JP2004096539A - フィルタ回路 - Google Patents

フィルタ回路 Download PDF

Info

Publication number
JP2004096539A
JP2004096539A JP2002256588A JP2002256588A JP2004096539A JP 2004096539 A JP2004096539 A JP 2004096539A JP 2002256588 A JP2002256588 A JP 2002256588A JP 2002256588 A JP2002256588 A JP 2002256588A JP 2004096539 A JP2004096539 A JP 2004096539A
Authority
JP
Japan
Prior art keywords
filter circuit
capacitor
surface acoustic
acoustic wave
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002256588A
Other languages
English (en)
Inventor
Kouji Ihata
井幡 光詞
Koichiro Misu
三須 幸一郎
Koji Murai
村井 康治
Kosaku Yamagata
山縣 浩作
Kenji Yoshida
吉田 憲司
Isao Murase
村瀬 功
Masao Ecchu
越中 昌夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002256588A priority Critical patent/JP2004096539A/ja
Priority to US10/493,662 priority patent/US7061345B2/en
Priority to PCT/JP2002/013088 priority patent/WO2003052930A1/ja
Priority to DE60229068T priority patent/DE60229068D1/de
Priority to EP02788838A priority patent/EP1455448B1/en
Publication of JP2004096539A publication Critical patent/JP2004096539A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

【課題】環境温度が変化しても、低損失で広帯域な通過特性と広帯域にわたる大きな減衰量を保証することができるフィルタ回路を得る。
【解決手段】***振特性を有する共振素子(弾性表面波共振器2)を直列要素とし、静電容量Cを有するキャパシタ15とインダクタンスLを有するインダクタ14からなる直列回路を用いて並列要素を構成したフィルタ回路において、ある基準温度との温度差をΔTとしたとき、上記温度差ΔTに伴う上記キャパシタ15の静電容量Cの変化量ΔCと、上記温度差ΔTに伴う上記インダクタ14のインダクタンスLの変化量ΔLとを、逆符号とする。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
この発明は、通信機等で用いられる特定の周波数範囲内の信号を通過させる一方、特定の周波数範囲外の信号を減衰させるフィルタ回路に関するものである。
【0002】
【従来の技術】
図22は、例えば特開平10−126212号公報(以下、文献1という)に記載された従来のフィルタ回路を示す構成図である。図22において、1は並列要素を構成する弾性表面波共振器、2は直列要素を構成する弾性表面波共振器、3は入力端子、4は入力側の接地端子、5は出力端子、6は出力側の接地端子である。
【0003】
図23は、弾性表面波共振器1の具体例を示す構成図である。例えば、図22に示された並列要素の弾性表面波共振器1の場合を例にすると、図23中、上側の電気端子7は入力端子3と同電位であり、下側の電気端子8は入力側接地端子4と同電位である。
【0004】
図24は、弾性表面波共振器1の具体的な構造を示す構成図である。図24において、9はIDT(Inter Digital Transducer)であり、太さdの電極指10を間隔pで幅wにわたり互いに交差して配置されている。通常は、厚さhのアルミニウムを主体とした金属薄膜を使うが、アルミニウム以外の金属を使う場合もある。11は反射器であり、IDT9と同様に、太さdのメタルストリップ12が間隔pで多数配列されている。
【0005】
図24では、メタルストリップ12が全て同電位となるように接続されたショートストリップ反射器の場合を示しているが、メタルストリップ12が独立した電位となるように、互いのメタルストリップ12を電気的に接続しないオープンストリップを用いる場合もある。IDT9と反射器11との間隔はそれぞれg、gであり、多くの場合gとgは同じ値を用いる。
【0006】
電気端子7と電気端子8との間に電気信号を印加すると、互いに交差する電極10の間に電界が生じ、この電界によって弾性表面波が励振される。このとき、電極指10の配列間隔pが弾性表面波の波長λの2分の1と一致するときに、弾性表面波は最も効率よく励振される。すなわち、電極指10の配列間隔pは、弾性表面波共振器の動作周波数を決定する。各電極指10間で励振された弾性表面波は、通常の弾性表面波用圧電基板を用いる場合、電極指10に垂直な双方向に伝搬し、IDT9から2つの反射器11の方向に伝搬する。
【0007】
一方、反射器11では、メタルストリップ12の質量負荷と電気的境界条件の差により、メタルストリップ12の端面で弾性表面波の反射が生じる。このとき、メタルストリップ12の配列間隔pが弾性表面波の半波長λ/2に一致するとき、各メタルストリップ12の端面での反射波が全て同相となるため、強い反射が生じる。
【0008】
この場合、IDT9で励振された弾性表面波は、両側の反射器11で反射され、弾性表面波エネルギーが閉じ込められ、共振器として動作する。弾性表面波共振器の動作については、文献:弾性波素子技術ハンドブック、日本学術振興会弾性波素子技術第150委員会編、平成3年11月30日第1版発行、pp.217〜227(以下、文献2という)に詳しく述べられている。弾性表面波共振器は、共振周波数fにて入力インピーダンスが最小となり、***振周波数fにて入力アドミタンスが最小となる。また、共振周波数fは***振周波数fより小さい。
【0009】
図25は、弾性表面波共振器の等価回路を示す回路図である。図25において、13は図24のIDT9が有する静電容量C、14はインダクタL、15はキャパシタCである。弾性表面波共振器の共振周波数fは、インダクタ14、キャパシタ15との直列共振の周波数であり、このとき、弾性表面波共振器の電気端子7と電気端子8との間のインピーダンスはほぼ短絡となる。また、弾性表面波共振器の***振周波数fは、静電容量(電極容量)13と直列回路(インダクタ14、キャパシタ15)との並列共振の周波数であり、このとき、弾性表面波共振器の電気端子7と電気端子8の間のインピーダンスはほぼ開放なる。これらの関係式は次式(1)、(2)で与えられる。
【0010】
【数1】
Figure 2004096539
【0011】
なお、文献2には、インダクタ14に抵抗成分Rを考慮し、直列共振におけるQ値(Quality Factor)を考慮した等価回路が示されている。このような等価回路を考える場合、共振周波数fにおける弾性表面波共振器の電気端子7と電気端子8との間のインピーダンスは、完全な短絡ではなく、最小値となる。
【0012】
図26は、図22に示すフィルタ回路の動作を説明する説明図である。(A)は直列要素の弾性表面波共振器2のインピーダンス特性を示し、(B)は並列要素の弾性表面波共振器1のアドミタンス特性を示し、(C)は直列要素の弾性表面波共振器2と並列要素の弾性表面波共振器1とを図22のように接続した場合のフィルタ特性を示している。
【0013】
次に動作について説明する。図26に示すように、直列要素の弾性表面波共振器2は、周波数fr2で直列共振を示し、周波数fa2で並列共振を示す。すなわち、弾性表面波共振器2は、共振周波数がfr2であり、***振周波数がfa2である。(A)の縦軸は、弾性表面波共振器2のインピーダンスの虚部を示している。弾性表面波共振器2は、弾性表面波が励振されない周波数範囲では、静電容量Cを有するキャパシタとして動作する。このため、共振周波数fr2よりも低周波数側や***振周波数fa2よりも高周波数側では、虚部が負のインピーダンスを示す。
【0014】
一方、並列要素の弾性表面波共振器1は、周波数fr1で直列共振を示し、周波数fa1で並列共振を示す。即ち、弾性表面波共振器1は、共振周波数がfr1であり、***振周波数がfa1である。(B)の縦軸は、弾性表面波共振器1のインピーダンスの虚部を示している。弾性表面波共振器1は共振周波数fr1よりも低周波数側や***振周波数fa1よりも高周波数側では、虚部が正のアドミタンスを示す。
【0015】
ここで、弾性表面波共振器2の共振周波数fr2と弾性表面波共振器1の***振周波数fa1とがほぼ等しくなるように設定する。このとき、弾性表面波共振器2は、共振周波数fr2の近傍の周波数では、インピーダンスがほぼ0となるので、短絡の状態となる。また、弾性表面波共振器1は、***振周波数fa1の近傍の周波数では、アドミタンスがほぼ0となるので、開放の状態になる。このため、入力端子3と出力端子5との間はほぼ短絡となり、入力端子3と入力側の接地端子4との間はほぼ開放となり、同様に、出力端子5と出力側の接地端子6との間はほぼ開放となる。したがって、入力側端子3と出力側端子5との間は、低損失な通過域を示すことになる。
【0016】
一方、弾性表面波共振器1の共振周波数fr1付近の周波数では、弾性表面波共振器1はほぼ短絡となる。このとき、入力端子3と入力側の接地端子4とがほぼ短絡となり、かつ、出力端子5と出力側の接地端子6とがほぼ短絡となるため、入力側端子3から出力側端子5へ電気信号を伝達することができず、大きな減衰極を形成する。この減衰極は、弾性表面波共振器1の共振周波数fr1付近の周波数となるので、フィルタ回路の通過域となる弾性表面波共振器1の***振周波数fa1よりも低い周波数に限定される。
【0017】
さらに、弾性表面波共振器2の***振周波数fa2付近の周波数では、弾性表面波共振器2はほぼ開放となる。したがって、入力端子3から出力端子5へ電気信号を伝達することができず、大きな減衰極を形成する。この減衰極は、弾性表面波共振器2の***振周波数fa2付近の周波数となるので、フィルタ回路の通過域となる弾性表面波共振器2の共振周波数fr2よりも高い周波数に限定される。
【0018】
図22に示すフィルタ回路の動作は、弾性表面波共振器以外の共振器でも同様の特性を示し、例えば、厚み縦振動や厚みすべり振動を利用したバルク波共振器を用いても同様である。
【0019】
バルク波共振器の場合、例えば、文献:電気電子のための固体振動論の基礎、オーム社発行、尾上守夫監修、昭和57年9月20日第1版発行、pp.175〜188(以下、文献3という)に示されているように、共振周波数fと***振周波数fとバルク波共振器を構成している圧電体の電気機械結合係数Kとの間には、近似的に次式(3)の関係があることが知られている。
【0020】
【数2】
Figure 2004096539
【0021】
式(3)は、バルク波共振器の共振周波数fと***振周波数fとの差が、使用する圧電体の電気機械結合係数Kに***振周波数fを乗じた値の半分にほぼ一致することを示している。この関係は、弾性表面波共振器の場合についてほぼ同様である。即ち、バルク波共振器や弾性表面波共振器等の弾性表面波共振器を用いてフィルタ回路を構成した場合、フィルタ回路の通過域の周波数と、大きな減衰を得られる減衰極の周波数との差は、弾性表面波共振器の共振周波数fと***振周波数fとの差に相当するため、これらの差は、フィルタ回路の通過域の周波数に使用する圧電体の電気機械結合係数Kを乗じた値のほぼ半分の値に制限される。したがって、フィルタ回路の通過域の周波数と、大きな減衰を必要とする阻止域の周波数との差は、使用する圧電体の性能による制限を受ける。
【0022】
例えば、弾性表面波共振器で使われる圧電体には、ニオブ酸リチウム(LiNbO)やタンタル酸リチウム(LiTaO)が広く知られているが、これらの電気機械結合係数Kは大きくても数十%である。したがって、フィルタ回路の周波数と、大きな減衰を得られる減衰極の周波数との差は、フィルタ回路の通過域の周波数の5〜6%程度の値までしか得られない。
【0023】
次に、図27は、例えば特開平6−350390号公報(以下、文献4という)に示された従来のフィルタ回路を示す構成図である。このフィルタ回路は、第1の弾性表面波共振器2aと第2の弾性表面波共振器2bとインダクタ16を直列要素とし、インダクタ14とキャパシタ15の並列共振回路を並列要素とした構成でなる。
【0024】
図28は、図27に示すフィルタ回路の動作を説明する説明図である。図28中、(A)は第1の弾性表面波共振器2aのインピーダンス特性17、第2の弾性表面波共振器2bのインピーダンス特性18、インダクタ16のインピーダンス特性19を示している。第1の弾性表面波共振器2aは共振周波数fr1、***振周波数fa1であり、第2の弾性表面波共振器2bの共振周波数はfr2、***振周波数はfa2である。このとき、第1の弾性表面波共振器2aの***振周波数fa1は第2の弾性表面波共振器2bの共振周波数fr2よりも低周波数となっている。
【0025】
(B)はインダクタ14とキャパシタ15の並列共振回路のアドミタンス特性20を示している。周波数fapは並列共振回路の***振周波数であり、第1の弾性表面波共振器2aの***振周波数fa1と第2の弾性表面波共振器2bの共振周波数fr2との間になるように***振周波数fapが設定されている。(A)、(B)ともに、縦軸は、虚部を示している。(C)は図27に示すフィルタ回路を構成した場合の通過特性を示している。
【0026】
インダクタ14とキャパシタ15とからなる並列共振回路の***振周波数fapは、フィルタ回路の通過域付近の周波数に設定されているので、並列共振回路はインピーダンスがほぼ開放となる。また、第1の弾性表面波共振器2aは、***振周波数fa1より高い周波数で動作しているので、容量性のインピーダンスを有する。さらに、第2の弾性表面波共振器2bは共振周波数fr2より高い周波数で動作しているので、容量性のインピーダンスを有する。
【0027】
このため、第1の弾性表面波共振器2aと第2の弾性表面波共振器2bが有する容量性インピーダンスを打ち消すために、誘導性インピーダンスを有するインダクタ16が必須である。一般に、GHzに達する周波数では、インダクタ損失が大きく、例えば誘電体基板上に形成されたインダクタではQ値が数十程度であり、空芯コイルのような高Qタイプのものでも、100程度が限界である。このため、図27に示すようなフィルタ回路の直列要素にも並列要素にもインダクタを用いる構成では、実際のフィルタ回路を構成した場合に、通過域の損失が増大してしまう。
【0028】
また、並列要素に用いた並列共振回路は、***振周波数fapよりも低周波数では、インダクタ14のアドミタンスの方が小さいために支配的となり、並列共振回路は誘導性のアドミタンスを示す。一方、***振周波数fapよりも高周波数では、キャパシタ15のアドミタンス方が小さいために支配的となり、並列共振回路は容量性のアドミタンスを示す。このため、フィルタ回路の通過域のインピーダンス特性は、***振周波数fapから離れると、純抵抗成分以外の成分が大きくなるため、広帯域にわたり低損失な特性を実現するのは困難である。
【0029】
次に、図29は、例えば特開平9−116380号公報(以下、文献5という)に示されている従来のフィルタ回路を示す構成図である。図29において、21はキャパシタ13と直列共振回路(キャパシタ15、インダクタ14)とを並列接続した共振回路である。
【0030】
共振回路21は、図25に示したものと同じであり、本質的に弾性表面波共振器となんら変わらない。さらに設計面でも、共振回路21の共振周波数と、並列要素の弾性表面波共振器1の***振周波数とをほぼ同じに設定する点で、図22に示したフィルタ回路と同じである。
【0031】
しかし、弾性表面波共振器が、使用する圧電体の電気機械結合係数に依存して共振周波数と***振周波数との差が決まるのに対して、図29に示した共振回路21はその制限がない分だけ広帯域化できる余地があるが、実際には、インダクタのQ値は、弾性表面波共振器2のQ値よりもかなり小さく、共振回路21により、弾性表面波共振器2よりも広帯域な特性を実現できても、低損失な通過特性を実現するのは難しい。
【0032】
さらに、共振回路21のQ値が小さいために、直列要素により形成されるフィルタ回路の通過域よりも高周波数側の減衰特性を急峻とするのが難しく、かつ、共振回路21が形成する減衰域も急峻な零点を形成するのが困難であり、通過域よりも高周波数側の減衰特性が劣化してしまう。
【0033】
そこで、通過域の周波数と減衰域の周波数が離れていても、低損失で広帯域な通過特性を実現し、かつ広帯域にわたり大きな減衰量を実現することができるフィルタ回路を得るため、***振特性を有する共振素子を用いて直列要素とし、インダクタとキャパシタの直列回路を並列要素とする構成とすることが考えられる。
【0034】
図30は、***振特性を有する共振素子を用いて直列要素とし、インダクタとキャパシタの直列回路を並列要素とする構成としたフィルタ回路の例を示す構成図である。図30において、2は直列要素を構成する***振特性を有する弾性表面波共振器(共振素子)、3は入力端子、4は入力側の接地端子、5は出力端子、6は出力側の接地端子、14はインダクタ、15はキャパシタである。なお、インダクタ14とキャパシタ15の直列回路は並列要素を構成し、π形回路構成をしている。
【0035】
図31は、弾性表面波共振器2が弾性表面波を励振しない周波数範囲、すなわち、弾性表面波共振器2の共振周波数frsよりも低い周波数範囲や、弾性表面波共振器2の***振周波数fasよりも高い周波数範囲におけるフィルタ回路の等価回路を示す回路図である。弾性表面波共振器2は、弾性表面波を励振しない周波数範囲では、静電容量Cのキャパシタ22として動作する。
【0036】
並列要素であるインダクタ14とキャパシタ15との直列共振回路は、周波数fで直列共振、すなわち共振特性を示す。このとき、入力端子3と入力側の接地端子4との間は、ほぼ短絡の状態となり、入力端子3に入力電気信号のほとんどは反射する。同様にして、出力端子5と出力側接地端子6との間を、入力信号はほとんど伝搬できない。すなわち、フィルタ回路としては、減衰極を示し、大きな阻止特性を示す。
【0037】
一方、共振周波数fよりも高い周波数では、インダクタ14のインピーダンスjωLは増大し、キャパシタ15のインピーダンス(1/jωC)は低下する。このため、直列共振回路は、インダクタ14のインピーダンスが支配的となる。並列要素がインダクタ14で、直列要素がコンデンサ22となる回路は、周波数fを遮断周波数とする高域通過形フィルタ特性を示す。
【0038】
インダクタ14、キャパシタ15、キャパシタ22の損失が少ない場合の通過特性は、周波数f付近に極めて急峻な減衰極を有する阻止特性を示し、また、遮断周波数f以上の周波数域では、低損失な特性を示す。しかし、例えば、移動体通信で使われる800MHzから2GHz付近における周波数域では、インダクタ14は、通常、100nHより小さいインダクタンスを使うことが多い。インダクタ14のQ値は、インダクタ14に抵抗成分が直列接続されたものと考え、インダクタ14のインピーダンスと抵抗成分の抵抗値との比がQ値に相当する。インダクタンスが大きくなるほど、インダクタのQ値は低下する。
【0039】
一方、キャパシタ15及びキャパシタ22は、移動体通信で使われる周波数域では、100pFよりも小さい静電容量を使うことが多く、このような静電容量におけるキャパシタ15のQ値は数百程度である。キャパシタ15のQ値は、キャパシタ15に抵抗成分が並列接続されたものとして考え、キャパシタ15に抵抗成分が並列接続されたものとして考え、抵抗成分の抵抗値とキャパシタ15のアドミタンスとの積の逆数がQ値に相当する。したがって、直列共振回路では、インダクタ14のQ値がフィルタ特性に大きく影響する。
【0040】
図32は、図29に示すフィルタ回路の回路動作を説明する説明図である。図32において、fは減衰極の周波数、fは遮断周波数である。23は図31の回路を構成するインダクタ14、キャパシタ15、キャパシタ22の損失がない場合の通過特性であり、24はインダクタ14、キャパシタ15、キャパシタ22の損失を考慮した場合の通過特性である。
【0041】
無損失の場合、すなわち、インダクタ14、キャパシタ15、キャパシタ22の各Q値が十分に大きい場合は、通過特性23のように、共振周波数f付近に急峻な減衰特性を有する減衰極をつくることができる。しかし、インダクタ14、キャパシタ15、キャパシタ22のQ値を実際の回路要素に則して考慮した場合には、通過特性24のように、無損失の場合よりも大きく劣化する。すなわち、共振周波数f付近の減衰極は、減衰極の周波数位置が不明確なほど減衰特性が劣化し、減衰量も劣化する。さらに、遮断周波数fより高い周波数における通過域でも、挿入損失が増大する。このため、インダクタ14、キャパシタ15、キャパシタ22等の回路素子を用いて図29の回路を構成しても、実際に得られるのは、通過特性24のような特性であり、フィルタ回路としては十分な性能を得ることができない。
【0042】
上記の問題点を改善するために、直列要素に弾性表面波共振器2を用いる。図33は、弾性表面波共振器2の具体的な構成を示す構成図であり、図34は、弾性表面波共振器2の通過特性を説明する説明図である。
【0043】
弾性表面波共振器2を直列要素として使うと、図34に示すような通過特性25を示す。すなわち、弾性表面波共振器2は、周波数frsにて直列共振特性を示し、周波数fasにて並列共振特性を示す。周波数frsを共振周波数といい、周波数fasを***振周波数という。共振周波数frsでは、弾性表面波共振器2は、ほぼ短絡となるので、通過特性25は低損失な特性を示す。
【0044】
一方、***振周波数fasでは、弾性表面波共振器2は、ほぼ開放となるので、通過特性25は減衰極を示す。このとき、弾性表面波共振器2の減衰極は、図32に示したようなインダクタ14とキャパシタ15からなる直列共振回路の場合よりも、急峻な減衰極を形成することができる。
【0045】
図34は、図30に示すフィルタ回路の動作を説明する説明図である。図34において、26は図30に示すフィルタ回路の通過特性であり、図32に示した通過特性24と、図33に示した通過特性とが重畳したものとして考えることができる。
【0046】
弾性表面波共振器2は、***振周波数fas付近に急峻な減衰極を形成することができる。しかし、減衰極と弾性表面波共振器2の共振周波数frsとの周波数差は、使用する圧電体の電気機械結合係数Kの制限を受け、所要の周波数差を自由に設けることができない。このため、減衰極がある所要の値以上の減衰量となる周波数幅には制限がある。一方、インダクタ14キャパシタ15の直列回路の共振周波数fを、弾性表面波共振器2の***振周波数fas付近になるように設定すると、通過特性24のように、明確な減衰極は形成できなくても、緩やかな減衰特性が、弾性表面波共振器2の通過特性25に重畳し、弾性表面波共振器2だけによる通過特性25の場合よりも、減衰量を大きくすることが可能となる。
【0047】
遮断周波数f及び遮断周波数fよりも高い周波数では、弾性表面波共振器2は、***振周波数fasよりも高い周波数範囲であり、弾性表面波はほとんど励振せずに、単なる静電容量Cを有するコンデンサ22として動作する。このため、弾性表面波を励振する通常の弾性表面波フィルタや弾性表面波共振器では、大電力を入力すると、弾性表面波の励振にともなうストレスマイグレーションや、大電流の流入によるエレクトロマイグレーションにより破壊が生じるに対して、図29に示すフィルタ回路では、弾性表面波共振器2は、大電流の流入によるエレクトロマイグレーションによる破壊だけが問題となる。さらに、弾性表面波共振器2の圧電体の電気機械結合係数Kには依存せずに、減衰極の周波数fasと遮断周波数fを設定することができ、設計の自由度が極めて高い。
【0048】
しかし、温度変化に対して、図30に示すフィルタ回路のインダクタ14のインダクタンスL、キャパシタ15の静電容量Cは変化し、並列要素のインダクタ14とキャパシタ15との直列共振回路の直列共振周波数fが変動してしまう。通常、移動体通信機器等でフィルタ回路が使われる場合、その使用環境温度範囲が設定され、その温度範囲内で、電気性能を保証しなければならない。しかし、環境温度の変化に伴い、フィルタ回路を構成するインダクタ14、キャパシタ15の素子値が変化し、共振周波数が変動してしまうため、減衰特性が劣化あるいは、通過域での損失が増大する等、使用温度範囲内で電気性能が保証できない問題があった。
【0049】
【発明が解決しようとする課題】
従来のフィルタ回路は以上のように構成されているので、環境温度が変化すると、低損失で広帯域な通過特性と広帯域にわたる大きな減衰量を保証することが困難である課題があった。
【0050】
この発明は上記のような課題を解決するためになされたもので、環境温度が変化しても、低損失で広帯域な通過特性と広帯域にわたる大きな減衰量を保証することができるフィルタ回路を得ることを目的とする。
【0051】
【課題を解決するための手段】
この発明に係るフィルタ回路は、***振特性を有する共振素子を直列要素とし、静電容量Cを有するキャパシタとインダクタンスLを有するインダクタからなる直列回路を用いて並列要素を構成したフィルタ回路において、ある基準温度との温度差をΔTとしたとき、上記温度差ΔTに伴う上記キャパシタの静電容量Cの変化量ΔCと、上記温度差ΔTに伴う上記インダクタのインダクタンスLの変化量ΔLとを、逆符号とするものである。
【0052】
また、他の発明に係るフィルタ回路は、***振特性を有する共振素子を並列要素とし、静電容量Cを有するキャパシタとインダクタンスLを有するインダクタからなる並列回路を用いて直列要素を構成したフィルタ回路において、ある基準温度との温度差をΔTとしたとき、上記温度差ΔTに伴う上記キャパシタの静電容量Cの変化量ΔCと、上記温度差ΔTに伴う上記インダクタのインダクタンスLの変化量ΔLとを、逆符号とするものである。
【0053】
また、前記キャパシタの静電容量Cと、前記インダクタのインダクタンスLとを、ΔL/ΔC=−L/Cの関係を満たすようにしたものである。
【0054】
また、前記キャパシタとして、インターディジタルキャパシタを用いたものである。
【0055】
また、前記インダクタとして、空芯コイルを用いたものである。
【0056】
また、前記インダクタとして、線膨張係数が7ppm/℃より大きな材料をコアとしたコイルを用いたものである。
【0057】
さらに、前記キャパシタとして、水晶基板上に作成したインターディジタルキャパシタを用いたものである。
【0058】
【発明の実施の形態】
以下、この発明の実施の形態を説明する。
実施の形態1.
図1は、この発明の実施の形態1によるフィルタ回路を示す回路図である。図1に示すフィルタ回路は、***振特性を示す弾性表面波共振器(共振素子)2を直列要素に、インダクタ14とキャパシタ15からなる共振特性を示す直列回路を並列要素とするπ形回路を構成している。
【0059】
図2は、弾性表面波共振器2が弾性表面波を励振しない周波数範囲におけるフィルタ回路の等価回路である。弾性表面波共振器2は、弾性表面波を励振しない周波数範囲では、静電容量Cのコンデンサ22として動作する。
【0060】
図3は、図2のフィルタ回路の動作を説明する説明図である。ある基準温度Tからの温度変化をΔTとし、上記温度差ΔTに伴うインダクタ14のインダクタンスLの変化量をΔL、キャパシタ15の静電容量Cの変化量をΔCとする。図3中、24aは基準温度Tにおける図2の回路を構成するインダクタ14、キャパシタ15、キャパシタ22の損失を考慮した場合の通過特性である。共振周波数はfrTである。
【0061】
ある基準温度Tからの温度差をΔTとし、上記温度差ΔTに伴うインダクタ14のインダクタンスの変化量をΔLとし、上記温度差ΔTに伴うキャパシタの変化量をΔCとすると、ΔT変化した温度T+ΔTにおいて、
【0062】
【数3】
Figure 2004096539
【0063】
のいずれかの関係を満たす場合、インダクタ14とキャパシタ15からなる直列回路の共振周波数frΔT1は、温度Tにおける共振周波数frTより低周波数となり、共振特性は24bとなる。
【0064】
すなわち、温度変化に伴い、インダクタン14のインダクタンスが増大する、または、キャパシタ15の静電容量が増大すると、共振周波数frTは低周波側に移動する。
【0065】
一方、基準温度TからΔT変化した温度T+ΔTにおいて、
【0066】
【数4】
Figure 2004096539
【0067】
のいずれかの関係を満たす場合、インダクタ14とキャパシタ15からなる直列回路の共振周波数frΔT2、温度Tにおける共振周波数frTより高周波数となり、共振特性は24cとなる。
【0068】
すなわち、温度変化に伴い、インダクタ14のインダクタンスが減少する、または、キャパシタンス15の静電容量が減少すると、共振周波数frTは高周波側に移動する。
【0069】
したがって、温度差ΔTに伴うインダクタ14のインダクタンスの変化量ΔLとキャパシタ15の静電容量の変化量ΔCを逆符号とすると、インダクタンスの変化による共振周波数の変動と静電容量の変化による共振周波数の変動は打ち消し合う。よって、温度変化に対して共振周波数が変動しない、あるいは共振周波数の変動が小さいインダクタ14とキャパシタ15からなる直列回路を得ることができ、低損失で広帯域な通過特性と広帯域にわたる大きな減衰量を実現できる。したがって、環境温度に左右されず電気性能を保証できる。
【0070】
実施の形態2.
図4は、この発明の実施の形態2によるフィルタ回路を示す回路図である。図4に示すフィルタ回路は、***振特性を示す弾性表面波共振器(共振素子)1を並列要素に、インダクタ14とキャパシタ15からなる***振特性を示す並列回路を直列要素に用いている。
【0071】
図5は、図4に示すフィルタ回路の弾性表面波共振器1が弾性表面波を励振しない周波数範囲における等価回路である。弾性表面波共振器1は、電極容量と同じ静電容量Cのコンデンサ22として考える。
【0072】
図6は、弾性表面波共振器1を並列要素とした場合の回路図であり、図7は、図6に示した弾性表面波共振器1の通過特性を示す説明図である。図7において、27は弾性表面波共振器1の通過特性である。
【0073】
弾性表面波共振器1を並列要素とした場合、共振周波数frpにて弾性表面波共振器1が短絡となるので、通過特性に大きな減衰極を形成する。また、***振周波数fapにて弾性表面波共振器1が開放となるので、通過特性は最小値を示す。
【0074】
図8は、図4に示すフィルタ回路の動作を説明する説明図である。図8において、28は、図4に示すフィルタ回路の通過特性である。
【0075】
図4に示すフィルタ回路では、弾性表面波共振器1の共振周波数frpおよび直列要素の***振周波数fを遮断周波数fより高い周波数に設定する。このような条件にすると、通過域では、弾性表面波共振器1は、共振周波数frpよりも低い周波数となるので、弾性表面波を励振しない状態で動作させることができる。このため、通過域で弾性表面波を励振する通常の弾性表面波フィルタや弾性表面波共振器では、大電力を入力すると、弾性表面波の励振に伴うストレスマイグレーションや、大電流の流入によるエレクトロマイグレーションにより破壊が生じるのに対して、図4に示すフィルタ回路では、弾性表面波共振器1は、大電流の流入によるエレクトロマイグレーションによる破壊だけが問題となるので、従来のこの種の弾性表面波フィルタに比べ、より大電力動作に対して耐性が高くなる。
【0076】
図9は、図5に示すフィルタ回路の動作を説明する説明図である。図9中、29aは基準温度Tにおける図5の回路を構成するインダクタ14、キャパシタ15、キャパシタ22の損失を考慮した場合の通過特性である。***振周波数はfaTである。
【0077】
ある基準温度Tからの温度差をΔTとし、上記温度差ΔTに伴うインダクタ14のインダクタンスの変化量をΔL、上記温度差ΔTに伴うキャパシタの変化量をΔCとすると、ΔT変化した温度T+ΔTにおいて、
【0078】
【数5】
Figure 2004096539
【0079】
のいずれかの関係を満たす場合、図5に示すフィルタ回路の***振周波数faΔT1は、温度Tにおける***振周波数faTより低周波数となり、共振特性は29bとなる。
【0080】
すなわち、温度変化に伴い、インダクタン14のインダクタンスが増大する、または、キャパシタ15の静電容量が増大すると、***振周波数faTは低周波側に移動する。
【0081】
一方、基準温度TからΔT変化した温度T+ΔTにおいて、
【0082】
【数6】
Figure 2004096539
【0083】
のいずれかの関係を満たす場合、図5に示すフィルタ回路の***振周波数faΔT2、温度Tにおける***振周波数frTより高周波数となり、共振特性は29cとなる。
【0084】
すなわち、温度変化に伴い、インダクタン14のインダクタンスが減少する、または、キャパシタ15の静電容量が減少すると、***振周波数faTは高周波側に移動する。
【0085】
したがって、温度変化ΔTに伴うインダクタ14のインダクタンスの変化量ΔLとキャパシタ15の静電容量の変化量ΔCを逆符号とすると、インダクタンスの変化による***振周波数の変動と静電容量の変化による***振周波数の変動は打ち消し合う。よって、温度変化に対して***振周波数が変動しないフィルタ回路を得ることができ、低損失で広帯域な通過特性と広帯域にわたる大きな減衰量を実現できる。したがって、環境温度に左右されず電気性能を保証できる。
【0086】
実施の形態3.
上述した図1及び図4に示す実施の形態1及び2において、インダクタ14のインダクタンスをL、キャパシタ15の静電容量をCとしたとき、インダクタ14、キャパシタ15からなる共振回路の共振周波数fは、次式で表すことができる。
【0087】
【数7】
Figure 2004096539
【0088】
式(12)をCについて微分すると、式(13)となる。
【0089】
【数8】
Figure 2004096539
【0090】
dL→ΔL、dC→ΔCと書き換えると、式(14)となる。
【0091】
【数9】
Figure 2004096539
【0092】
したがって、基準温度からの温度差ΔTに伴うインダクタ14のインダクタンスの変化量ΔL、キャパシタ15の静電容量の変化量ΔC、インダクタ14のインダクタンスL、そして、キャパシタ15の静電容量Cとの間に、式(14)の関係が成り立つと、インダクタ14、キャパシタ15からなる共振回路の共振周波数fは変化しない。
【0093】
したがって、式(14)が成り立つように、実施の形態1または実施の形態2記載のフィルタ回路を構成すると、温度変化に対して共振周波数が変動しないフィルタ回路を得ることができ、低損失で広帯域な通過特性と広帯域にわたる大きな減衰量を実現できる。したがって、環境温度に左右されず電気性能を保証できる。
【0094】
実施の形態4.
図10は、この発明の実施の形態4によるフィルタ回路を示す構成図である。図10に示すフィルタ回路の構成は、図1に示す実施の形態1に係るフィルタ回路と同じであるが、異なる点は、コンデンサ15を圧電基板上に形成したインターディジタルキャパシタとしている点である。
【0095】
図11は、インターディジタルキャパシタの構造図である。図11に示したインターディジタルキャパシタは、図24に示したIDT9と同じ構造である。IDT9は、弾性表面波を励振しない周波数では、単なるキャパシタとして動作するので、弾性表面波共振器2の***振周波数と大きく異なる周波数のIDT9を形成することにより、インターディジタルキャパシタを実現することができる。
【0096】
この種のIDT9のパターンは、正確なパターン形成ができるので、通常のチップキャパシタ等を用いる場合より、高精度に静電容量を得ることができる。また、インターディジタルキャパシタはチップコンデンサより小さく形成できるため、フィルタ回路のサイズを小さくする効果も得られる。
【0097】
以上では、図11に示した回路構成で説明してきたが、図4に示す実施の形態2に係るフィルタ回路構成における直列要素のキャパシタをインターディジタルキャパシタとしても、同じ効果を得ることができる。
【0098】
実施の形態5.
図12は、この発明の実施の形態4によるフィルタ回路を示す構成図である。図12中、インダクタ14は空芯コイルとしている。
【0099】
キャパシタ15を、圧電性基板としてよく用いられるLiNbO上に形成したインターディジタルキャパシタとした場合、温度変化ΔTに伴う、静電容量の変化量ΔCは、正の符号を有する。一方、温度変化ΔTに伴う、空芯コイルのインダクタンスの変化量ΔLは、−の符号を有する。したがって、ΔLとΔCが逆符号であるため、共振周波数の変動が小さくなり、温度変化によらず、低損失で広帯域な通過特性と広帯域にわたる大きな減衰量を実現できる。したがって、環境温度に左右されず電気性能を保証できる。
【0100】
図13は、チップインダクタと、LiNbO基板上に形成したインターディジタルキャパシタを用い、実際にフィルタ回路を構成した場合の通過特性測定結果である。図13中、32aはフィルタ回路を25℃に保ち測定した通過特性であり、fr25は並列要素の共振周波数である。32bはフィルタ回路の温度を75℃に保ち測定した通過特性であり、fr75は並列要素の共振周波数である。
【0101】
図14は、図13の共振周波数近傍を拡大した図である。温度変化による共振周波数の変動|fr25−fr75|は約15MHzであり、低周波数側に変動している。
【0102】
図15は、この発明の実施の形態5に係るフィルタ回路を、空芯コイルと、LiNbO基板上に形成したインターディジタルキャパシタを用い、実際に構成した場合の通過特性測定結果である。図15中、33aはフィルタ回路を25℃に保ち測定した通過特性であり、fr25は並列要素の共振周波数である。33bはフィルタ回路の温度を75℃に保ち測定した通過特性であり、fr75は並列要素の共振周波数である。
【0103】
図16は、図15の共振周波数近傍を拡大した図である。温度変化による共振周波数の変動|fr25−fr75|は約10MHzであり、低周波数側に変動している。インダクタを空芯コイルにすることで、チップコイルを用いてフィルタ回路を構成した場合より共振周波数の変動を小さくすることができる。
【0104】
以上では、コイル、キャパシタからなる共振周波数が確認できるように、共振周波数を弾性表面波共振器2の***振周波数周波数より低い周波数に設定しているが、***振周波数付近に設定しても、同様の効果が得られるため、温度変化によらず、低損失で広帯域な通過特性と広帯域にわたる大きな減衰量を実現でき、環境温度に左右されず電気性能を保証できる。
【0105】
また、上述した説明は、図12に示した回路構成で説明してきたが、並列要素の直列共振回路が2つ以上であっても、同じ効果を得ることができる。また、図4に示す回路構成における直列要素のインダクタを空芯コイルとしても、同じ効果を得ることができる。
【0106】
実施の形態6.
図17は、この発明の実施の形態6によるフィルタ回路を示す構成図である。図17のフィルタ回路の構成は、インダクタ14を線膨張係数が約380ppm/℃のポリスチレンをコアとしたコイルとしている。図18は、上記ポリスチレンをコア30としたコイル31を示している。
【0107】
ここで、インダクタのインダクタンスLは、例えば、文献:電磁気学、共立出版発行、末松安晴著、昭和48年10月5日第1版発行、pp.206〜207(以下、文献6という)に示されているように、次式(15)で表すことができる。
【0108】
【数10】
Figure 2004096539
【0109】
ここで、γは長岡係数、μは透磁率、aはコアの半径、Nはコイルの巻数、lはコアの長さである。
【0110】
線膨張係数が約380ppm/℃のポリスチレンをコア30としたコイル31では、温度変化ΔTに伴って、コア30が膨張する。コア30は、コイル31によって拘束されており、半径方向にはほとんど膨張せず、長さ方向の膨張が支配的となるため、式(15)より、インダクタンスLは減少する。すなわち、インダクタンスの変化量ΔLは負の符号を有することになる。通常、キャパシタ15を圧電性基板としてよく用いられるLiNbO基板上に形成したインターディジタルキャパシタとした場合、例えば、文献2のpp.544に示されているように、LiNbOの誘電率の温度特性は正の温度係数を有するため、温度変化ΔTに伴う、静電容量の変化量ΔCは、正の符号を有する。したがって、ΔLとΔCが逆符号となり、インダクタ14のインダクタンスの変化による共振周波数の変動とキャパシタ15の静電容量の変化による共振周波数の変動が打ち消し合い、共振周波数の変動は小さくなる。
【0111】
図19は、コア30を上記ポリスチレンとしたコイル31と、LiNbO基板上に形成したインターディジタルキャパシタを用い、実際にフィルタ回路を構成した場合の通過特性測定結果である。図19中、34aは測定温度を25℃に保ち測定した通過特性であり、fr25は並列要素の共振周波数である。また、図20は、図19の共振周波数近傍を拡大した図である。このとき、上記インターディジタルキャパシタの静電容量はC=2.52pFであり、上記コア30をポリスチレンとしたコイル31のインダクタンスはL=17.67nHであり、共振周波数はfr25=754MHzである。34bは測定温度を75℃に保ち測定した通過特性であり、fr75は並列要素の共振周波数である。このとき、温度変化に伴い、上記インターディジタルキャパシタの静電容量はC=2.55pF、上記コア30をポリスチレンとしたコイル31のインダクタンスはL=17.34nHと変化している。
【0112】
したがって、温度変化ΔTに伴う静電容量の変化はΔC=0.025pF、インダクタンスの変化はΔL=−0.33nHであり、逆符号となるため、キャパシタによる共振周波数の変動と、インダクタによる共振周波数の変動は打ち消しあい、共振周波数の変動は約3.5MHzとなる。これは、インダクタをチップインダクタとした場合とインダクタを空芯コイルとした場合より小さくなっている。
【0113】
実施の形態6では、温度変化ΔT=50℃による共振周波数の変動|fr25−fr75|は約3.5MHzであり、高周波数側に変動している。したがって、共振周波数の変動を零とするには、約146ppm/℃の材料をコアにしたコイルとするのが好ましい。また、共振周波数の変動を−3.5MHzまで許容するとするには、約7ppm/℃より大きな材料をコアにすればよい。
【0114】
以上では、コイル、キャパシタからなる直列回路の共振周波数が確認できるように、共振周波数を弾性表面波共振器2の***振周波数周波数より低い周波数に設定しているが、***振周波数付近に設定しても効果は同じである。
【0115】
したがって、線膨張係数が7ppm/℃より大きな材料をコアとしたコイルを並列要素の直列回路に用いれば、温度変化に伴うインターディジタルキャパシタの静電容量の変化量ΔCによる共振周波数の変動と、コアをポリスチレンとしたコイルのインダクタンスの変化量ΔLによる共振周波数の変動が打ち消し合い、共振周波数の変動がチップインダクタを用いた場合より小さくすることができ、温度変化によらず、低損失で広帯域な通過特性と広帯域にわたる大きな減衰量を実現でき、環境温度に左右されず電気性能を保証できる。
【0116】
以上では、図13に示した回路構成で説明してきたが、並列要素の直列共振回路が2つ以上であっても同じ効果を得ることができる。また、図4に示す回路構成における直列要素のインダクタを線膨張係数が7ppm/℃より大きな材料をコアとしたコイルとしても、同じ効果を得ることができる。
【0117】
実施の形態7.
図21は、この発明の実施の形態7によるフィルタ回路を示す構成図である。図21のフィルタ回路の構成は、図1に示したフィルタ回路と同じであるが、図21では、コンデンサ15を水晶基板に形成したインターディジタルキャパシタとしている。
【0118】
水晶基板は、文献2、pp111〜113に示されるように、広い温度範囲において、特性変化が少ない、いわゆる零温度特性を有する基板である。したがって、水晶基板上にインターディジタルキャパシタを形成することにより、インターディジタルキャパシタの静電容量は、温度によって変化せず、安定した特性を示す。したがって、低損失で広帯域な通過特性と広帯域にわたる大きな減衰量を実現でき、環境温度に左右されず電気性能を保証できる。
【0119】
以上では、図1に示した回路構成で説明してきたが、図4に示す実施の形態2に係るフィルタ回路の構成における直列要素のキャパシタを水晶基板上に形成したインターディジタルキャパシタとしても、同じ効果を得ることができる。
【0120】
【発明の効果】
以上のように、この発明によれば、温度差ΔTに伴うインダクタのインダクタンスの変化量ΔLとキャパシタの静電容量の変化量ΔCを逆符号とすることで、環境温度が変化しても、低損失で広帯域な通過特性と広帯域にわたる大きな減衰量を保証することができるフィルタ回路を得ることができる。
【0121】
また、前記キャパシタの静電容量Cと、前記インダクタのインダクタンスLとを、ΔL/ΔC=−L/Cの関係を満たすようにすることで、温度変化に対して共振周波数が変動しないフィルタ回路を得ることができ、低損失で広帯域な通過特性と広帯域にわたる大きな減衰量を実現でき、環境温度に左右されず電気性能を保証できる。
【0122】
また、前記キャパシタとして、インターディジタルキャパシタを用いることで、通常のチップキャパシタ等を用いる場合より、高精度に静電容量を得ることができ、チップコンデンサより小さく形成できるため、フィルタ回路のサイズを小さくする効果も得られる。
【0123】
また、前記インダクタとして、空芯コイルを用いることで、共振周波数の変動が小さくなり、温度変化によらず、低損失で広帯域な通過特性と広帯域にわたる大きな減衰量を実現でき、環境温度に左右されず電気性能を保証できる。
【0124】
また、前記インダクタとして、線膨張係数が7ppm/℃より大きな材料をコアとしたコイルを用いることで、共振周波数の変動がチップインダクタを用いた場合より小さくすることができ、温度変化によらず、低損失で広帯域な通過特性と広帯域にわたる大きな減衰量を実現でき、環境温度に左右されず電気性能を保証できる。
【0125】
さらに、前記キャパシタとして、水晶基板上に作成したインターディジタルキャパシタを用いることで、低損失で広帯域な通過特性と広帯域にわたる大きな減衰量を実現でき、環境温度に左右されず電気性能を保証できる。
【図面の簡単な説明】
【図1】この発明の実施の形態1によるフィルタ回路を示す構成図である。
【図2】弾性表面波共振器が弾性表面波を励振しない周波数範囲における図1のフィルタ回路の等価回路を示す図である。
【図3】図2のフィルタ回路の動作を説明する説明図である。
【図4】この発明の実施の形態2によるフィルタ回路を示す構成図である。
【図5】弾性表面波共振器が弾性表面波を励振しない周波数範囲における図4に示すフィルタ回路の等価回路を示す図である。
【図6】弾性表面波共振器を並列要素としたときの回路図である。
【図7】図6の弾性表面波共振器の動作を説明する説明図である。
【図8】図4に示すフィルタ回路の動作を説明する説明図である。
【図9】図5のフィルタ回路の動作を説明する説明図である。
【図10】この発明の実施の形態4によるフィルタ回路を示す構成図である。
【図11】インターディジタルキャパシタを示す構成図である。
【図12】この発明の実施の形態5によるフィルタ回路を示す構成図である。
【図13】並列要素をインターディジタルキャパシタとチップインダクタにより構成したフィルタ回路の通過特性測定結果である。
【図14】この発明の実施の形態5によるフィルタ回路の通過特性測定結果である。
【図15】この発明の実施の形態5によるフィルタ回路の通過特性測定結果である。
【図16】この発明の実施の形態5によるフィルタ回路の通過特性測定結果である。
【図17】この発明の実施の形態6によるフィルタ回路を示す構成図である。
【図18】線膨張係数が大きな材料をコアとしたコイルを示す構成図である。
【図19】この発明の実施の形態6によるフィルタ回路の通過特性測定結果である。
【図20】この発明の実施の形態6によるフィルタ回路の通過特性測定結果である。
【図21】この発明の実施の形態7によるフィルタ回路を示す構成図である。
【図22】従来のフィルタ回路を示す構成図である。
【図23】弾性表面波共振器の具体例を示す構成図である。
【図24】弾性表面波共振器の具体的な構造を示す構造図である。
【図25】弾性表面波共振器の等価回路を示す構成図である。
【図26】図22に示すフィルタ回路の動作を説明する説明図である。
【図27】従来のフィルタ回路を示す構成図である。
【図28】図25のフィルタ回路の動作を説明する説明図である。
【図29】従来のフィルタ回路を示す構成図である。
【図30】直列要素を弾性表面波共振器、並列要素をインダクタとキャパシタからなる直列共振回路で構成したフィルタ回路を示す構成図である。
【図31】弾性表面波共振器が弾性表面波を励振しない周波数範囲における図30のフィルタ回路の等価回路を示す構成図である。
【図32】図31のフィルタ回路の動作を説明する説明図である。
【図33】弾性表面波共振器を直列要素とした場合の回路図である。
【図34】図33の弾性表面波共振器の動作を説明する説明図である。
【図35】図30のフィルタ回路の動作を説明する説明図である。
【符号の説明】
1、2 弾性表面波共振器、13 静電容量、14、16 インダクタ、15、22 キャパシタ、21 共振回路、30 コア、31 コイル。

Claims (7)

  1. ***振特性を有する共振素子を直列要素とし、静電容量Cを有するキャパシタとインダクタンスLを有するインダクタからなる直列回路を用いて並列要素を構成したフィルタ回路において、
    ある基準温度との温度差をΔTとしたとき、上記温度差ΔTに伴う上記キャパシタの静電容量Cの変化量ΔCと、上記温度差ΔTに伴う上記インダクタのインダクタンスLの変化量ΔLとを、逆符号とする
    ことを特徴とするフィルタ回路。
  2. ***振特性を有する共振素子を並列要素とし、静電容量Cを有するキャパシタとインダクタンスLを有するインダクタからなる並列回路を用いて直列要素を構成したフィルタ回路において、
    ある基準温度との温度差をΔTとしたとき、上記温度差ΔTに伴う上記キャパシタの静電容量Cの変化量ΔCと、上記温度差ΔTに伴う上記インダクタのインダクタンスLの変化量ΔLとを、逆符号とする
    ことを特徴とするフィルタ回路。
  3. 請求項1または2に記載のフィルタ回路において、
    前記キャパシタの静電容量Cと、前記インダクタのインダクタンスLとを、ΔL/ΔC=−L/Cの関係を満たすようにした
    ことを特徴とするフィルタ回路。
  4. 請求項1または2に記載のフィルタ回路において、
    前記キャパシタとして、インターディジタルキャパシタを用いた
    ことを特徴とするフィルタ回路。
  5. 請求項1または2に記載のフィルタ回路において、
    前記インダクタとして、空芯コイルを用いた
    ことを特徴とするフィルタ回路。
  6. 請求項1または2に記載のフィルタ回路において、
    前記インダクタとして、線膨張係数が7ppm/℃より大きな材料をコアとしたコイルを用いた
    ことを特徴とするフィルタ回路。
  7. 請求項1または2に記載のフィルタ回路において、
    前記キャパシタとして、水晶基板上に作成したインターディジタルキャパシタを用いた
    ことを特徴とするフィルタ回路。
JP2002256588A 2001-12-14 2002-09-02 フィルタ回路 Pending JP2004096539A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002256588A JP2004096539A (ja) 2002-09-02 2002-09-02 フィルタ回路
US10/493,662 US7061345B2 (en) 2001-12-14 2002-12-13 Filter circuit with series and parallel elements
PCT/JP2002/013088 WO2003052930A1 (fr) 2001-12-14 2002-12-13 Circuit de filtrage
DE60229068T DE60229068D1 (de) 2001-12-14 2002-12-13 Filterschaltung
EP02788838A EP1455448B1 (en) 2001-12-14 2002-12-13 Filter circuitry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002256588A JP2004096539A (ja) 2002-09-02 2002-09-02 フィルタ回路

Publications (1)

Publication Number Publication Date
JP2004096539A true JP2004096539A (ja) 2004-03-25

Family

ID=32061770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002256588A Pending JP2004096539A (ja) 2001-12-14 2002-09-02 フィルタ回路

Country Status (1)

Country Link
JP (1) JP2004096539A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100849741B1 (ko) 2005-07-28 2008-07-31 후지쓰 메디아 데바이스 가부시키가이샤 공진기, 래더형 필터, 탄성 표면파 필터 및 안테나 분파기
KR20110026079A (ko) * 2009-09-07 2011-03-15 삼성전자주식회사 체적 탄성파 공진기를 이용한 위상 천이 장치
JP2020028013A (ja) * 2018-08-10 2020-02-20 株式会社村田製作所 フィルタおよびマルチプレクサ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100849741B1 (ko) 2005-07-28 2008-07-31 후지쓰 메디아 데바이스 가부시키가이샤 공진기, 래더형 필터, 탄성 표면파 필터 및 안테나 분파기
KR20110026079A (ko) * 2009-09-07 2011-03-15 삼성전자주식회사 체적 탄성파 공진기를 이용한 위상 천이 장치
KR101616941B1 (ko) * 2009-09-07 2016-04-29 삼성전자주식회사 체적 탄성파 공진기를 이용한 위상 천이 장치
JP2020028013A (ja) * 2018-08-10 2020-02-20 株式会社村田製作所 フィルタおよびマルチプレクサ

Similar Documents

Publication Publication Date Title
US7061345B2 (en) Filter circuit with series and parallel elements
JP6439799B2 (ja) バンドパスフィルタおよびフィルタモジュール
US7659653B2 (en) Acoustic wave device and filter
US7688161B2 (en) Acoustic wave device and filter using the same
US7741931B2 (en) Acoustic wave device, resonator and filter
JP7292100B2 (ja) 弾性表面波素子、フィルタ回路及び電子部品
US20080061657A1 (en) Acoustic wave device and filter
JP2008109413A5 (ja)
JP3827232B2 (ja) フィルタ装置およびそれを用いた分波器
WO2020036100A1 (ja) 弾性波フィルタ
JP2003243966A (ja) フィルタ回路
Zheng et al. Near 5-GHz Longitudinal Leaky Surface Acoustic Wave Devices on LiNbO $ _ {3} $/SiC Substrates
JP2015119449A (ja) 弾性表面波フィルタ
JPH07273597A (ja) 共振器型弾性表面波フィルタ
JP2015119452A (ja) 弾性表面波フィルタ
Hashimoto et al. Operation mechanism of double-mode surface acoustic wave filters with pitch-modulated IDTs and reflectors
JP2004096539A (ja) フィルタ回路
JPWO2005036743A1 (ja) 弾性境界波装置
US11223341B2 (en) Suppressing parasitic sidebands in lateral bulk acoustic wave resonators
JP3402015B2 (ja) 弾性表面波フィルタ
JPH1093375A (ja) 弾性表面波フィルタ
JP2001044790A (ja) 弾性表面波装置
JP2000174586A (ja) 弾性表面波フィルタ
JP2009188939A (ja) 薄膜バルク波共振器
CN111147043B (zh) 高通滤波器及多路复用器

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050815

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20080520

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819