JP2004083817A - Polyamide - Google Patents

Polyamide Download PDF

Info

Publication number
JP2004083817A
JP2004083817A JP2002249942A JP2002249942A JP2004083817A JP 2004083817 A JP2004083817 A JP 2004083817A JP 2002249942 A JP2002249942 A JP 2002249942A JP 2002249942 A JP2002249942 A JP 2002249942A JP 2004083817 A JP2004083817 A JP 2004083817A
Authority
JP
Japan
Prior art keywords
polyamide
acid
diamine
temperature
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002249942A
Other languages
Japanese (ja)
Other versions
JP2004083817A5 (en
Inventor
Koichi Uchida
内田 光一
Tetsuya Hara
原 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2002249942A priority Critical patent/JP2004083817A/en
Publication of JP2004083817A publication Critical patent/JP2004083817A/en
Publication of JP2004083817A5 publication Critical patent/JP2004083817A5/ja
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyamide having excellent transparency and good dimensional stability, mechanical properties, chemical resistance, etc. <P>SOLUTION: The polyamide is composed of a diamine unit composed mainly of a 6-12C saturated aliphatic diamine containing ≥15 mol% 2-methyl-1,8-octanediamine and a 6-18C aliphatic dicarboxylic acid unit, and having a visible light transmittance of ≥50% in the form of a thin plate of 1 mm thick and a heat of crystal melting (ΔHm) of ≥30 J/g determined by DSC (differential scanning calorimetric) measurement. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、新規なポリアミドに関する。本発明のポリアミドは、透明性に優れるとともに、耐薬品性、寸法安定性、機械的特性、低吸水性、柔軟性などにも優れた成形品を与える。
【0002】
【従来の技術】
ポリアミドは多くの用途で使用されているが、用途に応じて種々の特性が要求される。例えば、ビン、容器、眼鏡枠等の物品においては、引張強度、衝撃強度、圧縮強度などの各種の機械特性の他に、寸法安定性、透明性および耐薬品性が要求される。
【0003】
耐薬品性と透明性を有するホモポリアミドやコポリアミドは種々提案されている。例えば、ホモポリアミドやコポリアミドとして、脂環式ジアミンと脂肪族ジカルボン酸とテレフタル酸および/またはイソフタル酸とからなるポリアミド(特開2000−1544号公報や特開平5−311067号公報を参照)などが提案されている。しかし、上記の公報に記載されたポリアミドは透明性が高いものの、非晶性であり、寸法安定性や耐薬品性が不十分である。
【0004】
一方、寸法安定性や耐薬品性、機械特性に優れたポリアミドとしては、ポリアミド11やポリアミド12が知られており、市販もされているが、透明性の点では、不十分である。
【0005】
【発明が解決しようとする課題】
このように従来のポリアミドは、透明性に優れていても、寸法安定性や耐薬品性の点で不十分であったり、寸法安定性、機械的特性や耐薬品性に優れていても、透明性の点で不十分であったりする。
しかして、本発明は、優れた透明性を有するとともに、寸法安定性、機械的特性および耐薬品性なども兼ね備えたポリアミドを提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明者らは上記の課題を解決すべく鋭意検討した結果、2−メチル−1,8−オクタンジアミンと脂肪族ジカルボン酸からなるポリアミドが透明性、寸法安定性、耐薬品性、機械特性などの諸物性に優れることを見出し、さらに検討した結果、本発明を完成させるに至った。
【0007】
すなわち、本発明は、2−メチル−1,8−オクタンジアミンを15モル%以上含有する炭素数6〜12の飽和脂肪族ジアミンから主としてなるジアミン単位と、炭素数6〜18の脂肪族ジカルボン酸単位とからなるポリアミドであって、厚さ1mmの薄板に成形した場合の可視光線透過率が50%以上であり、かつDSC測定から得られた結晶融解熱量(ΔHm)が30J/g以上であることを特徴とするポリアミドを提供する。
【0008】
なお、2−メチル−1,8−オクタンジアミンから構成されるポリアミドとしては、例えば、下記のものが知られているが、本発明のポリアミドは、これらのいずれとも異なる新規なポリアミドである。
▲1▼テレフタル酸等の芳香族ジカルボン酸と1,9−ノナンジアミンおよび2−メチル−1,8−オクタンジアミンからなるポリアミド(特開平7−228689号公報などを参照)
▲2▼1,4−シクロヘキサンジカルボン酸と1,9−ノナンジアミンおよび2−メチル−1,8−オクタンジアミンからなるポリアミド(特開平9−12868号公報参照)
▲3▼アジピン酸またはセバシン酸とテレフタル酸(テレフタル酸の含有量:50〜90モル%)の混合物であるジカルボン酸と1,9−ノナンジアミンおよび2−メチル−1,8−オクタンジアミンからなるポリアミド(特開2000−86795号公報参照)
▲4▼直鎖型の飽和脂肪族ジカルボン酸と二量体化脂肪酸の混合物であるジカルボン酸と1,9−ノナンジアミンおよび2−メチル−1,8−オクタンジアミンからなるポリアミド(特開2002−80591号公報参照)
【0009】
【発明の実施の形態】
本発明のポリアミドを構成するジアミン単位は、2−メチル−1,8−オクタンジアミンを15モル%以上含有する炭素数6〜12の飽和脂肪族ジアミンから主としてなる。
【0010】
炭素数6〜12の飽和脂肪族ジアミンにおいて、2−メチル−1,8−オクタンジアミン以外のジアミンとしては、例えば1,6−ヘキサンジアミン、1,7−ヘプタンジアミン、1,8−オクタンジアミン、1,9−ノナンジアミン、1,10−デカンジアミン、1,11−ウンデカンジアミン、1,12−ドデカンジアミン、2−メチル−1,5−ペンタンジアミン、2−メチル−1,7−ヘプタンジアミン、4−メチル−1,8−オクタンジアミン、2,2,4−トリメチル−1,6−ヘキサンジアミン、2,4,4−トリメチル−1,6−ヘキサンジアミンなどが挙げられるが、これらの中でも1,9−ノナンジアミンが好ましい。
【0011】
炭素数6〜12の飽和脂肪族ジアミンにおいて、2−メチル−1,8−オクタンジアミンの含有量が15モル%未満となると、得られるポリアミドの透明性が十分ではなくなる。炭素数6〜12の飽和脂肪族ジアミンにおける2−メチル−1,8−オクタンジアミンの含有量は、90〜20モル%であることが好ましく、80〜20モル%であることがより好ましい。
【0012】
本発明のポリアミドは、発明の趣旨を損なわない範囲内であれば、炭素数6〜18の脂肪族ジアミン単位以外の他のジアミン単位を含有していてもよい。かかる他のジアミン単位としては、例えば、エチレンジアミン、プロピレンジアミン、1,4−ブタンジアミンなどの脂肪族ジアミン;シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン、ノルボルナンジメチルアミン、トリシクロデカンジメチルアミンなどの脂環式ジアミン;p−フェニレンジアミン、m−フェニレンジアミン、p−キシリレンジアミン、m−キシリレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルエーテル等の芳香族ジアミンなどから誘導される単位が挙げられる。これらの単位は1種類のものであってもよいし、2種以上であってもよい。
【0013】
本発明のポリアミドを構成するジカルボン酸単位は、炭素数6〜18の飽和脂肪族ジカルボン酸から主としてなり、例えば、アジピン酸、2−メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2’−ジメチルグルタル酸、3,3’−ジエチルコハク酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸、オクタデカン二酸などから誘導される単位が挙げられる。これらの単位は1種類のものであってもよいし、2種以上であってもよい。これらの中でも炭素数9〜12のものが好ましく、特にアゼライン酸、セバシン酸、ドデカン二酸から誘導される単位が好ましい。
【0014】
本発明のポリアミドは、発明の趣旨を損なわない範囲内であれば、炭素数6〜18の脂肪族ジカルボン酸単位以外の他のジカルボン酸単位を含有していてもよい。かかる他のジカルボン酸単位としては、例えば、マロン酸、ジメチルマロン酸、コハク酸、グルタル酸等の脂肪族ジカルボン酸;1,3−シクロペンタンジカルボン酸、1,4−シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,4−フェニレンジオキシジ酢酸、1,3−フェニレンジオキシジ酢酸、ジフェン酸、ジフェニルメタン−4,4’−ジカルボン酸、ジフェニルスルホン−4,4’−ジカルボン酸、4,4’−ビフェニルジカルボン酸等の芳香族ジカルボン酸から誘導される単位を挙げることができ、これらのうちの1種または2種以上を使用することができる。
さらに、トリメリット酸、トリメシン酸、ピロメリット酸などの多価カルボン酸から誘導される単位を、溶融成形が可能な範囲内で含んでいてもよい。
【0015】
本発明のポリアミドは、透明性に優れたものであるために、厚さ1mmの薄板に成形した場合の可視光線透過率が50%以上であることを要する。本発明のポリアミドは、厚さ1mmの薄板に成形した場合の可視光線透過率が60%以上であることが好ましく、70%以上であることがより好ましい。
【0016】
本発明のポリアミドはDSC測定から得られた結晶融解熱量(ΔHm)が30J/g以上であることを必要とする。結晶融解熱量(ΔHm)が30J/g未満であると、結晶性の低下による寸法安定性や耐薬品性の低下が生じるため、透明性と寸法安定性、耐薬品性の両立を満足することが困難となる。
【0017】
本発明のポリアミドは、良好な機械的物性と溶融成形性を発揮できることから、濃硫酸中30℃の条件下で測定した極限粘度[η]が、0.6〜2.0dl/gであることが好ましく、0.7〜1.8dl/gであることがより好ましく、0.8〜1.6dl/gであることがさらに好ましい。
【0018】
また、本発明のポリアミドは、分子末端に存在する遊離のアミノ基(以下、末端アミノ基と略称する)と分子末端に存在する遊離のカルボキシル基(以下、末端カルボキシル基と略称する)の合計量が80μeq/g以下であることが好ましい。本発明のポリアミドにおいて、末端アミノ基と末端カルボキシル基の含有量が少なくなると、熱安定性などが向上し、有利である。本発明のポリアミドにおいて、末端アミノ基と末端カルボキシル基の合計量は、70μeq/g以下であることがより好ましく、60μeq/g以下であることがさらに好ましい。
【0019】
本発明のポリアミドは、結晶性ポリアミドを製造する方法として知られている方法を用いて製造することができるが、ジカルボン酸成分とジアミン成分を原料とする溶融重合法、溶融押出重合法などの方法によって製造することが有利である。
本発明のポリアミドは、ジアミン成分とジカルボン酸成分からなる塩の水溶液を調整した後、所定の温度で加熱して、ある程度脱水を進め、次いで、減圧下で重合反応を追い込み、所望のポリアミドを得る方法によっても製造することができるが、この方法は、高圧に耐えうる耐圧容器が必要であったり、二段階の重合方法であるために長時間を要してしまうなどの点で有利ではない。
【0020】
溶融重合法においては、本発明のポリアミドの原料であるジカルボン酸成分を所望により触媒や添加剤とともに重合槽に仕込み、溶融状態に保持する。
この際、ジカルボン酸成分の温度を、該ジカルボン酸成分の融点よりも30℃高い程度の温度とすることが好ましいが、通常、160℃以上に設定しておけば十分である。
また、重合槽内において溶融状態としたジカルボン酸成分は、十分に攪拌することが望ましい。重合槽内は、窒素、アルゴンなどの不活性ガスで雰囲気下としておくことが望ましい。
【0021】
重合槽としては、特に制限されるものではないが、バッチ反応層、1槽ないし多槽からなる連続反応装置、管状連続反応装置など公知の重合装置を使用することができる。また、重合槽には、通常、反応に伴って生成する水と原料化合物を分離する分縮器および冷却器が取り付けられる。
【0022】
そして、重合槽中で溶融状態にあるジカルボン酸成分に、ジアミン成分を常圧下に添加し、反応混合物を、生成するオリゴアミドやポリアミドの融点以上の温度に保持することによって重縮合を進行させ、本発明のポリアミドを製造することができる。
【0023】
ジアミン成分の使用量は、ジアミン成分の添加速度等により変化し得るが、ジカルボン酸成分に対し、モル比で1.00〜1.05倍の範囲内とすることが好ましい。
【0024】
ジアミン成分の添加速度は、アミド化反応の生成熱、反応に伴って生成する水の留去に消費される熱量、熱媒から供給される熱量、分縮器や冷却器の構造等を勘案し、所望の反応温度、すなわち、反応系を均一な溶融状態に保持しうる温度を考慮して選定される。ジアミン成分の添加に要する時間は、重合槽の容量等により変化しうるが、通常、0.5時間から15時間の範囲内である。ジアミン成分の添加中、反応に伴って生成する水は、分縮器と冷却器を通して、反応系外に留去される。また、分縮器で回収される2−メチル−1,8−オクタンジアミン、1,9−ノナンジアミンなどのジアミン成分やアゼライン酸やドデカン二酸などのジカルボン酸成分は、重合槽内に戻すことが望ましい。
【0025】
溶融重合において、反応の進行に伴なって、生成するオリゴアミドまたはポリアミドの分子量が高くなると、反応生成物の融点が高くなったり、反応生成物の溶融粘度が高くなったりするため、反応混合物が固化しやすくなる。従って、反応温度は、反応の進行に合わせて昇温するように制御し、反応混合物の固化を防ぐように設定することが望ましい。また、反応混合物を十分に攪拌し、反応系中を常に均一な溶融系に保持することが望ましい。
【0026】
溶融重合において、反応温度は180〜280℃の範囲に設定することが好ましい。反応温度が280℃を越えると、反応原料の揮散が激しくなる上、副反応が生じ易くなり、着色または溶融重合時のゲル化が発生し易くなる傾向にある。また反応温度が180℃に満たないと、反応混合物が固化しやすくなるため好ましくない。
なお、溶融重合においては、ジアミン成分とジカルボン酸成分のモルバランスを制御する観点から、反応混合物が固化しない範囲でなるべく反応温度を低く設定することが好ましい。反応温度を上げすぎると、反応原料の揮散が激しくなるため、モルバランスが崩れ、所望の重合度のポリアミドが得られ難くなる。
【0027】
溶融重合は、窒素、アルゴンなどの不活性ガス雰囲気下で行うことが望ましい。重合槽内の雰囲気中に空気などが存在すると、副反応が生じ易くなり、着色または溶融重合時のゲル化が発生し易くなる傾向にあり好ましくない。
【0028】
溶融重合においては、0.1〜760mmHgの範囲の圧力下で反応を十分に追い込むことが好ましい。
【0029】
重合反応終了後、溶融状態のポリアミドは、ストランド状に取り出し、ストランドカッター等により、ペレット状とすることが好ましい。
また、本発明のポリアミドは、成形等に使用するに先立ち、減圧下で十分に乾燥しておくことが好ましい。
【0030】
本発明のポリアミドの製造に際しては、必要に応じて、触媒を使用することができる。触媒としては、例えばリン酸、亜リン酸、次亜リン酸、ピロリン酸、ポリリン酸およびこれらのアルカリ金属塩、アルカリ土類金属塩などの無機リン系化合物が好ましく、特に亜リン酸、次亜リン酸ナトリウムが好適に用いられる。触媒は、ジカルボン酸成分およびジアミン成分の合計重量に対し、50ppm〜1重量%の範囲内で使用することが好ましい。
触媒は、ジアミン成分の添加に先立って全量を重合槽に仕込んでおいてもよいし、一部をジアミン成分の添加に先立って重合槽に仕込み、残りをジアミン成分の添加終了後に添加してもよい。また、触媒をジアミン成分と混合した上で、ジカルボン酸成分に添加してもよい。
【0031】
また、本発明のポリアミドの製造に際しては、必要に応じて、末端停止剤(重合度調節剤)を使用することができる。末端停止剤としては、例えばラウリルアミン、ステアリルアミン、ベンジルアミンなどの一官能性アミン;酢酸、ステアリン酸、安息香酸、ラウリン酸などの一官能性カルボン酸が使用される。末端停止剤の使用量は最終的に得ようとするポリアミドの極限粘度が前記した範囲になるように適宜選択するのがよい。
末端停止剤は、ジアミン成分の添加に先立って全量を重合槽に仕込んでおいてもよいし、一部をジアミン成分の添加に先立って重合槽に仕込み、残りをジアミン成分の添加終了後に添加してもよい。また、末端停止剤をジアミン成分と混合した上で、ジカルボン酸成分に添加してもよい。
【0032】
本発明のポリアミドを製造するに際し、ジカルボン酸成分とジアミン成分のモル比を上記した範囲とし、さらにこのような末端停止剤を使用することにより、末端アミノ基と末端カルボキシル基の合計量を前記した好適な範囲に調整することができる。
【0033】
さらに、本発明のポリアミドの製造に際しては、必要に応じて、耐熱剤、酸化防止剤、熱分解防止剤、紫外線吸収剤、耐候安定剤、滑剤、結晶核剤、帯電防止剤、補強剤、離型剤、可塑剤、難燃剤、顔料、染料などの添加剤をポリアミドの物性を損なわない範囲内で添加することができる。
これらの添加剤は、ジアミン成分の添加に先立って全量を重合槽に仕込んでおいてもよいし、一部をジアミン成分の添加に先立って重合槽に仕込み、残りをジアミン成分の添加終了後に添加してもよい。また、これらの添加剤をジアミン成分と混合した上で、ジカルボン酸成分に添加してもよい。
【0034】
本発明のポリアミドを、目的とする成形品の種類、用途、形状などに応じて、射出成形、押出成形、プレス成形、ブロー成形、カレンダー成形、流延成形などの一般に熱可塑性樹脂に対して用いられる成形方法によって成形することにより、チューブ、ホース、フィルム、シート、板状物、棒状物、円柱状物、円筒状物、繊維状物などの成形品を製造することができる。
【0035】
本発明のポリアミドは、透明性に優れるとともに、寸法安定性、耐薬品性および機械的特性を兼ね備えており、これらの特性を生かして、特に産業資材の分野においてビン、容器、眼鏡、カバー等の製造用の素材として使用することができる。
【0036】
【実施例】
以下、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
なお、実施例および比較例において、ポリアミドの可視光線透過率、ガラス転移温度、融点、結晶融解熱量、吸水性、吸エタノール性(耐薬品性)、極限粘度[η]、末端カルボキシル基量および末端アミノ基量の測定は、以下の方法で実施した。
【0037】
可視光線透過率:
ポリアミドのペレットを用いて、ポリアミドの融点よりも約30℃高い温度で射出成形(金型温度:80℃)を行うことにより、50mm×50mm×1mm(厚さ)のサイズの試験片を作製し、JIS K7105に従い、積分球式光線透過率測定装置を用いて、可視光線(周波数:400〜760nm)の透過率(厚さ方向)を測定した。
【0038】
ガラス転移温度:
ポリアミドのペレットを用いて、ポリアミドの融点よりも約30℃高い温度でプレス成形を行うことにより、5mm×30mm×0.2mm(厚さ)のサイズのフィルムを作製し、120℃、減圧下で乾燥し、完全に結晶化させた。このフィルムを用いて、固体引張粘弾性測定装置(レオロジ社製、「RVE−400」)を用いて、測定周波数11Hzにて、−120℃から流動開始温度まで3℃/分の割合で昇温した時の損失正接(tanδ)の主分散(α分散)のピーク温度をガラス転移温度とした。
【0039】
融点、結晶融解熱量:
示差熱量走査計(メトラー社製TA−3000)を使用し、一度完全に溶融状態にしてから常温まで急冷したポリアミドペレット(試料量10mg)を30℃から10℃/分の昇温速度で250℃まで測定することにより、150〜200℃付近に出現する融解吸熱に基づくピークの温度を融点、同ピークの積分値を結晶融解熱量として読み取った。
【0040】
吸水性:
ポリアミドのペレットを用いて、ポリアミドの融点よりも約30℃高い温度で射出成形(金型温度:80℃)を行うことにより、50mm×50mm×1mm(厚さ)のサイズの試験片を作製し、100℃で24時間真空で乾燥処理した後(試験片の重量:W)、20℃の水中に7日間浸漬させ(試験片の重量:W)、重量変化に基づいて吸水率を算出した。
吸水率(%)=(W−W)/W×100
【0041】
吸エタノール性(耐薬品性):
ポリアミドのペレットを用いて、ポリアミドの融点よりも約30℃高い温度で射出成形(金型温度:80℃)を行うことにより、50mm×50mm×1mm(厚さ)のサイズの試験片を作製し、100℃で24時間真空乾燥処理した後(試験片の重量:We)、20℃のエタノール中に7日間浸漬させ(試験片の重量:We)、重量変化に基づいて吸エタノール率を算出した。
吸エタノール率(%)=(We−We)/We×100
【0042】
極限粘度[η]:
濃硫酸中にポリアミドを溶解して、濃度が0.05、0.1、0.2および0.4dl/gの試料溶液を調製し、30℃におけるインヘレント粘度ηinhを測定し、これを濃度0に外挿した値を極限粘度[η]とした。
ηinh =[ln(t/t)]/C
上記式中、tは溶媒の流下時間(秒)を表し、tは試料溶液の流下時間(秒)を表し、Cは試料溶液の濃度を表す。
【0043】
末端カルボキシル基量:
ポリアミド1gを35mlのo−クレゾールに加熱溶解した。冷却後、この溶液に20mlのベンジルアルコールと250μlのホルムアルデヒドを加えた。KOHのメタノール溶液(濃度:0.1規定)を使用して電位差滴定を実施し、末端カルボキシル基量を測定した。
末端アミノ基量:
ポリアミド1gをフェノール35mlに溶解し、メタノールを2ml混合し、試料溶液とした。チモールブルーを指示薬とし、0.01規定のHCl水溶液を使用した滴定を実施し、末端アミノ基量を測定した。
【0044】
また、以下の実施例および比較例で使用した化合物の略号は、以下のとおりである。
〔ジアミン成分〕
MODA: 2−メチル−1,8−オクタンジアミン
NMDA: 1,9−ノナンジアミン
HMDA: 1,6−ヘキサンジアミン
TMHMDA: 2,2,4−トリメチルヘキサメチレンジアミン
BACHM: ビス(4−アミノシクロヘキシル)メタン
〔ジカルボン酸成分〕
AZ: アゼライン酸
C12DA: ドデカン二酸
C18DA: オクタデカン酸
IPA: イソフタル酸
〔アミノカルボン酸〕
ALA: アミノラウリン酸
〔末端停止剤〕
BA: 安息香酸
【0045】
実施例1
アゼライン酸1055g(5.61モル)、安息香酸28.0g(0.23モル)および亜リン酸2.0gを窒素雰囲気とした重合槽(内容積5リットルのオートクレーブ)に仕込んだ。原料を攪拌しながら常温から1時間かけて190℃まで昇温し、原料を完全に溶融させた。2−メチル−1,8−オクタンジアミン724.2g(4.58モル)と1,9−ノナンジアミン181.0g(1.15モル)の混合物(ジアミン成分)を重合槽内に添加していき、1時間かけて全量添加した。この際、添加初期は添加速度を小さめにし、反応が進んできた段階で添加速度を速めた。なお、反応によって生成した水や揮散したジアミン成分は重合槽に取り付けられた分縮器で分離され、水は系外に除去されるとともに、ジアミン成分は還流により重合槽に戻されるようにした。また、ジアミン成分の90%を添加した段階で、反応混合物の固化を抑制するために反応温度を210℃まで昇温した。ジアミン成分の添加終了後は反応温度を230℃まで昇温し、常圧で1時間保持した後、減圧を開始し、重合槽内の圧力を最終的に13.3Pa(0.1Torr)まで減圧した。攪拌翼に取り付けたトルクメータで重合の進行具合を判断した。すなわち、トルクの上昇がストップした時点で、重合槽下部にある取り出し口から溶融したポリアミドをストランド状に取り出し、ストランドカッターでペレット化した後、乾燥して、ポリアミドを得た。得られたポリアミドの各種物性を上記した方法で測定した。結果を表1に示す。
【0046】
実施例2〜8および比較例1〜3
ジカルボン酸成分およびジアミン成分の種類と使用量を表1に示すように変更したこと以外は、実施例1と同様の操作により、ポリアミドを得た。得られたポリアミドの各種物性を上記した方法で測定した。結果を表1に示す。
【0047】
比較例4
アミノラウリン酸1206.2g(5.61モル)、安息香酸28.0g(0.23モル)および亜リン酸1.23gを窒素雰囲気とした重合槽(内容積5リットルのオートクレーブ)に仕込んだ。原料を攪拌しながら常温から1時間かけて190℃まで昇温し、同温度で1時間保持した後、反応混合物の固化を抑制するために反応温度を210℃まで昇温した。同温度において、常圧で1時間保持した後、減圧を開始し、重合槽内の圧力を最終的に13.3Pa(0.1Torr)まで減圧した。攪拌翼に取り付けたトルクメータで重合の進行具合を判断した。すなわち、トルクの上昇がストップした時点で、重合槽下部にある取り出し口から溶融したポリアミドをストランド状に取り出し、ストランドカッターでペレット化した後、乾燥して、ポリアミドを得た。得られたポリアミドの各種物性を上記した方法で測定した。結果を表1に示す。
【0048】
比較例5
イソフタル酸760.3g(4.58モル)、アミノラウリン酸243.0g(1.13モル)、安息香酸28.0g(0.23モル)および亜リン酸2.23gを窒素雰囲気とした重合槽(内容積5リットルのオートクレーブ)に仕込んだ。原料を攪拌しながら常温から1時間かけて190℃まで昇温し、原料を完全に溶融させた。ビス(4−アミノシクロヘキシル)メタン1203.3g(5.73モル)〔ジアミン成分〕を重合槽内に添加していき、1時間かけて全量添加した。この際、添加初期は添加速度を小さめにし、反応が進んできた段階で添加速度を速めた。なお、反応によって生成した水や揮散したジアミン成分は重合槽に取り付けられた分縮器で分離され、水は系外に除去されるとともに、ジアミン成分は還流により重合槽に戻されるようにした。また、ジアミン成分の90%を添加した段階で、反応混合物の固化を抑制するために反応温度を210℃まで昇温した。ジアミン成分の添加終了後は反応温度を230℃まで昇温し、常圧で1時間保持した後、減圧を開始し、重合槽内の圧力を最終的に13.3Pa(0.1Torr)まで減圧した。攪拌翼に取り付けたトルクメータで重合の進行具合を判断した。すなわち、トルクの上昇がストップした時点で、重合槽下部にある取り出し口から溶融したポリアミドをストランド状に取り出し、ストランドカッターでペレット化した後、乾燥して、ポリアミドを得た。得られたポリアミドの各種物性を上記した方法で測定した。結果を表1に示す。
【0049】
【表1】

Figure 2004083817
【0050】
表1中の注:
1) ジアミン成分、ジカルボン酸成分、アミノカルボン酸、末端停止剤として使用される化合物(原料化合物)のモル比
2) ジアミン成分、ジカルボン酸成分およびアミノカルボン酸の合計量に対する割合。
3) 非晶性であり、明瞭な融点が観測できなかった。
【0051】
なお、可視光線透過率の測定に使用した試験片の外観(目視による)は、実施例1〜8、比較例3および5のポリアミドから作製されたものは透明であったが、比較例2のポリアミドから作製されたものは半透明であり、比較例1および4のポリアミドから作製されたものは不透明であった。
【0052】
実施例9
水600g、アゼライン酸1055g、2−メチル−1,8−オクタンジアミン724.2g、1,9−ノナンジアミン181.0g、安息香酸28.0gおよび亜リン酸2.0gを窒素雰囲気にした重合槽(内容積5リットルのオートクレーブ)に仕込んだ。原料水溶液を攪拌しながら常温から2時間かけて240℃まで昇温した。この時点でのオートクレーブの内圧は18.6MPa(19kg/cm)であった。240℃に到達した時点で、原料濃度が82重量%になるように濃縮した。濃縮終了後、約5時間かけて徐々に圧力を低下させ、常圧とした。常圧下で270℃まで昇温し、重合槽内の温度が270℃に到達した時点で徐々に減圧を開始し、30分かけて重合槽内の圧力を665Pa(5Torr)とし、さらに30分反応を続けた。反応終了後、重合槽下部にある取り出し口から溶融したポリアミドをストランド状に取り出し、ストランドカッターでペレット化した後、乾燥して、ポリアミドを得た。得られたポリアミドの各種物性を上記した方法で測定した。結果は、以下のとおりであった。
極限粘度[η]:     2.75dl/g
可視光線透過率:    64%
外観:         透明
ガラス転移温度:    45℃
融点:         154℃
結晶融解熱量:     38J/g
吸水率:        2.0%
吸エタノール率:    10.1%
末端アミノ基量:    70μeq/g
末端カルボキシル基量: 28μeq/g
【0053】
【発明の効果】
本発明によれば、透明性に優れるとともに、寸法安定性、耐薬品性、機械特性などを兼ね備えたポリアミドが提供される。本発明のポリアミドは、上記した特性を生かして、ビン、容器、眼鏡枠等として好適な成形品の製造に使用することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to novel polyamides. The polyamide of the present invention is excellent in transparency and gives a molded article excellent in chemical resistance, dimensional stability, mechanical properties, low water absorption, flexibility and the like.
[0002]
[Prior art]
Polyamides are used in many applications, but various properties are required depending on the application. For example, articles such as bottles, containers, and spectacle frames require various mechanical properties such as tensile strength, impact strength, and compressive strength, as well as dimensional stability, transparency, and chemical resistance.
[0003]
Various types of homopolyamides and copolyamides having chemical resistance and transparency have been proposed. For example, as a homopolyamide or a copolyamide, a polyamide comprising an alicyclic diamine, an aliphatic dicarboxylic acid, and terephthalic acid and / or isophthalic acid (see JP-A-2000-1544 and JP-A-5-311067), and the like. Has been proposed. However, although the polyamides described in the above publications have high transparency, they are amorphous and have insufficient dimensional stability and chemical resistance.
[0004]
On the other hand, polyamides 11 and 12 are known as polyamides having excellent dimensional stability, chemical resistance and mechanical properties, and are commercially available, but are insufficient in transparency.
[0005]
[Problems to be solved by the invention]
As described above, conventional polyamides have excellent transparency, but are insufficient in dimensional stability and chemical resistance, and are excellent in dimensional stability, mechanical properties and chemical resistance, It is not enough in terms of sex.
Thus, an object of the present invention is to provide a polyamide having excellent transparency and having dimensional stability, mechanical properties, chemical resistance, and the like.
[0006]
[Means for Solving the Problems]
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, the polyamide comprising 2-methyl-1,8-octanediamine and an aliphatic dicarboxylic acid was found to have transparency, dimensional stability, chemical resistance, mechanical properties, and the like. Were found to be excellent in various physical properties, and as a result of further study, the present invention was completed.
[0007]
That is, the present invention relates to a diamine unit mainly composed of a saturated aliphatic diamine having 6 to 12 carbon atoms containing 15 mol% or more of 2-methyl-1,8-octanediamine, and an aliphatic dicarboxylic acid having 6 to 18 carbon atoms. A polyamide consisting of units, having a visible light transmittance of 50% or more when molded into a thin plate having a thickness of 1 mm, and a heat of crystal fusion (ΔHm) obtained by DSC measurement of 30 J / g or more. A polyamide characterized in that:
[0008]
In addition, as the polyamide composed of 2-methyl-1,8-octanediamine, for example, the following are known, but the polyamide of the present invention is a novel polyamide different from any of these.
{Circle around (1)} A polyamide comprising an aromatic dicarboxylic acid such as terephthalic acid and 1,9-nonanediamine and 2-methyl-1,8-octanediamine (see JP-A-7-228689).
{Circle around (2)} Polyamide comprising 1,4-cyclohexanedicarboxylic acid, 1,9-nonanediamine and 2-methyl-1,8-octanediamine (see JP-A-9-12868)
(3) Polyamide comprising dicarboxylic acid, which is a mixture of adipic acid or sebacic acid and terephthalic acid (content of terephthalic acid: 50 to 90 mol%), 1,9-nonanediamine and 2-methyl-1,8-octanediamine (See JP-A-2000-86795)
(4) Polyamide comprising dicarboxylic acid, which is a mixture of linear saturated aliphatic dicarboxylic acid and dimerized fatty acid, 1,9-nonanediamine and 2-methyl-1,8-octanediamine (JP-A-2002-80591) No.)
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The diamine unit constituting the polyamide of the present invention is mainly composed of a saturated aliphatic diamine having 6 to 12 carbon atoms and containing 15% by mole or more of 2-methyl-1,8-octanediamine.
[0010]
Among the saturated aliphatic diamines having 6 to 12 carbon atoms, examples of the diamine other than 2-methyl-1,8-octanediamine include 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 2-methyl-1,5-pentanediamine, 2-methyl-1,7-heptanediamine, 4 -Methyl-1,8-octanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine and the like. 9-nonanediamine is preferred.
[0011]
When the content of 2-methyl-1,8-octanediamine is less than 15 mol% in the saturated aliphatic diamine having 6 to 12 carbon atoms, the transparency of the obtained polyamide becomes insufficient. The content of 2-methyl-1,8-octanediamine in the saturated aliphatic diamine having 6 to 12 carbon atoms is preferably 90 to 20 mol%, more preferably 80 to 20 mol%.
[0012]
The polyamide of the present invention may contain other diamine units other than the aliphatic diamine units having 6 to 18 carbon atoms as long as the purpose of the present invention is not impaired. Examples of such other diamine units include aliphatic diamines such as ethylenediamine, propylenediamine, and 1,4-butanediamine; alicyclic rings such as cyclohexanediamine, methylcyclohexanediamine, isophoronediamine, norbornanedimethylamine, and tricyclodecanedimethylamine. Formula diamine; p-phenylenediamine, m-phenylenediamine, p-xylylenediamine, m-xylylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylether and the like And a unit derived from an aromatic diamine. These units may be of one type or two or more types.
[0013]
The dicarboxylic acid unit constituting the polyamide of the present invention is mainly composed of a saturated aliphatic dicarboxylic acid having 6 to 18 carbon atoms, for example, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2′- Dimethylglutaric acid, 3,3'-diethylsuccinic acid, suberic acid, azelaic acid, sebacic acid, undecandioic acid, dodecandioic acid, tridecandioic acid, tetradecandioic acid, pentadecandioic acid, hexadecandioic acid, octadecandioic acid, etc. And units derived therefrom. These units may be of one type or two or more types. Among these, those having 9 to 12 carbon atoms are preferred, and units derived from azelaic acid, sebacic acid and dodecane diacid are particularly preferred.
[0014]
The polyamide of the present invention may contain a dicarboxylic acid unit other than an aliphatic dicarboxylic acid unit having 6 to 18 carbon atoms as long as the purpose of the present invention is not impaired. Examples of such other dicarboxylic acid units include aliphatic dicarboxylic acids such as malonic acid, dimethylmalonic acid, succinic acid, and glutaric acid; and alicyclic rings such as 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid. Formula dicarboxylic acid; terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-phenylenedioxydiacetic acid, 1,3-phenylene Examples of units derived from aromatic dicarboxylic acids such as oxydiacetic acid, diphenic acid, diphenylmethane-4,4'-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, and 4,4'-biphenyldicarboxylic acid. And one or more of these can be used.
Further, a unit derived from a polycarboxylic acid such as trimellitic acid, trimesic acid, and pyromellitic acid may be contained within a range in which melt molding is possible.
[0015]
The polyamide of the present invention is required to have a visible light transmittance of 50% or more when molded into a thin plate having a thickness of 1 mm in order to be excellent in transparency. The visible light transmittance of the polyamide of the present invention when formed into a thin plate having a thickness of 1 mm is preferably 60% or more, more preferably 70% or more.
[0016]
The polyamide of the present invention requires that the heat of crystal fusion (ΔHm) obtained from DSC measurement is 30 J / g or more. When the heat of crystal fusion (ΔHm) is less than 30 J / g, dimensional stability and chemical resistance decrease due to decrease in crystallinity, so that it is possible to satisfy both transparency, dimensional stability, and chemical resistance. It will be difficult.
[0017]
Since the polyamide of the present invention can exhibit good mechanical properties and melt moldability, the intrinsic viscosity [η] measured in concentrated sulfuric acid at 30 ° C. is 0.6 to 2.0 dl / g. Is preferably 0.7 to 1.8 dl / g, and more preferably 0.8 to 1.6 dl / g.
[0018]
In the polyamide of the present invention, the total amount of free amino groups present at the molecular terminals (hereinafter abbreviated as terminal amino groups) and free carboxyl groups existing at the molecular terminals (hereinafter abbreviated as terminal carboxyl groups) Is preferably 80 μeq / g or less. In the polyamide of the present invention, when the content of the terminal amino group and the terminal carboxyl group is reduced, heat stability and the like are improved, which is advantageous. In the polyamide of the present invention, the total amount of terminal amino groups and terminal carboxyl groups is more preferably 70 μeq / g or less, and further preferably 60 μeq / g or less.
[0019]
The polyamide of the present invention can be produced using a method known as a method for producing a crystalline polyamide, but a method such as a melt polymerization method using a dicarboxylic acid component and a diamine component as raw materials, a melt extrusion polymerization method, and the like. It is advantageous to produce
The polyamide of the present invention is prepared by preparing an aqueous solution of a salt comprising a diamine component and a dicarboxylic acid component, heating at a predetermined temperature, dehydrating to some extent, and then driving the polymerization reaction under reduced pressure to obtain a desired polyamide. Although it can also be produced by a method, this method is not advantageous in that a pressure-resistant vessel capable of withstanding high pressure is required, and that it takes a long time due to a two-stage polymerization method.
[0020]
In the melt polymerization method, a dicarboxylic acid component, which is a raw material of the polyamide of the present invention, is charged into a polymerization tank together with a catalyst and additives as required, and is maintained in a molten state.
At this time, the temperature of the dicarboxylic acid component is preferably set to a temperature higher by about 30 ° C. than the melting point of the dicarboxylic acid component, but it is usually sufficient to set the temperature to 160 ° C. or higher.
It is desirable that the dicarboxylic acid component in the molten state in the polymerization tank is sufficiently stirred. The inside of the polymerization tank is desirably kept under an atmosphere of an inert gas such as nitrogen or argon.
[0021]
The polymerization tank is not particularly limited, but a known polymerization apparatus such as a batch reaction layer, a continuous reaction apparatus having one or more tanks, or a tubular continuous reaction apparatus can be used. The polymerization tank is usually provided with a decomposer and a cooler for separating water and raw material compounds produced during the reaction.
[0022]
Then, a diamine component is added under normal pressure to a dicarboxylic acid component in a molten state in a polymerization tank, and the polycondensation proceeds by maintaining the reaction mixture at a temperature equal to or higher than the melting point of the generated oligoamide or polyamide. Inventive polyamides can be produced.
[0023]
The amount of the diamine component used can vary depending on the rate of addition of the diamine component and the like, but is preferably in the range of 1.00 to 1.05 times the molar ratio of the dicarboxylic acid component.
[0024]
The rate of addition of the diamine component is determined in consideration of the heat of formation of the amidation reaction, the amount of heat consumed for distilling off water generated during the reaction, the amount of heat supplied from the heating medium, and the structure of the decomposer and the cooler. , A desired reaction temperature, that is, a temperature at which the reaction system can be maintained in a uniform molten state. The time required for adding the diamine component may vary depending on the capacity of the polymerization tank and the like, but is usually in the range of 0.5 hours to 15 hours. During the addition of the diamine component, water generated during the reaction is distilled out of the reaction system through a condensing device and a cooler. Further, diamine components such as 2-methyl-1,8-octanediamine and 1,9-nonanediamine and dicarboxylic acid components such as azelaic acid and dodecanedioic acid which are collected by the decomposer can be returned to the polymerization tank. desirable.
[0025]
In the melt polymerization, if the molecular weight of the resulting oligoamide or polyamide increases with the progress of the reaction, the melting point of the reaction product increases or the melt viscosity of the reaction product increases, so the reaction mixture solidifies. Easier to do. Therefore, the reaction temperature is desirably controlled so as to increase as the reaction proceeds, and set so as to prevent solidification of the reaction mixture. Further, it is desirable that the reaction mixture is sufficiently stirred to keep the reaction system in a uniform molten system at all times.
[0026]
In the melt polymerization, the reaction temperature is preferably set in the range of 180 to 280 ° C. If the reaction temperature exceeds 280 ° C., volatilization of the reaction raw materials becomes severe, and side reactions are liable to occur, and coloring or gelation during melt polymerization tends to occur. If the reaction temperature is lower than 180 ° C., the reaction mixture tends to solidify, which is not preferable.
In the melt polymerization, from the viewpoint of controlling the molar balance between the diamine component and the dicarboxylic acid component, it is preferable to set the reaction temperature as low as possible within a range where the reaction mixture does not solidify. If the reaction temperature is too high, the volatilization of the reaction raw materials becomes severe, so that the molar balance is lost and it becomes difficult to obtain a polyamide having a desired polymerization degree.
[0027]
The melt polymerization is desirably performed in an atmosphere of an inert gas such as nitrogen or argon. If air or the like is present in the atmosphere in the polymerization tank, side reactions are likely to occur, and coloring or gelation during melt polymerization tends to occur, which is not preferable.
[0028]
In the melt polymerization, it is preferable to sufficiently drive the reaction under a pressure in the range of 0.1 to 760 mmHg.
[0029]
After the completion of the polymerization reaction, the polyamide in a molten state is preferably taken out in a strand shape and made into a pellet shape by a strand cutter or the like.
Further, it is preferable that the polyamide of the present invention is sufficiently dried under reduced pressure before being used for molding or the like.
[0030]
In the production of the polyamide of the present invention, a catalyst can be used if necessary. As the catalyst, for example, phosphoric acid, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, polyphosphoric acid, and inorganic phosphorus compounds such as alkali metal salts and alkaline earth metal salts thereof are preferable. Sodium phosphate is preferably used. The catalyst is preferably used in the range of 50 ppm to 1% by weight based on the total weight of the dicarboxylic acid component and the diamine component.
The catalyst may be charged in the polymerization tank in its entirety prior to the addition of the diamine component, or may be partially charged in the polymerization tank prior to the addition of the diamine component, and the remainder may be added after the addition of the diamine component. Good. Further, the catalyst may be mixed with the diamine component and then added to the dicarboxylic acid component.
[0031]
In the production of the polyamide of the present invention, a terminal stopper (polymerization degree regulator) can be used as necessary. As the terminal terminator, for example, monofunctional amines such as laurylamine, stearylamine, and benzylamine; and monofunctional carboxylic acids such as acetic acid, stearic acid, benzoic acid, and lauric acid are used. The amount of the terminal terminator to be used is preferably selected appropriately so that the intrinsic viscosity of the polyamide finally obtained falls within the above-mentioned range.
The terminal stopper may be charged in the polymerization tank in its entirety prior to the addition of the diamine component, or may be partially charged in the polymerization tank prior to the addition of the diamine component, and the remainder may be added after the addition of the diamine component. May be. Further, the terminal stopper may be mixed with the diamine component and then added to the dicarboxylic acid component.
[0032]
In producing the polyamide of the present invention, the molar ratio of the dicarboxylic acid component and the diamine component is in the above range, and by using such a terminal stopper, the total amount of terminal amino groups and terminal carboxyl groups is described above. It can be adjusted to a suitable range.
[0033]
Further, in the production of the polyamide of the present invention, if necessary, a heat-resistant agent, an antioxidant, a thermal decomposition inhibitor, an ultraviolet absorber, a weather stabilizer, a lubricant, a crystal nucleating agent, an antistatic agent, a reinforcing agent, a releasing agent, Additives such as a mold agent, a plasticizer, a flame retardant, a pigment, and a dye can be added as long as the physical properties of the polyamide are not impaired.
The total amount of these additives may be charged to the polymerization tank prior to the addition of the diamine component, or a part of the additives may be charged to the polymerization tank prior to the addition of the diamine component, and the remainder may be added after the addition of the diamine component. May be. Further, these additives may be mixed with the diamine component and then added to the dicarboxylic acid component.
[0034]
The polyamide of the present invention is generally used for thermoplastic resins such as injection molding, extrusion molding, press molding, blow molding, calender molding, and cast molding, depending on the type, use, shape, and the like of a target molded product. By using the molding method, a molded article such as a tube, a hose, a film, a sheet, a plate, a rod, a column, a cylinder, and a fiber can be produced.
[0035]
The polyamide of the present invention is excellent in transparency, and has both dimensional stability, chemical resistance and mechanical properties, and taking advantage of these properties, particularly in the field of industrial materials, bottles, containers, glasses, covers and the like. It can be used as a material for manufacturing.
[0036]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples.
In Examples and Comparative Examples, the visible light transmittance, the glass transition temperature, the melting point, the heat of crystal fusion, the water absorption, the ethanol absorption (chemical resistance), the intrinsic viscosity [η], the terminal carboxyl group amount and the terminal of the polyamide were used. The measurement of the amount of amino groups was performed by the following method.
[0037]
Visible Light Transmittance:
A test piece having a size of 50 mm × 50 mm × 1 mm (thickness) was prepared by performing injection molding (mold temperature: 80 ° C.) at a temperature about 30 ° C. higher than the melting point of the polyamide using a polyamide pellet. According to JIS K7105, the transmittance (thickness direction) of visible light (frequency: 400 to 760 nm) was measured using an integrating sphere light transmittance measurement device.
[0038]
Glass-transition temperature:
Using a polyamide pellet, press-molding is performed at a temperature about 30 ° C. higher than the melting point of the polyamide to produce a film having a size of 5 mm × 30 mm × 0.2 mm (thickness). Dried and crystallized completely. Using this film, the temperature was raised at a measurement frequency of 11 Hz from -120 ° C to a flow start temperature at a rate of 3 ° C / min using a solid tensile viscoelasticity measuring device (“RVE-400” manufactured by Rheology). The peak temperature of the main dispersion (α dispersion) of the loss tangent (tan δ) at this time was defined as the glass transition temperature.
[0039]
Melting point, heat of crystal fusion:
Using a differential calorimeter (TA-3000 manufactured by Mettler Co.), polyamide pellets (sample amount: 10 mg), which had been completely melted once and then rapidly cooled to room temperature, were heated at a heating rate of 10 ° C./min from 30 ° C. to 250 ° C. The temperature of the peak based on the melting endotherm appearing around 150 to 200 ° C. was read as the melting point, and the integrated value of the peak was read as the heat of crystal fusion.
[0040]
Water absorption:
A test piece having a size of 50 mm × 50 mm × 1 mm (thickness) was prepared by performing injection molding (mold temperature: 80 ° C.) at a temperature about 30 ° C. higher than the melting point of the polyamide using a polyamide pellet. After drying at 100 ° C. for 24 hours under vacuum (weight of test piece: W 0 ) And immersed in water at 20 ° C. for 7 days (weight of test piece: W 1 ), And the water absorption was calculated based on the weight change.
Water absorption (%) = (W 1 -W 0 ) / W 0 × 100
[0041]
Ethanol absorption (chemical resistance):
A test piece having a size of 50 mm × 50 mm × 1 mm (thickness) was prepared by performing injection molding (mold temperature: 80 ° C.) at a temperature about 30 ° C. higher than the melting point of the polyamide using a polyamide pellet. After vacuum drying at 100 ° C. for 24 hours (weight of test piece: We) 0 ) And immersed in ethanol at 20 ° C. for 7 days (weight of test piece: We) 1 ), And the ethanol absorption rate was calculated based on the weight change.
Ethanol absorption rate (%) = (We 1 -We 0 ) / We 0 × 100
[0042]
Intrinsic viscosity [η]:
The polyamide was dissolved in concentrated sulfuric acid to prepare sample solutions having concentrations of 0.05, 0.1, 0.2 and 0.4 dl / g, and the inherent viscosity η at 30 ° C. inh Was measured and the value extrapolated to a concentration of 0 was defined as the intrinsic viscosity [η].
η inh = [Ln (t 1 / T 0 )] / C
In the above equation, t 0 Represents the flow time (second) of the solvent, t 1 Represents the flow time (second) of the sample solution, and C represents the concentration of the sample solution.
[0043]
Terminal carboxyl group content:
1 g of the polyamide was dissolved by heating in 35 ml of o-cresol. After cooling, 20 ml of benzyl alcohol and 250 μl of formaldehyde were added to the solution. Potentiometric titration was performed using a methanol solution of KOH (concentration: 0.1 N) to measure the amount of terminal carboxyl groups.
Terminal amino group content:
1 g of polyamide was dissolved in 35 ml of phenol, and 2 ml of methanol was mixed to obtain a sample solution. Using thymol blue as an indicator, titration was performed using a 0.01 N HCl aqueous solution, and the amount of terminal amino groups was measured.
[0044]
Abbreviations of the compounds used in the following Examples and Comparative Examples are as follows.
(Diamine component)
MODA: 2-methyl-1,8-octanediamine
NMDA: 1,9-nonanediamine
HMDA: 1,6-hexanediamine
TMHMDA: 2,2,4-trimethylhexamethylenediamine
BACHM: bis (4-aminocyclohexyl) methane
(Dicarboxylic acid component)
AZ: Azelaic acid
C12DA: Dodecane diacid
C18DA: Octadecanoic acid
IPA: isophthalic acid
(Aminocarboxylic acid)
ALA: amino lauric acid
(Terminal terminator)
BA: benzoic acid
[0045]
Example 1
1055 g (5.61 mol) of azelaic acid, 28.0 g (0.23 mol) of benzoic acid and 2.0 g of phosphorous acid were charged into a polymerization tank (autoclave having an internal volume of 5 liters) in a nitrogen atmosphere. The temperature of the raw material was raised from room temperature to 190 ° C. over 1 hour while stirring, and the raw material was completely melted. A mixture (diamine component) of 724.2 g (4.58 mol) of 2-methyl-1,8-octanediamine and 181.0 g (1.15 mol) of 1,9-nonanediamine was added into the polymerization tank, The whole amount was added over 1 hour. At this time, the addition rate was reduced at the initial stage of the addition, and the addition rate was increased at the stage when the reaction had progressed. The water generated by the reaction and the volatilized diamine component were separated by a separator attached to the polymerization tank, the water was removed outside the system, and the diamine component was returned to the polymerization tank by reflux. At the stage where 90% of the diamine component was added, the reaction temperature was raised to 210 ° C. in order to suppress the solidification of the reaction mixture. After the completion of the addition of the diamine component, the reaction temperature was raised to 230 ° C., and maintained at normal pressure for 1 hour. Then, decompression was started, and the pressure in the polymerization tank was finally reduced to 13.3 Pa (0.1 Torr). did. The progress of the polymerization was judged by a torque meter attached to the stirring blade. That is, when the increase in torque was stopped, the melted polyamide was taken out from a take-out port at the bottom of the polymerization tank into a strand, pelletized by a strand cutter, and dried to obtain a polyamide. Various physical properties of the obtained polyamide were measured by the methods described above. Table 1 shows the results.
[0046]
Examples 2 to 8 and Comparative Examples 1 to 3
A polyamide was obtained in the same manner as in Example 1, except that the types and amounts of the dicarboxylic acid component and the diamine component were changed as shown in Table 1. Various physical properties of the obtained polyamide were measured by the methods described above. Table 1 shows the results.
[0047]
Comparative Example 4
1206.2 g (5.61 mol) of amino lauric acid, 28.0 g (0.23 mol) of benzoic acid and 1.23 g of phosphorous acid were charged into a polymerization tank (autoclave having an internal volume of 5 liter) in a nitrogen atmosphere. The temperature of the raw material was raised from room temperature to 190 ° C. over 1 hour while stirring, and the temperature was maintained at the same temperature for 1 hour. Then, the reaction temperature was raised to 210 ° C. in order to suppress solidification of the reaction mixture. After maintaining at the same temperature at normal pressure for 1 hour, decompression was started, and the pressure in the polymerization tank was finally reduced to 13.3 Pa (0.1 Torr). The progress of the polymerization was judged by a torque meter attached to the stirring blade. That is, when the increase in torque was stopped, the melted polyamide was taken out from a take-out port at the bottom of the polymerization tank into a strand, pelletized by a strand cutter, and dried to obtain a polyamide. Various physical properties of the obtained polyamide were measured by the methods described above. Table 1 shows the results.
[0048]
Comparative Example 5
Polymerization tank using 760.3 g (4.58 mol) of isophthalic acid, 243.0 g (1.13 mol) of aminolauric acid, 28.0 g (0.23 mol) of benzoic acid and 2.23 g of phosphorous acid in a nitrogen atmosphere (Autoclave with an internal volume of 5 liters). The temperature of the raw material was raised from room temperature to 190 ° C. over 1 hour while stirring, and the raw material was completely melted. 1203.3 g (5.73 mol) of bis (4-aminocyclohexyl) methane [diamine component] was added into the polymerization tank, and the whole amount was added over 1 hour. At this time, the addition rate was reduced at the initial stage of the addition, and the addition rate was increased at the stage when the reaction had progressed. The water generated by the reaction and the volatilized diamine component were separated by a separator attached to the polymerization tank, the water was removed outside the system, and the diamine component was returned to the polymerization tank by reflux. At the stage where 90% of the diamine component was added, the reaction temperature was raised to 210 ° C. in order to suppress the solidification of the reaction mixture. After the completion of the addition of the diamine component, the reaction temperature was raised to 230 ° C., and maintained at normal pressure for 1 hour. Then, decompression was started, and the pressure in the polymerization tank was finally reduced to 13.3 Pa (0.1 Torr). did. The progress of the polymerization was judged by a torque meter attached to the stirring blade. That is, when the increase in torque was stopped, the melted polyamide was taken out from a take-out port at the bottom of the polymerization tank into a strand, pelletized by a strand cutter, and dried to obtain a polyamide. Various physical properties of the obtained polyamide were measured by the methods described above. Table 1 shows the results.
[0049]
[Table 1]
Figure 2004083817
[0050]
Notes in Table 1:
1) Molar ratio of diamine component, dicarboxylic acid component, aminocarboxylic acid, and compound (raw material compound) used as terminal stopper
2) The ratio to the total amount of the diamine component, dicarboxylic acid component and aminocarboxylic acid.
3) Amorphous, no clear melting point could be observed.
[0051]
In addition, the appearance (visually) of the test piece used for the measurement of the visible light transmittance was clear from the polyamides of Examples 1 to 8 and Comparative Examples 3 and 5, while those of Comparative Example 2 were transparent. Those made from the polyamide were translucent and those made from the polyamides of Comparative Examples 1 and 4 were opaque.
[0052]
Example 9
A polymerization tank in which 600 g of water, 1055 g of azelaic acid, 724.2 g of 2-methyl-1,8-octanediamine, 181.0 g of 1,9-nonanediamine, 28.0 g of benzoic acid and 2.0 g of phosphorous acid were placed in a nitrogen atmosphere ( (Autoclave with an internal volume of 5 liters). While stirring the raw material aqueous solution, the temperature was raised from room temperature to 240 ° C. over 2 hours. The internal pressure of the autoclave at this point is 18.6 MPa (19 kg / cm 2 )Met. When the temperature reached 240 ° C., the mixture was concentrated so that the raw material concentration became 82% by weight. After the concentration was completed, the pressure was gradually reduced over about 5 hours to normal pressure. The temperature was raised to 270 ° C. under normal pressure, and when the temperature in the polymerization tank reached 270 ° C., the pressure was gradually reduced, the pressure in the polymerization tank was increased to 665 Pa (5 Torr) over 30 minutes, and the reaction was continued for 30 minutes. Continued. After the reaction was completed, the melted polyamide was taken out from a take-out port at the lower part of the polymerization tank into a strand, pelletized by a strand cutter, and dried to obtain a polyamide. Various physical properties of the obtained polyamide were measured by the methods described above. The results were as follows.
Intrinsic viscosity [η]: 2.75 dl / g
Visible light transmittance: 64%
Appearance: transparent
Glass transition temperature: 45 ° C
Melting point: 154 ° C
Heat of crystal fusion: 38 J / g
Water absorption: 2.0%
Ethanol absorption rate: 10.1%
Terminal amino group content: 70 μeq / g
Terminal carboxyl group content: 28 μeq / g
[0053]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, while being excellent in transparency, the polyamide which has dimensional stability, chemical resistance, mechanical characteristics, etc. is provided. The polyamide of the present invention can be used in the production of molded articles suitable for bottles, containers, spectacle frames, etc. by utilizing the above-mentioned properties.

Claims (4)

2−メチル−1,8−オクタンジアミンを15モル%以上含有する炭素数6〜12の飽和脂肪族ジアミンから主としてなるジアミン単位と、炭素数6〜18の脂肪族ジカルボン酸単位とからなるポリアミドであって、厚さ1mmの薄板に成形した場合の可視光線透過率が50%以上であり、かつDSC測定から得られた結晶融解熱量(ΔHm)が30J/g以上であることを特徴とするポリアミド。A polyamide comprising a diamine unit mainly composed of a saturated aliphatic diamine having 6 to 12 carbon atoms and containing 15 mol% or more of 2-methyl-1,8-octanediamine, and an aliphatic dicarboxylic acid unit having 6 to 18 carbon atoms. And a polyamide having a visible light transmittance of 50% or more when formed into a thin plate having a thickness of 1 mm and a heat of crystal fusion (ΔHm) obtained by DSC measurement of 30 J / g or more. . 炭素数6〜12の飽和脂肪族ジアミンが2−メチル−1,8−オクタンジアミンと1,9−ノナンジアミンの混合物である請求項1記載のポリアミド。The polyamide according to claim 1, wherein the saturated aliphatic diamine having 6 to 12 carbon atoms is a mixture of 2-methyl-1,8-octanediamine and 1,9-nonanediamine. 末端アミノ基と末端カルボキシル基の合計量が80μeq/g以下である請求項1または2記載のポリアミド。The polyamide according to claim 1 or 2, wherein the total amount of the terminal amino group and the terminal carboxyl group is 80 µeq / g or less. 請求項1から3のうちのいずれか1項に記載のポリアミドからなる成形品。A molded article comprising the polyamide according to any one of claims 1 to 3.
JP2002249942A 2002-08-29 2002-08-29 Polyamide Pending JP2004083817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002249942A JP2004083817A (en) 2002-08-29 2002-08-29 Polyamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002249942A JP2004083817A (en) 2002-08-29 2002-08-29 Polyamide

Publications (2)

Publication Number Publication Date
JP2004083817A true JP2004083817A (en) 2004-03-18
JP2004083817A5 JP2004083817A5 (en) 2005-06-23

Family

ID=32056894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002249942A Pending JP2004083817A (en) 2002-08-29 2002-08-29 Polyamide

Country Status (1)

Country Link
JP (1) JP2004083817A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058169A1 (en) * 2005-11-15 2007-05-24 Asahi Kasei Chemicals Corporation Heat-resistant resin composition
WO2008072754A1 (en) * 2006-12-11 2008-06-19 Ube Industries, Ltd. Polyamide resin
JP2009235225A (en) * 2008-03-27 2009-10-15 Ube Ind Ltd Polyamide resin
JP2009235223A (en) * 2008-03-27 2009-10-15 Ube Ind Ltd Polyamide resin for automobile member
WO2009151145A1 (en) * 2008-06-10 2009-12-17 宇部興産株式会社 Novel polyamide resin composition and polyamide resin-containing product
JP2009298855A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Polyamide resin composition
JP2009299722A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Joint for fuel pipe, quick connector for fuel pipe and fuel piping component
JP2009298868A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Polyamide resin composition and molded article
JP2009298869A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Cable housing
JP2009298864A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Injection-molding material containing new polyamide resin
JP2009298860A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Polyamide resin-molded component having liquid or vapor barrier property
JP2009298867A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Polyamide film
JP2009298856A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Heat-resistant agent-containing resin composition and molded article formed from the heat-resistant agent-containing resin composition
JP2009299206A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Filament
JP2009298852A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Plasticizer-containing polyamide resin composition and molded article
JP2009298859A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Polyamide resin composition for engine cooling water-system component, and engine cooling water-system component molded from the composition
JP2009298865A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Fuel tank component
JP2009298870A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Internal component of automobile engine room
JP2009298863A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Vehicle interior component produced by using new polyamide resin
JP2009298862A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Vehicle exterior component produced by using new polyamide resin
JP2009298857A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Polyamide resin composition and molded article formed from the polyamide resin composition
JP2009298861A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Hollow molded part manufactured using polyamide resin and layered silicate
JP2009298854A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Composite material containing polyamide resin and layered silicate
JP2009298853A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Polyamide resin composition
JP2009298858A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Molded member making direct contact with biodiesel fuel
JP2010018794A (en) * 2008-06-10 2010-01-28 Ube Ind Ltd Conductive polyamide resin composition
JP2010077211A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Extrusion molding material, filament, and polyamide film
JP2010077213A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Polyamide resin molded part having liquid or vapor-barrier property, fuel tank part, fuel tube, fuel piping coupling, quick connector, and fuel piping part
JP2010077210A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Injection-molding material containing novel polyamide resin and injection-molded product produced from those
JP2010077207A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Polyamide resin composition
JP2010077209A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Polyamide resin composition, and molded product formed from the polyamide resin composition
JP2010077215A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Molded member directly contacted with bio-diesel fuel
JP2010077206A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Composite material containing polyamide resin and layered silicate, and blow molded part
JP2010077205A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Polyamide resin composition
JP2010077221A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Plasticizer-containing polyamide resin composition, and molded product
JP2010077212A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Metal covering material
JP2010077214A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Vehicle part produced using novel polyamide resin, vehicle interior part, vehicle exterior part, and internal part of vehicle engine room
JP2010077208A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Resin composition containing heat-resistant agent, and molded product formed from the resin composition containing heat-resistant agent
JP2010100822A (en) * 2008-09-24 2010-05-06 Ube Ind Ltd Electroconductive polyamide resin composition and cable housing
US20100113738A1 (en) * 2007-03-27 2010-05-06 Ube Industries, Ltd. Molding material for fuel parts and fuel part using the same
JP2011116889A (en) * 2009-12-04 2011-06-16 Ube Industries Ltd Polyamide resin composition for smt connector
JP2015034276A (en) * 2013-07-08 2015-02-19 宇部興産株式会社 Polyamide resin
JP2015105330A (en) * 2013-11-29 2015-06-08 チェイル インダストリーズ インコーポレイテッド Polyamide resin and production method thereof
US10287395B2 (en) 2013-11-29 2019-05-14 Lotte Advanced Materials Co., Ltd. Polyamide resin and method for manufacturing same

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058169A1 (en) * 2005-11-15 2007-05-24 Asahi Kasei Chemicals Corporation Heat-resistant resin composition
US8263697B2 (en) 2005-11-15 2012-09-11 Asahi Kasei Chemicals Corporation Heat-resistant resin composition
WO2008072754A1 (en) * 2006-12-11 2008-06-19 Ube Industries, Ltd. Polyamide resin
JP5056763B2 (en) * 2006-12-11 2012-10-24 宇部興産株式会社 Polyamide resin
JPWO2008072754A1 (en) * 2006-12-11 2010-04-02 宇部興産株式会社 Polyamide resin
US20100113738A1 (en) * 2007-03-27 2010-05-06 Ube Industries, Ltd. Molding material for fuel parts and fuel part using the same
JP2009235225A (en) * 2008-03-27 2009-10-15 Ube Ind Ltd Polyamide resin
JP2009235223A (en) * 2008-03-27 2009-10-15 Ube Ind Ltd Polyamide resin for automobile member
JP2009298854A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Composite material containing polyamide resin and layered silicate
JP2009298862A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Vehicle exterior component produced by using new polyamide resin
JP2009298860A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Polyamide resin-molded component having liquid or vapor barrier property
JP2009298867A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Polyamide film
JP2009298856A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Heat-resistant agent-containing resin composition and molded article formed from the heat-resistant agent-containing resin composition
JP2009299206A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Filament
JP2009298852A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Plasticizer-containing polyamide resin composition and molded article
JP2009298859A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Polyamide resin composition for engine cooling water-system component, and engine cooling water-system component molded from the composition
JP2009298865A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Fuel tank component
JP2009298870A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Internal component of automobile engine room
JP2009298863A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Vehicle interior component produced by using new polyamide resin
JP2009299722A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Joint for fuel pipe, quick connector for fuel pipe and fuel piping component
JP2009298857A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Polyamide resin composition and molded article formed from the polyamide resin composition
JP2009298861A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Hollow molded part manufactured using polyamide resin and layered silicate
JP2009298869A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Cable housing
JP2009298853A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Polyamide resin composition
JP2009298858A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Molded member making direct contact with biodiesel fuel
JP2010018794A (en) * 2008-06-10 2010-01-28 Ube Ind Ltd Conductive polyamide resin composition
JP2009298868A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Polyamide resin composition and molded article
JP2009298864A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Injection-molding material containing new polyamide resin
WO2009151145A1 (en) * 2008-06-10 2009-12-17 宇部興産株式会社 Novel polyamide resin composition and polyamide resin-containing product
JP2009298855A (en) * 2008-06-10 2009-12-24 Ube Ind Ltd Polyamide resin composition
JP2010077211A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Extrusion molding material, filament, and polyamide film
JP2010100822A (en) * 2008-09-24 2010-05-06 Ube Ind Ltd Electroconductive polyamide resin composition and cable housing
JP2010077215A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Molded member directly contacted with bio-diesel fuel
JP2010077206A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Composite material containing polyamide resin and layered silicate, and blow molded part
JP2010077205A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Polyamide resin composition
JP2010077221A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Plasticizer-containing polyamide resin composition, and molded product
JP2010077212A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Metal covering material
JP2010077214A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Vehicle part produced using novel polyamide resin, vehicle interior part, vehicle exterior part, and internal part of vehicle engine room
JP2010077208A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Resin composition containing heat-resistant agent, and molded product formed from the resin composition containing heat-resistant agent
JP2010077209A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Polyamide resin composition, and molded product formed from the polyamide resin composition
JP2010077207A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Polyamide resin composition
JP2010077213A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Polyamide resin molded part having liquid or vapor-barrier property, fuel tank part, fuel tube, fuel piping coupling, quick connector, and fuel piping part
JP2010077210A (en) * 2008-09-24 2010-04-08 Ube Ind Ltd Injection-molding material containing novel polyamide resin and injection-molded product produced from those
JP2011116889A (en) * 2009-12-04 2011-06-16 Ube Industries Ltd Polyamide resin composition for smt connector
JP2015034276A (en) * 2013-07-08 2015-02-19 宇部興産株式会社 Polyamide resin
JP2015105330A (en) * 2013-11-29 2015-06-08 チェイル インダストリーズ インコーポレイテッド Polyamide resin and production method thereof
US10287395B2 (en) 2013-11-29 2019-05-14 Lotte Advanced Materials Co., Ltd. Polyamide resin and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP2004083817A (en) Polyamide
JP4179703B2 (en) Method for producing polyamide
JP5056763B2 (en) Polyamide resin
KR20130050275A (en) Semiaromatic polyamide and method for producing same
JP5796573B2 (en) Polyamide resin
JPWO2008123534A1 (en) Molding material for fuel parts and fuel parts using the same
JPH07228776A (en) Polyamide composition for molding material
JP5975038B2 (en) Polyamide resin and molded product comprising the same
JP2001348427A (en) Method for producing polyamide
JPH0253823A (en) Production of block copolyamide
JP2009235225A (en) Polyamide resin
US20170002144A1 (en) Polyamide Resin and Method for Manufacturing Same
WO2012036303A1 (en) Polyoxamide resin having excellent impact resistance and impact-resistant part
JP5321434B2 (en) Polyamide resin composition for SMT connectors
JP2009299721A (en) Fuel tube
JP6897664B2 (en) Polyamide resin and film made of it
JP7180604B2 (en) Polyamide resin and film made thereof
JP2009235223A (en) Polyamide resin for automobile member
JP4154803B2 (en) Polyamide copolymer and process for producing the same
JP6273883B2 (en) Polyamide resin
JPH0995532A (en) Plyamide resin excellent in gas barrier property and its production
JP6365074B2 (en) Polyamide pellet and method for producing the same
JPH08134206A (en) Copolyamide resin
JP6451082B2 (en) Polyamide resin
JP2009298856A (en) Heat-resistant agent-containing resin composition and molded article formed from the heat-resistant agent-containing resin composition

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20040928

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Effective date: 20070918

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129