JP2004083929A - Thermal sprayed coating of aluminum nitride, and its production method - Google Patents

Thermal sprayed coating of aluminum nitride, and its production method Download PDF

Info

Publication number
JP2004083929A
JP2004083929A JP2002242280A JP2002242280A JP2004083929A JP 2004083929 A JP2004083929 A JP 2004083929A JP 2002242280 A JP2002242280 A JP 2002242280A JP 2002242280 A JP2002242280 A JP 2002242280A JP 2004083929 A JP2004083929 A JP 2004083929A
Authority
JP
Japan
Prior art keywords
aluminum nitride
film
aluminum
thermal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002242280A
Other languages
Japanese (ja)
Other versions
JP3915628B2 (en
Inventor
Masahiro Fukumoto
福本 昌宏
Motohiro Yamada
山田 基宏
Koyata Takahashi
高橋 小弥太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2002242280A priority Critical patent/JP3915628B2/en
Publication of JP2004083929A publication Critical patent/JP2004083929A/en
Application granted granted Critical
Publication of JP3915628B2 publication Critical patent/JP3915628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sprayed coating having a high percentage of aluminum nitride and excellent insulation property and/or thermal conductivity by a method of reactive plasma spraying of aluminum and nitrogen. <P>SOLUTION: The sprayed coating of aluminum nitride has 25 to 100 mol% aluminum nitride. The sprayed coating having high percentage of aluminum nitride can be produced by bringing, at the reactive plasma spraying of aluminum and nitrogen, a high-intensity part of nitrogen-containing thermal plasma into contact with a substrate and regulating the temperature of the region, with which the high-intensity part of the thermal plasma is brought into contact, of the surface of the substrate to a value between the melting point of aluminum and the decomposition temperature of aluminum nitride. Moreover, the high-intensity part of the nitrogen-containing thermal plasma is further brought into contact with the sprayed coating. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造装置等に用いるヒーターの均熱板、プラズマ耐性部材、および放熱基板などに用いられる窒化アルミニウム溶射膜、及びその製造方法に関するものである。
【0002】
【従来の技術】
窒化アルミニウムは、熱伝導がアルミナの10倍程度高い為、従来から半導体製造装置におけるヒーターの均熱板や放熱基板などに用いられている。また窒化アルミニウムは絶縁性でなおかつハロゲン系のプラズマに対して耐食性が高い為、半導体製造装置においてはプラズマ耐性部材としても用いられている(例えは特開平05−251365号公報)。
【0003】
窒化アルミニウムはこのように優れた特性を有する材料であるが、その製造に高温での焼結が必要なことから、金属や酸化物セラミックスの基材上に高純度で厚い窒化アルミニウムの膜を形成することは困難であった。
【0004】
金属やセラミックスの厚い膜を高速で成膜するには一般には溶射法が適しているが、窒化アルミニウムは融点付近(2150〜2200℃)で分解するため、窒化アルミニウム粉末を用いて溶射法で成膜することは困難であった。実際に、これまで報告されている高純度の窒化アルミニウムの膜は、スパッタ法、CVD法による薄膜だけであり、特開平8−69970号公報等には窒化アルミニウムは溶射では出来ないという記述もある。またスパッタ法やCVD法では高純度な膜は得られているが、これらの方法で得られる膜は薄い膜であり、耐久性が必ずしも十分なものではなかった。
【0005】
一方、窒化アルミニウム膜を溶射法で得ようとする試みが全くなされていないわけではない。例えば、アルミニウム粉末を用いて窒素および水素をプラズマガスとした反応性大気圧プラズマ溶射で窒化アルミニウムを成膜することが試みられている(K.Kassabji et al.: The Intl. Thermal Spraying Conf. Cincinnati, Essen 2−6 May (1983) 82−84.)。しかし、当該報告には、窒化アルミニウムの生成は見られなかったと報告されている。
【0006】
また、アルミナやアルミニウム粉末を原料として用いた減圧プラズマ溶射を用いて成膜した溶射膜を、窒素雰囲気の電気炉中で加熱し、アルミナやアルミニウムを窒化することも報告されている(A.Ohmori et al.: Trans. JWRI, Vol.22, No.2 (1993) 227−232)。この方法では、1573Kで窒化アルミニウムの生成が報告されているが、生成した窒化アルミニウムの生成率が最大でも20モル%と低く、窒化アルミニウム溶射膜としては十分な膜とは言えなかった。特に、当該方法では、溶射膜の内部に窒化アルミニウムを生成するためには、溶射膜をポーラスにして窒素を膜の内部に導入することが必要であることが示されており、緻密な溶射膜は製造できないことが示唆されている。また当該方法では、溶射と焼成の工程が別々に必要であり、工程が煩雑であった。
【0007】
同様にアルミナ粉体とカーボン粉体との混合物を基材上に溶射することにより前記基材表面に溶射膜を形成したのち、溶射膜の表面にカーボン粉体を塗布しておいて窒素雰囲気中で熱処理し、溶射膜中のアルミナ成分を窒化アルミニウムに変化することも報告されている(同上文献および特許3059250号公報)。しかし、この場合でも得られる窒化アルミニウムの生成率は低く、窒化アルミニウム溶射膜としては十分な膜とは言えなかった。当該方法も先の方法と同様に工程が煩雑であることは言うまでもない。
【0008】
また最近、減圧高周波プラズマ溶射装置を用いて、アルミニウム粉末、チタン粉末、アルミニウムとチタン合金等をAr,N,Hプラズマ中に投入し、室温ステンレス基材へ成膜した検討が報告されている(Journal of Thermal Spray Technology,Vol.9, No.1 (2000)83−89)。当該報告では窒化アルミニウムを極微量含む溶射膜が得られたことが報告されているが、当該報告においても窒化アルミニウムの生成量の多い膜を溶射法で製造する方法について示唆されるには至っていない。
【0009】
【発明が解決しようとする課題】
以上説明した様に、従来、窒化アルミニウムの溶射膜を得ようとした場合、窒化アルミニウムの生成率の小さい溶射膜しか得られず、窒化アルミニウムの生成率を上げようとすると多孔質の膜とするしかなかった上、仮に溶射膜を多孔質にしても窒化アルミニウムの生成率が不十分なものしか得られていなかった。
【0010】
本発明の目的は、アルミニウムの反応性プラズマ溶射の新規な方法を提案することにより、窒化アルミニウムの生成率の高い、窒化アルミニウムの緻密な溶射膜、及びその簡便な製造方法を提供することである。
【0011】
【課題を解決するための手段】
本発明者らは、上述のような現状に鑑み、鋭意検討を行った結果、窒素を含む熱プラズマを用い、該熱プラズマの高輝な部分を基材に接触させながらアルミニウムをプラズマ溶射することにより、基材上に窒化アルミニウムの緻密な溶射膜が得られ、当該溶射膜中の窒化アルミニウム粒子のすきまにアルミニウムが残存しても、窒素を含む熱プラズマの高輝な部分を基材に接触することによってアルミニウムの窒化を進行させ、窒化アルミニウムの緻密な溶射膜が得られることを見出した。またその様な窒化アルミニウムの溶射膜は絶縁性及び/又は熱伝導性に優れることを見出し、本発明を完成するに至ったものである。従来、アルミニウムの反応性溶射においてこの様な条件での窒化アルミニウムの成膜の検討はなされていなかった。
【0012】
本発明の窒化アルミニウム溶射膜について説明する。
【0013】
本発明の窒化アルミニウム溶射膜は溶射法によって成膜してなる厚い膜であり、従来のスパッタやCVDで得られる薄膜とは異なる物である。その膜厚は1μm以上3mm以下が好ましく、さらに100μm以上1mm以下であることが好ましい。1μmより薄い膜では摩耗等による耐久性に問題があり、一方3mm以上つけることは本発明の膜を用いる技術領域では一般的に要求されない上に、経済的でない。
【0014】
次に本発明の窒化アルミニウム溶射膜は窒化アルミニウムの膜であり、窒化アルミニウムの含有量は25モル%以上、100モル%以下であり、膜の絶縁性という観点からは特に40モル%以上さらに言えば90モル%以上100モル%以下であることが好ましい。従来報告されている溶射膜では窒化アルミニウムの含有量は多くても20モル%までであり、窒化アルミニウム膜としての特性を発揮するには十分でなかった。また本発明の溶射膜は、窒化アルミニウム以外の成分として考えられるものはアルミニウムだけで、塗布焼成膜に含まれ得る無機バインダー等の成分を含まない膜である。
【0015】
窒化アルミニウム溶射膜において窒化アルミニウムの含有量が高いことが好ましい理由としては、窒化アルミニウムを主に用いる領域では絶縁性と熱伝導性の両方の特性が必要な応用、例えばプラズマ耐性等の部品に使用できるからである。従来報告されている窒化アルミニウム中にアルミナを有する膜は絶縁性を有するが、アルミナの熱伝導性が低いために溶射膜の熱伝導性が小さく、十分な膜ではなかった。一方、本発明の溶射膜におけるアルミニウムを含有する溶射膜は、アルミニウム自体の熱伝導性も高いため、熱伝導性のみを必要する用途に利用可能である。一方、プラズマ耐性の向上等、熱伝導性と絶縁性を併せて必要な用途においては、窒化アルミニウムの含有量が高い溶射膜を用いることが出来る。本発明の溶射膜は、少なくとも窒化アルミニウムを25モル%以上、好ましくは40モル%以上、より好ましくは90%以上100%以下の窒化アルミニウム溶射膜であり、熱伝導性のみを必要とする用途にも、熱伝導性と絶縁性の両方の必要な用途にも、選択して用いることが出来る。
【0016】
本発明の溶射膜の密度は特に限定されないが、空孔を有しない緻密な膜であることが好ましい。溶射法は緻密な膜を得るのに適した方法であり、本発明の方法で得られる緻密な膜は、従来の塗布焼成膜他に比べても優れた膜である。
【0017】
次に本発明の溶射膜の製造方法を説明する。
【0018】
図1、図2に示す本発明に用いられる装置の例により本発明の窒化アルミニウムを主体とする溶射膜の製造方法を説明する。
【0019】
本発明の方法は、熱プラズマを発生させる部位と基材を保持する部位を有する装置に基材を装着して成膜する。
【0020】
本発明の溶射の条件における圧力は特に限定せず、加圧、常圧、減圧で行うことができる。常圧の場合は、大気圧で行えば良いが、減圧で行う場合には、例えば図1における溶射容器をロータリーポンプ107により0.5Torr以下まで真空引きをした後、熱プラズマ源の石英管113保護のためのアルゴン等のシースガス108および窒素とアルゴン等のプラズマガス109を導入して20〜150Torrの圧力として成膜することが例示できる。
【0021】
図2に大気圧で溶射する方法を示す。大気圧で熱プラズマを発生させる部位と基材25を保持する部位を有する装置において、プラズマガスライン22より窒素と水素等のプラズマガスを導入し、カソード20とアノード21間に電圧をかける事により直流アークで熱プラズマ28を発生させることが出来る。
【0022】
本発明で用いる溶射膜を形成する基材は特に限定しないが、例えばステンレスや炭素鋼等の金属基材、グラファイト、石英、セラミックス等を図1の基材101として用いることが出来る。用いる基材は溶射膜との密着性を向上するために、表面をブラスト法等により粗した後、真空槽103内の基材ホルダー102に装着することが好ましい。
【0023】
次に本発明の溶射は、熱プラズマを利用する。熱プラズマの発生方法は限定しないが、例えば高周波、直流アーク、または交流アーク等によって生成することが可能である。図1には、高周波コイル110に高周波を印加して熱プラズマ104を発生させる方法を例示している。
【0024】
本発明の方法は、窒素を含む熱プラズマの高輝な部分を基材に接触させながら溶射を行わなければならない。熱プラズマは中心部の高輝な部分とその周辺の低輝な部分で構成されており、その様子はサングラス越しの目視観察によって確認することが出来る。本発明では熱プラズマの高輝な部分が基材に接触する条件で溶射することにより、基材上の溶射膜の窒化を促進することができる。ここで言う熱プラズマの高輝な部分とは、上述の手段による気体放電で生成され、少なくとも部分的に電離した数千〜数万度の高温となったガス気流である。熱プラズマの高輝な部分を基材に接触させるには、サングラス越しに熱プラズマの状態を観察しながら、プラズマ発生部位と基材保持部位の間隔を調整すれば良い。
【0025】
例えば図1の場合、熱プラズマ104の出口と基材101の距離(溶射距離)106を、基材ホルダー102の下部にあるスペーサ105により調整し、熱プラズマの高輝な部分が基材に触れる状態で溶射する。この様な状態を発現するためには図1の装置の場合では溶射距離106を10〜100mm程度とすることが好ましく、特に20mmから50mmとすることが好ましい。溶射距離を短くすることにより、熱プラズマの高輝な部分を十分に基材に触れさせることにより、アルミニウム成分の窒化を進めることが出来、尚且つ緻密な膜を得ることが出来る。
【0026】
図2に示した大気圧で熱プラズマを基材へ照射する場合も、熱プラズマの出口と基材25の距離(溶射距離)24を基材の移動により調整し、本発明の方法の特徴である基材へ熱プラズマの高輝な部分が接触する状態で溶射すれば良い。この場合は、溶射距離24を10〜50mm程度とすることが好ましく、特に20mmから40mmとすることが好ましい。溶射距離を短くすることにより、熱プラズマを十分に基材に触れさせることが出来、アルミニウム成分の窒化を進めることが出来、尚且つ緻密な膜が得られる。
【0027】
本発明の溶射における基材の位置は、熱プラズマが照射される位置、即ち溶射膜を形成する部分が熱プラズマの高輝な部分に接触する位置であれば良く、基材は固定されていても良いが、基材101を前後左右に移動させて、基材101全体に熱プラズマを照射し、均一に加熱、成膜することが好ましい。この基材の移動は、基材への成膜時に本発明の条件、即ち溶射部位に熱プラズマの高輝な部分が接触する条件であれば良く、例えば図1の溶射距離106で10〜100mmが維持できる範囲が例示できる。
【0028】
上述の様に、熱プラズマの高輝な部分が基材に接触する熱プラズマ発生源と基材の距離は、熱プラズマの発生方法等によって異なる。本発明では熱プラズマの高輝な部分が基材に接触していればよく、熱プラズマ発生源と基材の距離を限定するものではない。
【0029】
本発明では、アルミニウムを窒化するため、熱プラズマ中には窒素を含むことが必須である。前記熱プラズマを形成するガスとしては窒素にアルゴンなどのプラズマの安定性を高めるガスを加えてもよいが、特に水素を含むと、膜中のアルミニウム表面の酸化膜が取れて窒化しやすくなるため、好ましい。
【0030】
また基材の初期の温度は、高周波のパワーを調整し、一定時間加熱することで、溶射前の予熱温度を、400℃以上、基材の融点以下とすることが好ましい。
【0031】
本発明の方法は、窒素を含む熱プラズマ中にアルミニウムを投入することによって溶射膜を形成する。投入するアルミニウムの形状としては、粉末、ペレット、ワイヤー等が例示出来るが、特に粉末であることが好ましい。図1は、アルミニウムを粉末の形で供給する方法を例示している。粉末供給器111にキャリアガス112を導入し、アルミニウム粉末を供給し、窒素を含む熱プラズマ中に投入するが、アルミニウムの供給速度は均一であることが好ましい。
【0032】
本発明でアルミニウム粉末を用いる場合、粉末の粒径は小さい方が窒素を含む熱プラズマとの反応性が高い為に好ましい。一方、あまり粒径が小さいと流動性が悪く、粉末供給器を工夫しても供給が困難となるため、0.1μm以上10μm以下であることが好ましい。アルミニウム粉末の粒径は平均粒径で良く、その測定方法は一般的な光透過型の粒度分布測定装置等で測定することが出来る。
【0033】
本発明では窒素を含む熱プラズマの高輝な部分を基材に接触させながら、例えば図1の方法では熱プラズマ104中にアルミニウム粉末を投入することにより基材上に窒化アルミニウムを主体とする溶射膜を形成するが、成膜中の基材表面で、熱プラズマの高輝な部分を接触させる部位の温度は、アルミニウムの融点以上、即ち660℃以上、窒化アルミニウムの分解温度以下、即ち2150℃以下であることが必須である。この様な温度とすることにより基材上でアルミニウムの溶融が進み、さらに基材を照射する窒素を含む熱プラズマの高輝な部分によって基材上のアルミニウムの窒化反応が進行し、緻密な窒化アルミニウムの溶射膜が堆積される。
【0034】
本発明では上述の溶射で得られた溶射膜に、引き続き窒素を含む熱プラズマの高輝な部分を接触させることにより、膜中の残存アルミニウムを溶融させながら窒化させ、特に窒化アルミニウム含有率の高い溶射膜を得ることが出来る。即ち上述した本発明の方法により得られた溶射膜に、窒素を含む熱プラズマの高輝な部分をアルミニウムを供給しないで基材に接触させることにより、特に窒化アルミニウム比率の高い、即ち残存アルミニウムのない溶射膜を得ることが出来る。ここで熱プラズマの照射された基材の温度は、上述と同様に、アルミニウムの融点以上、即ち660℃以上、窒化アルミニウムの分解温度以下、即ち2150℃以下であることが好ましい。
【0035】
溶射膜は、何層も繰り返し堆積することによって厚い膜を成膜することが一般的であるが、本発明の場合、例えば図1の方法では基材101を前後左右に振りながら基材全体に均一に成膜する際に、基材にまず本発明の条件で一層の溶射層を堆積し、次の層の溶射層を堆積する前に当該堆積層にアルミニウムを供給しない窒素を含む熱プラズマの照射を加え、一層目の膜中に残存するアルミニウムの溶融と窒化をさらに促進することができる。後は同様の操作を繰り返し、即ちアルミニウムを供給した熱プラズマとアルミニウムを供給しない熱プラズマの照射を交互に繰り返すことにより、窒化アルミニウムの含有率の極めて高い溶射膜を得ることが出来る。ここで、本発明の方法によって複数の溶射層を一度に堆積した後に、後からアルミニウムを供給しない熱プラズマで仕上げの照射をしても良いことは言うまでもない。
【0036】
【実施例】
本発明を実施例に基づき更に詳細に説明するが本発明はこれらの実施例のみに限定されるものではない。
【0037】
実施例1
図1に示す装置により窒化アルミニウム溶射膜を製造した。インコネルを基材101として表面をブラスト法により粗した後、真空槽103内の基材ホルダー102に装着した。溶射距離106は20mmとした。次にロータリーポンプ107により0.5Torr以下まで真空引きをした後、アルゴンのシースガス108を10L/分および窒素1.5L/分とアルゴン6L/分のプラズマガス109を導入して60Torrの圧力とし、高周波コイル110に4kWの電力の高周波を印加して熱プラズマを発生させた。20mm角の基材101は40mm/秒の速度で左右に動かし、2mm/秒の速度で上下に往復運動を繰り返し、基材101に均一に溶射膜を堆積させた。その際、窒素を含む熱プラズマ104の高輝な部分は基材に接触していた。基材を端から端まで移動することを4回繰り返すことで、溶射前の予熱温度を700℃とした。
【0038】
次に、粉末供給器111にアルゴンを1L/分の流量でキャリアガス112として導入し、アルミニウムの粉末を約1g/分で供給し、窒素を含む熱プラズマ中に投入した。アルミニウム粉末の平均粒径は3μmとし、粉末供給器111はテクノサーブ社製微粉末供給器を用いた。基材を端から端まで移動することを6回繰り返す間、アルミニウムの粉末を供給し、連続してアルミニウムの粉末の供給なしで熱プラズマの高輝な部分を照射しながら、基材を端から端まで1回移動させた。溶射及び熱プラズマ照射の間の基材の温度は1000℃であった。なお、予熱温度、終了直後の基材の温度は基材の裏面に接触させた熱電対114で測定した。
【0039】
溶射膜は、厚み0.2mmで、蛍光X線法により組成を分析したところ窒化アルミニウムが74モル%含まれており、X線回折では窒化アルミニウムのピークにアルミニウムのピークが含まれていた。断面のSEM観察を行った結果、緻密な膜となっていた。
【0040】
得られた溶射膜を四探針法によって抵抗を測定したが、導電性は認められなかった。アルミニウムが残存するのに表面に導電性が認められない原因は、溶射膜表面に絶縁性の窒化アルミニウムが多いため、或いは表面において導電性のアルミニウムが不連続に存在するためと考えられた。またレーザー加熱オングストローム法(ULVAC Technical Journal No.51 (1999) 24−29)による熱伝導率測定では、溶射膜の熱伝導率は180W/mKであった。
【0041】
実施例2
窒素流量を2.5L/分とした以外、実施例1と同様の方法で溶射膜を作製した。窒素を含む熱プラズマの高輝な部分は基材に接触しており、溶射前の基材の予熱温度は750℃であり、溶射中の基材の温度は1050℃であった。
【0042】
溶射膜は、厚み0.2mmで、蛍光X線法により組成を分析したところ窒化アルミニウムが100モル%であり、X線回折の結果からも完全に窒化アルミニウムであった。断面のSEM観察を行った結果、緻密な膜となっていた。
【0043】
得られた溶射膜を四探針法によって抵抗を測定したが、導電性は認められなかった。またレーザー加熱オングストローム法による熱伝導率測定では、溶射膜の熱伝導率は165W/mKであった。
【0044】
実施例3
基材を1回端から端まで移動するごとに粉末供給を停止して、熱プラズマの高輝な部分を基材に接触させながら基材を1回端から端まで移動し、次にまた粉末を供給して基材を1回端から端まで移動することを繰り返す以外、実施例1と同様の方法で溶射膜を作製した。
【0045】
溶射膜は、厚み0.2mmで、蛍光X線法により組成を分析したところ窒化アルミニウム94モル%含まれており、X線回折の結果ではほとんど窒化アルミニウムであった。断面のSEM観察を行った結果、緻密な膜となっていた。
【0046】
得られた溶射膜を四探針法によって抵抗を測定したが、導電性は認められなかった。またレーザー加熱オングストローム法による熱伝導率測定では、溶射膜の熱伝導率は165W/mKであった。
【0047】
実施例4
プラズマガスとしてさらに0.5L/分の流量の水素を添加した以外は、実施例1と同様の方法で溶射膜を作製した。
【0048】
溶射膜は、厚み0.2mmで、蛍光X線法により組成を分析したところ窒化アルミニウムが91モル%含まれており、X線回折の結果ではほとんど窒化アルミニウムであった。断面のSEM観察を行った結果、緻密な膜となっていた。
【0049】
得られた溶射膜を四探針法によって抵抗を測定したが、導電性は認められなかった。またレーザー加熱オングストローム法による熱伝導率測定では、溶射膜の熱伝導率は170W/mKであった。
【0050】
実施例5
窒素流量を0.8L/分とした以外、実施例1と同様の方法で溶射膜を作製した。窒素を含む熱プラズマの高輝な部分は基材に到達しており、溶射前の基材の予熱温度は750℃であり、溶射中の基材の温度は1050℃であった。
【0051】
溶射膜は、厚み0.15mmで、蛍光X線法により組成を分析したところ窒化アルミニウムが33モル%であり、X線回折では、アルミニウムのピークが窒化アルミニウムのピークよりやや大きかった。断面のSEM観察を行った結果、緻密な膜となっていた。
【0052】
得られた溶射膜を四探針法によって抵抗を測定したが、導電性は認められなかった。またレーザー加熱オングストローム法による熱伝導率測定では、溶射膜の熱伝導率は190W/mKであった。
【0053】
実施例6
図2に示す装置により窒化アルミニウムを主体とする溶射膜を製造した。石英を基材25として表面をブラスト法により粗した後、基材を装置に装着し、溶射距離24を35mmとした。次に窒素40L/分と水素10L/分のプラズマガスを導入して35kWの電力の電力を供給して熱プラズマを発生させた。100mm角の基材25を150mm/秒の速度で左右に動かし、4mm/秒の速度で上下の往復運動を繰り返して基材25に均一に溶射膜を堆積した。その際、窒素および水素を含む熱プラズマ28の高輝な部分は基材に到達していた。基材を端から端まで移動することを2回繰り返すことで、溶射前の予熱温度を750℃とした。
【0054】
次に、テクノサーブ社製微粉末供給器によりアルミニウムの粉末(平均粒径は3μm)を約3g/分で供給し、窒素および水素を含む熱プラズマ中に投入した。基材を端から端まで移動することを5回繰り返す間、粉末を供給し、連続して粉末の供給なしで熱プラズマの高輝な部分を基材に接触させながら、基材を端から端まで1回移動させた。溶射及び熱プラズマ照射の間の基材の温度は1100℃であった。なお、予熱温度、終了直後の基材の温度は基材の裏面に接触させた熱電対29で測定した。
【0055】
溶射膜は、厚み0.1mmで、蛍光X線法により組成を分析したところ窒化アルミニウムが100モル%含まれており、X線回折では完全に窒化アルミニウムであった。断面のSEM観察を行った結果、緻密な膜となっていた。
【0056】
得られた溶射膜を四探針法によって抵抗を測定したが、導電性は認められなかった。またレーザー加熱オングストローム法による熱伝導率測定では、溶射膜の熱伝導率は160W/mKであった。
【0057】
比較例1
溶射距離を190mmとした以外、実施例1と同様の方法で溶射膜を作製した。窒素を含む熱プラズマの高輝な部分は基材に到達しておらず、溶射前の基材の予熱温度は150℃であり、溶射時の基材の温度は250℃であった。
【0058】
溶射膜は、厚み0.1mmで、蛍光X線法により組成を分析したところ窒化アルミニウムが13モル%しか含まれず、さらに膜はポーラスで脆い状態であった。
【0059】
得られた溶射膜はポーラスであるため、レーザー加熱オングストローム法よる熱伝導率測定による熱伝導率は100W/mKであった。また四探針法による抵抗を測定では、ところどころで導電性が認められた。これは窒化アルミニウムの比率が低く、溶射膜の表面にも連続したアルミニウム層があるためと考えられた。
【0060】
【発明の効果】
本発明の窒化アルミニウム溶射膜及びその製造方法は、以下に示す効果を有する。
本発明の溶射膜は、熱伝導性の高い窒化アルミニウムとアルミニウムの混合膜であるために高い熱伝導性を有し、除熱用部品、放熱部品への応用に適する。
本発明の溶射膜は、窒化アルミニウムの比率が高くかつ緻密であるため、高い絶縁性と熱伝導性を両立し、プラズマ処理用部品、放熱部品への応用に適する。
本発明の溶射膜の製造方法は、溶射法だけで窒化アルミニウムを主体とする溶射膜が製造可能であるため、簡便な工程で容易に溶射膜の製造が可能である。
【図面の簡単な説明】
【図1】本発明における溶射膜を減圧で製造するための装置の一例を示す図である。
【図2】本発明における溶射膜を常圧で製造するための装置の一例を示す図である。
【符号の説明】
101:基材
102:基材ホルダー
103:真空槽
104:熱プラズマ
105:スペーサ
106:溶射距離
107:ロータリーポンプ
108:シースガス
109:プラズマガス
110:高周波コイル
111:粉末供給器
112:キャリアガス
113:熱プラズマ源の石英管
114:熱電対
20:カソード
21:アノード
22:プラズマガスライン
23:粉末供給ライン
24:溶射距離
25:基材
26:溶射膜
27:直流電源
28:熱プラズマ
29:熱電対
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermal spray plate for a heater used in a semiconductor manufacturing apparatus or the like, a plasma resistant member, a sprayed aluminum nitride film used for a heat dissipation substrate, and the like, and a method for manufacturing the same.
[0002]
[Prior art]
Aluminum nitride has a thermal conductivity that is about 10 times higher than that of alumina. Therefore, aluminum nitride is conventionally used as a soaking plate for a heater or a heat dissipation substrate in a semiconductor manufacturing apparatus. Further, aluminum nitride is insulative and has high corrosion resistance to halogen-based plasma, and is therefore used as a plasma-resistant member in semiconductor manufacturing equipment (for example, Japanese Patent Application Laid-Open No. 05-251365).
[0003]
Aluminum nitride is a material with such excellent properties, but its production requires sintering at high temperatures, so a high-purity thick aluminum nitride film is formed on a metal or oxide ceramic substrate. It was difficult to do.
[0004]
In general, thermal spraying is suitable for forming a thick film of metal or ceramics at high speed. However, since aluminum nitride is decomposed near its melting point (2150 to 2200 ° C.), thermal spraying is performed using aluminum nitride powder. It was difficult to film. Actually, the high-purity aluminum nitride films that have been reported so far are only thin films formed by a sputtering method or a CVD method, and JP-A-8-69970 and the like also state that aluminum nitride cannot be sprayed. . Although high-purity films have been obtained by sputtering or CVD, the films obtained by these methods are thin films, and their durability is not always sufficient.
[0005]
On the other hand, this does not mean that no attempt has been made to obtain an aluminum nitride film by a thermal spraying method. For example, it has been attempted to form an aluminum nitride film by reactive atmospheric pressure plasma spraying using nitrogen powder and nitrogen as a plasma gas using aluminum powder (K. Kassabji et al .: The Intl. Thermal Spraying Conf. Cincinnati). , Essen 2-6 May (1983) 82-84.). However, the report reports that no aluminum nitride was formed.
[0006]
It has also been reported that a sprayed film formed by using low-pressure plasma spraying using alumina or aluminum powder as a raw material is heated in an electric furnace in a nitrogen atmosphere to nitride alumina or aluminum (A. Ohmori). et al .: Trans JWRI, Vol.22, No.2 (1993) 227-232). According to this method, generation of aluminum nitride was reported at 1573K, but the generation rate of the generated aluminum nitride was as low as 20 mol% at the maximum, and it could not be said that this was a sufficient film as a sprayed aluminum nitride film. In particular, in the method, it has been shown that in order to form aluminum nitride inside the sprayed film, it is necessary to introduce nitrogen into the film by making the sprayed film porous, and the dense sprayed film Has not been suggested to be manufactured. Further, in this method, the steps of thermal spraying and firing are separately required, and the steps are complicated.
[0007]
Similarly, after spraying a mixture of alumina powder and carbon powder on a base material to form a sprayed film on the surface of the base material, the surface of the sprayed film is coated with carbon powder, and then subjected to a nitrogen atmosphere. It is also reported that the heat treatment is carried out in such a manner as to change the alumina component in the sprayed film into aluminum nitride (the same as in the above reference and Japanese Patent No. 3059250). However, even in this case, the yield of aluminum nitride obtained was low, and it could not be said that this was a sufficient film as an aluminum nitride sprayed film. Needless to say, the steps are also complicated as in the above method.
[0008]
Recently, aluminum powder, titanium powder, aluminum and titanium alloy, and the like have been Ar, N 2 , H 2 It has been reported that the film was injected into plasma and formed on a stainless steel substrate at room temperature (Journal of Thermal Spray Technology, Vol. 9, No. 1 (2000) 83-89). Although the report reported that a sprayed film containing a very small amount of aluminum nitride was obtained, even this report did not suggest a method of manufacturing a film with a large amount of aluminum nitride produced by the spraying method. .
[0009]
[Problems to be solved by the invention]
As described above, conventionally, when trying to obtain a sprayed film of aluminum nitride, only a sprayed film having a low aluminum nitride generation rate can be obtained, and when trying to increase the aluminum nitride generation rate, a porous film is formed. In addition, even if the thermal sprayed film is made porous, only those having an insufficient aluminum nitride generation rate have been obtained.
[0010]
An object of the present invention is to provide a new method of reactive plasma spraying of aluminum to provide a dense sprayed film of aluminum nitride having a high production rate of aluminum nitride, and a simple production method thereof. .
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in view of the above-described current situation, and as a result of using a thermal plasma containing nitrogen, by plasma spraying aluminum while contacting a high-brightness portion of the thermal plasma with a base material. Even if a dense sprayed film of aluminum nitride is obtained on the base material and aluminum remains in the gaps of the aluminum nitride particles in the sprayed film, the bright part of the thermal plasma containing nitrogen is brought into contact with the base material. It has been found that nitriding of aluminum proceeds to obtain a dense sprayed film of aluminum nitride. Further, they have found that such a sprayed film of aluminum nitride is excellent in insulation and / or thermal conductivity, and have completed the present invention. Conventionally, no study has been made on the formation of aluminum nitride under such conditions in reactive spraying of aluminum.
[0012]
The sprayed aluminum nitride film of the present invention will be described.
[0013]
The aluminum nitride sprayed film of the present invention is a thick film formed by spraying, and is different from a thin film obtained by conventional sputtering or CVD. The film thickness is preferably 1 μm or more and 3 mm or less, and more preferably 100 μm or more and 1 mm or less. A film having a thickness of less than 1 μm has a problem in durability due to abrasion and the like, whereas a thickness of 3 mm or more is not generally required in the technical field using the film of the present invention and is not economical.
[0014]
Next, the sprayed aluminum nitride film of the present invention is a film of aluminum nitride, and the content of aluminum nitride is not less than 25 mol% and not more than 100 mol%. For example, it is preferably 90 mol% or more and 100 mol% or less. The previously reported thermal sprayed film has a content of aluminum nitride of at most 20 mol%, which is not sufficient to exhibit the characteristics as an aluminum nitride film. Further, the thermal sprayed film of the present invention is a film which is considered to be a component other than aluminum nitride only of aluminum and does not contain a component such as an inorganic binder which may be contained in the coated and fired film.
[0015]
The reason that the aluminum nitride content is preferably high in the aluminum nitride sprayed film is that in the region where aluminum nitride is mainly used, both insulating and heat conductive properties are required, for example, used for parts such as plasma resistance. Because you can. Conventionally, a film containing alumina in aluminum nitride has an insulating property. However, since the thermal conductivity of alumina is low, the thermal conductivity of the sprayed film is small, and the film is not sufficient. On the other hand, the thermal spray coating containing aluminum in the thermal spray coating of the present invention has high thermal conductivity of aluminum itself, and therefore can be used for applications requiring only thermal conductivity. On the other hand, in applications that require both thermal conductivity and insulation, such as improvement in plasma resistance, a sprayed film having a high aluminum nitride content can be used. The sprayed film of the present invention is a sprayed aluminum nitride film containing at least 25 mol% or more aluminum nitride, preferably 40 mol% or more, more preferably 90% or more and 100% or less, and is used for applications requiring only thermal conductivity. Can also be selected for use in applications requiring both thermal conductivity and insulation.
[0016]
The density of the sprayed film of the present invention is not particularly limited, but is preferably a dense film having no pores. The thermal spraying method is a method suitable for obtaining a dense film, and the dense film obtained by the method of the present invention is a film which is superior to conventional coating and sintering films.
[0017]
Next, a method for manufacturing a sprayed film of the present invention will be described.
[0018]
The method for manufacturing a sprayed film mainly composed of aluminum nitride according to the present invention will be described with reference to the examples of the apparatus used in the present invention shown in FIGS.
[0019]
In the method of the present invention, a film is formed by mounting a substrate on an apparatus having a portion for generating thermal plasma and a portion for holding the substrate.
[0020]
The pressure under the thermal spraying conditions of the present invention is not particularly limited, and the thermal spraying can be performed under increased pressure, normal pressure, or reduced pressure. In the case of normal pressure, the pressure may be reduced to the atmospheric pressure. In the case of reduced pressure, for example, the thermal spraying vessel in FIG. For example, a sheath gas 108 such as argon for protection and a plasma gas 109 such as nitrogen and argon are introduced to form a film at a pressure of 20 to 150 Torr.
[0021]
FIG. 2 shows a method of spraying at atmospheric pressure. In a device having a part for generating thermal plasma at atmospheric pressure and a part for holding the base material 25, a plasma gas such as nitrogen and hydrogen is introduced from a plasma gas line 22 and a voltage is applied between the cathode 20 and the anode 21. Thermal plasma 28 can be generated by a DC arc.
[0022]
The substrate on which the sprayed film used in the present invention is formed is not particularly limited. For example, a metal substrate such as stainless steel or carbon steel, graphite, quartz, ceramics or the like can be used as the substrate 101 in FIG. The base material used is preferably roughened by a blast method or the like and then mounted on a base material holder 102 in a vacuum chamber 103 in order to improve the adhesion to the sprayed film.
[0023]
Next, the thermal spraying of the present invention utilizes thermal plasma. The method for generating the thermal plasma is not limited. For example, the thermal plasma can be generated by a high frequency, a DC arc, an AC arc, or the like. FIG. 1 illustrates a method of generating a thermal plasma 104 by applying a high frequency to the high frequency coil 110.
[0024]
In the method of the present invention, the thermal spraying must be performed while a bright portion of the thermal plasma containing nitrogen is brought into contact with the substrate. The thermal plasma is composed of a high-brightness portion in the center and a low-brightness portion around the center, and the state can be confirmed by visual observation through sunglasses. In the present invention, the thermal spraying is performed under the condition that the bright portion of the thermal plasma comes into contact with the base material, thereby promoting the nitridation of the sprayed film on the base material. The high-brightness portion of the thermal plasma referred to here is a gas flow that has been generated by the gas discharge by the above-described means and has been at least partially ionized and has a high temperature of several thousands to tens of thousands of degrees. In order to bring the bright portion of the thermal plasma into contact with the base material, the distance between the plasma generation site and the base material holding site may be adjusted while observing the state of the thermal plasma through sunglasses.
[0025]
For example, in the case of FIG. 1, the distance (spraying distance) 106 between the outlet of the thermal plasma 104 and the substrate 101 is adjusted by the spacer 105 below the substrate holder 102 so that the high-luminance portion of the thermal plasma touches the substrate. Spray with In order to exhibit such a state, in the case of the apparatus shown in FIG. 1, the spraying distance 106 is preferably set to about 10 to 100 mm, and particularly preferably set to 20 to 50 mm. By shortening the spraying distance, the high-luminance portion of the thermal plasma can be sufficiently brought into contact with the base material, whereby the nitriding of the aluminum component can be promoted and a dense film can be obtained.
[0026]
When the substrate is irradiated with the thermal plasma at the atmospheric pressure shown in FIG. 2, the distance (spraying distance) 24 between the outlet of the thermal plasma and the substrate 25 is adjusted by moving the substrate. What is necessary is just to perform thermal spraying in a state where the bright part of the thermal plasma contacts a certain base material. In this case, the spraying distance 24 is preferably set to about 10 to 50 mm, particularly preferably 20 mm to 40 mm. By shortening the spraying distance, the thermal plasma can be sufficiently brought into contact with the base material, the nitriding of the aluminum component can be promoted, and a dense film can be obtained.
[0027]
The position of the base material in the thermal spraying of the present invention may be any position where the thermal plasma is irradiated, that is, the position where the portion forming the sprayed film contacts the bright portion of the thermal plasma, and the base material may be fixed. It is preferable that the substrate 101 be moved back and forth and right and left so that the entire substrate 101 is irradiated with thermal plasma to uniformly heat and form a film. This movement of the base material may be any condition under the conditions of the present invention at the time of film formation on the base material, that is, a condition in which a high-brightness portion of thermal plasma comes into contact with a sprayed portion. The range that can be maintained can be exemplified.
[0028]
As described above, the distance between the thermal plasma generation source where the bright portion of the thermal plasma contacts the substrate and the substrate varies depending on the thermal plasma generation method and the like. In the present invention, it is sufficient that the bright portion of the thermal plasma is in contact with the substrate, and the distance between the thermal plasma generation source and the substrate is not limited.
[0029]
In the present invention, in order to nitride aluminum, it is essential that the thermal plasma contains nitrogen. As the gas for forming the thermal plasma, a gas for improving the stability of the plasma, such as argon, may be added to nitrogen. However, particularly when hydrogen is contained, an oxide film on the aluminum surface in the film is removed, and the film is easily nitrided. ,preferable.
[0030]
The initial temperature of the base material is preferably adjusted to a preheating temperature before thermal spraying of 400 ° C. or higher and the melting point of the base material or lower by adjusting the high-frequency power and heating for a certain period of time.
[0031]
The method of the present invention forms a sprayed film by introducing aluminum into a thermal plasma containing nitrogen. Examples of the shape of aluminum to be charged include powder, pellets, and wires, but powder is particularly preferable. FIG. 1 illustrates a method for supplying aluminum in powder form. The carrier gas 112 is introduced into the powder supply device 111, aluminum powder is supplied, and the aluminum powder is introduced into a thermal plasma containing nitrogen. The supply rate of aluminum is preferably uniform.
[0032]
In the case of using aluminum powder in the present invention, it is preferable that the particle size of the powder is small because reactivity with thermal plasma containing nitrogen is high. On the other hand, if the particle size is too small, the fluidity is poor and it becomes difficult to supply the powder even if the powder supply device is devised. Therefore, the particle size is preferably 0.1 μm or more and 10 μm or less. The particle size of the aluminum powder may be an average particle size, which can be measured by a general light transmission type particle size distribution analyzer or the like.
[0033]
In the present invention, a sprayed film mainly composed of aluminum nitride is formed on a substrate by, for example, injecting aluminum powder into the thermal plasma 104 in the method of FIG. 1 while bringing a bright portion of the thermal plasma containing nitrogen into contact with the substrate. The temperature of the portion of the substrate surface during film formation where the high-brightness portion of the thermal plasma is brought into contact is higher than the melting point of aluminum, ie, 660 ° C. or higher, and lower than the decomposition temperature of aluminum nitride, ie, 2150 ° C. or lower. It is essential that there is. By setting such a temperature, the melting of the aluminum on the base material proceeds, and the nitridation reaction of the aluminum on the base material proceeds by a high-brightness portion of the thermal plasma containing nitrogen that irradiates the base material. Is deposited.
[0034]
In the present invention, the sprayed film obtained by the above-mentioned spraying is continuously brought into contact with a high-brightness portion of thermal plasma containing nitrogen, so that the remaining aluminum in the film is melted and nitrided. A film can be obtained. That is, by contacting the high-brightness portion of the thermal plasma containing nitrogen with the base material without supplying aluminum to the sprayed film obtained by the method of the present invention described above, the aluminum nitride ratio is particularly high, that is, there is no residual aluminum. A sprayed film can be obtained. Here, the temperature of the substrate irradiated with the thermal plasma is preferably equal to or higher than the melting point of aluminum, that is, 660 ° C. or higher, and equal to or lower than the decomposition temperature of aluminum nitride, that is, 2150 ° C. or lower.
[0035]
In general, a sprayed film is formed by repeatedly depositing many layers to form a thick film. In the case of the present invention, for example, in the method of FIG. When a uniform film is formed, one thermal spray layer is first deposited on the substrate under the conditions of the present invention, and before the next thermal spray layer is deposited, a thermal plasma containing nitrogen that does not supply aluminum to the deposited layer is deposited. Irradiation can further promote the melting and nitriding of the aluminum remaining in the first layer. Thereafter, the same operation is repeated, that is, by alternately repeating the irradiation of the thermal plasma to which aluminum is supplied and the thermal plasma to which aluminum is not supplied, a sprayed film having an extremely high aluminum nitride content can be obtained. Here, needless to say, after a plurality of sprayed layers are deposited at once by the method of the present invention, finish irradiation may be performed later using thermal plasma that does not supply aluminum.
[0036]
【Example】
The present invention will be described in more detail based on examples, but the present invention is not limited to only these examples.
[0037]
Example 1
An aluminum nitride sprayed film was manufactured by the apparatus shown in FIG. After the surface was roughened by blasting using Inconel as the substrate 101, the substrate was mounted on a substrate holder 102 in a vacuum chamber 103. The spray distance 106 was 20 mm. Next, after evacuation was performed to 0.5 Torr or less by the rotary pump 107, a plasma gas 109 of 10 L / min of argon sheath gas 108, 1.5 L / min of nitrogen and 6 L / min of argon was introduced, and the pressure was increased to 60 Torr. A high-frequency power of 4 kW was applied to the high-frequency coil 110 to generate thermal plasma. The substrate 101 of 20 mm square was moved right and left at a speed of 40 mm / sec, and reciprocated up and down at a speed of 2 mm / sec to deposit a sprayed film uniformly on the substrate 101. At that time, the bright part of the thermal plasma 104 containing nitrogen was in contact with the substrate. The preheating temperature before thermal spraying was set to 700 ° C. by moving the substrate from one end to the other four times.
[0038]
Next, argon was introduced as a carrier gas 112 into the powder supply device 111 at a flow rate of 1 L / min, and aluminum powder was supplied at a rate of about 1 g / min and charged into a thermal plasma containing nitrogen. The average particle diameter of the aluminum powder was 3 μm, and a fine powder supply device manufactured by Technoserve Co. was used as the powder supply device 111. The aluminum powder is supplied while the substrate is moved from end to end six times, and the substrate is irradiated from end to end while continuously irradiating the bright portion of the thermal plasma without supplying the aluminum powder. Was moved once. The temperature of the substrate during thermal spraying and thermal plasma irradiation was 1000 ° C. The preheating temperature and the temperature of the substrate immediately after the termination were measured by a thermocouple 114 in contact with the back surface of the substrate.
[0039]
The sprayed film had a thickness of 0.2 mm and its composition was analyzed by a fluorescent X-ray method. The composition was found to contain 74 mol% of aluminum nitride. In the X-ray diffraction, the aluminum nitride peak included the aluminum nitride peak. As a result of SEM observation of the cross section, a dense film was formed.
[0040]
The resistance of the obtained sprayed film was measured by a four-probe method, but no conductivity was observed. It is considered that the reason why the conductivity was not recognized on the surface although aluminum remained was that a large amount of insulating aluminum nitride was present on the surface of the sprayed film, or that the conductive aluminum was discontinuously present on the surface. In the thermal conductivity measurement by the laser heating angstrom method (ULVAC Technical Journal No. 51 (1999) 24-29), the thermal conductivity of the sprayed film was 180 W / mK.
[0041]
Example 2
A sprayed film was produced in the same manner as in Example 1 except that the nitrogen flow rate was set to 2.5 L / min. The bright portion of the thermal plasma containing nitrogen was in contact with the substrate, the preheating temperature of the substrate before thermal spraying was 750 ° C, and the temperature of the substrate during thermal spraying was 1050 ° C.
[0042]
The sprayed film was 0.2 mm thick, and its composition was analyzed by a fluorescent X-ray method. As a result, it was found to be 100 mol% of aluminum nitride, and the result of X-ray diffraction was completely aluminum nitride. As a result of SEM observation of the cross section, a dense film was formed.
[0043]
The resistance of the obtained sprayed film was measured by a four-probe method, but no conductivity was observed. In the thermal conductivity measurement by the laser heating angstrom method, the thermal conductivity of the sprayed film was 165 W / mK.
[0044]
Example 3
Each time the base material is moved from one end to the other, the supply of the powder is stopped, and the base material is moved once from one end to the other while the bright portion of the thermal plasma is brought into contact with the base material, and then the powder is again supplied. A sprayed film was produced in the same manner as in Example 1, except that the supply and the movement of the substrate once from one end to the other were repeated.
[0045]
The sprayed film was 0.2 mm thick, and its composition was analyzed by a fluorescent X-ray method. As a result, the sprayed film was found to contain 94 mol% of aluminum nitride, and as a result of X-ray diffraction, it was almost aluminum nitride. As a result of SEM observation of the cross section, a dense film was formed.
[0046]
The resistance of the obtained sprayed film was measured by a four-probe method, but no conductivity was observed. In the thermal conductivity measurement by the laser heating angstrom method, the thermal conductivity of the sprayed film was 165 W / mK.
[0047]
Example 4
A sprayed film was prepared in the same manner as in Example 1, except that hydrogen at a flow rate of 0.5 L / min was further added as a plasma gas.
[0048]
The sprayed film was 0.2 mm thick, and its composition was analyzed by a fluorescent X-ray method. As a result, it was found to contain 91 mol% of aluminum nitride, and as a result of X-ray diffraction, it was almost aluminum nitride. As a result of SEM observation of the cross section, a dense film was formed.
[0049]
The resistance of the obtained sprayed film was measured by a four-probe method, but no conductivity was observed. In the thermal conductivity measurement by the laser heating angstrom method, the thermal conductivity of the sprayed film was 170 W / mK.
[0050]
Example 5
A sprayed film was produced in the same manner as in Example 1 except that the nitrogen flow rate was set to 0.8 L / min. The bright portion of the thermal plasma containing nitrogen reached the substrate, the preheating temperature of the substrate before thermal spraying was 750 ° C, and the temperature of the substrate during thermal spraying was 1050 ° C.
[0051]
The sprayed film had a thickness of 0.15 mm and its composition was analyzed by a fluorescent X-ray method. When analyzed by X-ray fluorescence, the content of aluminum nitride was 33 mol%. In the X-ray diffraction, the peak of aluminum was slightly larger than the peak of aluminum nitride. As a result of SEM observation of the cross section, a dense film was formed.
[0052]
The resistance of the obtained sprayed film was measured by a four-probe method, but no conductivity was observed. In the thermal conductivity measurement by the laser heating angstrom method, the thermal conductivity of the sprayed film was 190 W / mK.
[0053]
Example 6
A sprayed film mainly composed of aluminum nitride was manufactured by the apparatus shown in FIG. After the surface was roughened by blasting using quartz as the base material 25, the base material was mounted on the apparatus, and the spray distance 24 was set to 35 mm. Next, a plasma gas was introduced at a power of 35 kW by introducing a plasma gas of 40 L / min of nitrogen and 10 L / min of hydrogen to generate thermal plasma. A 100 mm square substrate 25 was moved right and left at a speed of 150 mm / sec, and reciprocating up and down motion was repeated at a speed of 4 mm / sec to uniformly deposit a sprayed film on the substrate 25. At that time, the bright part of the thermal plasma 28 containing nitrogen and hydrogen reached the base material. The preheating temperature before thermal spraying was set to 750 ° C. by moving the substrate from one end to the other twice.
[0054]
Next, an aluminum powder (average particle size: 3 μm) was supplied at a rate of about 3 g / min using a fine powder supply device manufactured by Technoserve Co., Ltd., and was introduced into a thermal plasma containing nitrogen and hydrogen. While the substrate is moved from end to end five times, the powder is supplied, and the substrate is moved from end to end while continuously contacting the bright part of the thermal plasma with the base without the supply of powder. Moved once. The temperature of the substrate during thermal spraying and thermal plasma irradiation was 1100 ° C. In addition, the preheating temperature and the temperature of the base material immediately after completion | finish were measured by the thermocouple 29 which contacted the back surface of the base material.
[0055]
The sprayed film had a thickness of 0.1 mm and was analyzed for composition by a fluorescent X-ray method. As a result, the sprayed film contained 100 mol% of aluminum nitride, and was completely aluminum nitride by X-ray diffraction. As a result of SEM observation of the cross section, a dense film was formed.
[0056]
The resistance of the obtained sprayed film was measured by a four-probe method, but no conductivity was observed. In the thermal conductivity measurement by the laser heating angstrom method, the thermal conductivity of the sprayed film was 160 W / mK.
[0057]
Comparative Example 1
A sprayed film was produced in the same manner as in Example 1 except that the spraying distance was 190 mm. The bright portion of the thermal plasma containing nitrogen did not reach the substrate, the preheating temperature of the substrate before thermal spraying was 150 ° C, and the temperature of the substrate during thermal spraying was 250 ° C.
[0058]
The sprayed film was 0.1 mm thick, and its composition was analyzed by a fluorescent X-ray method. As a result, it contained only 13 mol% of aluminum nitride, and the film was porous and brittle.
[0059]
Since the obtained sprayed film was porous, the thermal conductivity was 100 W / mK as measured by a thermal conductivity method using a laser heating angstrom method. In addition, when the resistance was measured by the four probe method, conductivity was recognized in some places. This was thought to be due to the low ratio of aluminum nitride and the presence of a continuous aluminum layer on the surface of the sprayed film.
[0060]
【The invention's effect】
The sprayed aluminum nitride film of the present invention and the method for producing the same have the following effects.
The thermal sprayed film of the present invention has high thermal conductivity because it is a mixed film of aluminum nitride and aluminum having high thermal conductivity, and is suitable for application to heat removal parts and heat radiation parts.
Since the thermal sprayed film of the present invention has a high ratio of aluminum nitride and is dense, it has both high insulating properties and thermal conductivity, and is suitable for application to plasma processing components and heat radiation components.
According to the method of manufacturing a thermal sprayed film of the present invention, a thermal sprayed film mainly composed of aluminum nitride can be manufactured only by the thermal spraying method.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an apparatus for producing a sprayed film under reduced pressure in the present invention.
FIG. 2 is a view showing an example of an apparatus for producing a sprayed film at normal pressure in the present invention.
[Explanation of symbols]
101: Substrate
102: Substrate holder
103: vacuum chamber
104: Thermal plasma
105: Spacer
106: Thermal spray distance
107: Rotary pump
108: Sheath gas
109: plasma gas
110: High frequency coil
111: powder feeder
112: Carrier gas
113: Quartz tube of thermal plasma source
114: Thermocouple
20: cathode
21: Anode
22: Plasma gas line
23: Powder supply line
24: Spray distance
25: Substrate
26: Thermal spray coating
27: DC power supply
28: Thermal plasma
29: Thermocouple

Claims (5)

溶射法で成膜してなり、膜厚が1μm以上3mm以下、膜中の窒化アルミニウムが25モル%以上100モル%以下の窒化アルミニウム溶射膜。An aluminum nitride sprayed film formed by a thermal spraying method, having a film thickness of 1 μm or more and 3 mm or less, and having aluminum nitride in the film of 25 mol% or more and 100 mol% or less. 熱プラズマを発生させる部位と基材を保持する部位を有する装置において、窒素を含む熱プラズマの高輝な部分を基材に接触させながら、該熱プラズマ中にアルミニウムを投入することにより基材上に窒化アルミニウム溶射膜を形成する方法であって、基材表面の熱プラズマが照射された部位の温度がアルミニウムの融点以上窒化アルミニウムの分解温度以下であることを特徴とする窒化アルミニウム溶射膜の製造方法。In an apparatus having a part for generating a thermal plasma and a part for holding a substrate, while contacting the high-brightness part of the thermal plasma containing nitrogen with the substrate, the aluminum is injected into the thermal plasma so as to be on the substrate. A method for forming a sprayed aluminum nitride film, wherein a temperature of a portion of the substrate surface irradiated with thermal plasma is equal to or higher than the melting point of aluminum and equal to or lower than a decomposition temperature of aluminum nitride. . 請求項2の方法で得られた溶射膜に、窒素を含む熱プラズマの高輝な部分を基材に接触することにより溶射膜中のアルミニウムを溶融させながら窒化させることを特徴とする請求項2に記載の窒化アルミニウム溶射膜の製造方法。The method according to claim 2, wherein the sprayed film obtained by the method of claim 2 is nitrided while melting aluminum in the sprayed film by contacting a bright portion of thermal plasma containing nitrogen with a substrate. A method for producing a sprayed aluminum nitride film as described above. 前記熱プラズマが窒素および水素を含むことを特徴とする請求項2又は請求項3に記載の窒化アルミニウム溶射膜の製造方法。4. The method of claim 2, wherein the thermal plasma contains nitrogen and hydrogen. 5. 前記熱プラズマ中に投入するアルミニウムが粉末であり、当該粉末の粒径が0.1μm以上10μm以下であることを特徴とする請求項2〜4のいずれかに記載の窒化アルミニウム溶射膜の製造方法。The method for producing a sprayed aluminum nitride film according to any one of claims 2 to 4, wherein the aluminum to be injected into the thermal plasma is a powder, and the particle size of the powder is 0.1 µm or more and 10 µm or less. .
JP2002242280A 2002-08-22 2002-08-22 Aluminum nitride sprayed film and manufacturing method thereof Expired - Fee Related JP3915628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242280A JP3915628B2 (en) 2002-08-22 2002-08-22 Aluminum nitride sprayed film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242280A JP3915628B2 (en) 2002-08-22 2002-08-22 Aluminum nitride sprayed film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004083929A true JP2004083929A (en) 2004-03-18
JP3915628B2 JP3915628B2 (en) 2007-05-16

Family

ID=32051411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242280A Expired - Fee Related JP3915628B2 (en) 2002-08-22 2002-08-22 Aluminum nitride sprayed film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3915628B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134751A (en) * 2004-11-08 2006-05-25 Nec Microwave Inc Electron tube
JP2006152384A (en) * 2004-11-30 2006-06-15 Toyo Tanso Kk Composite layer coating member having excellent halogen corrosion resistance and production method thereof
JP2006307298A (en) * 2005-04-28 2006-11-09 Toyohashi Univ Of Technology Nitride film and film-forming method therefor
WO2009084606A1 (en) * 2007-12-28 2009-07-09 Tosoh Corporation Member coated with aluminum nitride by thermal spraying and process for producing the same
WO2010027073A1 (en) * 2008-09-05 2010-03-11 株式会社東芝 Semiconductor fabrication device component and semiconductor fabrication device
EP2261971A1 (en) * 2007-04-30 2010-12-15 Danfoss Silicon Power GmbH Power module fabrication process
JP2014154693A (en) * 2013-02-08 2014-08-25 Toyoda Gosei Co Ltd Group iii nitride semiconductor light-emitting element and manufacturing method of the same
CN110158018A (en) * 2019-07-02 2019-08-23 广东省新材料研究所 A kind of Al/AlN composite coating and preparation method thereof
JP7483840B2 (en) 2017-11-09 2024-05-15 キヤノン株式会社 Powdered materials for additive manufacturing, structures, semiconductor manufacturing equipment parts, and semiconductor manufacturing equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134751A (en) * 2004-11-08 2006-05-25 Nec Microwave Inc Electron tube
JP2006152384A (en) * 2004-11-30 2006-06-15 Toyo Tanso Kk Composite layer coating member having excellent halogen corrosion resistance and production method thereof
JP2006307298A (en) * 2005-04-28 2006-11-09 Toyohashi Univ Of Technology Nitride film and film-forming method therefor
EP2261971A1 (en) * 2007-04-30 2010-12-15 Danfoss Silicon Power GmbH Power module fabrication process
WO2009084606A1 (en) * 2007-12-28 2009-07-09 Tosoh Corporation Member coated with aluminum nitride by thermal spraying and process for producing the same
WO2010027073A1 (en) * 2008-09-05 2010-03-11 株式会社東芝 Semiconductor fabrication device component and semiconductor fabrication device
JPWO2010027073A1 (en) * 2008-09-05 2012-02-02 株式会社東芝 Semiconductor manufacturing equipment parts and semiconductor manufacturing equipment
JP5566891B2 (en) * 2008-09-05 2014-08-06 株式会社東芝 Semiconductor manufacturing equipment parts and semiconductor manufacturing equipment
JP2014154693A (en) * 2013-02-08 2014-08-25 Toyoda Gosei Co Ltd Group iii nitride semiconductor light-emitting element and manufacturing method of the same
JP7483840B2 (en) 2017-11-09 2024-05-15 キヤノン株式会社 Powdered materials for additive manufacturing, structures, semiconductor manufacturing equipment parts, and semiconductor manufacturing equipment
CN110158018A (en) * 2019-07-02 2019-08-23 广东省新材料研究所 A kind of Al/AlN composite coating and preparation method thereof
CN110158018B (en) * 2019-07-02 2021-06-15 广东省新材料研究所 Al/AlN composite coating and preparation method thereof

Also Published As

Publication number Publication date
JP3915628B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
JP3894313B2 (en) Fluoride-containing film, coating member, and method for forming fluoride-containing film
CA2133422C (en) Process for producing a strong bond between copper layes and ceramic
US5846613A (en) Method for depositing a hard protective coating
TW200944618A (en) Member coated with aluminum nitride by thermal spraying and process for producing the same
KR101052036B1 (en) Ceramic coating and ion beam mixing device to improve corrosion resistance at high temperature and method of modifying interface of thin film using same
JP6929716B2 (en) Yttrium oxyfluoride sprayed film, its manufacturing method, and sprayed members
JP3915628B2 (en) Aluminum nitride sprayed film and manufacturing method thereof
KR101849997B1 (en) Methods for coating surface of iron-based alloy and products with high hardness and low friction manufactured thereby
JP2020503675A (en) Semiconductor manufacturing component, semiconductor manufacturing component including composite coating layer, and method of manufacturing the same
JP2006307298A (en) Nitride film and film-forming method therefor
Li et al. Field emission from cobalt-containing amorphous carbon composite films heat-treated in an acetylene ambient
JP4032178B2 (en) Method for manufacturing silicon nitride sprayed film
JP2002523331A (en) Method for producing an improved boron coating on graphite and articles obtained therefrom
JP4613303B2 (en) Gradient texture coating composite material using ceramic powder and metal powder and method for producing the same
JP2794173B2 (en) Method of forming composite carbon coating
Ali et al. Role of surface pre-treatment in the CVD of diamond films on copper
TW522504B (en) Diamond-coated member
EP1580294A1 (en) Corrosion-resistant member and process of producing the same
JP2006169584A (en) Thermal-sprayed film of iron nitride and manufacturing method therefor
KR101859116B1 (en) Methods for coating surface of iron-based alloy and products with high corrosion resistance and high conductivity manufactured thereby
JP3600279B2 (en) Alumina-based composite ceramics with controlled specific resistance and method for producing the same
CN105164303A (en) Method for depositing corrosion-protection coating
Ali et al. Tantalum carbide-graphite composite film synthesized by hot-filament chemical vapor deposition
TW201927724A (en) Material for thermal spray, thermal spray coating using the same and manufacture methods thereof
Lake et al. Diamond fibers for thermal energy management

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

LAPS Cancellation because of no payment of annual fees