JP2004100009A - Method and device for manufacturing metallic electrode - Google Patents

Method and device for manufacturing metallic electrode Download PDF

Info

Publication number
JP2004100009A
JP2004100009A JP2002265994A JP2002265994A JP2004100009A JP 2004100009 A JP2004100009 A JP 2004100009A JP 2002265994 A JP2002265994 A JP 2002265994A JP 2002265994 A JP2002265994 A JP 2002265994A JP 2004100009 A JP2004100009 A JP 2004100009A
Authority
JP
Japan
Prior art keywords
metal
pair
plating
electrodes
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002265994A
Other languages
Japanese (ja)
Other versions
JP3737995B2 (en
Inventor
Yoshiaki Kashimura
樫村 吉晃
Hiroshi Nakajima
中島 寛
Kazuaki Furukawa
古川 一暁
Keiichi Torimitsu
鳥光 慶一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002265994A priority Critical patent/JP3737995B2/en
Publication of JP2004100009A publication Critical patent/JP2004100009A/en
Application granted granted Critical
Publication of JP3737995B2 publication Critical patent/JP3737995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing metallic electrodes in which nano-electrodes which are heretofore difficult to manufacture are simply manufactured with good controllability, and to provide an an apparatus for manufacturing the same. <P>SOLUTION: The initial electrodes 12 and 13 having a gap of 100 nm to 1 μm are fabricated on a substrate in positions where the electrodes face each other. The nano-electrodes are fabricated by plating the initial electrodes 12 and 13 to narrow the gap between the electrodes to ≤20 nm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は金属電極の製造装置およびその製造方法に関し、特に詳細には、分子デバイス製造において必要不可欠であるナノ電極の製造装置およびナノ電極の製造方法に関する。
【0002】
【従来の技術】
近年の急速なデバイスの小型化・高速化には目を見張るものがある。しかしながら、現在の半導体微細加工によるデバイス作製法には限界が見えており、これに替わる新規デバイスの出現が強く望まれている。その候補の1つとして、単一分子を回路部品に用いたデバイスである、分子デバイスの研究開発が近年大きな注目を集めている。分子デバイスにおいては、分子個々の機能性や物質の最小ユニットというスケールメリットを活かして、従来の半導体デバイスを凌駕する高機能・高集積化デバイスの実現が期待されている。
【0003】
単一分子からなる、あるいは複数の分子を組み合わせた、いわゆる分子デバイスを製造するためには、どのように1つ1つの分子にアクセスするかということが非常に大きな問題となる。単一分子を調べる手法としては、走査型トンネル顕微鏡を用いた方法があるが、この方法は超高真空等の環境に依存し、実際にデバイス化するには不向きである。一方、分子からの電気信号を取り出すための分子スケールの間隙を持つ、ナノ電極を用いる方法がある。分子の大きさ・形状・所望の機能によって、目的に合うナノ電極を設計・作製し、そこに分子をはめ込むのである。この方法の場合、様々な環境(大気中、磁場、低温等)での測定も容易であり、実際のデバイスにより近い形である等の利点がある。また、分子の形状によりナノ電極の形状も変えることが出来るという他の手法にはない大きな利点もある。しかしながら、現在のリソグラフィの技術では、通常10nm以下である分子スケールの間隙を持つナノ電極を作製することは困難であることから、この方法を用いた報告は少なく、ナノ電極の形状まで制御した報告となるとさらに少ない。
【0004】
ナノ電極の作製方法についてはすでにいくつかの報告がある。(1)金のナノワイヤに大電流を流すことによって、ナノワイヤにナノメータサイズの断裂を生じさせる方法(例えば、非特許文献1参照)、(2)ピエゾ素子によりナノワイヤに歪みを加え、ナノメータサイズのブレークジャンクションを形成させる方法(例えば、非特許文献2参照)、(3)その場観察をしながら、カーボンの対電極先端に電子ビームを照射することによりカーボンを堆積させ、間隙を狭めていく方法(例えば、非特許文献3参照)、が主な方法である。
【0005】
上記に述べたナノ電極においては、(1),(2)は方法自体は単純であるが、間隙の大きさを制御することが難しく、また(3)は、その場観察なので制御性はよいが、特殊な装置・技術が必要といった欠点がある。またいずれの方法もナノ電極の形状までをも制御するには至っていない。上記のような理由から、簡便かつ制御よくナノ電極を作製する技術が求められていた。
【0006】
電極形状の制御という観点から見ると、金属メッキによる量子化コンダクタンスの観測が挙げられる(例えば、非特許文献4参照)。この方法は、予めリソグラフィで作製した金の対電極に金メッキを施すことにより、電極間の間隙を狭めていく方法である。メッキ速度をコントロールすることにより電極間の間隙をゆっくり狭め、最終的に電極同士が接触するかしないかの境界で、量子化ポイントコンタクトによる量子化コンダクタンスの観測に成功している。この結果は、メッキにより電極間の間隙が制御できることを示している。
【0007】
ナノ電極の材料としては、金属の種類が限定されていない電極形成法が望ましい。すなわち、単一分子が持つ離散的なエネルギ状態に応じて、これに接続する電極の電子状態(金属電極であれば仕事関数)も選択する必要がある。単一分子への電極形成の際、分子の電子状態と金属電極の仕事関数との関係によって最適な組み合わせが存在するはずであり、それだけではなく新たな機能を発現する可能性もある。さらに電極材料を選択できるメリットとして、分子と電極との結合選択性の利用が挙げられる。例としては金とチオール基の結合選択性がある。このような結合選択性を利用すれば、より分子と電極との接続方法の幅が広がると考えられる。
【0008】
【非特許文献1】
H.Park他著、アプライドフィジックスレターズ(Applied Physics Letters)、第75巻、第301頁(1999)
【0009】
【非特許文献2】
C.Kergueris他著、フィジカルレビューB(Physical ReviewB)、第59巻、第12505頁(1999)
【0010】
【非特許文献3】
A.Bezryadin他著、ジャーナルオブバキュームサイエンステクノロジー(J.Vac.Sci.Technol.B、第15巻、第793頁(1997)
【0011】
【非特許文献4】
A.F.Mopurgo他著、アプライドフィジックスレターズ(Applied Physics Letters)、第74巻、第2084頁(1999)
【0012】
【発明が解決しようとする課題】
上記のように、分子デバイス実現のためにナノ電極は必要不可欠なものであるが、特殊な装置・技術が必要であったり、方法は単純でも制御性が悪かったり、これまで簡便かつ制御よくナノ電極を作製する方法は提供されていなかった。
【0013】
そこで本発明の目的は、上述のメッキ法を用いた金の量子化コンダクタンスの観測に着目し、この方法に改良を加えることによって、電極間の間隙を制御し、簡便かつ制御性のよい金属電極(ナノ電極)の製造装置およびその製造方法を提供することである。また、本発明はメッキ可能な金属であればその種類に制限がない、汎用性の高い製造装置および製造方法であることも特徴である。
【0014】
【課題を解決するための手段】
上記の目的を達成するために本発明の一態様では、一対の金属電極を基板上に一定間隔で対向させて形成する第1工程と、該一対の金属電極の各々の所定部位と陽極金属の一部をメッキ浴に浸漬する第2工程と、該陽極金属と前記一対の金属電極間に所定電圧の直流電圧を印加することで、前記一対の金属電極同士の間隔が20nm以下で導通しない間隔に狭まるまで前記各々の所定部位にメッキを施す第3工程とを有する金属電極の製造方法を実施した。
【0015】
ここで、前記第3工程の前に、メッキ金属と前記直流電圧の値から前記第3工程を実施する時間を予め計算する工程をさらに有し、前記第3工程において、前記計算された時間だけ正極性の前記直流電圧を印加することで、前記一対の金属電極同士の間隔が10nm〜20nmとなるようにメッキを施すことも好ましい。
【0016】
ここで、前記第3工程は、前記一対の金属電極の間に流れる電流をモニタすることを含み、該電流の値が定常値よりも一定レベル増加したときに、前記直流電圧を正極性から一時的に負極性とした後に印加を停止することで、前記一対の金属電極同士の間隔が10nm以下となるようにメッキを施すことも好ましい。
【0017】
ここで、前記一対の金属電極として異種金属を用いることも好ましい。
【0018】
上記の目的を達成するために本発明の別の態様では、基板上に一定間隔で対向した一対の金属電極の各々の所定部位をメッキ浴に浸漬させるように該基板を支持する手段と、前記メッキ浴に陽極金属の一部を浸漬させるように支持する手段と、一端を前記陽極金属に他端を前記一対の金属電極に接続されて、前記陽極金属と前記一対の金属電極間に所定電圧の直流電圧を印加する直流電源とを備えたことを特徴とする金属電極の製造装置。
【0019】
ここで、メッキ金属と前記直流電圧の値から、前記一対の金属電極同士の間隔を10nm〜20nmとするだけメッキを施すための時間を計算する手段をさらに備え、前記直流電源によって、前記計算された時間だけ正極性の前記直流電圧を印加することも好ましい。
【0020】
ここで、前記一対の金属電極の間に流れる電流をモニタする手段と、前記モニタした電流の値が定常値よりも一定レベル増加したときに、前記直流電圧を正極性から一時的に負極性とした後に印加を停止することで、前記一対の金属電極同士の間隔が10nm以下となるようにメッキを施すように電圧印加を制御する手段とをさらに備えたことも好ましい。
【0021】
ここで、前記一対の金属電極は同種金属であり、前記モニタする手段は、前記一対の金属電極の間に直列に接続された交流電源および抵抗と、該抵抗の両端に入力端子が接続されてモニタ信号を出力する手段とからなることも好ましい。
【0022】
ここで、前記一対の金属電極は異種金属であり、前記モニタする手段は、前記一対の金属電極の間に直列に接続された、抵抗とコンデンサからなる直列回路および交流電源と、前記交流電源と前記直列回路との接続点および前記直列回路と前記一対の金属電極のいずれか一方との接続点に入力端子が接続されてモニタ信号を出力する手段とからなることも好ましい。
【0023】
【発明の実施の形態】
以下、本発明に係るナノ電極の製造方法について詳述する。概略すると以下の工程を備えている。
【0024】
(1)基板10上に100nm〜1μmの間隙を持つ初期電極12,13を対向する位置に作製する工程(図1(a)参照)、および
(2)初期電極12,13にメッキ7を施すことにより電極間の間隙を20nm以下に狭めナノ電極を作製する工程(図1(b)参照)、
である。参照符号4は直流電源、5は陽極金属を示す。
【0025】
初期電極12,13の作製については、半導体微細加工技術で通常行われるフォトリソグラフィ技術等を用いて、所望の電極を作成する。これは2端子電極、3端子電極、4端子電極、櫛形電極等が可能で、基本的にその形状にはよらない。メッキ金属はメッキ可能な金属であればその種類に制限はない。
【0026】
例えば、ポジ型レジストを塗布した基板表面に、フォトマスクを通して露光した後、レジストを現像、金属を蒸着、レジストをリフトオフするという工程を経て、初期電極12,13を作製する。初期電極12,13間の間隙は約1μmである。このとき、基板材料に制限はなく、石英やサファイヤ等の絶縁体、シリコンウエハー等の半導体、金や銅等の金属等、様々な材料を使用できる。また、このとき蒸着する金属を選択することによって、初期電極12,13として使用する金属が選択できる。また、フォトマスクを用いて露光する代わりに、電子ビーム露光を用いて描画すれば、さらに微細な初期電極12,13を作製することができる。
【0027】
次に、作製した初期電極12,13に電解メッキを施す。メッキは初期電極をメッキ浴6中に浸すか、あるいは接触させることによって行う。メッキ浴6にははOリングを用いる。ここで、適切な速度でメッキがなされるようにメッキ電圧を適切な値に調整することが重要である。例えば、直流電源4によるメッキ電圧が適正な値より0.1Vずれるだけでも、メッキの進行速度が速すぎて表面が粗くなったり、あるいはまったくメッキが進行しないという結果になる。
【0028】
また、本発明では初期電極12,13に双方とも同じ金属をメッキする場合、つまりナノ電極の材料がそれぞれ同じ金属の場合と、初期電極12,13の片側のみをメッキする場合、つまりナノ電極の材料がそれぞれ異なる場合で異なるメッキ回路を用いている。
【0029】
図2(a)は初期電極12,13に同じ金属をメッキする場合の、図2(b)は初期電極12,13の片側のみをメッキする場合の製造装置のメッキ回路構成を示す。
【0030】
両側にメッキする場合と片側のみにメッキする場合のメッキ回路の違いは、コンデンサCがあるかないかである。片側メッキの場合は、抵抗Rのみだと両側にメッキされてしまうので、適当な容量値のコンデンサCを入れることによって初期電極12,13それぞれの印加電位を調節し、片側だけにメッキされるようにしている。
【0031】
本発明では、作製するナノ電極の間隙の大きさによって、作製方法を2つに分けている。以下それぞれの方法について詳述する。
▲1▼ナノ電極の間隙が10nm以上の場合
間隙が10nm以上の場合は、メッキ金属の堆積速度とメッキ電圧との関係から、メッキを施す時間を計算し、所望の間隙を持つナノ電極を作製する。ただし、金属の堆積速度とメッキ電圧の関係は使用する金属電極の製造装置(メッキ装置)や初期電極の形状等に依存するので注意が必要である。
▲2▼ナノ電極の間隙が10nm以下の場合
間隙が10nm以下の場合は、▲1▼の方法では誤差が大きく10nm以下まで制御することは困難であるので、メッキの進行状況をリアルタイムでモニタし所望のナノ電極を作製する。
【0032】
メッキの進行状況をリアルタイムでモニタするために、電極間に流れる電流をロックインアンプ21で測定している。この時、交流電源20によるモニタするための交流周波数電圧もまたS/N比よく、かつメッキの進行状況を的確に反映する入力値を選択する必要がある。
【0033】
メッキ初期の電極間の間隙が広いときには、メッキ液によるイオン電流が主に寄与するが、間隙が数ナノメータスケールになってくると、電極間のトンネル電流の寄与が大きくなり、モニタ電流の急激な増加が見られる。この現象を利用してナノ電極を作製する。
【0034】
ここでひとつ問題がある。トンネル電流が流れ出したところでメッキを止めれば、原理的にはナノ電極が作製できるはずであるが、現実には、メッキ電圧を0Vにしてもメッキの進行がすぐには止まらず、電極同士が接触してしまうのである。
【0035】
この様子を図3に示した。2500秒付近でモニタ電流Iが急激に増加し始めたところでメッキ電圧を0Vにしたが、モニタ電流Iの増加は止まらず、間もなく一定値(約3.3mA)に達している様子がわかる。すなわち、これはメッキ電圧を0Vにしてもメッキはそのまま進行し、電極同士が接触し導通してしまったことを示している。
【0036】
導通を防ぐためには、モニタ電流Iが増加し始め、ある閾値を越えたときに、直流電源14によって一時的に適当な逆バイアスを印加することが重要である。このときのモニタ電流Iの経時変化を図4に示す。2100秒付近でモニタ電流Iが急激に増加し始めたところでメッキ電圧を−1.4Vにしたところ、一度上昇したモニタ電流Iが約54μAのピークまで上昇した後に減少し、最終的に約15μAで留まっていることがわかる。すなわち、逆バイアスによってメッキの進行が止まったことを示している。
【0037】
これは一例であるに過ぎず、条件(メッキ時間、モニタ電流の閾値等)を選択することにより、様々な間隙を持つナノ電極を作り分けることが可能である。上記の電圧印加制御は、モニタ信号にしたがってコンピュータで行う。
【0038】
また、一度電極が接触してしまっても、それまでと逆のメッキ電圧をかければ、原理的には再び電極同士が離れてナノ電極を作製することができる。
【0039】
以下、具体的な実施例を紹介しながら本発明の製造方法について詳述するが、本発明はこれらに限定されるものではない。
【0040】
【実施例】
(実施例1)2端子金ナノ電極の作製
[1]初期電極の作製
酸化膜(1000Å)のついた4インチのシリコンウエハーにポジ型レジスト(V3、東京応化製)をスピンコートで塗布し(回転数4000rpm,40秒)、ホットプレートにて90℃で90秒間べーク後、コンタクトアライナー(PLA−501、キヤノン製)にて電極パターンを露光した。その後、レジスト現像液(東京応化製)で現像し、純水でリンスした。次に、当該基板をスパッタ装置(日本シード製)に装着し、チタンと金を連続して堆積させた。チタン、金の膜厚はそれぞれ、15nm,35nmとした。次に、当該基板をメチルエチルケトンに浸漬し、超音波洗浄装置にてレジストを剥離、純粋でリンスすることにより、金の電極パターンを得た。最小の電極間隔は500nmであった。
[2]金メッキによるナノ電極の作製
次に当該電極をマニュアルプローバ(マイクロニクス社製)に装着し、電極に微小なOリング(テフロン(登録商標)製)をのせ、金メッキ液(田中貴金属製)を滴下した。図2(a)に示した金属電極の製造装置(R=1kΩ))を用いて、直径1mmの金線を当該メッキ液に浸漬し、電極との間に1.4Vの電位を印加した。電極間に流れる電流値をモニタしながら、30分間メッキを行った。メッキ終了後、純水で洗浄した。走査型電子顕微鏡で確認したところ、間隙は20nmであった。
【0041】
(実施例2)10nm以下の間隙を持つ2端子金ナノ電極の作製
上記実施例1[1]で作製した初期電極をプローバに装着し、電極に微小なOリングをのせ、金メッキ液を滴下した。図2(a)に示した金属電極の製造装置(R=1kΩ)を用いて、直径1mmの金線を当該メッキ液に浸漬し、電極との間に1.4Vの電位を印加した。電極間に流れる電流値をモニタし、急激に電流が増加し始めたところでメッキ電圧を1.4Vから−1.4Vとした。その10秒後に電圧を切り、純水で洗浄した。走査型電子顕微鏡で確認したところ、電極間の間隙は8nmであった。その顕微鏡観測画像を図5に示す。
【0042】
(実施例3)2端子金−白金ナノ電極の作製
実施例1〔1〕において、蒸着金属として金ではなく白金を蒸着させ作製した初期電極を用いた。この電極をプローバに装着し、電極に微小なOリングをのせ、金メッキ液を滴下した。図2(b)に示した金属電極の製造装置(R=1kΩ、C=0.1μF))を用いて、直径1mmの金線を当該メッキ液に浸漬し、電極との間に1.4Vの電位を印加した。電極間に流れる電流値をモニタし、30分間メッキを行った。メッキ終了後、純水で洗浄した。走査型電子顕微鏡で確認したところ、間隙は20nmであった。その顕微鏡観測画像を図6に示す。
【0043】
(実施例4)10nm以下の間隙を持つ2端子金−白金ナノ電極の作製
実施例1〔1〕において、金の替わりに白金を堆積させ作製した初期電極を用いた。この電極をプローバに装着し、電極に微小なOリングをのせ、金メッキ液を滴下した。図2(b)に示した金属電極の製造装置(R=1kΩ、C=0.1μF)を用いて、直径1mmの金線を当該メッキ液に浸漬し、電極との間に1.4Vの電位を印加した。電極間に流れる電流値をモニタし、急激に電流が増加し始めたところでメッキ電圧を1.4Vから−1.4Vとした。10秒後に電圧を切り、純水で洗浄した。走査型電子顕微鏡で確認したところ、電極間の間隙は5nmであった。その顕微鏡観測画像を図7に示す。
【0044】
(実施例5)3端子金ナノ電極の作製1
上記実施例1[1]と同様の手法で作製した3端子の金初期電極(図8)をプローバに装着し、電極に微小なOリングをのせ、金メッキ液を滴下した。図2(a)に示した金属電極の製造装置(R=1kΩ)を用いて、直径1mmの金線を当該メッキ液に浸漬し、電極1と3の間に1.4Vの電位を印加した。電極1は図2(a)の電極12に、電極2は同じく電極13に対応するものである。
【0045】
電極間(1−3)に流れる電流値をモニタし、急激に電流が増加し始めたところでメッキ電圧を1.4Vから−1.4Vとした。その10秒後に電圧を切り、純水で洗浄した。さらに同様のプロセスで図2(b)に示した金属電極の製造装置(R=1kΩ、C=0.1μF)を用いて、電極2と電極3の間に1.4Vの電位を印加し、電極2のみをメッキした。電極間(2−3)に流れる電流値をモニタし、急激に電流が増加し始めたところでメッキ電圧を1.4Vから−1.4Vとした。その10秒後に電圧を切り、純水で洗浄した。走査型電子顕微鏡で確認したところ、電極1−3間、電極2−3間にそれぞれ10nm以下の間隙が確認された。その顕微鏡観測画像を図9に示す。
【0046】
(実施例6)3端子金ナノ電極の作製2
図8の3端子の金初期電極をプローバに装着し、電極に微小なOリングをのせ、金メッキ液を滴下した。図2(a)に示した金属電極の製造装置(R=1kΩ)において、直径1mmの金線を当該メッキ液に浸漬し、電極1と3を短絡し、電極1,3と電極2の間に1.4Vの電位を印加した。電極間(1,3−2)に流れる電流値をモニタし、急激に電流が増加し始めたところでメッキ電圧を1.4Vから−1.4Vとした。その10秒後に電圧を切り、純水で洗浄した。走査型電子顕微鏡で確認したところ、それぞれの電極間に10nm以下の間隙が確認された。その顕微鏡観測画像を図10に示す。
【0047】
【発明の効果】
以上説明したように、本発明によれば、従来作製が困難であったナノ電極を簡便かつ制御よく製造できる方法および装置を提供する。電極ごとに異なる金属を選択することも可能で、その自由度は極めて高い。本発明は、分子デバイス作製の要素技術として必要不可欠な技術である。
【図面の簡単な説明】
【図1】本発明の金属電極にメッキを施し、ナノ電極を製造する工程を示した図である。
【図2】電極間に流れる電流をモニタしながら、電極に金メッキを施し、ナノ電極を製造する工程を示した図である。
【図3】メッキ終了時にメッキ電圧を0Vとした場合の、金属電極間に流れる電流の経時変化を示した図である。
【図4】メッキ終了時にメッキ電圧を−1.4Vとした場合の、金属電極間に流れる電流の経時変化を示した図である。
【図5】実施例2によって作製したナノ電極の電子顕微鏡像を示す図である。
【図6】実施例3によって作製したナノ電極の電子顕微鏡像を示す図である。
【図7】実施例4によって作製したナノ電極の電子顕微鏡像を示す図である。
【図8】実施例5によって作製した3端子初期電極の電子顕微鏡像を示す図である。
【図9】実施例5によって作製したナノ電極の電子顕微鏡像を示す図である。
【図10】実施例6によって作製したナノ電極の電子顕微鏡像を示す図である。
【符号の説明】
1〜3 電極
4   直流電源
6   メッキ浴(Oリング)
7   メッキ
10  基板
12,13 初期電極
14  直流電源
20  交流電源
21  ロックインアンプ
C   コンデンサ
I   モニタ電流
R   抵抗
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metal electrode manufacturing apparatus and a method of manufacturing the same, and more particularly, to a nanoelectrode manufacturing apparatus and a nanoelectrode manufacturing method that are indispensable in manufacturing a molecular device.
[0002]
[Prior art]
Recent rapid miniaturization and speeding up of devices are remarkable. However, there is a limit to the current device fabrication method using semiconductor microfabrication, and the emergence of a new device that replaces it is strongly desired. As one of the candidates, research and development of a molecular device, which is a device using a single molecule as a circuit component, has been receiving great attention in recent years. In molecular devices, realization of high-performance and highly-integrated devices that surpass conventional semiconductor devices is expected by taking advantage of the scale merits of the functionality of individual molecules and the minimum unit of substance.
[0003]
In order to manufacture a so-called molecular device consisting of a single molecule or a combination of a plurality of molecules, how to access each molecule becomes a very important problem. As a method for examining a single molecule, there is a method using a scanning tunneling microscope. However, this method depends on an environment such as an ultra-high vacuum and is not suitable for realizing a device. On the other hand, there is a method using a nanoelectrode having a gap on a molecular scale for extracting an electric signal from a molecule. According to the size, shape, and desired function of the molecule, a nanoelectrode that fits the purpose is designed and manufactured, and the molecule is inserted into the nanoelectrode. In the case of this method, there are advantages such as easy measurement in various environments (in the atmosphere, a magnetic field, low temperature, etc.) and a form closer to an actual device. In addition, there is a great advantage that the shape of the nanoelectrode can be changed depending on the shape of the molecule, which is not found in other methods. However, it is difficult to fabricate nanoelectrodes having a gap on a molecular scale of usually 10 nm or less with the current lithography technology. And it is even less.
[0004]
There have already been some reports on the fabrication method of nanoelectrodes. (1) A method of causing a nanometer-sized fracture in a nanowire by flowing a large current through the gold nanowire (for example, see Non-Patent Document 1). (2) Applying a strain to the nanowire by a piezo element to break the nanometer. A method of forming a junction (for example, see Non-patent Document 2), (3) A method of depositing carbon by irradiating an electron beam to a tip of a carbon counter electrode while performing in-situ observation, and narrowing a gap ( For example, see Non-Patent Document 3).
[0005]
In the above-mentioned nanoelectrodes, the methods (1) and (2) are simple in their own way, but it is difficult to control the size of the gap, and (3) has good controllability because of in-situ observation. However, there is a drawback that special devices and techniques are required. In addition, none of the methods has been able to control the shape of the nanoelectrodes. For the reasons described above, there has been a demand for a technique for producing a nanoelectrode simply and with good control.
[0006]
From the viewpoint of controlling the electrode shape, there is observation of quantization conductance by metal plating (for example, see Non-Patent Document 4). In this method, a gold counter electrode prepared in advance by lithography is gold-plated to narrow a gap between the electrodes. By controlling the plating rate, the gap between the electrodes is slowly narrowed, and finally the quantization conductance has been successfully observed by the quantization point contact at the boundary of whether or not the electrodes contact each other. This result indicates that the gap between the electrodes can be controlled by plating.
[0007]
As a material of the nanoelectrode, an electrode forming method in which the kind of metal is not limited is desirable. That is, in accordance with the discrete energy state of a single molecule, it is necessary to select the electronic state (the work function for a metal electrode) of the electrode connected thereto. When an electrode is formed on a single molecule, there must be an optimal combination depending on the relationship between the electronic state of the molecule and the work function of the metal electrode. In addition, there is a possibility that a new function may be developed. Further, as an advantage that the electrode material can be selected, use of bond selectivity between the molecule and the electrode can be cited. An example is the bond selectivity between gold and thiol groups. By utilizing such bond selectivity, it is considered that the range of connection methods between molecules and electrodes is further expanded.
[0008]
[Non-patent document 1]
H. Park et al., Applied Physics Letters, Vol. 75, p. 301 (1999).
[0009]
[Non-patent document 2]
C. Kergueris et al., Physical Review B, Vol. 59, pp. 12505 (1999).
[0010]
[Non-Patent Document 3]
A. Bezryadin et al., Journal of Vacuum Science Technology (J. Vac. Sci. Technology. B, 15, 793 (1997)).
[0011]
[Non-patent document 4]
A. F. Mopurgo et al., Applied Physics Letters, vol. 74, p. 2084 (1999).
[0012]
[Problems to be solved by the invention]
As described above, nanoelectrodes are indispensable for the realization of molecular devices.However, special devices and techniques are required, and the controllability is poor even if the method is simple. No method for making an electrode has been provided.
[0013]
Therefore, an object of the present invention is to focus on the observation of the quantized conductance of gold using the above-described plating method, and by improving this method, to control the gap between the electrodes, to achieve a simple and controllable metal electrode. An object of the present invention is to provide a (nano electrode) manufacturing apparatus and a manufacturing method thereof. Further, the present invention is also characterized by a highly versatile manufacturing apparatus and manufacturing method, as long as the type of metal can be plated, there is no limitation.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, according to one embodiment of the present invention, a first step in which a pair of metal electrodes are formed on a substrate so as to face each other at a predetermined interval, and a predetermined portion of each of the pair of metal electrodes and an anode metal are formed. A second step of immersing a part in a plating bath, and applying a DC voltage of a predetermined voltage between the anode metal and the pair of metal electrodes, so that the interval between the pair of metal electrodes is not more than 20 nm and the gap is not conductive. And a third step of plating each of the predetermined portions until the width of the metal electrode becomes narrower.
[0015]
Here, before the third step, the method further includes a step of calculating in advance the time for performing the third step from the value of the plating metal and the DC voltage, and in the third step, only the calculated time It is also preferable to apply plating so that the distance between the pair of metal electrodes is 10 nm to 20 nm by applying the positive DC voltage.
[0016]
Here, the third step includes monitoring a current flowing between the pair of metal electrodes. When the value of the current increases by a certain level from a steady value, the DC voltage is temporarily changed from the positive polarity. It is also preferable to perform plating so that the interval between the pair of metal electrodes is 10 nm or less by stopping the application after the negative polarity is applied.
[0017]
Here, it is also preferable to use a dissimilar metal as the pair of metal electrodes.
[0018]
In order to achieve the above object, in another aspect of the present invention, a means for supporting a substrate such that a predetermined portion of each of a pair of metal electrodes opposed to each other at a predetermined interval on a substrate is immersed in a plating bath; Means for supporting a part of the anode metal so as to be immersed in the plating bath, one end connected to the anode metal and the other end connected to the pair of metal electrodes, and a predetermined voltage applied between the anode metal and the pair of metal electrodes. And a DC power supply for applying the DC voltage.
[0019]
Here, the apparatus further comprises means for calculating a time for performing plating by setting the distance between the pair of metal electrodes to 10 nm to 20 nm from the plating metal and the value of the DC voltage, and the calculated time is calculated by the DC power supply. It is also preferable to apply the DC voltage of positive polarity only for a certain time.
[0020]
Here, means for monitoring a current flowing between the pair of metal electrodes, and when the value of the monitored current increases by a certain level from a steady value, the DC voltage is temporarily changed from a positive polarity to a negative polarity. It is also preferable that the apparatus further comprises means for controlling the voltage application so that the application is stopped after the application, so that the plating is performed so that the interval between the pair of metal electrodes becomes 10 nm or less.
[0021]
Here, the pair of metal electrodes are the same kind of metal, and the monitoring means includes an AC power supply and a resistor connected in series between the pair of metal electrodes, and input terminals connected to both ends of the resistor. It is also preferable that the output means include means for outputting a monitor signal.
[0022]
Here, the pair of metal electrodes are dissimilar metals, and the monitoring unit is connected in series between the pair of metal electrodes, a series circuit including a resistor and a capacitor and an AC power supply, and the AC power supply. It is preferable that an input terminal is connected to a connection point with the series circuit and a connection point between the series circuit and one of the pair of metal electrodes to output a monitor signal.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the method for producing a nanoelectrode according to the present invention will be described in detail. Briefly, the following steps are provided.
[0024]
(1) a step of forming initial electrodes 12 and 13 having a gap of 100 nm to 1 μm on a substrate 10 at positions facing each other (see FIG. 1A); and (2) plating 7 on the initial electrodes 12 and 13 Thereby narrowing the gap between the electrodes to 20 nm or less to produce a nanoelectrode (see FIG. 1B);
It is. Reference numeral 4 denotes a DC power supply, and 5 denotes an anode metal.
[0025]
Regarding the production of the initial electrodes 12 and 13, a desired electrode is produced using a photolithography technique or the like usually performed in semiconductor fine processing technology. This can be a two-terminal electrode, a three-terminal electrode, a four-terminal electrode, a comb-shaped electrode, or the like, and basically does not depend on the shape. The type of plating metal is not limited as long as it is a metal that can be plated.
[0026]
For example, after exposing the surface of the substrate coated with a positive resist through a photomask, developing the resist, depositing a metal, and lifting off the resist, the initial electrodes 12 and 13 are formed. The gap between the initial electrodes 12, 13 is about 1 μm. At this time, the substrate material is not limited, and various materials such as an insulator such as quartz and sapphire, a semiconductor such as a silicon wafer, and a metal such as gold and copper can be used. At this time, by selecting a metal to be deposited, a metal to be used as the initial electrodes 12 and 13 can be selected. Further, if the drawing is performed using electron beam exposure instead of exposure using a photomask, finer initial electrodes 12 and 13 can be manufactured.
[0027]
Next, the produced initial electrodes 12 and 13 are subjected to electrolytic plating. The plating is performed by immersing or contacting the initial electrode in the plating bath 6. An O-ring is used for the plating bath 6. Here, it is important to adjust the plating voltage to an appropriate value so that plating is performed at an appropriate speed. For example, even if the plating voltage by the DC power supply 4 is deviated by only 0.1 V from an appropriate value, the plating proceeds at an excessively high speed, resulting in a rough surface or no plating at all.
[0028]
Further, in the present invention, when the same metal is plated on both of the initial electrodes 12 and 13, that is, when the material of the nanoelectrodes is the same metal, respectively, and when only one side of the initial electrodes 12 and 13 is plated, that is, Different plating circuits are used for different materials.
[0029]
FIG. 2A shows a plating circuit configuration of a manufacturing apparatus when the same metal is plated on the initial electrodes 12 and 13, and FIG. 2B shows a plating circuit configuration of the manufacturing apparatus when only one side of the initial electrodes 12 and 13 is plated.
[0030]
The difference between the plating circuit when plating on both sides and the plating circuit when plating on only one side is whether or not there is a capacitor C. In the case of single-side plating, if only the resistor R is plated on both sides, the potential applied to each of the initial electrodes 12 and 13 is adjusted by inserting a capacitor C having an appropriate capacitance value so that only one side is plated. I have to.
[0031]
In the present invention, the manufacturing method is divided into two according to the size of the gap between the nanoelectrodes to be manufactured. Hereinafter, each method will be described in detail.
(1) When the gap between the nanoelectrodes is 10 nm or more When the gap is 10 nm or more, the time for plating is calculated from the relationship between the deposition rate of the plating metal and the plating voltage, and a nanoelectrode having a desired gap is produced. I do. However, it should be noted that the relationship between the metal deposition rate and the plating voltage depends on the metal electrode manufacturing apparatus (plating apparatus) used, the shape of the initial electrode, and the like.
(2) When the gap between the nanoelectrodes is 10 nm or less When the gap is 10 nm or less, the progress of the plating is monitored in real time because the method (1) has a large error and it is difficult to control it to 10 nm or less. Create the desired nanoelectrodes.
[0032]
In order to monitor the progress of plating in real time, the current flowing between the electrodes is measured by the lock-in amplifier 21. At this time, it is necessary to select an input value that also has a good S / N ratio for the AC frequency voltage to be monitored by the AC power supply 20 and that accurately reflects the progress of plating.
[0033]
When the gap between the electrodes in the initial stage of plating is wide, the ionic current due to the plating solution mainly contributes, but when the gap becomes several nanometer scale, the contribution of the tunnel current between the electrodes becomes large, and the monitor current sharply increases. There is an increase. A nanoelectrode is manufactured using this phenomenon.
[0034]
There is one problem here. If plating is stopped when the tunnel current starts flowing, nano-electrodes should be able to be produced in principle, but in reality, even if the plating voltage is 0 V, the progress of plating does not stop immediately, and the electrodes contact each other. It will do.
[0035]
This is shown in FIG. The plating voltage was set to 0 V when the monitor current I began to rapidly increase around 2500 seconds. However, it can be seen that the increase in the monitor current I did not stop and soon reached a constant value (about 3.3 mA). In other words, this indicates that even if the plating voltage was set to 0 V, the plating proceeded as it was, and the electrodes came into contact with each other and became conductive.
[0036]
In order to prevent conduction, it is important to temporarily apply an appropriate reverse bias by the DC power supply 14 when the monitor current I starts to increase and exceeds a certain threshold. FIG. 4 shows a temporal change of the monitor current I at this time. When the monitor current I began to rapidly increase around 2100 seconds, the plating voltage was set to -1.4 V. The monitor current I, which once increased, increased to a peak of about 54 μA and then decreased, and finally decreased to about 15 μA. You can see that it has stayed. That is, it indicates that the progress of plating has been stopped by the reverse bias.
[0037]
This is only an example, and it is possible to selectively produce nanoelectrodes having various gaps by selecting conditions (such as a plating time and a threshold value of a monitor current). The above voltage application control is performed by a computer according to the monitor signal.
[0038]
In addition, even if the electrodes once come into contact, if a plating voltage opposite to that before is applied, the electrodes can be separated from each other again in principle and a nanoelectrode can be manufactured.
[0039]
Hereinafter, the production method of the present invention will be described in detail with reference to specific examples, but the present invention is not limited thereto.
[0040]
【Example】
(Example 1) Preparation of two-terminal gold nanoelectrode [1] Preparation of initial electrode A positive resist (V3, manufactured by Tokyo Ohka) is applied to a 4-inch silicon wafer provided with an oxide film (1000 酸化) by spin coating ( After baking at 90 ° C. for 90 seconds on a hot plate at a rotation speed of 4000 rpm for 40 seconds, the electrode pattern was exposed with a contact aligner (PLA-501, manufactured by Canon). Thereafter, the film was developed with a resist developer (manufactured by Tokyo Ohka) and rinsed with pure water. Next, the substrate was mounted on a sputtering apparatus (manufactured by Nippon Seed), and titanium and gold were successively deposited. The thicknesses of titanium and gold were 15 nm and 35 nm, respectively. Next, the substrate was immersed in methyl ethyl ketone, the resist was peeled off with an ultrasonic cleaning device, and the resist was rinsed with pure water to obtain a gold electrode pattern. The minimum electrode spacing was 500 nm.
[2] Preparation of nanoelectrode by gold plating Next, the electrode was mounted on a manual prober (manufactured by Micronics), a minute O-ring (manufactured by Teflon (registered trademark)) was placed on the electrode, and a gold plating solution (manufactured by Tanaka Kikinzoku) was used. Was dropped. Using a metal electrode manufacturing apparatus (R = 1 kΩ) shown in FIG. 2A, a gold wire having a diameter of 1 mm was immersed in the plating solution, and a potential of 1.4 V was applied between the gold wire and the electrode. The plating was performed for 30 minutes while monitoring the value of the current flowing between the electrodes. After the plating, the substrate was washed with pure water. When confirmed with a scanning electron microscope, the gap was 20 nm.
[0041]
(Example 2) Production of two-terminal gold nanoelectrode having a gap of 10 nm or less The initial electrode produced in Example 1 [1] was mounted on a prober, a minute O-ring was placed on the electrode, and a gold plating solution was dropped. . Using a metal electrode manufacturing apparatus (R = 1 kΩ) shown in FIG. 2A, a gold wire having a diameter of 1 mm was immersed in the plating solution, and a potential of 1.4 V was applied to the electrode. The value of the current flowing between the electrodes was monitored, and the plating voltage was changed from 1.4 V to -1.4 V when the current began to increase rapidly. After 10 seconds, the voltage was turned off, and the substrate was washed with pure water. When confirmed with a scanning electron microscope, the gap between the electrodes was 8 nm. FIG. 5 shows the microscope observation image.
[0042]
(Example 3) Production of two-terminal gold-platinum nanoelectrode In Example 1 [1], an initial electrode produced by depositing platinum instead of gold as a metal to be deposited was used. This electrode was mounted on a prober, a minute O-ring was placed on the electrode, and a gold plating solution was dropped. Using a metal electrode manufacturing apparatus (R = 1 kΩ, C = 0.1 μF) shown in FIG. 2B, a gold wire having a diameter of 1 mm was immersed in the plating solution, and 1.4 V was applied between the electrode and the electrode. Was applied. The value of the current flowing between the electrodes was monitored, and plating was performed for 30 minutes. After the plating, the substrate was washed with pure water. When confirmed with a scanning electron microscope, the gap was 20 nm. FIG. 6 shows the microscope observation image.
[0043]
(Example 4) Production of two-terminal gold-platinum nanoelectrode having a gap of 10 nm or less In Example 1 [1], an initial electrode produced by depositing platinum instead of gold was used. This electrode was mounted on a prober, a minute O-ring was placed on the electrode, and a gold plating solution was dropped. Using a metal electrode manufacturing apparatus (R = 1 kΩ, C = 0.1 μF) shown in FIG. 2 (b), a gold wire having a diameter of 1 mm was immersed in the plating solution, and a voltage of 1.4 V was applied between the electrode and the electrode. An electric potential was applied. The value of the current flowing between the electrodes was monitored, and when the current began to increase rapidly, the plating voltage was changed from 1.4 V to -1.4 V. After 10 seconds, the voltage was turned off and the substrate was washed with pure water. When confirmed with a scanning electron microscope, the gap between the electrodes was 5 nm. FIG. 7 shows the microscope observation image.
[0044]
(Example 5) Production of three-terminal gold nanoelectrode 1
A three-terminal gold initial electrode (FIG. 8) prepared in the same manner as in Example 1 [1] was mounted on a prober, a fine O-ring was placed on the electrode, and a gold plating solution was dropped. Using a metal electrode manufacturing apparatus (R = 1 kΩ) shown in FIG. 2A, a gold wire having a diameter of 1 mm was immersed in the plating solution, and a potential of 1.4 V was applied between the electrodes 1 and 3. . The electrode 1 corresponds to the electrode 12 in FIG.
[0045]
The value of the current flowing between the electrodes (1-3) was monitored, and the plating voltage was changed from 1.4V to -1.4V when the current began to increase rapidly. After 10 seconds, the voltage was turned off, and the substrate was washed with pure water. Further, by using a metal electrode manufacturing apparatus (R = 1 kΩ, C = 0.1 μF) shown in FIG. 2B in a similar process, a potential of 1.4 V was applied between the electrode 2 and the electrode 3, Only electrode 2 was plated. The value of the current flowing between the electrodes (2-3) was monitored, and when the current began to increase rapidly, the plating voltage was changed from 1.4V to -1.4V. After 10 seconds, the voltage was turned off, and the substrate was washed with pure water. When confirmed with a scanning electron microscope, a gap of 10 nm or less was confirmed between the electrodes 1 and 3 and between the electrodes 2-3. FIG. 9 shows the microscope observation image.
[0046]
(Example 6) Production of three-terminal gold nanoelectrode 2
The three-terminal gold initial electrode of FIG. 8 was mounted on a prober, a minute O-ring was placed on the electrode, and a gold plating solution was dropped. In the metal electrode manufacturing apparatus (R = 1 kΩ) shown in FIG. 2A, a gold wire having a diameter of 1 mm is immersed in the plating solution to short-circuit electrodes 1 and 3, and to connect electrodes 1 and 3 and electrode 2 Was applied with a potential of 1.4V. The value of the current flowing between the electrodes (1, 3-2) was monitored, and when the current began to increase sharply, the plating voltage was changed from 1.4 V to -1.4 V. After 10 seconds, the voltage was turned off, and the substrate was washed with pure water. When confirmed with a scanning electron microscope, a gap of 10 nm or less was observed between the electrodes. The microscope observation image is shown in FIG.
[0047]
【The invention's effect】
As described above, according to the present invention, there is provided a method and an apparatus which can easily and controllably manufacture a nanoelectrode which has conventionally been difficult to manufacture. A different metal can be selected for each electrode, and the degree of freedom is extremely high. The present invention is an indispensable technology as a component technology for producing a molecular device.
[Brief description of the drawings]
FIG. 1 is a view showing a process for producing a nanoelectrode by plating a metal electrode of the present invention.
FIG. 2 is a view showing a process of manufacturing a nanoelectrode by applying gold plating to an electrode while monitoring a current flowing between the electrodes.
FIG. 3 is a diagram showing a temporal change of a current flowing between metal electrodes when a plating voltage is set to 0 V at the end of plating.
FIG. 4 is a diagram showing a temporal change of a current flowing between metal electrodes when a plating voltage is set to −1.4 V at the end of plating.
FIG. 5 is a view showing an electron microscope image of a nanoelectrode produced according to Example 2.
FIG. 6 is a diagram showing an electron microscopic image of a nanoelectrode produced according to Example 3.
FIG. 7 is a view showing an electron microscope image of a nanoelectrode produced according to Example 4.
FIG. 8 is a view showing an electron microscope image of a three-terminal initial electrode manufactured in Example 5.
FIG. 9 is a view showing an electron microscope image of a nanoelectrode produced according to Example 5.
FIG. 10 is a view showing an electron microscope image of a nanoelectrode produced according to Example 6.
[Explanation of symbols]
1-3 Electrodes 4 DC power supply 6 Plating bath (O-ring)
7 Plating 10 Substrate 12, 13 Initial electrode 14 DC power supply 20 AC power supply 21 Lock-in amplifier C Capacitor I Monitor current R Resistance

Claims (9)

一対の金属電極を基板上に一定間隔で対向させて形成する第1工程と、
該一対の金属電極の各々の所定部位と陽極金属の一部をメッキ浴に浸漬する第2工程と、
該陽極金属と前記一対の金属電極間に所定電圧の直流電圧を印加することで、前記一対の金属電極同士の間隔が20nm以下で導通しない間隔に狭まるまで前記各々の所定部位にメッキを施す第3工程と
を有することを特徴とする金属電極の製造方法。
A first step of forming a pair of metal electrodes facing each other at regular intervals on a substrate;
A second step of immersing a predetermined portion of each of the pair of metal electrodes and a part of the anode metal in a plating bath;
By applying a DC voltage of a predetermined voltage between the anode metal and the pair of metal electrodes, plating each of the predetermined portions until the interval between the pair of metal electrodes is reduced to a non-conductive interval of 20 nm or less. A method for producing a metal electrode, comprising three steps.
請求項1の金属電極の製造方法において、
前記第3工程の前に、メッキ金属と前記直流電圧の値から前記第3工程を実施する時間を予め計算する工程をさらに有し、
前記第3工程において、前記計算された時間だけ正極性の前記直流電圧を印加することで、前記一対の金属電極同士の間隔が10nm〜20nmとなるようにメッキを施すことを特徴とする金属電極の製造方法。
The method for manufacturing a metal electrode according to claim 1,
Before the third step, further comprising a step of calculating in advance the time for performing the third step from the value of the plating metal and the DC voltage,
In the third step, by applying the positive DC voltage for the calculated time, plating is performed so that an interval between the pair of metal electrodes becomes 10 nm to 20 nm. Manufacturing method.
請求項1に記載の金属電極の製造方法において、
前記第3工程は、前記一対の金属電極の間に流れる電流をモニタすることを含み、該電流の値が定常値よりも一定レベル増加したときに、前記直流電圧を正極性から一時的に負極性とした後に印加を停止することで、前記一対の金属電極同士の間隔が10nm以下となるようにメッキを施すことを特徴とする金属電極の製造方法。
The method for manufacturing a metal electrode according to claim 1,
The third step includes monitoring a current flowing between the pair of metal electrodes. When the value of the current increases by a certain level from a steady value, the DC voltage is temporarily changed from positive to negative. A method of manufacturing a metal electrode, comprising applying a plating so that the distance between the pair of metal electrodes is 10 nm or less by stopping the application after the application.
請求項3に記載の金属電極の製造方法において、
前記一対の金属電極として異種金属を用いることを特徴とする金属電極の製造方法。
The method for manufacturing a metal electrode according to claim 3,
A method for manufacturing a metal electrode, wherein a different kind of metal is used as the pair of metal electrodes.
基板上に一定間隔で対向した一対の金属電極の各々の所定部位をメッキ浴に浸漬させるように該基板を支持する手段と、
前記メッキ浴に陽極金属の一部を浸漬させるように支持する手段と、
一端を前記陽極金属に他端を前記一対の金属電極に接続されて、前記陽極金属と前記一対の金属電極間に所定電圧の直流電圧を印加する直流電源と
を備えたことを特徴とする金属電極の製造装置。
Means for supporting the substrate such that a predetermined portion of each of a pair of metal electrodes opposed to each other at a predetermined interval on the substrate is immersed in a plating bath;
Means for supporting a part of the anode metal in the plating bath so as to be immersed,
A metal having one end connected to the anode metal and the other end connected to the pair of metal electrodes, and a DC power supply for applying a DC voltage of a predetermined voltage between the anode metal and the pair of metal electrodes; Electrode manufacturing equipment.
請求項5に記載の金属電極の製造装置において、
メッキ金属と前記直流電圧の値から、前記一対の金属電極同士の間隔を10nm〜20nmとするだけメッキを施すための時間を計算する手段をさらに備え、前記直流電源によって、前記計算された時間だけ正極性の前記直流電圧を印加することを特徴とする金属電極の製造装置。
The apparatus for manufacturing a metal electrode according to claim 5,
The apparatus further comprises means for calculating a time for performing plating by setting a distance between the pair of metal electrodes to 10 nm to 20 nm from the plating metal and the value of the DC voltage, and the DC power supply only calculates the time. An apparatus for manufacturing a metal electrode, wherein the positive DC voltage is applied.
請求項5に記載の金属電極の製造装置において、
前記一対の金属電極の間に流れる電流をモニタする手段と、
前記モニタした電流の値が定常値よりも一定レベル増加したときに、前記直流電圧を正極性から一時的に負極性とした後に印加を停止することで、前記一対の金属電極同士の間隔が10nm以下となるようにメッキを施すように電圧印加を制御する手段と
をさらに備えたことを特徴とする金属電極の製造装置。
The apparatus for manufacturing a metal electrode according to claim 5,
Means for monitoring a current flowing between the pair of metal electrodes,
When the value of the monitored current increases by a certain level from the steady value, the application of the DC voltage is temporarily changed from the positive polarity to the negative polarity, and then the application is stopped, so that the distance between the pair of metal electrodes is 10 nm. Means for controlling voltage application so as to perform plating as described below.
請求項7に記載の金属電極の製造装置において、
前記一対の金属電極は同種金属であり、
前記モニタする手段は、
前記一対の金属電極の間に直列に接続された交流電源および抵抗と、
該抵抗の両端に入力端子が接続されてモニタ信号を出力する手段と
からなることを特徴とする金属電極の製造装置。
The apparatus for manufacturing a metal electrode according to claim 7,
The pair of metal electrodes are the same kind of metal,
The monitoring means includes:
An AC power supply and a resistor connected in series between the pair of metal electrodes,
An input terminal connected to both ends of the resistor, and a means for outputting a monitor signal.
請求項7に記載の金属電極の製造装置において、
前記一対の金属電極は異種金属であり、
前記モニタする手段は、
前記一対の金属電極の間に直列に接続された、抵抗とコンデンサからなる直列回路および交流電源と、
前記交流電源と前記直列回路との接続点および前記直列回路と前記一対の金属電極のいずれか一方との接続点に入力端子が接続されてモニタ信号を出力する手段と
からなることを特徴とする金属電極の製造装置。
The apparatus for manufacturing a metal electrode according to claim 7,
The pair of metal electrodes are different metals,
The monitoring means includes:
A series circuit and an AC power supply, which are connected in series between the pair of metal electrodes and include a resistor and a capacitor,
An input terminal is connected to a connection point between the AC power supply and the series circuit and a connection point between the series circuit and one of the pair of metal electrodes, and a means for outputting a monitor signal is provided. Equipment for manufacturing metal electrodes.
JP2002265994A 2002-09-11 2002-09-11 Metal electrode manufacturing method and manufacturing apparatus thereof Expired - Fee Related JP3737995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002265994A JP3737995B2 (en) 2002-09-11 2002-09-11 Metal electrode manufacturing method and manufacturing apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002265994A JP3737995B2 (en) 2002-09-11 2002-09-11 Metal electrode manufacturing method and manufacturing apparatus thereof

Publications (2)

Publication Number Publication Date
JP2004100009A true JP2004100009A (en) 2004-04-02
JP3737995B2 JP3737995B2 (en) 2006-01-25

Family

ID=32264969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002265994A Expired - Fee Related JP3737995B2 (en) 2002-09-11 2002-09-11 Metal electrode manufacturing method and manufacturing apparatus thereof

Country Status (1)

Country Link
JP (1) JP3737995B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168102A (en) * 1981-04-10 1982-10-16 Citizen Watch Co Ltd Film thickness monitor in wet plating
JPH05243465A (en) * 1992-03-03 1993-09-21 Nippon Steel Corp Packaging method of semiconductor device
JPH10306397A (en) * 1997-05-01 1998-11-17 Toshiba Corp Method for forming circuit by plating
JP2001162600A (en) * 1999-09-22 2001-06-19 Canon Inc Structure with pore, manufacturing method of structure with pore and device using structure with the above pore
JP2001225406A (en) * 2000-02-17 2001-08-21 Nippon Telegr & Teleph Corp <Ntt> Method for connecting molecular conductor and metal electrode, and substrate
JP2002151546A (en) * 2000-11-08 2002-05-24 Mitsubishi Heavy Ind Ltd Electrode structure, signal take out structure and electrode forming method of ic chip

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168102A (en) * 1981-04-10 1982-10-16 Citizen Watch Co Ltd Film thickness monitor in wet plating
JPH05243465A (en) * 1992-03-03 1993-09-21 Nippon Steel Corp Packaging method of semiconductor device
JPH10306397A (en) * 1997-05-01 1998-11-17 Toshiba Corp Method for forming circuit by plating
JP2001162600A (en) * 1999-09-22 2001-06-19 Canon Inc Structure with pore, manufacturing method of structure with pore and device using structure with the above pore
JP2001225406A (en) * 2000-02-17 2001-08-21 Nippon Telegr & Teleph Corp <Ntt> Method for connecting molecular conductor and metal electrode, and substrate
JP2002151546A (en) * 2000-11-08 2002-05-24 Mitsubishi Heavy Ind Ltd Electrode structure, signal take out structure and electrode forming method of ic chip

Also Published As

Publication number Publication date
JP3737995B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
Morpurgo et al. Controlled fabrication of metallic electrodes with atomic separation
US8142984B2 (en) Lithographically patterned nanowire electrodeposition
JP2952539B2 (en) Micro processing equipment
US10316423B2 (en) Feedback control of dimensions in nanopore and nanofluidic devices
US20050285275A1 (en) Fabrication of nano-gap electrode arrays by the construction and selective chemical etching of nano-crosswire stacks
JP2005523386A (en) Method for selectively aligning nanometer scale components using an AC electric field
Tian et al. The fabrication and characterization of adjustable nanogaps between gold electrodes on chip for electrical measurement of single molecules
Hüsser et al. High‐resolution deposition and etching of metals with a scanning electrochemical microscope
US20070170064A1 (en) Method of electrolytically depositing materials in a pattern directed by surfactant distribution
CN1961259B (en) Fabrication and use of superlattice
Steinmann et al. Fabrication of sub-5nm gaps between metallic electrodes using conventional lithographic techniques
CN111613661A (en) Tunnel junction, preparation method and application thereof
JP2008047797A (en) Imprinting method
CN115132578B (en) Electrode pair with nanogap and preparation method thereof
JP3737995B2 (en) Metal electrode manufacturing method and manufacturing apparatus thereof
JPH06252056A (en) Fixation of minute substance and formation of electrode
Anderson et al. Fabrication by tri-level electron beam lithography of X-ray masks with 50nm linewidths, and replication by X-ray nanolithography
TW201003057A (en) A chemical sensing device based on nanowires fabricated by the combination of atomic force microscopy nanomachining and photolithography
JP4631004B2 (en) Manufacturing method of nanogap electrode
JP2622589B2 (en) Microelectrode cell for electrochemical measurement and method for producing the same
Sapkov et al. Method of creation of monomolecular transistor with overhanging electrodes
Humayun et al. A brief review of the current technologies used for the fabrication of metal-molecule-metal junction electrodes
JP2005012225A (en) Selective electrochemical etching method for analysis of 2-dimensional dopant distribution
JPH08285867A (en) Probe, cantilever and force microscope comprising them
JPH08248064A (en) Fine pattern forming apparatus and characteristics measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees