JP2004087459A - Non-aqueous electrolytic solution secondary battery - Google Patents

Non-aqueous electrolytic solution secondary battery Download PDF

Info

Publication number
JP2004087459A
JP2004087459A JP2003136321A JP2003136321A JP2004087459A JP 2004087459 A JP2004087459 A JP 2004087459A JP 2003136321 A JP2003136321 A JP 2003136321A JP 2003136321 A JP2003136321 A JP 2003136321A JP 2004087459 A JP2004087459 A JP 2004087459A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
silicon compound
formula
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003136321A
Other languages
Japanese (ja)
Other versions
JP4367001B2 (en
Inventor
Hitoshi Suzuki
鈴木 仁
Sachie Takeuchi
竹内 佐千江
Hirofumi Suzuki
鈴木 裕文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003136321A priority Critical patent/JP4367001B2/en
Publication of JP2004087459A publication Critical patent/JP2004087459A/en
Application granted granted Critical
Publication of JP4367001B2 publication Critical patent/JP4367001B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolytic solution secondary battery to meet a high input-output characteristic and a satisfactory heat cycle characteristic and, a non-aqueous electrolytic solution used for the battery. <P>SOLUTION: The non-aqueous electrolytic solution secondary battery comprises a positive pole, a negative pole containing a material capable of occluding and discharging lithium, and a non-aqueous electrolytic solution which contains a non-aqueous solvent and lithium salt. The non-aqueous electrolytic solution has a characteristic that it contains silicide which is expressed by a formula: SiF<SB>x</SB>R<SP>1</SP><SB>l</SB>R<SP>2</SP><SB>m</SB>R<SP>3</SP><SB>n</SB>(R<SP>1</SP>-R<SP>3</SP>are organic radicals with the carbon number 1-12, which may either be the same or different. The x denotes 1-3 and the l, m and n denote 0-3 with 1≤l+m+n≤3). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解液二次電池及びそれに用いる非水電解液に関する。詳しくは特定の非水電解液を用いた、入出力及びサイクル特性に優れた非水電解液二次電池に関する。
【0002】
【従来の技術】
情報関連機器、通信機器の分野では、パソコン、ビデオカメラ、携帯電話等の小型化に伴い、これらの機器に用いる電源として、高エネルギー密度である点から、リチウム二次電池が実用化され、広く普及するに至っている。
近年では、上記の分野に加えて、自動車の分野においても、特に、環境問題、資源問題を背景に開発が急がれている電気自動車用の電源として、リチウム二次電池が検討されている。
【0003】
リチウム二次電池のうち、金属リチウムを負極とする二次電池は、高容量化を達成できる電池として古くから盛んに研究が行われている。しかし、これらの電池には、金属リチウムが充放電の繰り返しによりデンドライト状に成長し、最終的には正極に達して電池内部において短絡が生じてしまうという問題があり、この問題は、金属リチウム二次電池を実用化する際の最大の技術的な課題となっている。
【0004】
そこで負極に、例えばコークス、人造黒鉛、天然黒鉛等のリチウムイオンを吸蔵及び放出することが可能な炭素質材料を用いた非水電解液二次電池が提案されている。このような非水電解液二次電池では、リチウムが金属状態で存在しないため、デンドライトの形成が抑制され、電池寿命と安全性を向上することができる。特に、人造黒鉛や天然黒鉛等の黒鉛系炭素質材料は、単位体積当たりのエネルギー密度を向上させることができる材料として期待されている。
【0005】
しかしながら、黒鉛系の種々の電極材料を単独で、あるいはリチウムを吸蔵及び放出することが可能な他の負極材料と混合して負極とした非水電解液二次電池に、リチウム一次電池で一般に好んで使用されるプロピレンカーボネートを主溶媒とする電解液を用いると、黒鉛電極表面で溶媒の分解反応が激しく進行し、黒鉛電極へのスムーズなリチウムの吸蔵及び放出が不可能になる。一方、エチレンカーボネートはこのような分解が少ないことから、非水電解液二次電池の電解液の主溶媒として多用されているが、エチレンカーボネートを主溶媒としても、充放電過程において、電極表面で電解液が分解するために充放電効率が低下したり、サイクル特性が低下するといった問題がある。
【0006】
更に、電気自動車用電源としてリチウム二次電池を使用する場合、電気自動車は発進、加速時に大きなエネルギーを要し、減速時に発生する大きなエネルギーを効率よく回生させなければならないため、リチウム二次電池には、高い出力特性、入力特性が要求される。また、電気自動車は屋外で使用されるため、寒冷時期においても電気自動車が速やかに発進、加速できるためには、リチウム二次電池には、特に、低温における高い入出力特性と、高温環境下で繰り返し充放電させた場合においても、その容量の劣化が少なく、内部抵抗の増加が少ないといった良好な高温サイクル特性が要求される。
【0007】
これまで、リチウム二次電池の入出力特性、高温サイクル特性を改善するための手段として、正極や負極の活物質を始めとする様々な電池の構成要素について、それぞれ数多くの技術が検討されている。非水電解液に関する技術としても、例えば、特開平11−354156号公報、特開平11−297354号公報等、種々の技術が存在し、それなりに効果は見られるものの、満足のいく電解液は現在まで提供されるに至っていない。また、電解液中にケイ素化合物を添加する検討も数多く行われており、例えば、有機ケイ素ヘテロ環化合物を添加して濡れ性を向上させる方法(特開平3−236171号公報)、Si−N結合を有する化合物を添加してサイクル特性を向上させる方法(特開平11−16602号公報)、シリコンオイルを添加してガス発生を抑制する方法(特開平11−273732号公報)、アルコキシシランを添加して初期充放電効率を向上させる方法(特開2000−348766号公報)、Si−H結合を有する化合物を添加して遊離酸を低減する方法(特開2001−167792号公報)、更に、電極表面をシラン系化合物でアルキル化処理しガス発生を抑制する方法(特開平08−180865号公報)等が存在するが、いずれも電気自動車電源等に必須である入出力特性について何ら示していない。
【0008】
【発明が解決しようとする課題】
本発明は、電気自動車電源等、高い入出力特性と良好な高温サイクル特性との両者を要求される用途に好適な非水電解液二次電池、及びそれに用いる非水電解液を提供するものである。
【0009】
【課題を解決するための手段】
本発明者等は、上記目的を達成するために、種々の検討及び考察を重ねた結果、電池の入出力を向上させるためには、電極表面及び電極上に形成される固体電解質界面(SEI、Solid  Electrolyte Interface)を改善することが必要であると結論するに至った。更に本発明者等が種々の検討を重ねた結果、非水電解液二次電池の電解液として、特定のケイ素化合物を含有する非水電解液を使用することにより、電極表面及び電極上に形成されるSEIが改善され、特に低温における入出力特性及び高温におけるサイクル特性の向上につながることを見出し、本発明を完成するに至った。
【0010】
すなわち、本発明の第一の要旨は、正極、リチウムを吸蔵及び放出することが可能な材料を含む負極、並びに非水溶媒とリチウム塩とを含有する非水電解液とから少なくとも構成される非水電解液二次電池であって、前記非水電解液が、式(1):
【0011】
【化4】
SiF       ・・・式(1)
{化学式(1)中、R〜Rは、互いに同一であっても異なっていてもよく、炭素数1〜12の有機基であって、xは1〜3,l,m,nは0〜3で、1≦l+m+n≦3 である。}で表されるケイ素化合物を含有することを特徴とする非水電解液二次電池に存する。
【0012】
また、本発明の第二の要旨は、正極、リチウムを吸蔵及び放出することが可能な材料を含む負極、並びに非水電解液を備えた非水電解液二次電池であって、前記非水電解液が、非水溶媒、リチウム塩、及び上記式(1)で表されるケイ素化合物を含有するケイ素化合物含有電解液を用いて形成されたものであることを特徴とする非水電解液二次電池に存する。
【0013】
更に、本発明の第三の要旨は、正極、リチウムを吸蔵及び放出することが可能な材料を含む負極、並びに非水溶媒とリチウム塩とを含有する非水電解液を備えた非水電解液二次電池用の非水電解液であって、上記式(1)で表されるケイ素化合物含有することを特徴とする非水電解液に存する。
【0014】
【発明の実施の形態】
本発明の非水電解液二次電池は、正極、リチウムを吸蔵及び放出することが可能な材料を含む負極と、非水溶媒とリチウム塩とを含有する非水電解液とから少なくとも構成され、更に該非水電解液が式(1):
【0015】
【化5】
SiF       ・・・式(1)
{式(1)中、R〜Rは、互いに同一であっても異なっていてもよく、炭素数1〜12の有機基であって、xは1〜3,l,m,nは0〜3で、1≦l+m+n≦3 である。}で表されるケイ素化合物を含有することを特徴とする。本発明において、式(1)で表されるケイ素化合物を非水電解液が含有するとは、非水電解液二次電池が、組立直後であって、非水電解液中の式(1)で表されるケイ素化合物がどのような物質とも未反応で消費されていない状態を指す。また、本発明は、上記の非水電解液二次電池を充放電して得られる電池にも関する。
【0016】
式(1)中、炭素数1〜12の有機基として、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、ペンチル基、1−メチルブチル基、2−メチルブチル基、3−メチルブチル基、1−メチル−2−メチルプロピル基、2,2−ジメチルプロピル基、トリフルオロプロピル基、3−ピロリジノプロピル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ノルボルナニル基、等の直鎖または分岐アルキル基、フェニル基、ナフチル基、o−,p−,m−位置をメチル基で置換したフェニル基、o−,p−,m−位置をエチル基で置換したフェニル基、o−,p−,m−位置をプロピル基で置換したフェニル基、o−,p−,m−位置をメトキシ基で置換したフェニル基、o−,p−,m−位置をエトキシ基で置換したフェニル基等のアリール基、エトキシカルボニルエチル基等ののカルボニル基、ビニル基、アリル基、メタクリル基、シクロヘキセニル基、ノルボルネニル基等のアルケニル基、アセトキシ基、アセトキシメチル基、トリフルオロアセトキシ基等のカルボキシル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、フェノキシ基、アリロキシ基等のオキシ基、エチニル基、プロピニル基等のアルキニル基、アリルアミノ基等のアミノ基、ベンジル基、等を挙げることができる。
【0017】
本発明に使用される化学式(1)で表されるケイ素化合物として、具体的には、トリメチルフルオロシラン、トリエチルフルオロシラン、トリプロピルフルオロシラン、トリブチルフルオロシラン、トリヘキシルフルオロシラン、トリフェニルフルオロシラン、ビニルジメチルフルオロシラン、ビニルジエチルフルオロシラン、ビニルジフェニルフルオロシラン、トリメトキシフルオロシラン、トリエトキシフルオロシラン、トリフェノキシフルオロシラン等のモノフルオロシラン、ジメチルジフルオロシラン、ジエチルジフルオロシラン、ジプロピルジフルオロシラン、ジブチルジフルオロシラン、ジヘキシルジフルオロシラン、ジシクロヘキシルフルオロシラン、ジフェニルジフルオロシラン、ジビニルジフルオロシラン、メチルフェニルジフルオロシラン、エチルフェニルジフルオロシラン、エチルビニルジフルオロシラン、ヘキシルビニルジフルオロシラン、フェニルビニルジフルオロシラン、ジエトキシジフルオロシラン等のジフルオロシラン、メチルトリフルオロシラン、エチルトリフルオロシラン、プロピルトリフルオロシラン、ブチルトリフルオロシラン、ペンチルトリフルオロシラン、ヘキシルトリフルオロシラン、フェニルトリフルオロシラン、ベンジルトリフルオロシラン、ビニルトリフルオロシラン、トリフルオロプロピルトリフルオロシラン、アリルトリフルオロシラン、p−トリルトリフルオロシラン、フェニルエチルトリフルオロシラン、ベンジルトリフルオロシラン、トリメチルシリルトリフルオロシラン、トリメチルシロキシトリフルオロシラン等のトリフルオロシランを挙げることができる。
【0018】
ケイ素化合物の沸点が低いと、揮発してしまうため電解液に所定量含有させるのが難しくなる。また、電解液に含有させた後も、充放電による電池の発熱や外部環境が高温になる様な条件下で揮発してしまう可能性がある。よって、式(1)で表されるケイ素化合物は常圧下で50℃以上の沸点を持つものが好ましい。さらに、常圧下で60℃以上の沸点をもつものが好ましい。沸点を上げるために、分子量が大きいフェニル基やヘキシル基を持つものが好ましい。これらのことからトリフェニルフルオロシラン、ジフェニルジフルオロシラン、フェニルトリフルオロシラン、ヘキシルトリフルオロシランは、沸点が高いので取り扱いしやすく好ましい。化学式(1)で表されるケイ素化合物を、2種類以上混合して使用しても良い。
【0019】
本発明に使用される式(1)で表されるケイ素化合物は、分子内に極性の高いSi−F結合を有する。式(1)で表されるケイ素化合物は、この特徴を活かして、電極表面及び電極上に形成されるSEIと反応または配位することにより、それらを改質せしめ、結果的に電池の出力を向上させる。更に、分子内のSi−F結合数は多い方が、上記作用が強化される場合があり、モノフルオロシランよりもジフルオロシランやトリフルオロシランを使用した方が高い電池性能が得られる場合がある。また、該ケイ素化合物が、分子内にフェニル基等のアリール基を有する場合は、このアリール基が充放電時電池内に発生するラジカルをトラップして、副反応を抑制し、結果的に電池の性能を向上させることができる。また、該ケイ素化合物が、分子内にビニル基等の不飽和結合を有する場合は、この不飽和結合が電解液やSEIと反応し、SEIが厚くなることにより、低温出力を低下させる場合がある。したがって、アリール基等の芳香族二重結合性の不飽和結合であれば問題ないが、ビニル基等の脂肪族系の不飽和結合を分子内に有さないものが好ましい。
【0020】
なお、式(1)で表されるケイ素化合物は、電池組立後に、初期充放電することにより速やかに、電極表面及び電極上に形成されるSEIと反応し、それ自身は、反応性の高さにもよるが、初期の段階(例えば、数回程度の充放電)で消失する場合がある。
本発明に使用される非水電解液中の式(1)で表されるケイ素化合物の含有量は、0.0001〜1mol/kgが好ましく、より好ましくは0.001〜0.5mol/kg、更に好ましくは0.01〜0.2mol/kgである。式(1)のケイ素化合物がこの範囲であると、電池の入出力特性及びサイクル特性の向上効果が十分であり、また、電池性能及び電池の作動についても問題がない。
【0021】
本発明で使用される電解液の非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類、γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類、酢酸メチル、プロピオン酸メチル等の鎖状エステル類、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル類、ジメトキシエタン、ジメトキシメタン等の鎖状エーテル類、スルホラン、ジエチルスルホン等の含硫黄有機溶媒等が挙げられる。
これらの溶媒は、単独でも二種類以上混合してもよい。
【0022】
ここで非水溶媒は、アルキレン基の炭素数が2〜4のアルキレンカーボネートからなる群から選ばれた環状カーボネートと、アルキル基の炭素数が1〜4であるジアルキルカーボネートよりなる群から選ばれた鎖状カーボネートとをそれぞれ20容量%以上含有し、かつこれらのカーボネートが全体の70容量%以上を占める混合溶媒であるものが、充放電特性、電池寿命他電池性能全般を高めることから好ましい。ここで、非水溶媒の容積は、20℃ で測定した値とする。室温で固体のものは、融点まで加熱して溶融状態で測定した値を用いる。
【0023】
アルキレン基の炭素数が2〜4のアルキレンカーボネートの具体例としては、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等を挙げることができ、これらの中、エチレンカーボネート、プロピレンカーボネートが好ましい。
アルキル基の炭素数が1〜4であるジアルキルカーボネートの具体例としては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート等を挙げることができる。これらの中、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートが好ましい。なお混合非水溶媒中には、カーボネート以外の溶媒を含有してもよく、非水溶媒中に、通常、30重量%以下、中でも10重量%以下で、電池性能を低下させない範囲であれば、環状カーボネート、鎖状カーボネート等のカーボネート以外の溶媒を含んでいてもよい。
【0024】
本発明で使用される非水電解液には、リチウム塩が使用される。リチウム塩については、溶質として使用し得るものであれば特に限定はされないが、その具体例として例えば、LiPF、LiBF、LiClO、LiAsFから選ばれる無機リチウム塩、LiCFSO、LiN(CFSO2 、LiN(CFCFSO、LiN(CFSO)(CSO)、LiC(CFSO等の含フッ素有機リチウム塩が挙げられる。また、Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸リチウムを使用することもできる。これらの中、LiPF、LiBFが好ましい。なおこれらの溶質は、単独でも、2種類以上混合して用いてもよい。
【0025】
本発明で使用される非水電解液中のリチウム塩の濃度は、0.5〜2モル/リットルであることが好ましい。0.5モル/リットル未満若しくは2モル/リットルを超えると、電解液の電気伝導率が低くなりやすく、電池の性能が低下することがある。
本発明に係る電池を構成する負極の活物質としては、リチウムを吸蔵及び放出し得るものであれば特に限定されない。例えば、様々な熱分解条件での有機物の熱分解物や、人造黒鉛、天然黒鉛等の炭素質材料、金属酸化物材料、更にはリチウム金属や種々のリチウム合金が用いられる。
これらのうち、炭素質材料としては、種々の原料から得た易黒鉛性ピッチの高温熱処理によって製造された人造黒鉛及び精製天然黒鉛、又はこれらの黒鉛にピッチその他で表面処理を施したものが好ましい。
【0026】
黒鉛材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)は、通常0.335〜0.34nm、好ましくは0.335〜0.337nmである。また、黒鉛材料の灰分は、通常1重量%以下、好ましくは0.5重量%以下、更に好ましくは0.1重量%以下である。学振法によるX線回折で求めた結晶子サイズ(Lc)は、通常30nm以上、好ましくは50nm以上、更に好ましくは100nm以上である。
【0027】
黒鉛材料のレーザー回折・散乱法によるメジアン径は、通常1μm〜100μm、好ましくは3μm〜50μm、より好ましくは5μm〜40μm、更に好ましくは7μm〜30μmである。
黒鉛材料のBET法比表面積は、0.5m/g〜25.0m/gであり、好ましくは0.7m/g〜20.0m/g、より好ましくは1.0m/g〜15.0m/g、更に好ましくは1.5m/g〜10.0m/gである。
【0028】
黒鉛材料は、アルゴンイオンレーザー光を用いたラマンスペクトル分析において、1580〜1620cm−1の範囲にピークPA(ピーク強度IA)及び1350〜1370cm−1の範囲にピークPB(ピーク強度IB)の強度比R=IB/IAが0〜0.5、1580〜1620cm−1の範囲のピークの半値幅が26cm−1以下、1580〜1620cm−1の範囲のピークの半値幅は25cm−1以下がより好ましい。
【0029】
また、これらの炭素質材料に、リチウムを吸蔵及び放出可能な他の負極材を混合して用いることもできる。
炭素質材料以外のリチウムを吸蔵及び放出可能な負極材としては、Ag、Zn、Al、Ga、In、Si、Ge、Sn、Pb、P、Sb、Bi、Cu、Ni、Sr、Ba等の金属とLiの合金、又はこれら金属の酸化物等の金属酸化物材料、リチウム金属が挙げられる。このうち、Sn酸化物、Si酸化物、Al酸化物、Sn、Si、Alのリチウム合金、金属リチウムが好ましい。
これらの負極材は2種類以上混合して用いてもよい。
【0030】
本発明の非水電解液二次電池を構成する正極の材料としては特に限定されないが、好ましくはリチウム遷移金属複合酸化物を使用する。リチウム遷移金属複合酸化物としては、LiCoO等のリチウムコバルト複合酸化物、LiNiO等のリチウムニッケル複合酸化物、LiMnO等のリチウムマンガン複合酸化物等を挙げることができるが、本発明は特に、正極の活物質としてリチウム含有量の大きいコバルト系及びニッケル系のリチウム遷移金属複合酸化物、例えば、リチウムコバルト複合酸化物及びリチウムニッケル複合酸化物を用いる場合に効果的である。これらリチウム遷移金属複合酸化物は、主体となる遷移金属元素の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属種で置き換えることにより安定化させることもでき、また好ましい。これらの正極材料は、単独でも、2種類以上混合して用いてもよい。
【0031】
正極及び負極を製造する方法については、特に限定されない。例えば、活物質に、必要に応じて結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、集電体の基板に塗布し、乾燥することにより製造することができるし、また、該活物質をそのままロール成形してシート電極としたり、圧縮成形によりペレット電極とすることもできる。結着剤については、電極製造時に使用する溶媒や電解液に対して安定な材料であれば、特に限定されず、具体例として、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等を挙げることができる。増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。導電材としては、銅やニッケル等の金属材料、グラファイト、カーボンブラック等のような炭素質材料が挙げられる。特に正極については導電剤を含有させるのが好ましい。
【0032】
正極及び負極に使用される集電体については特に限定されない。正極用集電体として、アルミニウム、チタン、タンタル等の金属又はその合金を用いることができる。特にアルミニウム又はその合金が軽量であるためエネルギー密度の点で好ましい。負極用集電体としては、銅、ニッケル、ステンレス等の金属又はその合金を用いることができ、薄膜に加工しやすいという点とコストの点から銅が特に好ましい。
【0033】
二次電池においては、通常、正極と負極との間にセパレータが介装される。本発明の電池に使用するセパレータの材質や形状については、特に限定されないが、電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等を用いるのが好ましい。
【0034】
少なくとも負極、正極及び非水電解液を有する本発明の二次電池を製造する方法については、特に限定されず、通常採用されている方法の中から適宜選択することができる。
また、電池の形状については特に限定されず、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等が使用可能である。
【0035】
本発明は別の態様において、正極、リチウムを吸蔵及び放出することが可能な材料を含む負極、非水電解液とから少なくとも構成される非水電解液二次電池であって、非水電解液が、非水溶媒とリチウム塩と式(1):
【0036】
【化6】
SiF       ・・・式(1)
{化学式(1)中、R〜Rは、互いに同一であっても異なっていてもよく、炭素数1〜12の有機基であって、xは1〜3,l,m,nは0〜3で、1≦l+m+n≦3 である。}
で表されるケイ素化合物を含有するケイ素化合物含有電解液を用いて形成されるものであることを特徴とする非水電解液二次電池に関する。非水電解液は、上記のケイ素化合物含有電解液を用いて形成したものであれば、特に限定されず、形成された後、ケイ素化合物が分解、反応等したものであってもよい。例えば、ケイ素化合物含有電解液を用いて組み立てた非水電解液二次電池について、初期充放電を行い、式(1)のケイ素化合物が消失した状態の非水電解液を備えた非水電解液二次電池が含まれる。
【0037】
ケイ素含有電解液中の式(1)で表されるケイ素化合物の含有量は、0.0001〜1mol/kgが好ましく、より好ましくは0.001〜0.5mol/kg、更に好ましくは0.01〜0.2mol/kgである。非水溶媒、リチウム塩については上記に記載したものが適用される。
【0038】
【実施例】
以下に実施例によって本発明を更に詳細に説明するが、本発明はその要旨を越えない限り以下の実施例によって制限されるものではない。
【0039】
実施例1
[正極の作製]
正極は、正極活物質としてのニッケル酸リチウム(LiNiO)90重量%と、導電剤としてのアセチレンブラック5重量%と、結着剤としてのポリフッ化ビニリデン(PVdF)5重量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した後、20μmのアルミ箔の片面に塗布して乾燥し、更にプレス機で圧延したものを直径12.5mmの打ち抜きポンチで打ち抜いて作製した。
【0040】
[負極の作製]
X線回折における格子面(002面)のd値が0.336nm、晶子サイズ(Lc)が、100nm以上(264nm)、灰分が0.04重量%、レーザー回折・散乱法によるメジアン径が17μm、BET法比表面積が8.9m/g、アルゴンイオンレーザー光を用いたラマンスペクトル分析において1580〜1620cm−1の範囲のピークP(ピーク強度I)および1350〜1370cm−1の範囲のピークP(ピーク強度I)の強度比R=I/Iが0.15、1580〜1620cm−1の範囲のピークの半値幅が22.2cm−1である人造黒鉛粉末KS−44(ティムカル社製、商品名) 94重量部に、蒸留水で分散させたスチレン−ブタジエンゴム(SBR)を固形分で6重量部となるように加え、ディスパーザーで混合し、スラリー状としたものを負極集電体である厚さ18μmの銅箔上に均一に塗布し、乾燥後、直径12.5mmの円盤状に打ち抜いて電極を作製し負極とした。
【0041】
[電解液の調製]
乾燥アルゴン雰囲気下で、精製したエチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びジエチルカーボネート(DEC)の体積比3:3:4の混合溶媒に、1モル/リットルの濃度で、充分に乾燥したヘキサフルオロリン酸リチウム(LiPF)を溶解させ、更にトリフェニルフルオロシランを、非水混合溶媒とリチウム塩との合計重量に対し、0.02mol/kgの割合で添加し調製した。
【0042】
[電池の組立]
アルゴン雰囲気のドライボックス内で、正極導電体を兼ねるステンレス鋼製の缶体に上記正極を収容し、その上に上記電解液を含浸させたセパレータを介して上記負極を配置した。この缶体と負極導電体を兼ねる封口板とを、絶縁用のガスケットを介してかしめて密封し、コイン型電池を作製した。
【0043】
[電池の評価]
1)初期充放電   実際の充放電サイクルを経ていない新たな電池に対して、25℃ で充放電を行い、この時の充電量を100%として、リチウム二次電池の充電状態を40%に調整した。
2)初期出力評価  −30℃ の低温環境下で、1)の状態の電池を、1/8C、1/4C、1/2C、1.5C、2.5C、3.5C、5C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする。以下同様とする)の各電流値で10秒間定電流放電させ、各々の条件の放電における2秒後の電池電圧の降下を測定し、それらの測定値から放電下限電圧を3.0Vとした際に、2秒間に流すことのできる電流値Iを算出し、3.0×I(W)という式で計算される値をそれぞれの電池の初期出力とした。結果を表1に示す。
【0044】
3)高温サイクル試験  高温サイクル試験は、リチウム二次電池の実使用上限温度と目される60℃ の高温環境下にて行った。2)で出力評価の終了した電池に対し、充電上限電圧4.1Vまで2Cの定電流定電圧法で充電した後、放電終止電圧3.0Vまで2Cの定電流で放電する充放電サイクルを1サイクルとし、このサイクルを100サイクルまで繰り返した。
【0045】
4)サイクル後充放電  3)でサイクル試験の終了した電池について、25℃ で充放電を行い、この時の充電量を100%として、リチウム二次電池の充電状態を40%に調整した。
5)サイクル後出力評価  4)の状態の電池を2)と同様に評価し、サイクル後出力とした。−30℃ の結果を表1に示す。
【0046】
実施例2
実施例1において、電解液調製の際、トリフェニルフルオロシランの代わりにジフェニルジフルオロシランを非水混合溶媒とリチウム塩との合計重量に対し、0.02mol/kgの割合で添加したこと以外は実施例1と同様にして試験を行った。
【0047】
実施例3
実施例1において、電解液調製の際、トリフェニルフルオロシランの代わりにフェニルトリフルオロシランを非水混合溶媒とリチウム塩との合計重量に対し0.02mol/kgの割合で添加したこと以外は実施例1と同様にして試験を行った。
【0048】
実施例4
実施例1において、電解液調製の際、トリフェニルフルオロシランの代わりにヘキシルトリフルオロシランを非水混合溶媒とリチウム塩との合計重量に対し0.02mol/kgの割合で添加したこと以外は実施例1と同様にして試験を行った。
【0049】
比較例1
実施例1において、電解液調製の際、トリフェニルフルオロシランを使用しなかったこと以外は実施例1と同様にして試験を行った。
【0050】
比較例2
実施例1において、電解液調製の際、トリフェニルフルオロシランの代わりにトリエチルフルオロシランを非水混合溶媒とリチウム塩との合計重量に対し、0.02mol/kgの割合で添加したこと以外は実施例1と同様にして試験を行った。
【0051】
特開2001−68153号公報では、フッ酸抽出剤としてシラン類が電池の充放電容量サイクル特性に効果的であり、例えばトリエチルシランを用いた場合のフッ酸抽出の反応が式(2)で表されるとしている。
【0052】
【化7】
EtSiH + HF → EtSiF + H   ・・・式(2)
前公報は、式(2)の生成物とされるトリエチルフルオロシランについては全く記載がなく、さらに表1から明らかなように、いくらトリエチルシランを使用したところで、本発明で我々が主目的とする入出力特性に対し、全く効果がないことから、我々が前公報から本発明の化合物の効果を予想できなかったことは明らかである。
【0053】
表1から、化学式(1)で表されるケイ素化合物を適量含有する非水電解液を用いた二次電池は、低温における入出力特性に優れ、高温下におけるサイクル後もその特性が維持される。
【0054】
【発明の効果】
本発明により、電気自動車電源等、高い入出力特性と良好な高温サイクル特性との両者を要求される用途に好適な非水電解液二次電池及び非水電解液を提供することができる。
【0055】
【表1】

Figure 2004087459
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte used therefor. More specifically, the present invention relates to a non-aqueous electrolyte secondary battery using a specific non-aqueous electrolyte and having excellent input / output and cycle characteristics.
[0002]
[Prior art]
In the field of information-related equipment and communication equipment, with the miniaturization of personal computers, video cameras, mobile phones, etc., lithium secondary batteries have been put into practical use because of their high energy density as a power source for these equipments. It has become popular.
In recent years, in addition to the above-mentioned fields, also in the field of automobiles, lithium secondary batteries have been studied as power sources for electric vehicles, which have been urgently developed due to environmental issues and resource issues.
[0003]
Among lithium secondary batteries, secondary batteries using metal lithium as a negative electrode have been actively studied for a long time as batteries capable of achieving high capacity. However, these batteries have a problem that lithium metal grows in a dendrite shape due to repeated charging and discharging, and eventually reaches the positive electrode to cause a short circuit inside the battery. This is the biggest technical challenge when commercializing secondary batteries.
[0004]
Therefore, a non-aqueous electrolyte secondary battery using a carbonaceous material capable of occluding and releasing lithium ions such as coke, artificial graphite, and natural graphite for the negative electrode has been proposed. In such a non-aqueous electrolyte secondary battery, since lithium is not present in a metallic state, formation of dendrites is suppressed, and battery life and safety can be improved. In particular, graphite-based carbonaceous materials such as artificial graphite and natural graphite are expected as materials capable of improving the energy density per unit volume.
[0005]
However, a non-aqueous electrolyte secondary battery using a graphite-based electrode material alone or mixed with another negative electrode material capable of inserting and extracting lithium to form a negative electrode is generally preferred as a lithium primary battery. When an electrolytic solution containing propylene carbonate as a main solvent is used, the decomposition reaction of the solvent progresses violently on the graphite electrode surface, making it impossible to smoothly insert and release lithium into and from the graphite electrode. On the other hand, ethylene carbonate is often used as the main solvent of the electrolyte of the non-aqueous electrolyte secondary battery because such decomposition is small. There are problems that the charge and discharge efficiency is reduced due to the decomposition of the electrolytic solution, and the cycle characteristics are reduced.
[0006]
Furthermore, when a lithium secondary battery is used as a power source for an electric vehicle, the electric vehicle requires a large amount of energy when starting and accelerating, and must efficiently regenerate a large amount of energy generated during deceleration. Requires high output characteristics and input characteristics. In addition, since electric vehicles are used outdoors, lithium secondary batteries require high input / output characteristics, especially at low temperatures, and high temperature Even in the case of repeated charging and discharging, good high-temperature cycle characteristics such as a small deterioration of the capacity and a small increase in internal resistance are required.
[0007]
As a means for improving the input / output characteristics and high-temperature cycle characteristics of lithium secondary batteries, a number of technologies have been studied for various battery components, including positive and negative electrode active materials. . There are various technologies related to non-aqueous electrolytes, such as Japanese Patent Application Laid-Open Nos. 11-354156 and 11-297354, and although some effects are seen, satisfactory electrolytes are currently available. Has not been provided. Many studies have been made to add a silicon compound to the electrolyte. For example, a method of adding an organic silicon heterocyclic compound to improve the wettability (Japanese Patent Application Laid-Open No. 3-236171), a Si-N bond (JP-A-11-16602), a method of adding silicon oil to suppress gas generation (JP-A-11-273732), and a method of adding an alkoxysilane. (JP-A-2000-348766), a method of adding a compound having a Si—H bond to reduce free acid (JP-A-2001-167792), and further, an electrode surface (JP-A-08-180865) and the like, there are methods for alkylating a silane with a silane-based compound to suppress gas generation. Does not show any for is an essential input and output characteristics to the power supply or the like.
[0008]
[Problems to be solved by the invention]
The present invention provides a non-aqueous electrolyte secondary battery suitable for applications requiring both high input / output characteristics and good high-temperature cycle characteristics, such as electric vehicle power supplies, and a non-aqueous electrolyte used therefor. is there.
[0009]
[Means for Solving the Problems]
The present inventors have conducted various studies and studies to achieve the above object. As a result, in order to improve the input / output of the battery, the solid electrolyte interface (SEI, It has been concluded that it is necessary to improve Solid (Electrolyte Interface). Furthermore, as a result of various studies by the present inventors, a non-aqueous electrolyte containing a specific silicon compound is used as an electrolyte of the non-aqueous electrolyte secondary battery to form the electrode on the electrode surface and the electrode. The present invention has been found to improve the SEI performed, and particularly to improve the input / output characteristics at low temperatures and the cycle characteristics at high temperatures, and have completed the present invention.
[0010]
That is, a first gist of the present invention is to provide a non-aqueous electrolyte comprising at least a positive electrode, a negative electrode containing a material capable of inserting and extracting lithium, and a non-aqueous electrolyte containing a non-aqueous solvent and a lithium salt. A water electrolyte secondary battery, wherein the non-aqueous electrolyte is represented by the following formula (1):
[0011]
Embedded image
SiFxR1 lR2 mR3 n... Equation (1)
R In the chemical formula (1), R1~ R3May be the same or different and are an organic group having 1 to 12 carbon atoms, x is 1 to 3, 1, m and n are 0 to 3 and 1 ≦ l + m + n ≦ 3}. . A nonaqueous electrolyte secondary battery comprising a silicon compound represented by}.
[0012]
A second aspect of the present invention is a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode including a material capable of inserting and extracting lithium, and a non-aqueous electrolyte, The non-aqueous electrolyte solution is formed using a non-aqueous solvent, a lithium salt, and a silicon compound-containing electrolyte solution containing the silicon compound represented by the above formula (1). Next battery exists.
[0013]
Further, a third gist of the present invention is to provide a non-aqueous electrolyte including a positive electrode, a negative electrode including a material capable of inserting and extracting lithium, and a non-aqueous electrolyte including a non-aqueous solvent and a lithium salt. A non-aqueous electrolyte for a secondary battery, comprising a silicon compound represented by the above formula (1).
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Non-aqueous electrolyte secondary battery of the present invention, the positive electrode, a negative electrode containing a material capable of occluding and releasing lithium, and at least comprises a non-aqueous solvent and a non-aqueous electrolyte containing a lithium salt, Further, the non-aqueous electrolyte is represented by the formula (1):
[0015]
Embedded image
SiFxR1 lR2 mR3 n... Equation (1)
R In the formula (1), R1~ R3May be the same or different and are an organic group having 1 to 12 carbon atoms, x is 1 to 3, 1, m and n are 0 to 3 and 1 ≦ l + m + n ≦ 3}. . It is characterized by containing a silicon compound represented by}. In the present invention, the fact that the nonaqueous electrolyte solution contains the silicon compound represented by the formula (1) means that the nonaqueous electrolyte secondary battery is immediately after assembly, and the nonaqueous electrolyte solution has the formula (1) in the nonaqueous electrolyte solution. It refers to a state in which the silicon compound represented is unreacted with any substance and not consumed. The present invention also relates to a battery obtained by charging and discharging the above non-aqueous electrolyte secondary battery.
[0016]
In the formula (1), as the organic group having 1 to 12 carbon atoms, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, 1-methylbutyl Group, 2-methylbutyl group, 3-methylbutyl group, 1-methyl-2-methylpropyl group, 2,2-dimethylpropyl group, trifluoropropyl group, 3-pyrrolidinopropyl group, hexyl group, cyclohexyl group, heptyl group Linear or branched alkyl groups such as octyl group, nonyl group, decyl group, norbornanyl group, etc., phenyl group, naphthyl group, phenyl group having o-, p-, m-position substituted with methyl group, o-, p A phenyl group in which the-and m-positions are substituted with an ethyl group, a phenyl group in which the o-, p- and m-positions are substituted with a propyl group, and a methoxy group in the o-, p- and m-positions A substituted phenyl group, an aryl group such as a phenyl group substituted at the o-, p-, m-position with an ethoxy group, a carbonyl group such as an ethoxycarbonylethyl group, a vinyl group, an allyl group, a methacryl group, a cyclohexenyl group, Carboxyl groups such as alkenyl groups such as norbornenyl group, acetoxy group, acetoxymethyl group, trifluoroacetoxy group, etc. Alkynyl group, amino group such as allylamino group, benzyl group, and the like.
[0017]
As the silicon compound represented by the chemical formula (1) used in the present invention, specifically, trimethylfluorosilane, triethylfluorosilane, tripropylfluorosilane, tributylfluorosilane, trihexylfluorosilane, triphenylfluorosilane, Monofluorosilane such as vinyldimethylfluorosilane, vinyldiethylfluorosilane, vinyldiphenylfluorosilane, trimethoxyfluorosilane, triethoxyfluorosilane, and triphenoxyfluorosilane, dimethyldifluorosilane, diethyldifluorosilane, dipropyldifluorosilane, dibutyldifluoro Silane, dihexyldifluorosilane, dicyclohexylfluorosilane, diphenyldifluorosilane, divinyldifluorosilane, methylphenyl Difluorosilane such as difluorosilane, ethylphenyldifluorosilane, ethylvinyldifluorosilane, hexylvinyldifluorosilane, phenylvinyldifluorosilane, diethoxydifluorosilane, methyltrifluorosilane, ethyltrifluorosilane, propyltrifluorosilane, butyltrifluoro Silane, pentyltrifluorosilane, hexyltrifluorosilane, phenyltrifluorosilane, benzyltrifluorosilane, vinyltrifluorosilane, trifluoropropyltrifluorosilane, allyltrifluorosilane, p-tolyltrifluorosilane, phenylethyltrifluoro Silane, benzyltrifluorosilane, trimethylsilyltrifluorosilane, trimethylsiloxytrifluorosila Trifluorosilane etc. can be mentioned.
[0018]
If the silicon compound has a low boiling point, it will volatilize, making it difficult to contain a predetermined amount in the electrolytic solution. Further, even after being contained in the electrolytic solution, there is a possibility that the battery generates heat due to charge and discharge and volatilizes under conditions such that the external environment becomes high in temperature. Therefore, the silicon compound represented by the formula (1) preferably has a boiling point of 50 ° C. or more under normal pressure. Further, those having a boiling point of 60 ° C. or more under normal pressure are preferable. In order to increase the boiling point, those having a phenyl group or a hexyl group having a large molecular weight are preferable. From these facts, triphenylfluorosilane, diphenyldifluorosilane, phenyltrifluorosilane, and hexyltrifluorosilane are preferable because they have a high boiling point and are easy to handle. Two or more silicon compounds represented by the chemical formula (1) may be used in combination.
[0019]
The silicon compound represented by the formula (1) used in the present invention has a highly polar Si—F bond in the molecule. Taking advantage of this feature, the silicon compound represented by the formula (1) reacts with or coordinates with the SEI formed on the electrode surface and on the electrode, thereby modifying them and consequently increasing the output of the battery. Improve. Furthermore, when the number of Si-F bonds in a molecule is larger, the above-mentioned effect may be enhanced, and higher battery performance may be obtained by using difluorosilane or trifluorosilane than monofluorosilane. . When the silicon compound has an aryl group such as a phenyl group in the molecule, the aryl group traps radicals generated in the battery during charge / discharge and suppresses a side reaction, and as a result, the Performance can be improved. Further, when the silicon compound has an unsaturated bond such as a vinyl group in the molecule, the unsaturated bond reacts with the electrolytic solution or SEI, and the SEI becomes thicker, which may lower the low-temperature output. . Therefore, there is no problem as long as it is an aromatic double-bonded unsaturated bond such as an aryl group, but a compound which does not have an aliphatic unsaturated bond such as a vinyl group in the molecule is preferable.
[0020]
The silicon compound represented by the formula (1) reacts quickly with the SEI formed on the electrode surface and on the electrode by initial charging and discharging after battery assembly, and has a high reactivity itself. Depending on the case, it may disappear at an early stage (for example, several times of charge and discharge).
The content of the silicon compound represented by the formula (1) in the nonaqueous electrolyte used in the present invention is preferably 0.0001 to 1 mol / kg, more preferably 0.001 to 0.5 mol / kg, More preferably, it is 0.01 to 0.2 mol / kg. When the silicon compound of the formula (1) is within this range, the effect of improving the input / output characteristics and the cycle characteristics of the battery is sufficient, and there is no problem in the battery performance and the operation of the battery.
[0021]
Examples of the non-aqueous solvent of the electrolytic solution used in the present invention include ethylene carbonate, propylene carbonate, cyclic carbonates such as butylene carbonate, dimethyl carbonate, diethyl carbonate, chain carbonates such as ethyl methyl carbonate, γ-butyrolactone, γ Cyclic esters such as valerolactone, chain esters such as methyl acetate and methyl propionate, cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and tetrahydropyran, chain ethers such as dimethoxyethane and dimethoxymethane, and sulfolane And a sulfur-containing organic solvent such as diethylsulfone.
These solvents may be used alone or as a mixture of two or more.
[0022]
Here, the non-aqueous solvent is a cyclic carbonate selected from the group consisting of alkylene carbonates having 2 to 4 carbon atoms in an alkylene group, and a cyclic carbonate selected from the group consisting of dialkyl carbonates having 1 to 4 carbon atoms in an alkyl group. It is preferable to use a mixed solvent containing 20% by volume or more of a chain carbonate and 70% by volume or more of these carbonates in order to improve charge / discharge characteristics, battery life and overall battery performance. Here, the volume of the non-aqueous solvent is a value measured at 20 ° C. For a solid at room temperature, the value measured in the molten state after heating to the melting point is used.
[0023]
Specific examples of the alkylene carbonate having 2 to 4 carbon atoms of the alkylene group include, for example, ethylene carbonate, propylene carbonate, butylene carbonate and the like. Among these, ethylene carbonate and propylene carbonate are preferable.
Specific examples of the dialkyl carbonate having an alkyl group having 1 to 4 carbon atoms include dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate and the like. Can be mentioned. Of these, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate are preferred. The mixed non-aqueous solvent may contain a solvent other than carbonate. In the non-aqueous solvent, usually 30% by weight or less, especially 10% by weight or less, as long as the battery performance is not reduced. Solvents other than carbonates such as cyclic carbonates and chain carbonates may be included.
[0024]
A lithium salt is used for the non-aqueous electrolyte used in the present invention. The lithium salt is not particularly limited as long as it can be used as a solute, and specific examples thereof include, for example, LiPF6, LiBF4, LiClO4, LiAsF6Inorganic lithium salt selected from LiCF3SO3, LiN (CF3SO2)2, LiN (CF3CF2SO2)2, LiN (CF3SO2) (C4F9SO2), LiC (CF3SO2)3And the like. Also, Li [PF5(CF2CF2CF3)], Li [PF4(CF2CF2CF3)2], Li [PF3(CF2CF2CF3)3], Li [PF5(CF2CF2CF2CF3)], Li [PF4(CF2CF2CF2CF3)2], Li [PF3(CF2CF2CF2CF3)3], Etc. can also be used. Among them, LiPF6, LiBF4Is preferred. These solutes may be used alone or as a mixture of two or more.
[0025]
The concentration of the lithium salt in the non-aqueous electrolyte used in the present invention is preferably 0.5 to 2 mol / L. If it is less than 0.5 mol / liter or more than 2 mol / liter, the electric conductivity of the electrolytic solution tends to be low, and the performance of the battery may be reduced.
The active material of the negative electrode constituting the battery according to the present invention is not particularly limited as long as it can occlude and release lithium. For example, thermal decomposition products of organic substances under various thermal decomposition conditions, carbonaceous materials such as artificial graphite and natural graphite, metal oxide materials, lithium metal and various lithium alloys are used.
Among them, as the carbonaceous material, artificial graphite and purified natural graphite produced by high-temperature heat treatment of easily-graphitizable pitch obtained from various raw materials, or those obtained by subjecting these graphites to pitch or other surface treatment are preferable. .
[0026]
The d value (interlayer distance) of the lattice plane (002 plane) of the graphite material obtained by X-ray diffraction according to the Gakushin method is usually 0.335 to 0.34 nm, preferably 0.335 to 0.337 nm. The ash content of the graphite material is usually 1% by weight or less, preferably 0.5% by weight or less, more preferably 0.1% by weight or less. The crystallite size (Lc) determined by X-ray diffraction by the Gakushin method is usually 30 nm or more, preferably 50 nm or more, and more preferably 100 nm or more.
[0027]
The median diameter of the graphite material measured by a laser diffraction / scattering method is usually 1 μm to 100 μm, preferably 3 μm to 50 μm, more preferably 5 μm to 40 μm, and still more preferably 7 μm to 30 μm.
BET specific surface area of graphite material is 0.5m2/G~25.0m2/ G, preferably 0.7 m2/G~20.0m2/ G, more preferably 1.0 m2/G-15.0m2/ G, more preferably 1.5 m2/G~10.0m2/ G.
[0028]
The graphite material was 1580 to 1620 cm in Raman spectrum analysis using argon ion laser light.-1PA (peak intensity IA) and 1350-1370 cm-1The intensity ratio R of the peak PB (peak intensity IB) R = IB / IA is 0 to 0.5, 1580 to 1620 cm-1The half width of the peak in the range is 26 cm-1Below, 1580-1620cm-1The half width of the peak in the range is 25 cm-1The following is more preferred.
[0029]
Further, these carbonaceous materials may be mixed with another negative electrode material capable of inserting and extracting lithium.
Examples of the negative electrode material capable of inserting and extracting lithium other than the carbonaceous material include Ag, Zn, Al, Ga, In, Si, Ge, Sn, Pb, P, Sb, Bi, Cu, Ni, Sr, and Ba. An alloy of a metal and Li, a metal oxide material such as an oxide of these metals, and lithium metal are given. Among them, Sn oxide, Si oxide, Al oxide, a lithium alloy of Sn, Si, and Al, and metallic lithium are preferable.
These negative electrode materials may be used as a mixture of two or more kinds.
[0030]
The material of the positive electrode constituting the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but a lithium transition metal composite oxide is preferably used. As the lithium transition metal composite oxide, LiCoO2Lithium-cobalt composite oxide such as LiNiO2Such as lithium nickel composite oxide, LiMnO2And the like, but the present invention is particularly useful as a positive electrode active material cobalt-based and nickel-based lithium transition metal composite oxide having a large lithium content, for example, lithium cobalt composite oxide And when a lithium nickel composite oxide is used. In these lithium transition metal composite oxides, some of the main transition metal elements are Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, etc. Stabilization by replacement with other metal species is also possible and preferred. These positive electrode materials may be used alone or in combination of two or more.
[0031]
The method for producing the positive electrode and the negative electrode is not particularly limited. For example, the active material can be manufactured by adding a binder, a thickening agent, a conductive material, a solvent, and the like as needed, forming a slurry, applying the slurry to a current collector substrate, and drying. Further, the active material can be roll-formed as it is to form a sheet electrode, or can be formed into a pellet electrode by compression molding. The binder is not particularly limited as long as it is a material that is stable to a solvent or an electrolytic solution used in manufacturing an electrode, and specific examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, styrene / butadiene rubber, and isoprene rubber. And butadiene rubber. Examples of the thickener include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein. Examples of the conductive material include metal materials such as copper and nickel, and carbonaceous materials such as graphite and carbon black. In particular, the positive electrode preferably contains a conductive agent.
[0032]
The current collector used for the positive electrode and the negative electrode is not particularly limited. As the positive electrode current collector, a metal such as aluminum, titanium, or tantalum or an alloy thereof can be used. Particularly, aluminum or its alloy is preferable in terms of energy density because it is lightweight. As the current collector for the negative electrode, a metal such as copper, nickel, and stainless steel or an alloy thereof can be used, and copper is particularly preferable in terms of easy processing into a thin film and cost.
[0033]
In a secondary battery, usually, a separator is interposed between a positive electrode and a negative electrode. The material and shape of the separator used in the battery of the present invention are not particularly limited, but are preferably selected from materials that are stable with respect to the electrolytic solution and have excellent liquid retention properties.Polyolefins such as polyethylene and polypropylene are preferably used. It is preferable to use a porous sheet or a nonwoven fabric as a raw material.
[0034]
The method for producing the secondary battery of the present invention having at least the negative electrode, the positive electrode, and the non-aqueous electrolyte is not particularly limited, and can be appropriately selected from commonly employed methods.
The shape of the battery is not particularly limited, and a cylinder type having a spiral shape of a sheet electrode and a separator, a cylinder type having an inside-out structure combining a pellet electrode and a separator, and a coin type having a stack of a pellet electrode and a separator are used. It is possible.
[0035]
In another aspect, the present invention is a non-aqueous electrolyte secondary battery comprising at least a positive electrode, a negative electrode containing a material capable of inserting and extracting lithium, and a non-aqueous electrolyte, Is a non-aqueous solvent, a lithium salt and the formula (1):
[0036]
Embedded image
SiFxR1 lR2 mR3 n... Equation (1)
R In the chemical formula (1), R1~ R3May be the same or different and are an organic group having 1 to 12 carbon atoms, x is 1 to 3, 1, m and n are 0 to 3 and 1 ≦ l + m + n ≦ 3}. . }
A non-aqueous electrolyte secondary battery formed using a silicon compound-containing electrolytic solution containing a silicon compound represented by the formula: The non-aqueous electrolyte is not particularly limited as long as it is formed using the above-described silicon compound-containing electrolyte, and may be one in which the silicon compound is decomposed, reacted, or the like after being formed. For example, a non-aqueous electrolyte secondary battery assembled using a silicon compound-containing electrolyte is initially charged and discharged, and a non-aqueous electrolyte including a non-aqueous electrolyte in which the silicon compound of formula (1) has disappeared. Includes secondary batteries.
[0037]
The content of the silicon compound represented by the formula (1) in the silicon-containing electrolyte is preferably 0.0001 to 1 mol / kg, more preferably 0.001 to 0.5 mol / kg, and still more preferably 0.01 to 1 mol / kg. 0.20.2 mol / kg. As the non-aqueous solvent and lithium salt, those described above are applied.
[0038]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention.
[0039]
Example 1
[Preparation of positive electrode]
The positive electrode is made of lithium nickel oxide (LiNiOO) as a positive electrode active material.290% by weight, 5% by weight of acetylene black as a conductive agent, and 5% by weight of polyvinylidene fluoride (PVdF) as a binder were mixed in an N-methylpyrrolidone solvent to form a slurry. It was coated on one side of a 20 μm aluminum foil, dried, and rolled by a press machine, and punched out with a punch having a diameter of 12.5 mm.
[0040]
[Preparation of negative electrode]
The d value of the lattice plane (002 plane) in X-ray diffraction is 0.336 nm, the crystallite size (Lc) is 100 nm or more (264 nm), the ash content is 0.04% by weight, the median diameter by laser diffraction / scattering method is 17 μm, BET specific surface area is 8.9m2/ G, 1580-1620 cm in Raman spectrum analysis using argon ion laser light-1Peak P in the rangeA(Peak intensity IA) And 1350-1370 cm-1Peak P in the rangeB(Peak intensity IB) Intensity ratio R = IB/ IAIs 0.15, 1580-1620cm-1The peak half width at 22.2 cm-1Styrene-butadiene rubber (SBR) dispersed in distilled water to 94 parts by weight of artificial graphite powder KS-44 (trade name, manufactured by Timcal Co., Ltd.) so that the solid content becomes 6 parts by weight, The resulting mixture was slurried, uniformly coated on a copper foil having a thickness of 18 μm as a negative electrode current collector, dried, and then punched into a disk having a diameter of 12.5 mm to produce an electrode, which was used as a negative electrode.
[0041]
[Preparation of electrolyte solution]
Under a dry argon atmosphere, the solution was sufficiently dried at a concentration of 1 mol / liter in a mixed solvent of purified ethylene carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC) in a volume ratio of 3: 3: 4. Lithium hexafluorophosphate (LiPF6) Was dissolved, and triphenylfluorosilane was further added at a ratio of 0.02 mol / kg with respect to the total weight of the non-aqueous mixed solvent and the lithium salt.
[0042]
[Battery assembly]
In a dry box in an argon atmosphere, the positive electrode was housed in a stainless steel can that also serves as a positive electrode conductor, and the negative electrode was disposed thereon via a separator impregnated with the electrolytic solution. The can body and the sealing plate also serving as the negative electrode conductor were caulked and sealed via an insulating gasket to produce a coin-type battery.
[0043]
[Evaluation of battery]
1) Initial charging / discharging {A new battery that has not undergone an actual charging / discharging cycle is charged / discharged at 25 ° C}, and the charge amount at this time is adjusted to 100%, and the charge state of the lithium secondary battery is adjusted to 40% did.
2) Initial output evaluation Under a low temperature environment of -30 ° C, the battery in the state of 1) was subjected to 1 / 8C, 1 / 4C, 1 / 2C, 1.5C, 2.5C, 3.5C, 5C (1 hour). The current value at which the rated capacity according to the discharge capacity is 1 hour is defined as 1 C. The same applies to the following.) A constant current discharge is performed at each current value for 10 seconds, and the battery voltage after 2 seconds in the discharge under each condition is When the drop is measured and the lower limit voltage of the discharge is set to 3.0 V, a current value I that can flow for 2 seconds is calculated from the measured values, and the current value I is calculated by the formula of 3.0 × I (W). The value was taken as the initial output of each battery. Table 1 shows the results.
[0044]
3) High-temperature cycle test {The high-temperature cycle test was performed in a high-temperature environment of 60 ° C., which is regarded as the upper limit of the actual use temperature of the lithium secondary battery. The battery whose output has been evaluated in 2) is charged by a constant current / constant voltage method of 2 C up to a charge upper limit voltage of 4.1 V, and then discharged at a constant current of 2 C up to a discharge end voltage of 3.0 V in one charge / discharge cycle. This cycle was repeated up to 100 cycles.
[0045]
4) Charge / discharge after cycling The battery that completed the cycle test in {3) was charged / discharged at 25 ° C., and the charge amount at this time was adjusted to 100%, and the charge state of the lithium secondary battery was adjusted to 40%.
5) Evaluation of output after cycle The battery in the state of # 4) was evaluated in the same manner as in 2), and was evaluated as output after cycle. The results at −30 ° C. are shown in Table 1.
[0046]
Example 2
Example 1 was repeated except that diphenyldifluorosilane was added instead of triphenylfluorosilane at the rate of 0.02 mol / kg with respect to the total weight of the non-aqueous mixed solvent and the lithium salt in preparing the electrolytic solution. The test was performed in the same manner as in Example 1.
[0047]
Example 3
Example 1 was carried out in the same manner as in Example 1, except that phenyltrifluorosilane was added in place of triphenylfluorosilane at a ratio of 0.02 mol / kg to the total weight of the non-aqueous mixed solvent and the lithium salt in preparing the electrolytic solution. The test was performed in the same manner as in Example 1.
[0048]
Example 4
Example 1 was carried out in the same manner as in Example 1, except that hexyltrifluorosilane was added instead of triphenylfluorosilane at a ratio of 0.02 mol / kg with respect to the total weight of the non-aqueous mixed solvent and the lithium salt when preparing the electrolyte solution. The test was performed in the same manner as in Example 1.
[0049]
Comparative Example 1
In Example 1, a test was performed in the same manner as in Example 1 except that triphenylfluorosilane was not used in preparing the electrolytic solution.
[0050]
Comparative Example 2
Example 1 was carried out in the same manner as in Example 1, except that triethylfluorosilane was added instead of triphenylfluorosilane at a ratio of 0.02 mol / kg with respect to the total weight of the nonaqueous mixed solvent and the lithium salt. The test was performed in the same manner as in Example 1.
[0051]
In Japanese Patent Application Laid-Open No. 2001-68153, silanes are effective as a hydrofluoric acid extractant for the charge-discharge capacity cycle characteristics of a battery. For example, the reaction of hydrofluoric acid extraction using triethylsilane is represented by formula (2). It is going to be.
[0052]
Embedded image
Et3SiH + HF → Et3SiF + H2... Equation (2)
In the previous publication, there is no description about triethylfluorosilane which is a product of the formula (2), and as is clear from Table 1, where triethylsilane is used, the present invention aims at the main purpose. Since there is no effect on the input / output characteristics, it is clear that we could not predict the effect of the compound of the present invention from the previous publication.
[0053]
From Table 1, it can be seen that the secondary battery using the non-aqueous electrolyte containing an appropriate amount of the silicon compound represented by the chemical formula (1) has excellent input / output characteristics at low temperatures and maintains the characteristics even after cycling at high temperatures. .
[0054]
【The invention's effect】
According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte suitable for applications requiring both high input / output characteristics and good high-temperature cycle characteristics, such as electric vehicle power supplies.
[0055]
[Table 1]
Figure 2004087459

Claims (8)

正極、リチウムを吸蔵及び放出することが可能な材料を含む負極、並びに非水溶媒とリチウム塩とを含有する非水電解液を備えた非水電解液二次電池であって、前記非水電解液が、式(1):
Figure 2004087459
{化学式(1)中、R〜Rは、互いに同一であっても異なっていてもよく、炭素数1〜12の有機基であって、xは1〜3,l,m,nは0〜3で、1≦l+m+n≦3 である。}
で表されるケイ素化合物を含有することを特徴とする非水電解液二次電池。
A non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode including a material capable of inserting and extracting lithium, and a non-aqueous electrolyte containing a non-aqueous solvent and a lithium salt, wherein the non-aqueous electrolyte The liquid has the formula (1):
Figure 2004087459
中 In the chemical formula (1), R 1 to R 3 may be the same or different from each other, are an organic group having 1 to 12 carbon atoms, and x is 1 to 3, 1, m, and n are 0 ≦ 3, and 1 ≦ l + m + n ≦ 3. }
A non-aqueous electrolyte secondary battery comprising a silicon compound represented by the formula:
請求項1に記載の非水電解液二次電池を、充放電することにより得られる非水電解液二次電池。A non-aqueous electrolyte secondary battery obtained by charging and discharging the non-aqueous electrolyte secondary battery according to claim 1. 正極、リチウムを吸蔵及び放出することが可能な材料を含む負極、並びに非水電解液を備えた非水電解液二次電池であって、前記非水電解液が、非水溶媒、リチウム塩、及び式(1):
Figure 2004087459
{化学式(1)中、R〜Rは、互いに同一であっても異なっていてもよく、炭素数1〜12の有機基であって、xは1〜3,l,m,nは0〜3で、1≦l+m+n≦3 である。}
で表されるケイ素化合物を含有するケイ素化合物含有電解液を用いて形成されたものであることを特徴とする非水電解液二次電池。
A positive electrode, a negative electrode including a material capable of inserting and extracting lithium, and a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte, wherein the non-aqueous electrolyte is a non-aqueous solvent, a lithium salt, And equation (1):
Figure 2004087459
中 In the chemical formula (1), R 1 to R 3 may be the same or different from each other, are an organic group having 1 to 12 carbon atoms, and x is 1 to 3, 1, m, and n are 0 ≦ 3, and 1 ≦ l + m + n ≦ 3. }
A non-aqueous electrolyte secondary battery formed using a silicon compound-containing electrolytic solution containing a silicon compound represented by the formula:
ケイ素化合物含有電解液中の前記ケイ素化合物の含有量が、0.0001〜1mol/kgである、請求項3に記載の非水電解液二次電池。The nonaqueous electrolyte secondary battery according to claim 3, wherein the content of the silicon compound in the silicon compound-containing electrolyte is 0.0001 to 1 mol / kg. 正極、リチウムを吸蔵及び放出することが可能な材料を含む負極、並びに非水溶媒とリチウム塩とを含有する非水電解液を備えた非水電解液二次電池用の非水電解液であって、式(1):
Figure 2004087459
{化学式(1)中、R〜Rは、互いに同一であっても異なっていてもよく、炭素数1〜12の有機基であって、xは1〜3,l,m,nは0〜3で、1≦l+m+n≦3 である。}
で表されるケイ素化合物を含有することを特徴とする非水電解液。
A non-aqueous electrolyte for a secondary battery including a positive electrode, a negative electrode including a material capable of inserting and extracting lithium, and a non-aqueous electrolyte including a non-aqueous solvent and a lithium salt. And equation (1):
Figure 2004087459
中 In the chemical formula (1), R 1 to R 3 may be the same or different from each other, are an organic group having 1 to 12 carbon atoms, and x is 1 to 3, 1, m, and n are 0 ≦ 3, and 1 ≦ l + m + n ≦ 3. }
A non-aqueous electrolyte comprising a silicon compound represented by the formula:
式(1)で表されるケイ素化合物が、常圧下で沸点が50℃以上であることを特徴とする請求項1又は3に記載の非水電解液二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein the silicon compound represented by the formula (1) has a boiling point of 50 ° C. or more under normal pressure. 式(1)で表されるケイ素化合物が、常圧下で沸点が50℃以上であることを特徴とする請求項5に記載の非水電解液。The non-aqueous electrolyte according to claim 5, wherein the silicon compound represented by the formula (1) has a boiling point of 50 ° C or more under normal pressure. 非水電解液中の式(1)で表されるケイ素化合物の含有量が0.0001〜1mol/kgである、請求項5〜7のいずれかに記載の非水電解液。The nonaqueous electrolyte according to any one of claims 5 to 7, wherein the content of the silicon compound represented by the formula (1) in the nonaqueous electrolyte is 0.0001 to 1 mol / kg.
JP2003136321A 2002-06-25 2003-05-14 Non-aqueous electrolyte secondary battery Expired - Lifetime JP4367001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136321A JP4367001B2 (en) 2002-06-25 2003-05-14 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002184220 2002-06-25
JP2003136321A JP4367001B2 (en) 2002-06-25 2003-05-14 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004087459A true JP2004087459A (en) 2004-03-18
JP4367001B2 JP4367001B2 (en) 2009-11-18

Family

ID=32071601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136321A Expired - Lifetime JP4367001B2 (en) 2002-06-25 2003-05-14 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4367001B2 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039510A (en) * 2002-07-05 2004-02-05 Denso Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the electrolyte
JP2004171981A (en) * 2002-11-21 2004-06-17 Mitsui Chemicals Inc Nonaqueous electrolytic solution and secondary battery using the same
JP2007012595A (en) * 2005-05-30 2007-01-18 Denso Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP2007141831A (en) * 2005-10-20 2007-06-07 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery using same
JP2007165298A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165299A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165297A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165296A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165294A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery using it
JP2007165301A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007173222A (en) * 2005-11-25 2007-07-05 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007180016A (en) * 2005-11-29 2007-07-12 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolyte secondary battery using it
JP2007180015A (en) * 2005-11-29 2007-07-12 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery using it
JP2007180025A (en) * 2005-12-02 2007-07-12 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007184257A (en) * 2005-12-07 2007-07-19 Mitsubishi Chemicals Corp Non-aqueous electrolyte solution for secondary cell and non-aqueous electrolyte secondary battery employing the same
JP2007188871A (en) * 2005-12-13 2007-07-26 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007194209A (en) * 2005-12-22 2007-08-02 Mitsubishi Chemicals Corp Lithium secondary cell, and battery pack formed by connecting the plurality of it
JP2007194208A (en) * 2005-12-22 2007-08-02 Mitsubishi Chemicals Corp Lithium secondary cell, and battery pack formed by connecting the plurality of it
JP2007194207A (en) * 2005-12-21 2007-08-02 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007200871A (en) * 2005-12-28 2007-08-09 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007214120A (en) * 2006-01-13 2007-08-23 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007227368A (en) * 2006-01-27 2007-09-06 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2009544115A (en) * 2006-07-14 2009-12-10 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Chemical protection of metal surfaces
JP2011222450A (en) * 2010-04-14 2011-11-04 Denso Corp Nonaqueous electrolytic solution for secondary battery and nonaqueous electrolytic solution secondary battery using the electrolytic solution
WO2012066878A1 (en) * 2010-11-16 2012-05-24 株式会社Adeka Non-aqueous electrolyte secondary battery
WO2012066879A1 (en) * 2010-11-16 2012-05-24 株式会社Adeka Non-aqueous electrolyte secondary battery
JP2012174450A (en) * 2011-02-21 2012-09-10 Adeka Corp Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolyte secondary battery comprising the electrolytic solution
EP2560229A2 (en) 2005-10-20 2013-02-20 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2013138012A (en) * 2005-12-22 2013-07-11 Mitsubishi Chemicals Corp Lithium secondary battery and battery pack formed by connecting lithium secondary batteries together
WO2014073381A1 (en) * 2012-11-08 2014-05-15 住友化学株式会社 Sodium secondary battery
KR20160076192A (en) 2014-12-22 2016-06-30 솔브레인 주식회사 Electrolyte and lithium secondary battery comprising the same
US20160240888A1 (en) 2013-10-04 2016-08-18 Asahi Kasei Kabushiki Kaisha Electrolyte and lithium-ion secondary battery
KR20170033437A (en) 2014-08-01 2017-03-24 샌트랄 글래스 컴퍼니 리미티드 Electrolyte solution for non-aqueous electrolytic solution battery and non-aqueous electrolyte solution battery using same
WO2017138452A1 (en) 2016-02-08 2017-08-17 セントラル硝子株式会社 Electrolytic solution for nonaqueous electrolytic solution battery, and nonaqueous electrolytic solution battery using same
KR20170118206A (en) 2015-02-19 2017-10-24 샌트랄 글래스 컴퍼니 리미티드 Electrolyte for non-aqueous electrolyte cell and non-aqueous electrolyte cell using the same
WO2018016245A1 (en) * 2016-07-22 2018-01-25 ダイキン工業株式会社 Electrolyte solution, electrochemical device, secondary battery, and module
WO2018016246A1 (en) * 2016-07-22 2018-01-25 ダイキン工業株式会社 Electrolyte solution, electrochemical device, secondary battery, and module
JP2019102183A (en) * 2017-11-29 2019-06-24 三井化学株式会社 Nonaqueous electrolyte solution for battery, and lithium secondary battery
JP2020064873A (en) * 2005-10-28 2020-04-23 三菱ケミカル株式会社 Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery using the same
CN112467208A (en) * 2019-09-09 2021-03-09 珠海冠宇电池股份有限公司 Silicon-carbon lithium ion battery containing non-aqueous electrolyte and preparation method and application thereof
WO2021090815A1 (en) 2019-11-05 2021-05-14 国立大学法人九州大学 Electrolyte solution
CN113948770A (en) * 2021-10-12 2022-01-18 远景动力技术(江苏)有限公司 Electrolyte for improving high-temperature storage characteristics of battery and lithium ion battery
CN114597492A (en) * 2021-04-12 2022-06-07 深圳市研一新材料有限责任公司 Nonaqueous electrolyte solution and lithium ion battery using same
US11527773B2 (en) 2018-10-26 2022-12-13 Samsung Sdi Co., Ltd. Lithium battery

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039510A (en) * 2002-07-05 2004-02-05 Denso Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the electrolyte
JP2004171981A (en) * 2002-11-21 2004-06-17 Mitsui Chemicals Inc Nonaqueous electrolytic solution and secondary battery using the same
JP2007012595A (en) * 2005-05-30 2007-01-18 Denso Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
KR101930127B1 (en) * 2005-10-20 2018-12-17 미쯔비시 케미컬 주식회사 Lithium secondary cell and nonaqueous electrolytic solution for use therein
EP3557684A2 (en) 2005-10-20 2019-10-23 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
EP3217463A1 (en) 2005-10-20 2017-09-13 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
KR101548851B1 (en) * 2005-10-20 2015-09-01 미쓰비시 가가꾸 가부시키가이샤 Lithium secondary cell and nonaqueous electrolytic solution for use therein
US9112236B2 (en) 2005-10-20 2015-08-18 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
EP2560229A3 (en) * 2005-10-20 2016-08-17 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2007141831A (en) * 2005-10-20 2007-06-07 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery using same
KR20180135098A (en) * 2005-10-20 2018-12-19 미쯔비시 케미컬 주식회사 Lithium secondary cell and nonaqueous electrolytic solution for use therein
EP1939971A4 (en) * 2005-10-20 2016-08-10 Mitsubishi Chem Corp Lithium secondary cell and nonaqueous electrolytic solution for use therein
EP2560229A2 (en) 2005-10-20 2013-02-20 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
EP3557684A3 (en) * 2005-10-20 2020-03-11 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
KR102102105B1 (en) * 2005-10-20 2020-04-20 미쯔비시 케미컬 주식회사 Lithium secondary cell and nonaqueous electrolytic solution for use therein
US11769871B2 (en) 2005-10-20 2023-09-26 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
EP3840101A1 (en) 2005-10-20 2021-06-23 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2021048135A (en) * 2005-10-28 2021-03-25 三菱ケミカル株式会社 Non-aqueous electrolyte for secondary batteries and non-aqueous electrolyte secondary battery using the same
JP2020064873A (en) * 2005-10-28 2020-04-23 三菱ケミカル株式会社 Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery using the same
JP2007165301A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165298A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165299A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165297A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165296A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165294A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery using it
JP2007173222A (en) * 2005-11-25 2007-07-05 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007180015A (en) * 2005-11-29 2007-07-12 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery using it
JP2007180016A (en) * 2005-11-29 2007-07-12 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolyte secondary battery using it
JP2007180025A (en) * 2005-12-02 2007-07-12 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007184257A (en) * 2005-12-07 2007-07-19 Mitsubishi Chemicals Corp Non-aqueous electrolyte solution for secondary cell and non-aqueous electrolyte secondary battery employing the same
JP2007188871A (en) * 2005-12-13 2007-07-26 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007194207A (en) * 2005-12-21 2007-08-02 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2013138012A (en) * 2005-12-22 2013-07-11 Mitsubishi Chemicals Corp Lithium secondary battery and battery pack formed by connecting lithium secondary batteries together
JP2007194209A (en) * 2005-12-22 2007-08-02 Mitsubishi Chemicals Corp Lithium secondary cell, and battery pack formed by connecting the plurality of it
JP2007194208A (en) * 2005-12-22 2007-08-02 Mitsubishi Chemicals Corp Lithium secondary cell, and battery pack formed by connecting the plurality of it
JP2007200871A (en) * 2005-12-28 2007-08-09 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007214120A (en) * 2006-01-13 2007-08-23 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007227368A (en) * 2006-01-27 2007-09-06 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2009544115A (en) * 2006-07-14 2009-12-10 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Chemical protection of metal surfaces
JP2011222450A (en) * 2010-04-14 2011-11-04 Denso Corp Nonaqueous electrolytic solution for secondary battery and nonaqueous electrolytic solution secondary battery using the electrolytic solution
US9023536B2 (en) 2010-11-16 2015-05-05 Adeka Corporation Non-aqueous electrolyte secondary battery
WO2012066878A1 (en) * 2010-11-16 2012-05-24 株式会社Adeka Non-aqueous electrolyte secondary battery
WO2012066879A1 (en) * 2010-11-16 2012-05-24 株式会社Adeka Non-aqueous electrolyte secondary battery
US9017866B2 (en) 2010-11-16 2015-04-28 Adeka Corporation Non-aqueous electrolyte secondary battery
JP2012174450A (en) * 2011-02-21 2012-09-10 Adeka Corp Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolyte secondary battery comprising the electrolytic solution
JPWO2014073381A1 (en) * 2012-11-08 2016-09-08 住友化学株式会社 Sodium secondary battery
WO2014073381A1 (en) * 2012-11-08 2014-05-15 住友化学株式会社 Sodium secondary battery
US10050306B2 (en) 2013-10-04 2018-08-14 Asahi Kasei Kabushiki Kaisha Electrolyte and lithium-ion secondary battery
US20160240888A1 (en) 2013-10-04 2016-08-18 Asahi Kasei Kabushiki Kaisha Electrolyte and lithium-ion secondary battery
KR20170033437A (en) 2014-08-01 2017-03-24 샌트랄 글래스 컴퍼니 리미티드 Electrolyte solution for non-aqueous electrolytic solution battery and non-aqueous electrolyte solution battery using same
US10847838B2 (en) 2014-08-01 2020-11-24 Central Glass Co., Ltd. Electrolyte solution for non-aqueous electrolytic solution battery and non-aqueous electrolyte solution battery using same
KR20190026974A (en) 2014-08-01 2019-03-13 샌트랄 글래스 컴퍼니 리미티드 Electrolyte solution for non-aqueous electrolytic solution battery and non-aqueous electrolyte solution battery using same
US11652238B2 (en) 2014-08-01 2023-05-16 Central Glass Co., Ltd. Electrolyte solution for non-aqueous electrolytic solution battery and non-aqueous electrolyte solution battery using same
KR20160076192A (en) 2014-12-22 2016-06-30 솔브레인 주식회사 Electrolyte and lithium secondary battery comprising the same
US11145904B2 (en) 2015-02-19 2021-10-12 Central Glass Co., Ltd. Electrolyte solution for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the same
KR20190079695A (en) 2015-02-19 2019-07-05 샌트랄 글래스 컴퍼니 리미티드 Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
US11171361B2 (en) 2015-02-19 2021-11-09 Central Glass Co., Ltd. Electrolyte solution for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the same
EP3598560A1 (en) 2015-02-19 2020-01-22 Central Glass Company, Limited Electrolyte solution for non-aqueous-electrolyte battery, and non-aqueous electrolyte battery using the same
US10553904B2 (en) 2015-02-19 2020-02-04 Central Glass Co., Ltd. Electrolyte solution for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the same
KR20170118206A (en) 2015-02-19 2017-10-24 샌트랄 글래스 컴퍼니 리미티드 Electrolyte for non-aqueous electrolyte cell and non-aqueous electrolyte cell using the same
KR20210013779A (en) 2016-02-08 2021-02-05 샌트랄 글래스 컴퍼니 리미티드 Electrolytic solution for nonaqueous electrolytic solution battery, and nonaqueous electrolytic solution battery using same
EP3416229A4 (en) * 2016-02-08 2019-03-20 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution battery, and nonaqueous electrolytic solution battery using same
US11302964B2 (en) 2016-02-08 2022-04-12 Central Glass Company, Limited Electrolytic solution for nonaqueous electrolytic solution battery, and nonaqueous electrolytic solution battery using same
WO2017138452A1 (en) 2016-02-08 2017-08-17 セントラル硝子株式会社 Electrolytic solution for nonaqueous electrolytic solution battery, and nonaqueous electrolytic solution battery using same
CN113903997A (en) * 2016-07-22 2022-01-07 大金工业株式会社 Electrolyte solution, electrochemical device, secondary battery, and module
CN109643826B (en) * 2016-07-22 2022-03-15 大金工业株式会社 Electrolyte solution, electrochemical device, secondary battery, and module
EP3849009A1 (en) 2016-07-22 2021-07-14 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, secondary battery, and module
WO2018016246A1 (en) * 2016-07-22 2018-01-25 ダイキン工業株式会社 Electrolyte solution, electrochemical device, secondary battery, and module
JPWO2018016245A1 (en) * 2016-07-22 2019-02-28 ダイキン工業株式会社 Electrolyte, electrochemical device, secondary battery, and module
WO2018016245A1 (en) * 2016-07-22 2018-01-25 ダイキン工業株式会社 Electrolyte solution, electrochemical device, secondary battery, and module
US11322780B2 (en) 2016-07-22 2022-05-03 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, secondary battery, and module
CN109643826A (en) * 2016-07-22 2019-04-16 大金工业株式会社 Electrolyte, electrochemical device, secondary cell and component
JP2019102183A (en) * 2017-11-29 2019-06-24 三井化学株式会社 Nonaqueous electrolyte solution for battery, and lithium secondary battery
US11527773B2 (en) 2018-10-26 2022-12-13 Samsung Sdi Co., Ltd. Lithium battery
CN112467208A (en) * 2019-09-09 2021-03-09 珠海冠宇电池股份有限公司 Silicon-carbon lithium ion battery containing non-aqueous electrolyte and preparation method and application thereof
WO2021090815A1 (en) 2019-11-05 2021-05-14 国立大学法人九州大学 Electrolyte solution
CN114597492A (en) * 2021-04-12 2022-06-07 深圳市研一新材料有限责任公司 Nonaqueous electrolyte solution and lithium ion battery using same
CN113948770A (en) * 2021-10-12 2022-01-18 远景动力技术(江苏)有限公司 Electrolyte for improving high-temperature storage characteristics of battery and lithium ion battery
CN113948770B (en) * 2021-10-12 2024-01-30 远景动力技术(江苏)有限公司 Electrolyte for improving high-temperature storage characteristics of battery and lithium ion battery

Also Published As

Publication number Publication date
JP4367001B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP4367001B2 (en) Non-aqueous electrolyte secondary battery
JP4233819B2 (en) Non-aqueous electrolyte secondary battery
JP4154951B2 (en) Non-aqueous electrolyte secondary battery
JP5196118B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4859487B2 (en) Nonaqueous electrolyte secondary battery
US20080070120A1 (en) Non-aqueous electrolyte secondary battery and making method
JP6088749B2 (en) Negative electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
US8685573B2 (en) Cathode active material and lithium ion rechargeable battery using the material
JP2021530855A (en) Negative electrode for lithium secondary battery, its manufacturing method and lithium secondary battery including this
JP2007214120A (en) Lithium ion secondary battery
JP6394611B2 (en) Manufacturing method of secondary battery
JP6011607B2 (en) Non-aqueous electrolyte secondary battery
JP2009245940A (en) Nonaqueous electrolyte secondary battery
JP2007173014A (en) Nonaqueous electrolyte secondary battery
KR20150055948A (en) Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
US20160190562A1 (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR100950312B1 (en) Negative active material for lithium secondary battery, method of preparing same and lithium secondary battery comprising same
US20120282531A1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
JP6056685B2 (en) Method for treating positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP4363063B2 (en) Non-aqueous electrolyte secondary battery
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4259789B2 (en) Nonaqueous secondary battery electrolyte and nonaqueous electrolyte secondary battery using the same
JP6969483B2 (en) Lithium-ion secondary battery and its manufacturing method
JP4075180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4706088B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Ref document number: 4367001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term