the rail 23 by being interposed between the rail track surface 24a and the spherical roller 23 as a rolling element.
Assuming that the contour radius of the spherical roller 23 is Rw and the radius of curvature of the guide block raceway surface 22a and the rail raceway surface 24a is R, for example, the contact ratio Φ = Rw / R = 0.98. The contour radius Rw is formed to be slightly smaller, and is configured to make point contact.
In the guide block 22, there are formed a passage 21b for circulating the spherical rollers 23, a screw hole 21c for mounting, and the like. The rail 23 has a stepped hole 23b through which a mounting screw (not shown) is inserted.
A guide device 30 according to a third embodiment of the present invention uses a spherical roller 32 as a rolling element in FIGS. 11 and 12, and has the same radius as the contour radius R of the spherical roller 32. A guide block raceway surface in which arcuate portions 31d and 33d having a cross-sectional shape to be fitted with the rollers 32 and straight portions 31e and 33e having a cross-sectional shape that is tangent to the arcuate portion at both ends of the arcuate portion are continuous in the orbital direction. 31a and a rail track surface 33a, and the track surfaces 31a and 33a are formed on the guide block 31 and the rail 33, respectively.
The shapes and contact states of the spherical rollers and the raceway surfaces 31a and 33a are the same as in the first embodiment of the present invention. Similarly to the second embodiment, a passage 31b for circulating the spherical rollers 32, a screw hole 31c for mounting, and the like are formed in the guide block 31, and a mounting screw (not shown) is formed on the rail 33. ) Is formed with a stepped hole 33b.
The present invention is configured as described above, and its operation will be described below. First, in the spherical roller bearing 15 according to the first embodiment of the present invention, as shown in FIG. 4, for example, a radial load acts in a direction in which the outer ring 19 descends, so that the spherical roller bearing 15 is It is considered that the outer ring 20 is elastically deformed at each contact point with the outer ring 20, that is, the raceway surface 18, and the outer ring 20 moves downward by the displacement amount δ. Arc portion 18a and the boundary between the straight portion 18b, i.e. at the position of the angle theta s, displacement in the diameter direction of the spherical roller 16 becomes [delta] r.
At this time, as shown in FIG. 6, the contact area 25 between the spherical roller 16 and the raceway surface 18 is one rectangular area 25a having a width of 2Rθ s and a height of 2b, and a major axis having a length of a long axis. Two semi-elliptical regions 25b having a and a minor axis length of b are combined. The rectangular region 25a is formed in the arc portion 18a of the raceway surface 18, and the semi-elliptical region 25b is formed in the linear portion 18b.
As shown in FIGS. 5 and 6, the Hertzian stress distribution 26 generated in the semi-elliptical region 25b becomes a spherical or elliptical distribution having the maximum at the maximum Hertzian stress σ max. The resulting Hertz stress distribution 28 is similarly a semi-cylindrical (kamaboko) distribution in which the maximum Hertz stress is σ max . At the boundary between the semi-elliptical region 25b and the rectangular region 25a, since the stress distribution is continuous, the Hertz stress distribution is the same, and no edge pressure occurs. A certain amount of thrust load can be covered, and almost all of the length Lw of the spherical roller 16 can be used as the effective length.
Here, since the theoretical calculation was performed in the same manner as in FIGS. 18 and 19 according to the conventional example, the relationship between the displacement δ and the radial load Q obtained by the calculation is shown in FIG. FIG. 8 shows the relationship between and the maximum Hertz stress σ max .
As shown in FIG. 8, the calculation conditions are as follows: spherical roller diameter Dw = length Lw = 7.7 mm, contour radius R = 45.1 mm, angle 2θ s = 6.35 °. And
Comparing the result of the spherical roller in FIG. 18 with the result of Q in FIG. 7, the rigidity is improved more than four times in the present invention. Further, the difference between the Palmgren load and the ISO load appears to be reduced due to the increase in the scale of the horizontal axis, which is different from the conventional example.
On the other hand, comparing FIG. 19 with FIG. 8, the maximum Hertz stress σ max for the same displacement amount δ is slightly increased in the present invention, but this is due to the improvement in rigidity. It accompanies. Note that the difference between the Palmgren stress and the ISO stress is smaller than in the conventional example.
Next, the operation of the guide device 21 according to the second embodiment of the present invention will be described. In FIGS. 9 and 10, for example, four rows of spherical rollers 23 are provided between the guide block 22 and the rail 24. Since they are arranged, they have high rigidity against loads and moments in the vertical and horizontal directions, and can move the guide block 22 smoothly in the direction of the rail raceway surface 24a. Table 1 shows the calculation results of the vertical load Qsr with respect to the vertical displacement amount δ. The calculation conditions are as follows: spherical roller diameter Dw = 7.7 mm, contour radius R = 45.1 mm, raceway curvature radius = 46 mm, and contact ratio Φ = 0.98.
[0035]
[Table 1]
Figure 2004100776
Table 1 also shows the case where the flat and spherical rollers are in contact (Q 1 θ s = 0 ) and the case where the cylindrical rollers are used as rolling elements (Qcr). In order to deform by an amount δ = 10 μm, a load that is slightly less than five times that in the case of flat and spherical rollers is required, which indicates that the rigidity is high. When the displacement amount δ = 10 μm is compared with the cylindrical roller, the cylindrical roller requires a larger load, but when δ = 30 μm or more, the present embodiment requires a larger load and has high rigidity. You can see that.
Next, the operation of the guide device 30 according to the third embodiment of the present invention will be described. In FIGS. 11 and 12, for example, four rows of spherical rollers 32 are provided between the guide block 31 and the rail 33. Since they are arranged, they have high rigidity against loads and moments in the vertical and horizontal directions, and can smoothly move the guide block 31 in the direction of the rail track surface 33a.
[0038] Table 1, the amount of displacement δ and the load Q 1 according to the present embodiment (θ s), Q 2 ( 2 θ s), illustrates the theoretical calculation results for Q. The calculation conditions were as follows: spherical roller diameter Dw = 7.7 mm, contour radius R = 45.1 mm, and angle θ s = 3.1777 °.
Note that Q 1 θ s = 0 is the sum of the rolling element loads when θ s is set to 0, that is, the raceway surfaces 31 a and 33 a do not have the arc portions 31 d and 33 d, but have flat and spherical rollers. 32 indicates that the rolling element load is in a contact state with the rolling element 32.
Q 1 ( θ s) represents the vertical component of the rolling element load generated in the semi-elliptical area of the contact area (see FIG. 6 in the first embodiment), and Q 2 (2 θ s) Indicates the vertical component of the rolling element load generated in the rectangular area (see FIG. 6 in the first embodiment). Q is the sum of Q1 ( θs ) and Q2 ( 2θs ) .
The rightmost three columns show the ratio of the load Q in the present embodiment to the load in the case of the conventional example (flat and spherical rollers, cylindrical rollers) and the load in the case of the spherical rollers according to the second embodiment. I have.
For example, when the displacement amount δ = 10 μm, the load ratio of the present embodiment to the flat and spherical rollers is 35.0, the load ratio to the curved and spherical rollers is 7.6, and the load ratio to the cylindrical rollers is 5.0. Since this load ratio is the ratio of the load required to deform by the same amount of displacement δ, it can be seen that the present embodiment requires a much larger load, that is, has higher rigidity.
[0043]
【The invention's effect】
According to the present invention, as described above, an arc portion having a cross-sectional shape that is the same as the contour radius of the spherical roller and is fitted to the spherical roller, and a straight line having a cross-sectional shape that is tangent to the arc portion at both ends of the arc portion The contact surface is formed continuously in the track direction, so the contact area between the spherical roller and the raceway surface is increased without increasing the differential slip, reducing the maximum stress of the contact portion, and a spherical surface with originally large rigidity This has the effect that the rigidity of the rolling machine element raceway surface used by the rollers can be further increased while maintaining a high load capacity.
Further, in a rolling machine element using a spherical roller configured so that the spherical roller rolls on a raceway surface, an arc portion having a cross-sectional shape which is the same as the contour radius of the spherical roller and is fitted with the spherical roller. And at both ends of the circular arc portion, a linear portion having a cross-sectional shape that is tangent to the circular arc portion forms a raceway surface that is continuous in the orbital direction. Can be further increased while maintaining the load capacity. As a result, even if the rolling element is downsized, an effect of providing a rolling support element having sufficient rigidity can be obtained.
Furthermore, a guide device in which a rolling element held so as to be able to circulate in a guide block is interposed between a guide block raceway surface and a rail raceway surface so that the guide block can travel along the rail. The use of spherical rollers for the rolling elements makes it possible to increase the load capacity and to extend the service life and rigidity of the guide device compared to using balls as the rolling elements. Thus, sufficient durability can be obtained, and there is an effect that various devices using the guide device can be reduced in weight.
Further, in a guide device in which a rolling element held so as to be able to circulate in a guide block is interposed between a guide block raceway surface and a rail raceway surface so that the guide block can travel along the rail, A spherical roller is used as a rolling element, and the contour radius and the radius of the spherical roller are the same, and an arc portion having a cross-sectional shape fitted with the spherical roller and a cross-sectional shape which is tangent to the arc portion at both ends of the arc portion. Since the guide block raceway surface and the rail raceway surface where the linear portion is continuous in the track direction are formed on the guide block and the rail, respectively, the rigidity is further increased and the size is reduced as compared with the case where spherical rollers are simply used as rolling elements. In addition, there is an effect that can reduce the weight.
[Brief description of the drawings]
FIGS. 1 to 7 relate to a first embodiment of the present invention, and FIG. 1 is a longitudinal sectional view showing the shape and dimensions of a spherical roller bearing.
FIG. 2 is a longitudinal sectional view showing the shape and dimensions of a spherical roller bearing.
FIG. 3 is a front view showing the shape and dimensions of a spherical roller.
FIG. 4 is a longitudinal sectional view showing a state of displacement between a spherical roller and a raceway surface when a radial load is applied to the spherical roller bearing.
FIG. 5 is a longitudinal sectional view showing a state of stress distribution when a radial load is applied.
FIG. 6 is a plan view and a side view showing a contact area between a spherical roller and a raceway surface and a Hertz stress distribution generated in the contact area.
FIG. 7 is a diagram showing a relationship (theoretical value) between a displacement amount δ and a radial load Q.
FIG. 8 is a diagram showing a relationship (theoretical value) between a displacement amount δ and a maximum Hertz stress σ max .
9 and 10 relate to a second embodiment of the present invention, and FIG. 9 is a partial longitudinal sectional front view of the guide device.
FIG. 10 is an enlarged longitudinal sectional view showing a contact state between a raceway surface of a guide block and a rail and a spherical roller and a raceway surface dimension.
11 and 12 relate to a third embodiment of the present invention, and FIG. 11 is a partial longitudinal sectional front view of a guide device.
FIG. 12 is an enlarged longitudinal sectional view showing a contact state between a raceway surface of a guide block and a rail and a spherical roller and a raceway surface dimension.
13 to 19 relate to a conventional example, and FIG. 13 is a longitudinal sectional view showing the shape and dimensions of a cylindrical roller bearing.
FIG. 14 is a diagram showing a stress distribution on a contact surface between a cylindrical roller and a raceway surface.
FIG. 15 is a longitudinal sectional view showing the shape and dimensions of a self-aligning bearing using spherical rollers.
FIG. 16 is a diagram showing a stress distribution on a contact surface between a spherical roller and a raceway surface.
FIG. 17 is a list showing dimensions of ball bearings, cylindrical roller bearings, and spherical roller bearings when creating the diagrams of FIGS. 18 and 19;
FIG. 18 is a diagram showing a relationship (theoretical value) between a displacement amount δ and a radial load Q.
FIG. 19 is a diagram showing a relationship (theoretical value) between the displacement amount δ and the maximum Hertz stress σ max .
[Explanation of symbols]
15 Spherical roller bearing 16 as an example of rolling machine element using spherical roller 16 Spherical roller 18 Track surface 18a Arc section 18b Linear portion 21 Guide device 22 as an example of rolling machine element using spherical roller 22 Guide block 22a Guide block raceway surface 23 Spherical roller 24 Rail 24a rail raceway surface 30 guide device 31 as an example of rolling machine element using spherical roller 31 guide block 31a guide block raceway surface 32 spherical roller 33 rail 33a rail raceway surface

Claims (4)

球面ころの輪郭半径と半径が同一であり該球面ころと嵌合する断面形状の円弧部と該円弧部の両端において該円弧部に対し接線となる断面形状の直線部とを軌道方向に連続的に形成してなることを特徴とする球面ころ使用転がり機械要素軌道面。An arc portion having a cross-sectional shape that is the same as the contour radius of the spherical roller and is fitted with the spherical roller, and a straight portion having a cross-sectional shape that is tangent to the arc portion at both ends of the arc portion is continuously formed in the orbit direction. A rolling machine element raceway surface using spherical rollers, characterized in that it is formed on the surface of a rolling element. 球面ころが軌道面上を転動するように構成された球面ころ使用転がり機械要素において、球面ころの輪郭半径と半径が同一であり該球面ころと嵌合する断面形状の円弧部と該円弧部の両端において該円弧部に対し接線となる断面形状の直線部とが軌道方向に連続してなる軌道面を形成したことを特徴とする球面ころ使用転がり機械要素。In a rolling machine element using a spherical roller configured so that the spherical roller rolls on a raceway surface, an arc portion having a cross-sectional shape that is the same as the contour radius of the spherical roller and is fitted with the spherical roller, and the arc portion A rolling machine element for use with spherical rollers, characterized in that a track surface is formed at both ends of which a straight section having a cross-sectional shape tangent to the arc section is continuous in the track direction. ガイドブロック内を循環移動可能に保持された転動体がガイドブロック軌道面及びレール軌道面の間に介在することでレールに沿って前記ガイドブロックが走行可能に構成されたガイド装置において、転動体に球面ころを使用したことを特徴とするガイド装置。In a guide device in which a rolling element held so as to be able to circulate in a guide block is interposed between a guide block raceway surface and a rail raceway surface so that the guide block can travel along a rail, A guide device characterized by using spherical rollers. ガイドブロック内を循環移動可能に保持された転動体がガイドブロック軌道面及びレール軌道面の間に介在することでレールに沿って前記ガイドブロックが走行可能に構成されたガイド装置において、前記転動体に球面ころを用い、該球面ころの輪郭半径と半径が同一であり該球面ころと嵌合する断面形状の円弧部と該円弧部の両端において該円弧部に対し接線となる断面形状の直線部とが軌道方向に連続してなる前記ガイドブロック軌道面及び前記レール軌道面を前記ガイドブロック及び前記レールに夫々形成したことを特徴とするガイド装置。In a guide device in which a rolling element held so as to be able to circulate in a guide block is interposed between a guide block raceway surface and a rail raceway surface so that the guide block can travel along a rail, A spherical roller is used, and the contour radius and the radius of the spherical roller are the same, and an arc portion having a cross-sectional shape fitted with the spherical roller, and a straight portion having a cross-sectional shape which is tangent to the arc portion at both ends of the arc portion. Wherein the guide block raceway surface and the rail raceway surface which are continuous in the track direction are formed on the guide block and the rail, respectively.
JP2002261995A 2002-09-06 2002-09-06 Rolling mechanical device using spherical roller Pending JP2004100776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002261995A JP2004100776A (en) 2002-09-06 2002-09-06 Rolling mechanical device using spherical roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002261995A JP2004100776A (en) 2002-09-06 2002-09-06 Rolling mechanical device using spherical roller

Publications (1)

Publication Number Publication Date
JP2004100776A true JP2004100776A (en) 2004-04-02

Family

ID=32262195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002261995A Pending JP2004100776A (en) 2002-09-06 2002-09-06 Rolling mechanical device using spherical roller

Country Status (1)

Country Link
JP (1) JP2004100776A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5079648A (en) * 1973-11-12 1975-06-28
JP2000046052A (en) * 1998-07-28 2000-02-15 Nippon Seiko Kk Linear motion guide device
JP2000074075A (en) * 1998-06-19 2000-03-07 Nippon Seiko Kk Roller bearing
JP2001140879A (en) * 1999-11-12 2001-05-22 Hiroshi Teramachi Roller connector and roller guide device
JP2002155932A (en) * 2000-11-22 2002-05-31 Nsk Ltd Roller bearing device
JP2003130058A (en) * 2001-10-22 2003-05-08 Meiji Univ Rolling machine element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5079648A (en) * 1973-11-12 1975-06-28
JP2000074075A (en) * 1998-06-19 2000-03-07 Nippon Seiko Kk Roller bearing
JP2000046052A (en) * 1998-07-28 2000-02-15 Nippon Seiko Kk Linear motion guide device
JP2001140879A (en) * 1999-11-12 2001-05-22 Hiroshi Teramachi Roller connector and roller guide device
JP2002155932A (en) * 2000-11-22 2002-05-31 Nsk Ltd Roller bearing device
JP2003130058A (en) * 2001-10-22 2003-05-08 Meiji Univ Rolling machine element

Similar Documents

Publication Publication Date Title
US4557613A (en) Spherical roller bearing having reciprocal crowning for skew control
CN101331333B (en) Roller bearing
US20060088237A1 (en) Thrust needle roller bearing
JPH03172613A (en) Retainer of ball bearing
US9011018B2 (en) Roller bearing
US20030021506A1 (en) Angular contact ball-bearing cage with lubricant pockets
JP2008039035A (en) Roller bearing
GB2033494A (en) Spherical roller bearing
US11698103B2 (en) Cage segment of a rolling bearing
JP2015102144A (en) Self-aligning roller bearing
JP2004100776A (en) Rolling mechanical device using spherical roller
JP6696610B2 (en) Cage cage for rolling bearings
JP2003130058A (en) Rolling machine element
JP2006349035A (en) Spherical surface sliding bearing
JP2008281066A (en) Ball bearing
JP2004324733A (en) Cross roller bearing
JP2001027249A (en) Bearing retainer and rolling bearing
JP2007239929A (en) Roller bearing
JP6554772B2 (en) Roller bearing cage
WO2023283085A1 (en) High-capacity cylindrical roller bearing and cage
JP2004092799A (en) Linear guide device
JP2003214439A (en) Bearing for a/t
JP2007032785A (en) Conical roller bearing
WO2023063043A1 (en) Cylindrical roller bearing
JP2003148480A (en) Rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930