JP2004100640A - Operation control device for vibration compressor - Google Patents

Operation control device for vibration compressor Download PDF

Info

Publication number
JP2004100640A
JP2004100640A JP2002266421A JP2002266421A JP2004100640A JP 2004100640 A JP2004100640 A JP 2004100640A JP 2002266421 A JP2002266421 A JP 2002266421A JP 2002266421 A JP2002266421 A JP 2002266421A JP 2004100640 A JP2004100640 A JP 2004100640A
Authority
JP
Japan
Prior art keywords
compressor
linear motor
piston
power supply
pistons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002266421A
Other languages
Japanese (ja)
Other versions
JP4126598B2 (en
Inventor
Mikihiko Matsuda
松田 幹彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2002266421A priority Critical patent/JP4126598B2/en
Publication of JP2004100640A publication Critical patent/JP2004100640A/en
Application granted granted Critical
Publication of JP4126598B2 publication Critical patent/JP4126598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/001Gas cycle refrigeration machines with a linear configuration or a linear motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation control device for a vibration compressor capable of electrically detecting coil breakage of a linear motor and detecting abnormalities such as a locked up motor, and capable of avoiding a piston going out of control and colliding into a casing. <P>SOLUTION: The vibration compressor having pistons 4A, 4B provided on both sides of a working gas compression/expansion space to sandwich the space, and two pairs of linear motors 6A, 6B, makes the pistons 4A, 4B reciprocate by feeding output of an inverter (power source) to the linear motors 6A, 6B. The compressor is equipped with: an electric current detecting device 25 for detecting coil electric currents I<SB>A</SB>, I<SB>B</SB>of each of the linear motors 6A, 6B in a power feeding circuit 22; an electric current difference calculating device 25 for calculating the difference between the electric currents I<SB>A</SB>, I<SB>B</SB>; and an inverter output adjusting circuit 26. When a detected value corresponding to the difference value of the coil current flowing through each of the linear motors 6A and 6B during driving of the compressor exceeds a predetermined threshold, an occurrence of abnormality is determined, and power feeding to the linear motors 6A, 6B is stopped to stop the compressor, or output voltage is lowered to continuously drive the compressor with a low output. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、スターリング冷凍機,パルスチューブ冷凍機などのガスサイクル機関の冷凍機に適用する振動圧縮機の運転制御装置に関する。
【0002】
【従来の技術】
頭記のスターリング冷凍機,パルスチューブ冷凍機において、その圧力振動の発生機構である圧縮機として、ピストンを可動コイル形リニアモータで往復駆動するようように構成したものが公知である。(例えば、特許文献1参照)。
【0003】
また、両端を開放したシリンダに、作動ガス(ヘリウムなどの冷媒)の圧縮/膨張空間を挟んで一対のピストンを向かい合わせに配置し、リニアモータの駆動により各ピストンを同期して互いに逆方向に往復動させるようにしたスプリットタイプのリニア駆動式圧縮機も知られている。(例えば、特許文献2)。
【0004】
次に、前記したスプリットタイプのリニア駆動式圧縮機の詳細構造を図2に示す。
【0005】
図2において、1は圧縮機、2は作動ガスの保圧容器を構成する密閉形ケーシング、3は後記するリニアモータの継鉄を兼ねた円筒形のシリンダ、4A,4Bは作動ガスの圧縮空間3aを挟んで向かい合わせにシリンダ3の両端に嵌入した左右一対のピストン、5は前記ピストン4A,4Bを軸方向へ移動可能に支持した円板形のサスペンションばね、6A.6Bはピストン4A,4Bを個別に駆動する可動コイル形リニアモータである。
【0006】
このリニアモータ6A,6Bは、前記シリンダ3の外周側に一体化して磁気回路を形成する継鉄7と、半径方向に着磁して継鉄7の内周面に装着したリング状の永久磁石8と、永久磁石8に対峙する可動コイル9と、可動コイル9を支持してピストン4A,4Bに連結したボビン10とで構成した単相コイルモータである。なお、3bはシリンダ3を半径方向に貫通して前記ガス圧縮空間3aに通じる作動ガス通路、11は前記ガス通路3bと冷凍機のコールドヘッド(図示せず)に内蔵したディスプレーサとの間に配管したキャピラリチューブである。
【0007】
なお、図示してないが、リニアモータ6A,6Bの可動コイル9に接続したリード線は、ケーシング2を気密に貫通して外部に引出した上で後記する電源部に接続して給電するようにしている。
【0008】
かかる構成になる振動圧縮機の動作は周知であり、可動コイル9に交流電圧を印加すると、可動コイル9に流れる電流と該コイルに鎖交する永久磁石8の磁束との間に働く電磁力により、リニアモータ6A,6Bの可動コイル9が同期して互いに逆方向に往復動作する。これにより、サスペンションばね5で支持されたピストン4Aと4Bがシリンダ3内で圧縮方向,膨張方向に交互に往復動し、左右のピストンで挟まれたシリンダ3内のガス圧縮空間3aに封入した作動ガスが圧縮,膨張して圧力振動を発生する。なお、円板形のサスペンションばね5は可動コイル9の電流ゼロの状態でピストン3を図示の中立位置に保持している。
【0009】
次に、前記圧縮機1に用いる従来の電源,制御回路を図3に示す。図3において、12はスイッチング素子Q1 〜Q4 で構成した単相インバータ(電源装置)であり、該インバータ12の交流出力を圧縮機1のリニアモータ6A,6Bの可動コイル9に給電してピストン4A,4Bを往復駆動する。
【0010】
ここで、圧縮機1の運転時におけるピストン4A,4Bの振幅(往復動のストローク),往復動周期を外部から与えた指令値に対応して制御するために、圧縮機1の内部には一方のピストン4Aに対応する位置センサ13を備え、該位置センサ13で得たピストンの位置情報を基に、次記のようにインバータ12の出力調整を行うようにしている。
【0011】
すなわち、インバータ出力の周波数指令を正弦波発生器14に与えて所望周波数の制御信号(正弦波信号)を得る。そして、前記の正弦波信号とピストンの振幅指令の積を掛け算器15で求め、それぞれに係数を乗じて出力電圧指令を得る。また、この出力電圧指令を比較器17によりキャリア発生器16で発生した三角波と比較してPWM波形に変換し、さらにデットタイム生成回路18によりデットタイムを付加した後、ゲートドライバ19によりインバータ12のスイッチング素子Q1 〜Q4 をON,OFF制御し、インバータ12から所望周波数,電圧値の出力電圧を得る。
【0012】
一方、圧縮機1のピストン位置制御は、前記位置センサ13で得た位置情報を基に直流分検出器20で検出したピストン位置と位置指令を比較して位置調整器(比例制御器あるいは比例積分制御器)21に入力し、その出力(直流電圧)を前記した出力電圧指令に重畳して行うようにしている。この場合に、出力電圧指令に正の直流電圧を重畳すると、リニアモータ6A,6Bで駆動するピストン4A.4Bが外方向に向かって移動するものとする。
【0013】
【特許文献1】
特開平5−288419号公報(p3〜4,図14)
【特許文献2】
特開平6−257871号公報(p3,図1)
【0014】
【発明が解決しようとする課題】
ところで、前記した振動圧縮機に対する従来の運転制御方式では、圧縮機の運転中に左右2組のリニアモータ6A,6Bのうち、片方のリニアモータにコイル断線,あるいは該リニアモータで駆動するピストンとシリンダの齧りなどに起因してモータロックするなどの異常事態が発生すると、他方のリニアモータで駆動するピストンの振幅が異常に大きくなってピストンが圧縮機のケーシングに衝突し、最悪な場合には破損する重大事故に進展するおそれがある。
【0015】
すなわち、図3で述べた運転制御系では、圧縮機1のリニアモータ6A,6Bに対し、位置センサ13の位置情報を基にインバータ12からの出力電圧を調整しているが、位置センサ13でピストン位置を検出しているリニアモータ6Aがコイル断線,あるいは該リニアモータ6Aで駆動するピストン4Aの齧りなどが原因でモータロックしたりすると、この場合にはピストン4Aが往復動作のストローク途中で停止,もしくは拘束されるために位置センサ13では正常にピストン位置情報が得られなくなる。しかも、この場合には前記の位置指令と拘束状態にあるピストン4Aの位置情報との関係から、インバータ12の出力電圧を高めるようにフィードバックが働く。そのために、高い出力電圧の給電を受けて動作する他方のリニアモータ6Bで駆動するピストン6Bの振幅が異常に増大し、その結果としてピストン4Bが圧縮機のシリンダ2に衝突する、あるいはリニアモータ6Bのボビン10がシリンダ3の端面に衝突し、最悪な場合には破損して圧縮機1が運転不能となる。
【0016】
そこで、あらかじめインバータ12の出力電圧の上限を制限してピストンの暴走を防ぐようにすることが考えられるが、この方式でもピストンの異常振幅を抑えることが困難である。
【0017】
すなわち、インバータ12の出力電圧を制限した場合に、前記と同様にリニアモータ6Aがモータロックするなどの異常が生じると、ピストン4Aが拘束されたまま、インバータ12の出力電圧の制限から他方のピストン4Bを駆動するリニアモータ6Bの推力も制約されるため、圧縮機の圧縮行程で図2のガス圧縮空間3aにおける作動ガスの圧縮圧力が低下するようになる。一方、圧縮機の圧縮行程でのピストンの振幅は、リニアモータの推力のほか、ガス圧縮空間3aのガス圧力とピストンを支えるサスペンションばね5との釣り合い条件で決まる。
【0018】
このために、前記のように圧縮行程で圧縮されるガス圧縮空間3aのガス圧が低くなると、ピストンに働くガス圧の抗力も弱まることから、結果としてガス圧の低下分だけピストン4Bはリニアモータ6Bの推力を受けてさらに圧縮方向に進み、定常運転時と比べてピストン4Bの振幅が大きくなる。しかも、圧縮機のピストンは、消費電力を低く抑えるためにその振動系の共振周波数で振幅するよう設計されていることから、前記のようにインバータ12の出力電圧の上限を制限したとしても、前記の状況になるとピストン4Bの振幅は自励的に増加してピストン4Bがケーシングに衝突し、最悪時には破壊する危険がある。
【0019】
また、圧縮機1に装備した左右一対のピストン4A.4Bのうち、前記とは逆に位置センサ13で位置検出を行ってない右側のピストン4Bがコイル断線,ピストンの齧りなどが原因でピストンの往復動が拘束,停止した場合には、左側のピストン4Aは位置センサ13で検出した位置情報を基にしたインバータ12の出力電圧により定常運転時と同様な振幅で往復動するが、右側のピストン4Bはモータロックにより往復動のストローク途中で拘束,停止しているために、圧縮機から吐き出す作動ガス圧が下がって冷凍機の能力が低下するようになる。
【0020】
本発明は上記の点に鑑みなされたものであり、その目的は前記課題を解決し、圧縮機の運転中にリニアモータの異常が原因でピストンの振幅が増大した場合にこれを電気的にいち早く検出し、ピストンが暴走してケーシングに衝突するのを回避できるようにした振動圧縮機の運転制御装置を提供することにある。
【0021】
【課題を解決するための手段】
上記目的を達成するために、本発明によれば、圧縮機のケーシング内部に作動ガスの圧縮/膨張空間を挟んでシリンダの両端側に向かい合わせに嵌入した一対のピストン,および各ピストンを個別に駆動する2組のリニアモータを装備した構成になり、電源装置の交流出力を各リニアモータに給電し、前記ピストンを互いに逆方向へ往復駆動して作動ガスに圧力振動を発生させるようにした振動圧縮機の運転制御装置として、
第1の発明では、前記リニアモータの給電回路で各リニアモータに流れるコイル電流の電流検出手段、その電流差を求める演算手段、および電源装置の出力調整手段を装備し、圧縮機の運転中に各リニアモータに流れるコイル電流の差分に対応した検出値があらかじめ設定した閾値を超えた場合に、ピストンに異常振幅が発生したと判断して演算手段から電源装置の出力調整手段に異常信号を出力し、この異常信号を基にリニアモータへの給電を止めて圧縮機の運転を停止させるようにする(請求項1)。
【0022】
また、第2の発明では、圧縮機の運転中に各リニアモータに流れるコイル電流の差分に対応した検出値があらかじめ設定した閾値を超えた場合には、異常信号を基にリニアモータに給電する電源装置の出力電圧を定常運転時よりも下げてピストンの振幅をケーシングに衝突しないように縮小し、圧縮機の出力を低めた状態で継続運転するようにする(請求項2)。
【0023】
そして、前記の閾値は次のように設定するものとする。すなわち、定常運転時におけるピストンの最大振幅をLMAX、最大振幅LMAXのピストン位置とケーシングとの間の余裕寸法をL、ピストンの振幅を前記の最大振幅LMAXを超えて余裕寸法Lまで拡大させるリニアモータのコイル電流増加分に相応して電流検出手段で得た検出電圧の増分をV〔V=f(LMAX+L)−f(LMAX)〕として、前記の閾値をV以下に設定して圧縮機を運転制御するようにする(請求項3)。
【0024】
上記において、圧縮機の運転中に2組のリニアモータのうち、片方のリニアモータに断線,モータロックなどの異常が発生すると、そのリニアモータに流れるコイル電流と他方のリニアモータに流れるコイル電流との間に大きな電流差が生じるようになる。そこで、この電流差を検出し、その電流差に対応した検出値(絶対値)が前記した閾値を超えた際にはピストンに異常振幅が発生したと判断して、圧縮機の運転を強制的に停止する、あるいは電源装置の出力電圧を定常運転時よりも下げてピストンの振幅を抑えた状態で圧縮機を運転することにより、ピストンがケーシングに衝突して破損する非常事態を回避して、圧縮機を安全に運転制御することかできる。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を図1に示す実施例に基づいて説明する。なお、実施例の図中で図3に対応する部分には同じ符号を付してその説明は省略する。
【0026】
図1の電源,制御回路は図3と基本的に同じであるが、図3と比べて電流検出器24,電流差演算器25,およびインバータ出力調整回路26が新たに追加装備されている。
【0027】
すなわち、インバータ(電源装置)12の出力端と圧縮機1との間に配線した給電回路22に対し、圧縮機1に装備した2組のリニアモータ6A,6Bに対応する分岐給電回路22A,22BにはCT23を設けてリニアモータ6A,6Bに流れるコイル電流I,Iを計測する。また、電流検出器24はCT23で計測した電流I,Iを電圧V,V に変換して後段の電流差演算器25に出力する。一方、電流差演算器25は、各電流検出器24の出力電圧V,Vの差を演算し、その差の絶対値が後記する閾値を超えた際に異常信号をインバータ出力調整回路26に出力する。さらに、インバータ出力調整回路26は、電流差演算器25から出力する異常信号を受けた場合に、インバータ12のスイッチング素子Q1〜Q4をOFFにして圧縮機1への給電を完全に停止するか、もしくはインバータ12の出力電圧を下げて圧縮機1を低出力運転させるとともに、同時にアラーム信号を出して異常発生を外部に知らせる。
【0028】
次に、前記した閾値の設定について説明する。すなわち、圧縮機1に内蔵したピストン4A,4Bの振幅(往復動ストローク)は、各ピストンを個別に駆動するリニアモータ6A,6Bの可動コイルに流れる電流I,Iの大きさに応じて変化することから、定常運転におけるピストン4A,4Bの最大振幅をLMAX、そのときにリニアモータ6A,6Bに流すコイル電流をIMAXとしてこの電流を電流検出器24で検出した検出電圧をVMAX、最大振幅LMAXのピストン位置と圧縮機1のケーシング2(図2参照)との間に残る余裕寸法をL、ピストンを前記の最大振幅LMAXを超えて余裕寸法LO まで拡大させた場合にリニアモータに流すコイル電流の増加分に対応する前記検出電圧の増分をVとすると、Vは次の(1)式で得られる。
【0029】
=f(LMAX+L)−f(LMAX)    ・・・(1)
したがって、上記のVを閾値として、圧縮機の運転中に図1の電流検出器25,電流差演算器25で検出した出力電圧V,Vの差(絶対値)が閾値Vを超えた際に、前記のように圧縮機1の運転を強制的に停止すれば、ピストンが異常振幅してケーシングに衝突する事態を未然に回避できる。
【0030】
また、この圧縮機を適用する冷凍機の環境によっては、圧縮機の運転を強制的に停止せずに、圧縮機を低出力の状態にして継続運転させることも可能である。この場合には、閾値を例えば前記V値の80%程度に設定しておき、圧縮機の運転中に前記した出力電圧V,Vの差(絶対値)が閾値(0.8V)を超えた際に、インバータ12の出力電圧を定常運転時の90%に下げるように調整して運転すれば、圧縮機の出力は定常運転時に比べて低下するが、ピストンの衝突を避けた状態で継続運転を行うことが可能である。
【0031】
なお、リニアモータ6A,6Bのいずれか一方に異常が発生した場合のケースとして、リニアモータ6Aの可動コイルが断線するとコイル電流IはゼロとなるのでI<Iとなり、リニアモータ6Aがモータロックした場合にはコイル電流Iが増大するのでI>Iとなる。また、リニアモータ6Bに異常が発生した場合にはコイル電流I,Iの大小関係は前記と逆になるが、いずれの場合でもコイル電流I,Iを監視することにより、ピストンの振幅異常をいち早く電気的に検知し、これを基にインバータ(電源装置)12の出力調整を行うことで圧縮機のピストンがケーシングに衝突する危険を回避できる。
【0032】
また、リニアモータ6A,6Bのコイル電流I,Iの検出方法として、図示実施例では給電回路22の給電分岐回路22A,22BにCT23,電流検出器24を装備してコイル電流I,Iを検出しているが、これとは別にリニアモータ6Aと6Bのコイル電流IとIとの合計電流IA+Bが流れる給電回路22と、一方の給電分岐回路,例えば22AにCT23,電流検出器24を配備し、リニアモータ6Bのコイル電流Iを演算(I=IA+B−I)によって求めることもできる。
【0033】
【発明の効果】
以上述べたように、本発明によれば、圧縮機のケーシング内部に作動ガスの圧縮/膨張空間を挟んでシリンダの両端側に向かい合わせに嵌入した一対のピストン,および各ピストンを個別に駆動する2組のリニアモータを装備した構成になり、電源装置の交流出力を各リニアモータに給電し、前記ピストンを互いに逆方向へ往復駆動して作動ガスに圧力振動を発生させるようにした振動圧縮機において、前記リニアモータの給電回路で各リニアモータに流れるコイル電流の電流検出手段、その電流差を求める演算手段、および電源装置の出力調整手段を備え、圧縮機の運転中に各リニアモータに流れるコイル電流の差分に対応した検出値があらかじめ設定した閾値を超えた場合にピストンに異常振幅が発生したと判断し、リニアモータへの給電を止めて圧縮機の運転を停止する、あるいはリニアモータに給電する電源装置の出力電圧を下げて圧縮機を継続運転することにより、
圧縮機の運転中に、2組のリニアモータのうち、一方のリニアモータにコイル断線,モータロックなどの異常が発生した場合でも、この異常を電気的にいち早く検出し、ピストンがケーシングに衝突して破損する非常事態を回避して、圧縮機を安全に運転制御することかでき、これにより振動圧縮機の事故予防への対応が可能となる。
【図面の簡単な説明】
【図1】本発明の実施態様に係る振動圧縮機の電源,制御回路図
【図2】図1における圧縮機の詳細構造を表す構成断面図
【図3】従来における振動圧縮機の電源,制御回路図
【符号の説明】
1     圧縮機
2     ケーシング
3     シリンダ
3a    作動ガスの圧縮空間
4A,4B ピストン
5     サスペンションばね
6A,6B リニアモータ
9     可動コイル
12     インバータ(電源装置)
22     給電回路
23     電流検出用CT
24     電流検出器
25     電流差演算器
26     インバータ出力調整回路
,I   リニアモータのコイル電流
,V   コイル電流に対応した検出電圧
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an operation control device of a vibration compressor applied to a refrigerator of a gas cycle engine such as a Stirling refrigerator and a pulse tube refrigerator.
[0002]
[Prior art]
In the Stirling refrigerator and the pulse tube refrigerator described above, a compressor configured to reciprocate a piston by a moving coil linear motor is known as a compressor which is a pressure vibration generating mechanism. (For example, see Patent Document 1).
[0003]
In addition, a pair of pistons are placed opposite each other across a compression / expansion space for working gas (refrigerant such as helium) in a cylinder with both ends open, and the pistons are synchronized in opposite directions by driving a linear motor. Also known is a split-type linear drive compressor that is reciprocated. (For example, Patent Document 2).
[0004]
Next, FIG. 2 shows the detailed structure of the split type linear drive compressor.
[0005]
In FIG. 2, 1 is a compressor, 2 is a closed casing constituting a pressure holding vessel for working gas, 3 is a cylindrical cylinder also serving as a yoke of a linear motor described later, and 4A and 4B are compression spaces for working gas. 3a, a pair of left and right pistons fitted to both ends of the cylinder 3 facing each other across the cylinder 3a, a disk-shaped suspension spring supporting the pistons 4A, 4B movably in the axial direction, 6A. Reference numeral 6B denotes a moving coil type linear motor that individually drives the pistons 4A and 4B.
[0006]
The linear motors 6A and 6B are integrally formed on the outer peripheral side of the cylinder 3 to form a magnetic circuit, and a ring-shaped permanent magnet magnetized in the radial direction and mounted on the inner peripheral surface of the yoke 7 8, a movable coil 9 facing the permanent magnet 8, and a bobbin 10 supporting the movable coil 9 and connected to the pistons 4A and 4B. Reference numeral 3b denotes a working gas passage which penetrates through the cylinder 3 in the radial direction and communicates with the gas compression space 3a. Reference numeral 11 denotes a pipe between the gas passage 3b and a displacer built in a cold head (not shown) of the refrigerator. This is a capillary tube.
[0007]
Although not shown, the lead wire connected to the movable coil 9 of the linear motors 6A and 6B is airtightly penetrated through the casing 2 and drawn out, and then connected to a power supply unit described later to supply power. ing.
[0008]
The operation of the vibration compressor having such a configuration is well known. When an AC voltage is applied to the movable coil 9, an electromagnetic force acting between a current flowing through the movable coil 9 and a magnetic flux of the permanent magnet 8 interlinking the coil is used. The movable coils 9 of the linear motors 6A and 6B reciprocate in opposite directions in synchronization with each other. Thereby, the pistons 4A and 4B supported by the suspension spring 5 reciprocate alternately in the compression direction and the expansion direction in the cylinder 3, and are sealed in the gas compression space 3a in the cylinder 3 sandwiched between the left and right pistons. The gas compresses and expands to generate pressure oscillation. The disk-shaped suspension spring 5 holds the piston 3 at the neutral position shown in the state where the current of the movable coil 9 is zero.
[0009]
Next, a conventional power supply and control circuit used for the compressor 1 is shown in FIG. In FIG. 3, reference numeral 12 denotes a single-phase inverter (power supply device) composed of switching elements Q1 to Q4. The AC output of the inverter 12 is supplied to the movable coil 9 of the linear motors 6A and 6B of the compressor 1 to move the piston 4A. , 4B are driven back and forth.
[0010]
Here, in order to control the amplitudes (strokes of reciprocation) and reciprocation cycles of the pistons 4A and 4B during operation of the compressor 1 in accordance with a command value given from outside, one of the compressors 1 is internally provided. A position sensor 13 corresponding to the piston 4A is provided, and the output of the inverter 12 is adjusted as described below based on the position information of the piston obtained by the position sensor 13.
[0011]
That is, a frequency command of the inverter output is given to the sine wave generator 14 to obtain a control signal (sine wave signal) of a desired frequency. Then, the product of the sine wave signal and the amplitude command of the piston is obtained by the multiplier 15, and each is multiplied by a coefficient to obtain an output voltage command. The output voltage command is compared with a triangular wave generated by the carrier generator 16 by the comparator 17 and converted into a PWM waveform, and a dead time is added by the dead time generation circuit 18. The switching elements Q1 to Q4 are ON / OFF controlled to obtain an output voltage having a desired frequency and voltage value from the inverter 12.
[0012]
On the other hand, the piston position of the compressor 1 is controlled by comparing the piston position detected by the DC component detector 20 with a position command based on the position information obtained by the position sensor 13 and a position adjuster (proportional controller or proportional integral controller). Controller 21), and superimposes the output (DC voltage) on the output voltage command. In this case, when a positive DC voltage is superimposed on the output voltage command, the pistons 4A. 4B moves outward.
[0013]
[Patent Document 1]
JP-A-5-288419 (p3-4, FIG. 14)
[Patent Document 2]
JP-A-6-257871 (p3, FIG. 1)
[0014]
[Problems to be solved by the invention]
By the way, in the conventional operation control method for the vibration compressor described above, one of the two left and right linear motors 6A and 6B is disconnected from the coil during the operation of the compressor, or a piston driven by the linear motor is connected to one of the two linear motors. If an abnormal situation such as motor lock occurs due to cylinder bitting, etc., the amplitude of the piston driven by the other linear motor becomes abnormally large and the piston collides with the compressor casing, and in the worst case, It may lead to a serious accident that can be damaged.
[0015]
That is, in the operation control system described in FIG. 3, the output voltage from the inverter 12 is adjusted for the linear motors 6 </ b> A and 6 </ b> B of the compressor 1 based on the position information of the position sensor 13. If the linear motor 6A that detects the piston position locks the motor due to coil disconnection, or the piston 4A driven by the linear motor 6A locks, the piston 4A stops in the middle of the reciprocating stroke. Or, the position sensor 13 cannot normally obtain the piston position information because of the restraint. Moreover, in this case, feedback works so as to increase the output voltage of the inverter 12 from the relationship between the position command and the position information of the piston 4A in the restrained state. For this reason, the amplitude of the piston 6B driven by the other linear motor 6B that operates by receiving the supply of the high output voltage abnormally increases, and as a result, the piston 4B collides with the cylinder 2 of the compressor, or the linear motor 6B The bobbin 10 collides with the end face of the cylinder 3 and, in the worst case, is broken and the compressor 1 becomes inoperable.
[0016]
Therefore, it is conceivable to prevent the runaway of the piston by limiting the upper limit of the output voltage of the inverter 12 in advance, but it is difficult to suppress the abnormal amplitude of the piston also in this method.
[0017]
That is, when the output voltage of the inverter 12 is limited and an abnormality such as the motor lock of the linear motor 6A occurs in the same manner as described above, while the piston 4A is restrained, the other piston is restricted due to the limitation of the output voltage of the inverter 12. Since the thrust of the linear motor 6B driving the 4B is also restricted, the compression pressure of the working gas in the gas compression space 3a in FIG. 2 decreases during the compression stroke of the compressor. On the other hand, the amplitude of the piston during the compression stroke of the compressor is determined by the thrust of the linear motor, the balance between the gas pressure in the gas compression space 3a and the suspension spring 5 supporting the piston.
[0018]
For this reason, when the gas pressure in the gas compression space 3a compressed in the compression stroke as described above decreases, the drag of the gas pressure acting on the piston also weakens. As a result, the piston 4B is moved by the linear motor Under the thrust of 6B, the piston 4B further advances in the compression direction, and the amplitude of the piston 4B becomes larger than in the normal operation. Moreover, since the piston of the compressor is designed to oscillate at the resonance frequency of the vibration system in order to suppress power consumption, even if the upper limit of the output voltage of the inverter 12 is limited as described above, In the situation described above, the amplitude of the piston 4B increases self-excitingly, and the piston 4B collides with the casing, and in the worst case, there is a risk of breaking.
[0019]
A pair of left and right pistons 4A. Conversely, if the reciprocating motion of the piston 4B is stopped or stopped due to coil disconnection, piston bite, etc., the left piston 4B for which the position is not detected by the position sensor 13 is stopped. 4A reciprocates with the same amplitude as during normal operation by the output voltage of the inverter 12 based on the position information detected by the position sensor 13, but the right piston 4B is restrained and stopped during the reciprocating stroke by the motor lock. As a result, the working gas pressure discharged from the compressor decreases, and the capacity of the refrigerator decreases.
[0020]
The present invention has been made in view of the above points, and has as its object to solve the above-described problems, and to electrically promptly increase the amplitude of a piston when the amplitude of a piston increases due to an abnormality in a linear motor during operation of a compressor. An object of the present invention is to provide an operation control device for a vibration compressor, which can detect a collision and prevent a piston from running away and colliding with a casing.
[0021]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a pair of pistons fitted face-to-face at both ends of a cylinder with a compression / expansion space of a working gas interposed inside a casing of a compressor, and each piston is individually Vibration in which two sets of linear motors to be driven are provided, the AC output of the power supply device is supplied to each linear motor, and the piston is reciprocated in the opposite direction to generate pressure vibration in the working gas. As a compressor operation control device,
In the first invention, the linear motor power supply circuit includes a current detection unit for detecting a coil current flowing through each linear motor in the linear motor, a calculation unit for calculating a difference between the currents, and an output adjustment unit for a power supply device. When the detected value corresponding to the difference between the coil currents flowing through the linear motors exceeds a preset threshold value, it is determined that abnormal amplitude has occurred in the piston, and an abnormal signal is output from the arithmetic means to the output adjusting means of the power supply device. Then, based on this abnormal signal, power supply to the linear motor is stopped to stop the operation of the compressor (claim 1).
[0022]
Further, in the second invention, when the detected value corresponding to the difference between the coil currents flowing through the respective linear motors during the operation of the compressor exceeds a preset threshold, power is supplied to the linear motor based on the abnormal signal. The output voltage of the power supply device is reduced from that in the normal operation to reduce the amplitude of the piston so as not to collide with the casing, and the compressor is continuously operated with the output reduced.
[0023]
The threshold is set as follows. That is, the maximum amplitude of the piston during the steady operation is L MAX , the margin between the piston position of the maximum amplitude L MAX and the casing is L 0 , and the amplitude of the piston exceeds the maximum amplitude L MAX and the margin L 0. The threshold value is defined as V 0 [V 0 = f (L MAX + L 0 ) −f (L MAX )], where V 0 = f (L MAX + L 0 ) −f (L MAX ). the so that controls the operation of the compressor is set to V 0 or less (claim 3).
[0024]
In the above, when an abnormality such as disconnection or motor lock occurs in one of the two linear motors during the operation of the compressor, the coil current flowing through the linear motor and the coil current flowing through the other linear motor are reduced. , A large current difference occurs. Therefore, the current difference is detected, and when the detected value (absolute value) corresponding to the current difference exceeds the above-described threshold value, it is determined that abnormal amplitude has occurred in the piston, and the operation of the compressor is forcibly performed. By operating the compressor in a state where the output voltage of the power supply device is lowered from that at the time of steady operation and the amplitude of the piston is suppressed to avoid an emergency situation in which the piston collides with the casing and is damaged, The operation of the compressor can be safely controlled.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described based on an example shown in FIG. In the drawings of the embodiment, the portions corresponding to FIG. 3 are denoted by the same reference numerals, and the description thereof will be omitted.
[0026]
The power supply and control circuit of FIG. 1 is basically the same as that of FIG. 3, except that a current detector 24, a current difference calculator 25, and an inverter output adjustment circuit 26 are additionally provided as compared with FIG.
[0027]
That is, the feeder circuit 22 wired between the output terminal of the inverter (power supply device) 12 and the compressor 1 is connected to the branch feeder circuits 22A and 22B corresponding to the two sets of linear motors 6A and 6B provided in the compressor 1. to measure the coil current I a, I B flowing provided CT23 linear motor 6A, the 6B. The current detector 24 outputs a current I A, I B measured by CT23 voltage V A, is converted to V B to the subsequent current difference calculator 25. Meanwhile, the current difference calculator 25, the current detector 24 output voltage V A of, V difference calculating a B, the inverter output adjustment circuit an abnormality signal when the absolute value exceeds the threshold value to be described later of the difference 26 Output to Further, when receiving the abnormal signal output from the current difference calculator 25, the inverter output adjusting circuit 26 turns off the switching elements Q1 to Q4 of the inverter 12 to completely stop the power supply to the compressor 1, or Alternatively, the compressor 1 is operated at a low output by lowering the output voltage of the inverter 12, and at the same time, an alarm signal is issued to notify the occurrence of abnormality to the outside.
[0028]
Next, setting of the above-described threshold will be described. That is, the compressor 1 to the built-in piston 4A, 4B of the amplitude (reciprocating stroke) is the linear motor 6A for driving each piston individually, current I A flowing to 6B moving coil, according to the size of the I B Therefore, the maximum amplitude of the pistons 4A, 4B in the steady operation is L MAX , and the coil current flowing to the linear motors 6A, 6B at that time is I MAX , and the detected voltage detected by the current detector 24 is V MAX. When the margin remaining between the piston position of the maximum amplitude L MAX and the casing 2 of the compressor 1 (see FIG. 2) is L 0 , the piston is expanded to the margin LO exceeding the maximum amplitude L MAX. Assuming that the increase in the detection voltage corresponding to the increase in the coil current flowing through the linear motor is V 0 , V 0 is obtained by the following equation (1).
[0029]
V 0 = f (L MAX + L 0) -f (L MAX) ··· (1)
Accordingly, the V 0 which said as a threshold, the current detector 25 of FIG. 1 during operation of the compressor, the output voltage V A detected by the current difference calculator 25, the difference V B (absolute value) a threshold value V 0 If the operation of the compressor 1 is forcibly stopped as described above when it exceeds, the situation where the piston collides with the casing due to abnormal amplitude can be avoided beforehand.
[0030]
Further, depending on the environment of the refrigerator to which the compressor is applied, it is possible to continuously operate the compressor in a low output state without forcibly stopping the operation of the compressor. In this case, may be set a threshold for about 80% of the example the V 0 value, the output voltage V A which is the during the operation of the compressor, the difference V B (absolute value) a threshold value (0.8 V 0 ), The output of the inverter 12 is adjusted so as to be reduced to 90% of that in the steady operation, and the operation of the compressor is reduced as compared with the steady operation, but the collision of the piston is avoided. It is possible to perform continuous operation in the state.
[0031]
Incidentally, the linear motor 6A, as a case where an abnormality in one of 6B occurs, since the moving coil of the linear motor 6A is disconnected the coil current I A becomes zero I A <I B, and the linear motor. 6A the I a> I B since the coil current I a increases in case of motor lock. The linear motor 6B coil current when an abnormality occurs in the I A, although the magnitude relationship between I B becomes the opposite, the coil current I A In any case, by monitoring the I B, the piston By immediately detecting the amplitude abnormality electrically and adjusting the output of the inverter (power supply device) 12 based on this, the risk of the piston of the compressor colliding with the casing can be avoided.
[0032]
The linear motors 6A, the coil current of 6B I A, as a detection method of I B, power supply branch circuit 22A in the illustrated embodiment the feeding circuit 22, 22B to CT23, the coil current equipped with current detector 24 I A, While detecting the I B, and the feeding circuit 22 through which the total current I a + B of the coil current I a and I B of separate linear motors 6A and 6B is this one feeder branch circuits, for example, 22A CT23, deploying a current detector 24 can also be determined by calculating the coil current I B of the linear motor 6B (I B = I a + B -I a).
[0033]
【The invention's effect】
As described above, according to the present invention, a pair of pistons which are fitted to both ends of a cylinder facing each other across a compression / expansion space of a working gas inside a casing of a compressor, and each piston is individually driven. A vibration compressor having a configuration equipped with two sets of linear motors, supplying AC output of a power supply device to each linear motor, and driving the pistons back and forth in opposite directions to generate pressure vibration in the working gas. A current detecting means for detecting a coil current flowing through each linear motor in a power supply circuit of the linear motor, a calculating means for calculating a current difference between the coils, and an output adjusting means of a power supply device. If the detected value corresponding to the coil current difference exceeds a preset threshold value, it is determined that abnormal amplitude has occurred in the piston, and the power supply to the linear motor is determined. To stop the operation of the compressor stops, or by continuous operation of the compressor by lowering the output voltage of the power supply for supplying power to the linear motor,
During operation of the compressor, even if an abnormality such as coil disconnection or motor lock occurs in one of the two linear motors, the abnormality is detected as soon as possible electrically, and the piston collides with the casing. It is possible to safely control the operation of the compressor while avoiding an emergency situation in which the compressor is damaged by damage, thereby making it possible to cope with accident prevention of the vibration compressor.
[Brief description of the drawings]
FIG. 1 is a power supply and control circuit diagram of a vibration compressor according to an embodiment of the present invention. FIG. 2 is a sectional view showing a detailed structure of the compressor in FIG. 1. FIG. 3 is a power supply and control of a conventional vibration compressor. Circuit diagram [Description of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Casing 3 Cylinder 3a Working gas compression space 4A, 4B Piston 5 Suspension spring 6A, 6B Linear motor 9 Moving coil 12 Inverter (power supply device)
22 Power supply circuit 23 Current detection CT
24 current detector 25 current difference calculator 26 inverter output adjustment circuit I A, I B linear motor coil current V A, detection voltage corresponding to V B coil current

Claims (3)

圧縮機のケーシング内部に作動ガスの圧縮/膨張空間を挟んでシリンダの両端側に向かい合わせに嵌入した一対のピストン,および各ピストンを個別に駆動する2組のリニアモータを装備した構成になり、電源装置の交流出力を各リニアモータに給電し、前記ピストンを互いに逆方向へ往復駆動して作動ガスに圧力振動を発生させるようにした振動圧縮機の運転制御装置であって、
前記リニアモータの給電回路で各リニアモータに流れるコイル電流の電流検出手段、その電流差を求める演算手段、および電源装置の出力調整手段を備え、圧縮機の運転中に各リニアモータに流れるコイル電流の差分に対応した検出値があらかじめ設定した閾値を超えた場合にピストンに異常振幅が発生したと判断し、リニアモータへの給電を止めて圧縮機の運転を停止することを特徴とする振動圧縮機の運転制御装置。
The compressor has a configuration in which a pair of pistons fitted face-to-face with both ends of the cylinder facing each other with a compression / expansion space for the working gas inside the casing of the compressor, and two sets of linear motors for individually driving the pistons are provided. An operation control device for a vibration compressor that supplies AC output of a power supply device to each linear motor, and drives the pistons back and forth in opposite directions to generate pressure vibration in the working gas.
A current detecting means for detecting a coil current flowing through each linear motor in the power supply circuit of the linear motor, a calculating means for calculating the current difference, and an output adjusting means of a power supply device, wherein the coil current flowing through each linear motor during operation of the compressor Vibration compression characterized by determining that abnormal amplitude has occurred in the piston when the detection value corresponding to the difference between the two exceeds a preset threshold, stopping power supply to the linear motor and stopping the operation of the compressor. Machine operation control device.
圧縮機のケーシング内部に作動ガスの圧縮/膨張空間を挟んでシリンダの両端側に向かい合わせに嵌入した一対のピストン,および各ピストンを個別に駆動する2組のリニアモータを装備した構成になり、電源装置の交流出力を各リニアモータに給電し、前記ピストンを互いに逆方向へ往復駆動して作動ガスに圧力振動を発生させるようにした振動圧縮機の運転制御装置であって、
前記リニアモータの給電回路で各リニアモータに流れるコイル電流の電流検出手段、その電流差を求める演算手段、および電源装置の出力調整手段を備え、圧縮機の運転中に各リニアモータに流れるコイル電流の差分に対応した検出値があらかじめ設定した閾値を超えた場合にピストンに異常振幅が発生したと判断し、リニアモータに給電する電源装置の出力電圧を下げて圧縮機を継続運転するようにしたことを特徴とする振動圧縮機の運転制御装置。
The compressor has a configuration in which a pair of pistons fitted face-to-face with both ends of the cylinder facing each other with a compression / expansion space for the working gas inside the casing of the compressor, and two sets of linear motors for individually driving the pistons are provided. An operation control device for a vibration compressor that supplies AC output of a power supply device to each linear motor, and drives the pistons back and forth in opposite directions to generate pressure vibration in the working gas.
A current detecting means for detecting a coil current flowing through each linear motor in the power supply circuit of the linear motor, a calculating means for calculating the current difference, and an output adjusting means of a power supply device, wherein the coil current flowing through each linear motor during operation of the compressor When the detected value corresponding to the difference exceeds a predetermined threshold value, it is determined that abnormal amplitude has occurred in the piston, and the output voltage of the power supply device that supplies power to the linear motor is reduced, and the compressor is continuously operated. An operation control device for a vibration compressor.
請求項1または2に記載の運転制御装置において、定常運転時におけるピストンの最大振幅をLMAX、最大振幅LMAXのピストン位置とケーシングとの間の余裕寸法をL、ピストンの振幅を前記最大振幅LMAXを超えて余裕寸法Lまで拡大させるリニアモータのコイル電流増加分に相応して電流検出手段で得た検出電圧の増分をV〔V=f(LMAX+L)−f(LMAX)〕として、閾値をV以下に設定して圧縮機を運転制御することを特徴とする振動圧縮機の運転制御装置。3. The operation control device according to claim 1, wherein the maximum amplitude of the piston during steady operation is L MAX , the margin between the piston position of the maximum amplitude L MAX and the casing is L O , and the amplitude of the piston is the maximum. The increment of the detection voltage obtained by the current detection means in accordance with the increase in the coil current of the linear motor that exceeds the amplitude L MAX to the margin L 0 is V 0 [V 0 = f (L MAX + L 0 ) −f (L MAX )], wherein the threshold value is set to V 0 or less to control the operation of the compressor.
JP2002266421A 2002-09-12 2002-09-12 Operation control device for vibration compressor Expired - Fee Related JP4126598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002266421A JP4126598B2 (en) 2002-09-12 2002-09-12 Operation control device for vibration compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002266421A JP4126598B2 (en) 2002-09-12 2002-09-12 Operation control device for vibration compressor

Publications (2)

Publication Number Publication Date
JP2004100640A true JP2004100640A (en) 2004-04-02
JP4126598B2 JP4126598B2 (en) 2008-07-30

Family

ID=32265240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002266421A Expired - Fee Related JP4126598B2 (en) 2002-09-12 2002-09-12 Operation control device for vibration compressor

Country Status (1)

Country Link
JP (1) JP4126598B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7439693B2 (en) 2004-06-29 2008-10-21 Thk Co., Ltd. Anomaly detection method and motor control device
KR101214489B1 (en) * 2011-06-13 2012-12-24 엘지전자 주식회사 Apparatus for controlling compressor and method of the same
CN104124911A (en) * 2014-07-25 2014-10-29 宁波华斯特林电机制造有限公司 Power supply control system and Stirling motor
US11255581B2 (en) * 2019-12-24 2022-02-22 Twinbird Corporation Free piston Stirling refrigerator
WO2022105829A1 (en) * 2020-11-19 2022-05-27 海尔智家股份有限公司 Linear compressor and internal collision buffering

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7439693B2 (en) 2004-06-29 2008-10-21 Thk Co., Ltd. Anomaly detection method and motor control device
KR101214489B1 (en) * 2011-06-13 2012-12-24 엘지전자 주식회사 Apparatus for controlling compressor and method of the same
US9441621B2 (en) 2011-06-13 2016-09-13 Lg Electronics Inc. Machine including compressor controlling apparatus and method
CN104124911A (en) * 2014-07-25 2014-10-29 宁波华斯特林电机制造有限公司 Power supply control system and Stirling motor
US11255581B2 (en) * 2019-12-24 2022-02-22 Twinbird Corporation Free piston Stirling refrigerator
WO2022105829A1 (en) * 2020-11-19 2022-05-27 海尔智家股份有限公司 Linear compressor and internal collision buffering
EP4230867A4 (en) * 2020-11-19 2024-02-21 Haier Smart Home Co., Ltd. Linear compressor and internal collision buffering

Also Published As

Publication number Publication date
JP4126598B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP4044064B2 (en) Linear compressor and control device thereof
US20070196214A1 (en) Sensor-less control method for linear compressors
CN106337793B (en) Method and system for protecting resonant linear compressor
KR20060110234A (en) Linear compressor controller
WO2002053991A1 (en) Stirling refrigerator and method of controlling operation of the refrigerator
KR20120061904A (en) Method for operating a cooling device for cooling a superconductor and cooling device suitable therefor
JP4129126B2 (en) Linear compressor drive control method and vehicle linear compressor drive control method
JP3869481B2 (en) Linear compressor drive unit
JP2004100640A (en) Operation control device for vibration compressor
JP4352883B2 (en) Driving method and driving apparatus for brushless DC motor
JP3469777B2 (en) Control device for linear compressor
JP3762469B2 (en) Linear compressor drive unit
JP3768064B2 (en) Linear compressor drive unit
KR101772083B1 (en) Apparatus for controlling compressor and refrigerator having the same
EP3686428B1 (en) Linear compressor and method for controlling linear compressor
JP3118413B2 (en) Drive unit for linear compressor
JP4289003B2 (en) Method and apparatus for driving brushless DC motor
JP2010007927A (en) Driving circuit
JPH11132585A (en) Oscillatory compressor
JP4096665B2 (en) Linear motor control device
KR101948563B1 (en) Apparatus for controlling compressor and refrigerator having the same
JP3566213B2 (en) Stirling refrigerator and operation control method thereof
US20230228472A1 (en) Cryocooler and monitoring method for cryocooler
JP2005094875A (en) Method and apparatus for driving brushless dc motor
JPH085178A (en) Refrigerator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Effective date: 20080131

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080430

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120523

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120523

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees