JP2004092591A - 内燃機関の排気ガス浄化装置 - Google Patents

内燃機関の排気ガス浄化装置 Download PDF

Info

Publication number
JP2004092591A
JP2004092591A JP2002257763A JP2002257763A JP2004092591A JP 2004092591 A JP2004092591 A JP 2004092591A JP 2002257763 A JP2002257763 A JP 2002257763A JP 2002257763 A JP2002257763 A JP 2002257763A JP 2004092591 A JP2004092591 A JP 2004092591A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
exhaust gas
exhaust
bypass passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002257763A
Other languages
English (en)
Inventor
Hideo Yahagi
矢作 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002257763A priority Critical patent/JP2004092591A/ja
Publication of JP2004092591A publication Critical patent/JP2004092591A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

【課題】NOx吸蔵還元触媒とこのバイパス通路を備えた排気浄化装置において、NOx吸蔵還元触媒の熱劣化の防止、エンジン性能低下の防止、及び、熱破壊の防止を図る。
【解決手段】排気通路にNOx吸蔵還元触媒を設けた内燃機関の排気ガス浄化装置において、NOx吸蔵還元触媒をバイパスする排気バイパス通路を設けると共に、この排気バイパス通路を開閉する開閉弁を設け、排気ガス中にNOx成分が多い内燃機関の運転状態では開閉弁を閉じ、排気ガス中にNOx成分が少ない内燃機関の運転状態では開閉弁を開くように構成した。
【選択図】   図4

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の排気ガス浄化装置に関し、特に、排気ガスのNOx成分を浄化するNOx吸蔵還元触媒を備えた内燃機関の排気ガス浄化装置の改良に関するものである。
【0002】
【従来の技術】
従来、内燃機関の排気ガス浄化装置として、内燃機関の排気通路に三元触媒を設けることが一般的に行われている。この三元触媒は、内燃機関が理論空燃比で運転されている状態で、排気ガス中に含まれるHC、CO、及びNOx成分を効率良く浄化することができることが知られている。
【0003】
一方、内燃機関の燃費を向上させる方法の1つとして、近年、内燃機関を理論空燃比よりも空気量が過剰なリーン空燃比で運転することが行われるようになって来ている。すると、このリーン空燃比で運転された内燃機関から排出される排気ガスでも空気量が過剰となり、三元触媒におけるNOxの低減量が小さくなってしまう。
【0004】
そこで、リーン空燃比で運転する内燃機関においては、排気通路に三元触媒とは別にNOx吸蔵還元触媒を設けることにより、リーン空燃比で運転された内燃機関から排出される排気ガス中のNOxを低減することが行われている。
【0005】
ところが、NOx吸蔵還元触媒は浄化温度ウインドウを持ち、硫黄被毒により劣化を起こすことが知られている。また、高温状態では、硫黄被毒成分が結晶化を起こし、硫黄成分が永久被毒となる場合がある。
【0006】
そこで、NOx吸収材の下流にNOx分解触媒を直列配置し、これをバイパスするバイパス通路を設け、このバイパス通路内にはバイパスバルブを設けて、排気ガスの温度が所定温度を越えた高温になった時に、このバイパスバルブを開いて排気ガスをバイパス通路に流し、高温排気ガスによるNOx分解触媒の硫黄被毒を防止するようにした排気浄化装置が提案されている(例えば、特許文献1参照)。
【0007】
【特許文献1】
特開平5−98954号公報(特許請求の範囲、図1)
【0008】
【発明が解決しようとする課題】
ところで、排気通路を形成する排気管の圧損は、触媒、マフラー、パイプ等の各排気通路構成要素の絞り量の加算により決められており、排気通路上に排気通路構成要素が追加されると、その分圧損が増大する。この圧損は、排気通路を流れる排気ガス流量が大きくなる程、その影響が大きくなり、圧損が増大すると、吸気弁と排気弁のバルブオーバラップ時の圧力上昇により、吸入空気量が低下して内燃機関の性能が低下するという問題がある。
【0009】
また、排気管の温度は数百度のオーダーで変化しており、長さの異なる排気管を並列に連結した排気通路の場合、その一方のみに排気ガスを流した場合には、2つの排気管の伸びの差から2つの排気管の間に歪みが生じて排気管が破壊するという問題がある。即ち、特許文献1に開示のように、NOx分解触媒を直列配置し、これをバイパスするバイパス通路を設けた場合には、バイパス通路でのバルブ開閉により排気ガスの流量が両通路(触媒側、バイパス通路側)で大きく変わり、2つの通路の温度差が大きくなって2つの排気通路間に歪みが生じて排気管が破壊するのである。
【0010】
更に、燃料のガソリンを直接内燃機関のシリンダ内に噴射するガソリン直噴機関では、成層燃焼(リーン燃焼)が内燃機関の低回転、低流量域で実施されており、内燃機関の高回転、高流量時には理論空燃比で内燃機関が運転されている。
従って、内燃機関の高回転、高流量時には三元触媒によって排気ガスの浄化が十分に行われるので、NOx吸蔵還元触媒は不要となる。
【0011】
そこで、本発明は、排気通路にNOx吸蔵還元触媒とこれをバイパスするバイパス通路を備えた内燃機関において、内燃機関の高回転、高流量時におけるNOx吸蔵還元触媒の熱劣化によるNOx浄化率の低下の防止、内燃機関の高回転、高流量時における圧損上昇による内燃機関の性能低下の防止、及び、並列に配置された排気通路の一方の熱伸長による排気通路の破壊の防止を図ることができる内燃機関の排気ガス浄化装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
前記目的を達成する本発明の内燃機関の排気ガス浄化装置は、以下に示す第1から第8の形態をとることができる。
【0013】
第1の形態は、内燃機関の排気通路にNOx吸蔵還元触媒を設けた内燃機関の排気ガス浄化装置において、NOx吸蔵還元触媒をバイパスする排気バイパス通路を設けると共に、この排気バイパス通路を開閉する開閉弁を設け、排気ガス中にNOx成分が多い内燃機関の運転状態では前記開閉弁を閉じ、排気ガス中にNOx成分が少ない内燃機関の運転状態では開閉弁を開くように構成したことを特徴とするものである。
【0014】
第2の形態は、第1の形態において、バイパス通路の軸線が、NOx吸蔵還元触媒の前後の排気通路の軸線と同軸になるように、バイパス通路を設けたことを特徴とするものである。
【0015】
第3の形態は、第1又は2の形態において、開閉弁を、バイパス通路の途中に設けたことを特徴とするものである。
【0016】
第4の形態は、第1又は2の形態において、開閉弁を、バイパス通路の排気通路との分岐部分に設けたことを特徴とするものである。
【0017】
第5の形態は、第1から第4の何れかの形態において、開閉弁は、内燃機関の運転状態を検出して内燃機関を制御する電子制御回路によって制御されるようにし、内燃機関の機関回転数が所定回転数を越えた機関の高回転時に開弁するように構成したことを特徴とするものである。
【0018】
第6の形態は、第1から5の何れかの形態において、バイパス通路の途中に、このバイパス通路に並列な排気ガス通路部分の熱伸縮を吸収可能なフレキシブル管を設けたことを特徴とするものである。
【0019】
第7の形態は、第1から6の何れかの形態において、NOx吸蔵還元触媒を、第1のNOx吸蔵還元触媒と、第2のNOx吸蔵還元触媒とから構成したことを特徴とするものである。
【0020】
第8の形態は、第1から第7の何れかの形態において、バイパス通路の前記排気通路との接続部との上流側、及び下流側にそれぞれ三元触媒を設けたことを特徴とするものである。
【0021】
第1の形態の内燃機関の排気ガス浄化装置によれば、排気ガス中にNOx成分が多い内燃機関の運転状態では排気ガスがNOx吸蔵還元触媒を通り、排気ガス中にNOx成分が少ない内燃機関の運転状態では排気ガスがNOx吸蔵還元触媒をバイパスするので、NOxの浄化性能を低下させることなく、内燃機関の性能を向上させることができる。
【0022】
第2の形態の内燃機関の排気ガス浄化装置によれば、排気ガスがNOx吸蔵還元触媒をバイパスする際の圧損を低く抑えることができる。
【0023】
第3と第4の形態の内燃機関の排気ガス浄化装置によれば、排気ガスがNOx吸蔵還元触媒を流れている時に開閉弁が排気抵抗とならない。
【0024】
第5の形態の内燃機関の排気ガス浄化装置によれば、内燃機関の高回転時に排気ガスがバイパス通路を通るので、不要な温度上昇の防止とNOx吸蔵還元触媒の硫黄被毒量の低減が可能になると共に、圧損が低くなって内燃機関の性能が向上する。
【0025】
第6の形態の形態の内燃機関の排気ガス浄化装置によれば、NOx吸蔵還元触媒を備えた排気通路がバイパス通路との温度差によって伸び縮みしても、バイパス通路が破損しない。
【0026】
第7の形態の内燃機関の排気ガス浄化装置によれば、NOx吸蔵還元触媒の容量を増大させることができる。
【0027】
第8の形態の内燃機関の排気ガス浄化装置によれば、排気ガスの浄化性能が向上する。
【0028】
【発明の実施の形態】
以下添付図面を用いて本発明の実施形態を具体的な実施例に基づいて詳細に説明する。
【0029】
図1は本発明の内燃機関(以後エンジンという)の排気ガス浄化装置の一実施例の構成を示すものであり、エンジンの排気経路の全体を示す構成図である。
【0030】
図1に示すエンジン1には、図示しない吸気経路を通じて吸気が導入される。
吸気経路には吸気量を調節するスロットル弁が設けられており、スロットル弁を通過した吸気はサージタンク2を経て、吸気ポート3からエンジン1内に入る。
この実施例のエンジン1は6気筒であり、各気筒には吸気ポート3または筒内に燃料を噴射する燃料噴射弁(図示せず)が設けられている。この燃料噴射弁には、図示しない燃料タンクからの燃料が導かれており、エンジン1を制御するための電子制御ユニット(以後ECUという)10からの信号によって開弁することによって、燃料が噴射される。
【0031】
燃焼後にエンジン1の各気筒から排出される排気ガスは、この実施例では2組の排気マニホルド4によって3気筒分ずつまとめられ、各排気マニホルド4の下流側に設けられた三元触媒(スタート触媒)5,6によって浄化される。三元触媒5,6を通過した排気ガスは、集合管7によって1つにまとめられる。この集合管7は、三元触媒5に接続する第1の枝管7A、三元触媒6に接続する第2の枝管7B、及び主管7Cとから構成されている。主管7Cには排気ガス中の酸素濃度から、エンジン1に吸入される混合気の空燃比を検出するA/Fセンサ(酸素センサ)9が設けられており、このA/Fセンサ9による空燃比の検出信号はECU10に入力される。
【0032】
集合管7の主管7Cの下流側の排気管8には、この実施例では、排気ガス中のNOx成分を浄化するための第1のNOx吸蔵還元触媒11と第2のNOx吸蔵還元触媒12が、直列に配置されて設けられている。第2のNOx吸蔵還元触媒12の下流側の排気管8には、別の三元触媒(スイーパ)13、サブマフラー14、及びメインマフラー15が設けられており、排気ガスはこれらを通過した後に大気中に放出される。なお、この実施例では、排気管8に第1と第2の2つのNOx吸蔵還元触媒11,12が設けられているが、NOx吸蔵還元触媒の数は1つでも良い。
【0033】
一方、この実施例では、第1のNOx吸蔵還元触媒11と第2のNOx吸蔵還元触媒12が設けられた排気管8に、並列に配置されてバイパス通路20が設けられている。このバイパス通路20は、一端が集合管7の主管7Cと排気管8の接続部に接続する第1のバイパス管21、この第1のバイパス管21の他端に接続するフレキシブル管22、フレキシブル管22の他端に接続する開閉弁23、及び開閉弁23の下流側を三元触媒13の上流側の排気管8に接続する第2のバイパス管23とから構成されている。
【0034】
この開閉弁23はECU10によって開閉制御される。ECU10には前述のA/Fセンサ9からの空燃比信号の他に、エンジン回転数信号、スロットル開度信号、排気温度信号、吸気圧信号、吸入空気量信号、車速信号、及び負圧センサ出力信号等のエンジン1の運転状態を示す信号が入力されており、ECU10はエンジン1の運転状態に応じてこの開閉弁23を開閉制御する。このECU10による開閉弁23の開閉制御については後述する。
【0035】
図2(a)は、図1に示した第1と第2のNOx吸蔵還元触媒11,12を備えた排気管8と、第1のバイパス管21、フレキシブル管22、開閉弁23、及び第2のバイパス管23から構成されるバイパス通路20が並列に配置された部位の拡大図であり、開閉弁23が閉弁している状態を示すものである。この状態では、排気ガスはバイパス通路20を流れることなく排気管8に流れるので、排気ガスは、図1に示したように、三元触媒及び第1と第2のNOx吸蔵還元触媒11,12で浄化される。
【0036】
バイパス通路20を構成するフレキシブル管22には、ベローズ管等のように前後方向の長さが可変できるものを使用する。また、開閉弁23としては負圧によって開閉動作する動圧弁や、電気信号によって開閉動作を行える電磁弁を使用することができ、開閉弁23の弁体にはバタフライ弁が使用できる。なお、開閉弁23は、ECU10によって開閉が制御できるものであれば、開閉弁の種類に制限はない。
【0037】
更に、この実施例におけるバイパス通路20はストレート状であり、第1のバイパス管21、フレキシブル管22、開閉弁23、及び第2のバイパス管23は同軸上にある。また、バイパス通路20の軸線BXは、バイパス通路20に上流側で接続する集合管7の主管7Cの軸線AXと同軸であると共に、バイパス通路20に下流側で接続する排気管8の軸線CXとも同軸になっている。
【0038】
よって、図2(b)に示すように、開閉弁23が開弁している状態では、集合管7を流れて来た排気ガスは、主管7Cと同軸の第1のバイパス管21にスムーズに流れ込み、第1と第2のNOx吸蔵還元触媒11,12による流路抵抗のある排気管8には殆ど流れない。そこで、エンジン1が高回転、理論空燃比で運転され、三元触媒のみで排気ガスの浄化を行い得るエンジン1の運転状態で開閉弁23を開弁させれば、高流量で高温の排気ガスが第1と第2のNOx吸蔵還元触媒11,12に流れなくなり、第1と第2のNOx吸蔵還元触媒11,12の不要な温度上昇を避けることができて熱劣化を防止することができる。また、排気ガスの高流量時の圧損上昇によるエンジン性能の低下を防止することができる。
【0039】
また、図2(a)の状態では、排気ガスが流れる排気管8の長さが熱によって増大するので排気管8の長さがバイパス通路20に比べて長くなり、逆に、図2(b)の状態では、排気ガスが流れるバイパス通路20の長さが熱によって増大するので、バイパス通路20の長さが排気管8に比べて長くなる。しかしながら、この排気管8とバイパス通路20の長さの差は、バイパス通路20に設けたフレキシブル管22の伸縮によって吸収されるので、排気ガスの流れる経路の違いによって排気管8とバイパス通路20に歪みによる破損は生じない。
【0040】
以上説明した実施例では、排気ガスの流れを切り換える開閉弁23はバイパス通路20の中央部に設けられていた。しかしながら、開閉弁23の位置は、バイパス通路20の中央部に限定されるものではない。図3(a),(b)は、開閉弁23を、バイパス通路20と排気管8の分岐部に設けた実施例を示すものであり、図2(a),(b)と同じ部位の構成を示している。図3(a),(b)に示す実施例では、開閉弁23の設置位置以外の他の部材の構成は同じである。よって、図2(a),(b)と同じ構成部材には同じ符号を付してその説明を省略する。
【0041】
図3(a)に示す実施例では、開閉弁23がバイパス通路20を構成する第1のバイパス管21の排気ガスの入口部に設けられている。このため、開閉弁23がバイパス通路20を閉弁している状態では、排気ガスは開閉弁23の弁体に沿ってスムーズに排気管8に流れ込み、第1と第2のNOx吸蔵還元触媒11,12で浄化される。このとき、排気ガスはバイパス通路20に全く入り込むことなく排気管8に流れるので、排気ガスの流路抵抗が減り、エンジン1の運転がスムーズになる。
【0042】
一方、図3(b)に示すように、開閉弁20によりバイパス通路20が開かれ、排気管8の入口部が閉じられた状態では、排気ガスは、主管7Cと同軸の第1のバイパス管21にスムーズに流れ込み、第1と第2のNOx吸蔵還元触媒11,12による流路抵抗のある排気管8には全く流れない。この実施例でも、エンジン1が高回転、理論空燃比で運転される状態で開閉弁23によって排気ガスをバイパス通路20に流すようにすれば、第1と第2のNOx吸蔵還元触媒11,12の熱劣化の防止、及び排気ガスの高流量時の圧損上昇によるエンジン性能の低下を防止することができる。
【0043】
また、図3(a),(b)に示した実施例でも、排気ガスが排気管8を流れるかバイパス通路20を流れるかの違いによる、排気管8又はバイパス通路20の熱伸長による両者の長さの差は、バイパス通路20に設けたフレキシブル管22の伸縮によって吸収されるので、排気管8とバイパス通路20に、熱歪みによる破損は生じない。
【0044】
図4は、図2と図3で説明した本発明の開閉弁23の開閉制御の手順の一例を説明するフローチャートである。この手順は所定時間毎に実行される。
【0045】
ステップ401ではまず、エンジン1の運転状態パラメータの読み込みが行われる。エンジン1の運転状態パラメータは、例えば、A/Fセンサ9からの空燃比、エンジン回転数、スロットル開度、排気温度、吸気圧、吸入空気量、車速、及び負圧センサ出力等である。このようにしてステップ401でエンジン1の運転状態パラメータを読み込んだ後は、エンジン1の運転状態が、高回転か否かをステップ402で判定し、エンジン1の運転状態が高回転の場合はステップ403に進んで、エンジン1が理論空燃比で運転されているか否かを判定する。
【0046】
そして、ステップ402でエンジン1が高回転でない場合、或いは、ステップ403でエンジン1が理論空燃比で運転されていない場合はステップ404に進み、開閉弁23バイパス通路20を閉じる側に回転させてバイパス通路を閉鎖する。一方、ステップ402からステップ403に進み、エンジン1が高回転かつ理論空燃比で運転されていると判定した場合はステップ405に進み、開閉弁23バイパス通路20を開く側に回転させてバイパス通路を開通させる。
【0047】
この結果、エンジン1が高回転かつ理論空燃比で運転されている場合は、図2(b)及び図3(b)に示したように、排気ガスがバイパス通路20を通過し、NOx吸蔵還元触媒11,12には流れない。
【0048】
このように、本発明では、エンジン1の高回転時に排気ガスがバイパス通路20を流れるので、NOx吸蔵還元触媒の硫黄被毒量を低減できる。また、バイパス通路20の長さによるサイドブランチ効果から、排気騒音の低減を図ることができる。
【0049】
なお、以上説明した実施例では、エンジン1の高回転、理論空燃比運転状態の時に、開閉弁を開いてNOx吸蔵還元触媒を有する排気管に並列に設けたバイパス通路に排気ガスを流すようにしたが、NOx吸蔵還元触媒を有する排気管の上流側にNOxセンサを設けておき、NOx濃度が低くなった時に開閉弁を開いてバイパス通路に排気ガスを流すようにしても良いものである。
【0050】
【発明の効果】
以上説明したように、本発明の内燃機関の排気ガス浄化装置によれば、排気通路にNOx吸蔵還元触媒とこれをバイパスするバイパス通路を備えた内燃機関において、排気ガス中にNOx成分が少ない内燃機関の運転状態では開閉弁により排気ガスをバイパス通路に流すようにしたので、内燃機関の高回転、高流量時におけるNOx吸蔵還元触媒の熱劣化によるNOx浄化率の低下の防止、内燃機関の高回転、高流量時における圧損上昇による内燃機関の性能低下の防止、及び並列に配置された排気通路の一方の熱伸長による排気管の破壊の防止を図ることができるという効果がある。
【図面の簡単な説明】
【図1】本発明の内燃機関の排気ガス浄化装置の一実施例の構成を示すものであり、内燃機関の排気系統の全体を示す構成図である。
【図2】図1に示した内燃機関の排気系統におけるNOx吸蔵還元触媒とそのバイパス通路の部位の拡大図であり、(a)は開閉弁の閉弁状態における排気ガスの流れを説明する図、(b)は開閉弁の開弁状態における排気ガスの流れを説明する図である。
【図3】図1に示したNOx吸蔵還元触媒とそのバイパス通路の部位の構成の別の実施例の構成を示す拡大図であり、(a)は開閉弁の閉弁状態における排気ガスの流れを説明する図、(b)は開閉弁の開弁状態における排気ガスの流れを説明する図である。
【図4】本発明の開閉弁の開閉制御の一例を説明するフローチャートである。
【符号の説明】
1…エンジン
4…排気マニホルド
5,6,13…三元触媒
8…排気管
9…A/Fセンサ
10…ECU(電子制御ユニット)
11…第1のNOx吸蔵還元触媒
12…第2のNOx吸蔵還元触媒
20…バイパス通路
21…第1のバイパス管
22…フレキシブル管
23…開閉弁
24…第2のバイパス管

Claims (8)

  1. 内燃機関の排気通路にNOx吸蔵還元触媒を設けた内燃機関の排気ガス浄化装置において、
    前記NOx吸蔵還元触媒をバイパスする排気バイパス通路を設けると共に、この排気バイパス通路を開閉する開閉弁を設け、
    排気ガス中にNOx成分が多い内燃機関の運転状態では前記開閉弁を閉じ、
    排気ガス中にNOx成分が少ない内燃機関の運転状態では前記開閉弁を開くように構成したことを特徴とする内燃機関の排気ガス浄化装置。
  2. 前記バイパス通路の軸線が、前記NOx吸蔵還元触媒の前後の排気通路の軸線と同軸になるように、前記バイパス通路を設けたことを特徴とする請求項1に記載の内燃機関の排気ガス浄化装置。
  3. 前記開閉弁を、前記バイパス通路の途中に設けたことを特徴とする請求項1又は2に記載の内燃機関の排気ガス浄化装置。
  4. 前記開閉弁を、前記バイパス通路の前記排気通路との分岐部分に設けたことを特徴とする請求項1又は2に記載の内燃機関の排気ガス浄化装置。
  5. 前記開閉弁は、前記内燃機関の運転状態を検出して内燃機関を制御する電子制御回路によって制御されるようにし、前記内燃機関の機関回転数が所定回転数を越えた機関の高回転時に開弁するように構成したことを特徴とする請求項1から4の何れか1項に記載の内燃機関の排気ガス浄化装置。
  6. 前記バイパス通路の途中に、このバイパス通路に並列な排気ガス通路部分の熱伸縮を吸収可能なフレキシブル管を設けたことを特徴とする請求項1から5の何れか1項に記載の内燃機関の排気ガス浄化装置。
  7. 前記NOx吸蔵還元触媒を、第1のNOx吸蔵還元触媒と、第2のNOx吸蔵還元触媒とから構成したことを特徴とする請求項1から6の何れか1項に記載の内燃機関の排気ガス浄化装置。
  8. 前記バイパス通路の前記排気通路との接続部との上流側、及び下流側にそれぞれ三元触媒を設けたことを特徴とする請求項1から7の何れか1項に記載の内燃機関の排気ガス浄化装置。
JP2002257763A 2002-09-03 2002-09-03 内燃機関の排気ガス浄化装置 Pending JP2004092591A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002257763A JP2004092591A (ja) 2002-09-03 2002-09-03 内燃機関の排気ガス浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002257763A JP2004092591A (ja) 2002-09-03 2002-09-03 内燃機関の排気ガス浄化装置

Publications (1)

Publication Number Publication Date
JP2004092591A true JP2004092591A (ja) 2004-03-25

Family

ID=32062591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002257763A Pending JP2004092591A (ja) 2002-09-03 2002-09-03 内燃機関の排気ガス浄化装置

Country Status (1)

Country Link
JP (1) JP2004092591A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297967A (ja) * 2006-04-28 2007-11-15 Osaka Gas Co Ltd エンジン
JP2008267177A (ja) * 2007-04-17 2008-11-06 Mazda Motor Corp 排気ガス浄化装置
WO2024071032A1 (ja) * 2022-09-30 2024-04-04 本田技研工業株式会社 鞍乗型車両

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297967A (ja) * 2006-04-28 2007-11-15 Osaka Gas Co Ltd エンジン
JP2008267177A (ja) * 2007-04-17 2008-11-06 Mazda Motor Corp 排気ガス浄化装置
WO2024071032A1 (ja) * 2022-09-30 2024-04-04 本田技研工業株式会社 鞍乗型車両

Similar Documents

Publication Publication Date Title
US7971427B2 (en) Exhaust gas purifying apparatus for internal combustion engine
WO2008059362A2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
JP2007239493A (ja) 過給機付き内燃機関
US10508578B2 (en) Engine system
JP6375808B2 (ja) 内燃機関用吸排気装置
US20180266344A1 (en) Internal combustion engine
JP2004324454A (ja) 内燃機関の排気浄化装置
JP2001012234A (ja) 過給機付きエンジンの排気装置
JP4779926B2 (ja) 内燃機関の排気システム
JPH1068315A (ja) 内燃機関の排気浄化装置
JP2004092591A (ja) 内燃機関の排気ガス浄化装置
JPH0417710A (ja) エンジンの排気浄化装置
JP4552763B2 (ja) 内燃機関の制御装置
JP3743232B2 (ja) 内燃機関の白煙排出抑制装置
JP2004124744A (ja) ターボ過給機付エンジン
JP2008038622A (ja) 内燃機関の排気浄化装置、及び方法
JP2010133327A (ja) 内燃機関の排気浄化装置
JP2008038825A (ja) 内燃機関の制御装置
US20080034735A1 (en) Internal combustion engine and method of controlling the same
JP4233144B2 (ja) ターボチャージャ付エンジンの排気ガス浄化装置、及びその制御方法
JP3248290B2 (ja) 内燃機関の排気浄化装置
JPH11141331A (ja) ターボチャージャ付エンジンの排気ガス浄化装置
JP2009209840A (ja) エンジンの排気浄化装置
JPH0979043A (ja) 過給機付き内燃機関の排気浄化装置
JP2004346793A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090113