JP2004072958A - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP2004072958A
JP2004072958A JP2002232268A JP2002232268A JP2004072958A JP 2004072958 A JP2004072958 A JP 2004072958A JP 2002232268 A JP2002232268 A JP 2002232268A JP 2002232268 A JP2002232268 A JP 2002232268A JP 2004072958 A JP2004072958 A JP 2004072958A
Authority
JP
Japan
Prior art keywords
circuit
rectifier circuit
short
switching
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002232268A
Other languages
Japanese (ja)
Inventor
Hisanori Suzuki
鈴木 尚礼
Yasuo Notohara
能登原 保夫
Tsunehiro Endo
遠藤 常博
Junichi Takagi
高木 純一
Yukio Kawabata
川端 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Appliances Inc
Original Assignee
Hitachi Ltd
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Home and Life Solutions Inc filed Critical Hitachi Ltd
Priority to JP2002232268A priority Critical patent/JP2004072958A/en
Publication of JP2004072958A publication Critical patent/JP2004072958A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the sudden change of DC voltage when a rectifying circuit is switched, and the peak value of the current of an AC power source. <P>SOLUTION: This power unit is provided with a rectifying circuit switching shift period in a state of a full wave rectifying circuit, when switching the rectifying circuit from the full wave rectifying circuit to a double voltage rectifying circuit. This performs the method of short circuit action within this rectifying circuit switching shift period by a different method from that before shift period, and boosts the DC voltage to an indispensable minimum voltage value before switching it to the double voltage rectifying circuit, thereby lowering the sudden change of the DC voltage when switching the rectifying circuit from the full wave rectifying circuit to the double voltage rectifying circuit and the peak value of a power source current. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、交流電源半周期に1回もしくは複数回の短絡動作を行って、電源の力率改善を行う電力変換装置に係り、特に、整流回路を全波整流回路から倍電圧整流回路に切替える手段を備えた電力変換装置に関する。
【0002】
【従来の技術】
従来技術の電源装置では、電源の力率を改善するために電源半周期に1回もしくは複数回の短絡動作を行い、さらに整流回路を全波整流回路または倍電圧整流回路に切替える手段を備えている。この整流回路を全波整流回路から倍電圧整流回路へと切替える際、平滑コンデンサへの充電電流が電源から急激に流れ、同時に直流電圧が急上昇する。このように急激な電流と直流電圧の急上昇は、負荷に影響を与えるだけでなく、リアクトル,短絡手段,整流回路,平滑コンデンサ等の各素子の寿命などにも影響を与える。そのため、整流回路を切替える際の過渡状態を制御する必要がある。
【0003】
特開平11−206130号公報に記載されている電源装置は、整流回路を全波整流回路から倍電圧整流回路へと切替える場合に、電源装置の出力電圧が倍電圧整流回路に切替えた後に得られる出力電圧値になるように短絡時間を制御して、全波整流回路から倍電圧整流回路に切替えた際の直流電圧変動を抑制している。
【0004】
【発明が解決しようとする課題】
前記特開平11−206130号公報に記載の従来技術は、整流回路を全波整流回路から倍電圧整流回路へと切替えた後に得られる出力電圧値のみを用いて短絡時間を制御していて、装置の入力電流の変動は配慮していない。すなわち、整流回路を切替える場合には、直流電圧の変動を抑制するとともに、装置への入力電流の変動を抑制することも必要である。また、前記従来技術には電源変動に対する配慮もない。
【0005】
本発明の目的は、整流回路を全波整流回路から倍電圧整流回路へ切替える場合に、直流電圧の変動を抑制し、かつ装置入力電流変動を抑制した電力変換装置の提供と、電源の電圧変動に対応した全波整流回路から倍電圧整流回路への切替方法の提供である。
【0006】
【課題を解決するための手段】
本発明の電源装置は、整流回路切替手段が整流回路を全波整流回路から倍電圧整流回路に切替える場合、全波整流回路の状態で整流回路切替移行期間を設け、この整流回路切替移行期間内の短絡動作方法を、この移行期間前とは異なる方法で行う。
【0007】
▲1▼本発明の電源装置は、倍電圧整流回路に切替える前に必要最低電圧値まで直流電圧を昇圧して、整流回路を全波整流回路から倍電圧整流回路に切替える際の直流電圧の急変動と電源電流のピーク値を下げる。
【0008】
本発明の電源装置では、直流電圧の昇圧を、▲2▼短絡時間を長くする方法、もしくは▲3▼交流電源の半周期に複数回短絡動作する方法の何れかで行う。
【0009】
整流回路を切替える前に昇圧する必要最低電圧値は、入力電力と電源電圧等の条件で異なるので、本発明の電源装置では、▲4▼電力変換装置の出力直流電圧、または電源電圧、または電力変換装置の入力電流、または入力電力、または出力電力の少なくとも一つを用いて、短絡時間、または短絡回数、または短絡時間と短絡休止期間の比率を制御して直流電圧を昇圧し、切替えの際の直流電圧の急変動と電源電流のピーク値とを下げる。
【0010】
本発明の電源装置では、▲5▼切替え直前と切替え直後との交流電源に流れる電流のピーク値の差を20%以内にするように、短絡時間、または短絡回数、または短絡時間と短絡休止期間の比率を制御し、全波整流回路から倍電圧整流回路に切替える際の直流電圧の変動を抑制し、電源電流のピーク値を下げる。
【0011】
本発明の電源装置では、▲6▼整流回路の切替えを交流電源のゼロクロスのタイミングの近傍で行うので交流電源の電流が小さく整流回路切替手段5への影響を最小限にできる。もし、整流回路切替手段に動作遅れがある場合には、▲7▼ゼロクロスから整流回路切替手段が動作するまでの間に1回もしくは複数回短絡動作をして切替え前に昇圧した直流電圧の低下を防ぎ、直流電圧の変動を抑制する。
【0012】
【発明の実施の形態】
以下、本発明の実施例を図面を用いて詳しく説明する。
【0013】
(実施例1)
図1は、本実施例の電力変換装置100を用いたモータ制御装置101の基本構成図である。図1に示すように、電力変換装置100は、交流電源1の一方の出力端に一端が接続したリアクトル2と、そのリアクトル2を介して交流電源1を短絡する短絡手段3と、交流電源1に接続されていない側のリアクトル2の他端とリアクトル2が接続されていない側の交流電源1の他端を交流入力とする整流回路4と、整流回路4の直流出力の両端に直列接続した平滑コンデンサ6と、整流回路4の交流入力の一方と平滑コンデンサ6を構成する平滑コンデンサ61と平滑コンデンサ62との接続点の間に接続した整流回路切替手段5と、交流電源1のゼロクロスを検出するゼロクロス検出回路8と、前記平滑コンデンサ6の直流電圧Vdを入力しゼロクロス信号92を基準タイミングとして短絡手段3へ短絡動作させる短絡パルス信号96を出力するとともに、整流回路切替手段5に整流回路切替信号97を出力する制御回路7と、前記交流電源1から入力される入力電流Isを検出し前記制御回路7に入力電流値98を出力する入力電流検出回路30とを備えている。
【0014】
図1に前記電力変換装置100の直流出力に接続したインバータ回路10と電動機を内蔵した圧縮機20を合わせて示す。本実施例の制御回路7は、例えばマイクロコンピュータ等の半導体集積回路で構成しており、全ての動作をソフトウエアで処理している。
【0015】
ゼロクロス検出回路8は、交流電源1の両端の電圧を入力し、交流電源1の交流電圧(電源電圧Vsと略記する。)がゼロクロス点を通過し極性が変わるタイミングで、High信号からLow信号、もしくはLow信号からHigh信号に切替わるゼロクロス信号92を出力し、このゼロクロス信号92を制御回路7へ入力する。
【0016】
制御回路7は、入力したゼロクロス信号92の立ち上がり、もしくは立ち下がりを基準タイミングとして、そこから短絡手段3が短絡動作を開始するまでの期間(ディレイ時間Tdと略記する。)と短絡する時間(パルス幅Twと略記する。)を設定し、短絡パルス信号96(High,Low信号)を短絡手段3に出力する。ディレイ時間Tdとパルス幅Twとは、制御回路7に記憶したり、制御回路7で計算で求める。
【0017】
短絡手段3は短絡パルス信号96に従って短絡開閉動作する。本実施例では、制御回路7が出力する短絡パルス信号96がHighの時に、短絡手段3が短絡動作する。短絡手段3は、ダイオードブリッジと、IGBT,バイポーラトランジスタ,パワーMOSFETなどの電力半導体スイッチング素子とを備えており、短絡パルス信号96に従って、リアクトル2を介して交流電源1を短絡する。
【0018】
整流回路切替手段5は、パワーリレー,トライアック,ダイオードブリッジと電力半導体スイッチング素子(IGBT,バイポーラトランジスタ,パワー
MOSFET)の組み合わせなどの双方向スイッチで構成され、制御回路7が出力する整流回路切替信号97(High,Low信号)を受けて整流回路4を切替える。本実施例では、整流回路切替信号97がLow信号のときに整流回路4を全波整流回路に切替え、High信号の場合に倍電圧整流回路に切替える。
【0019】
制御回路7は、平滑コンデンサ6の両端の直流電圧Vdや入力電流値98を入力し、短絡パルス信号96の制御と整流回路切替信号97を出力する。
【0020】
本実施例の電源装置では、交流電源1を電源半周期につき一回もしくは複数回,リアクトル2を介して短絡手段3が短絡動作し、交流電源1の電流(以下、入力電流Isと略記する。)の通流角を広げ電源の力率を改善しながら、交流電力を直流電力に変換する。本実施例の電力変換装置100では、整流回路切替手段5によって、整流回路4を全波整流回路と倍電圧整流回路の両方の動作ができるので、パルス幅Twで直流電圧Vdを所定の値に制御するだけでなく、幅広い範囲の直流電圧Vdを出力できる。
【0021】
整流回路4を全波整流回路から倍電圧整流回路に切替える際の各部の動作波形を図2に示す。図2においてt=T1以前の電源1周期では、電力変換装置100が全波整流回路で運転し、短絡手段3が交流電源1の電源電圧Vsの半周期に1回短絡動作して強制的に電流を流して力率を改善している。図2の入力電流Isの波形に示すように、短絡動作していないときの入力電流Isの波形に比べ、通流角が広くなり力率を改善している。この期間の短絡パルス信号96のディレイ時間Tdとパルス幅Twは、制御回路7に予め記憶されている値である。制御回路7に入力した直流電圧Vd、もしくは入力電流Is、もしくは電力変換装置
100の出力電流などから、ディレイ時間Tdとパルス幅Twとを演算で決定することもできる。なお、電源電圧Vsの半周期に複数回の短絡動作しても力率改善動作はできる。
【0022】
ここで、切替移行期間なしで、整流回路4を全波整流回路から倍電圧整流回路に切替えると、平滑コンデンサ6への充電電流である入力電流Isが急激に流れ、同時に直流電圧Vdが急上昇する。
【0023】
先に示す特開平11−206130号公報に記載の従来技術では、切替移行期間(図2のt=T1からT2までの期間)のある時点で、倍電圧整流回路に切替えた後に得られる電圧値までパルス幅Twを制御して昇圧している。直流電圧
Vdを昇圧した場合、切替前後での直流電圧Vdの変動は小さいが、倍電圧整流回路に切替えた後に得られる電圧値まで急に昇圧するために、全波整流回路で力率改善動作していたときのパルス幅Twより広いパルス幅Twで動作するので、入力電流Isのピーク値が大きくなる。このように、特開平11−206130号公報に記載の従来技術では、切替え直後の入力電流Isのピーク値は下がるが、切替える直前までの入力電流Isのピーク値が大きくなる。反対に、切替える前の昇圧が十分でない場合には、切替える直前までの入力電流Isのピーク値は小さいが切替えた直後の入力電流Isのピーク値が高くなる。
【0024】
本実施例では、図2に示すように、短絡パルス信号のパルス幅Twを、切替移行期間に入ると、切替移行時点T1以前のパルス幅Twを徐々に広げる制御を行い、切替える直前と直後の入力電流Isのピーク値が、ほぼ同じになる電圧値まで昇圧する。これにより入力電流Isのピーク値を低減すると同時に直流電圧
Vdの急変動を防止する。
【0025】
切替え直前と直後との入力電流Isのピーク値の変化分は、素子のばらつき,電源事情,ゼロクロス検出回路8の検出誤差等を考えると、0〜20%の範囲であればよい。また、切替える直前と直後の入力電流Isのピーク値が同じになる電圧値まで昇圧するディレイ時間Tdとパルス幅Twの値とは、シミュレーションもしくは実験で予め求めて、制御回路7に設定する。
【0026】
本実施例で示すように、切替え直前と直後との入力電流Isのピーク値の変化分を0〜20%の範囲にすると、切替移行期間に昇圧する電圧値は、倍電圧整流回路に切替えた後に得られる電圧値より小さい電圧値で済む。この理由は、倍電圧整流回路に切替えた際に流れる充電電流によって昇圧されるためである。
【0027】
切替える前に直流電圧Vdを昇圧する必要最低値は、切替える際の入力電力や電源電圧Vs等の条件で異なる。
【0028】
全波整流回路から倍電圧整流回路への切替えを行うときのパルス幅Twの変化を、図3を用いて説明する。図3の横軸は時刻、縦軸はパルス幅Twである。図3は、全波整流回路で短絡手段3が力率改善動作を行っているときから、切替移行期間を経て倍電圧整流回路に切替える直前までを示す。但し、実際のパルス幅Twは、図中の縦の点線で示す電源周期の半周期ごとに階段状に変化するが、図3では説明の都合上、直線で示す。
【0029】
図3に、切替移行期間前の全波整流回路運転時のパルス幅Twを、入力電力の大小に応じて制御する場合と、切替移行期間前の全波整流回路運転時のパルス幅Twを固定値とする場合の3つ場合の制御方法を示す。さらに、図3の切替移行期間では、前記3つの制御方法に対して、それぞれ電源電圧Vsが、80%と、100%と、120%との場合のパルス幅Twの変化を示す。また、パルス幅
Twが固定値の場合では、入力電力の大きさが異なる3つの場合のパルス幅Twの変化も合わせて示す。図3で、切替移行期間の最終時点(t=T2)におけるパルス幅Twbが、倍電圧整流回路に切替える際に必要な最小限の直流電圧Vdを発生させるためのパルス幅である。
【0030】
図3に示すように切替移行期間に入る最初のパルス幅Twは、切替移行期間に入る前のパルス幅Twから始まり、切替移行期間に入ると、そのときの負荷の大きさに応じてパルス幅Twを増加していく。本実施例では入力電力の大小と電源電圧Vsの大きさによりパルス幅Twを変化している。
【0031】
移行期間前のパルス幅Twが固定の場合を例に説明する。切替移行期間前はパルス幅Twは入力電力等で変化しないが、切替移行期間に入ると入力電力の大きさと電源電圧Vsとにより変化する。パルス幅Twは、図3に示すように、入力電力が小さいときは直線A、入力電力が基準値の場合は直線B、入力電力が大きい場合は直線Cとなる。このように本実施例の電力変換装置では入力電力の大きさ、すなわち負荷の大きさに応じて切替移行期間にパルス幅Twを変化させる傾きを変え、切替時の直流電圧Vdの急変動を抑えかつ入力電流Isのピークを低減する。
【0032】
電源電圧Vsが変動すると、直流電圧Vdも変動するので、整流回路4を切替える前に昇圧する電圧の必要最低値も変動する。本実施例の電源装置では、電源電圧Vsの値は、短絡パルス信号96のディレイ時間Tdとパルス幅Twが同じであれば、全波整流回路時や倍電圧整流回路時に得られる直流電圧Vdの値の変動は電源電圧Vsの変動にほぼ比例する。そこで、直流電圧Vdを制御回路7に入力して電源電圧Vsの変動を求めておく。
【0033】
電源電圧Vsが変動した場合の昇圧パルス幅Twbの決定方法を図4を用いて説明する。図4の横軸は電源電圧Vsを示し、縦軸は昇圧パルス幅Twbを示す。図4では、電源電圧Vsが±20%変動した場合の昇圧パルス幅Twbの決定方法を示す。基準となる電源電圧Vs(100%)に対応する昇圧パルス幅Twb(100%)から、電源電圧Vsの変動に応じて昇圧パルス幅Twbを増減し、切替え前に昇圧する電圧値を変更する。例えば、電源電圧Vsが基準値の120%の場合には、昇圧パルス幅Twbを基準値の97%に設定する。この理由は、電源電圧Vsが高くなったので、倍電圧整流時の直流電圧Vdも大きくなるが、倍電圧整流回路に切替えた際に流れる充電電流も大きくなり、充電電流による昇圧も大きくなる。そのために、電源電圧Vsが高くなった場合は、昇圧パルス幅Twbを基準値より狭くする。電源電圧Vsが基準値の80%の場合は、逆に充電電流が減るために昇圧幅が小さくなるので、昇圧パルス幅Twbを基準値の
103%に設定する。
【0034】
図4に示すように、電源電圧Vsの増加に対して昇圧パルス幅Twbは単調減少し、単調減少関数の傾きは電源変換装置の回路定数や電源電圧Vsの大きさに依存する。図4の電源電圧Vsと昇圧パルス幅Twbとの関係を図3に適用すると、図3に一点鎖線で示すようになり、電源電圧Vsが大きい時に、パルス幅
Twを小さい値にする。本実施例の電力変換装置では、負荷の変動に応じて図3に示す実線の傾きを変え、電源電圧Vsの変動に応じて図3の実線と一点鎖線に示すようにパルス幅Twを調整するので、入力電力の変動と電源電圧Vsの変動の両方に対応できる。
【0035】
次に、整流回路4を全波整流回路から倍電圧整流回路に切替えるタイミングと短絡動作のタイミングとを説明する。整流回路4が切替わると、少なくとも交流電源1の半周期以上に渡って平滑コンデンサ6へ充電電流が流れる。充電電流が流れている間に短絡手段3が短絡動作すると直流電圧Vdが大きく上昇し、整流回路4を切替えるときにオーバーシュートを生じるので、本実施例の電源装置は充電電流が流れている間、つまり、整流回路切替手段5が倍電圧整流回路に切替えてから電源電圧Vsの少なくとも半周期以上の期間は短絡動作を停止する。また、電源電圧Vsのゼロクロス付近で整流回路4を切替えると電力変換装置100への入力電流Isが小さく、整流回路切替手段5が受ける影響も小さいので、整流回路切替信号97を、ゼロクロス信号92の立ち上がりもしくは立ち下がりと同タイミングでLowからHighに切替える。
【0036】
しかし、現実には整流回路切替手段5が動作するのは瞬間的でなく遅れが生じ、たとえば、パワーリレー等機械的スイッチ回路では、遅れが数msec 以上になる。このように整流回路4が切替わるまでに遅れがある場合に整流回路切替信号97と同時に短絡動作を中止すると、切替直前までに昇圧した直流電圧Vdが低下する。昇圧した直流電圧Vdが低下すると、整流回路4が切替わった直後の入力電流Isのピーク値が大きくなる。そのため、本実施例の電力変換装置は、切替え遅れがある場合には、整流回路切替信号97がLowからHighに切替わった後から整流回路切替手段5が動作するまでの間に短絡動作を1回もしくは複数回行い、昇圧した電圧の低下を防ぐ。
【0037】
(実施例2)
本実施例について図5を用いて説明する。図5は、短絡手段3が短絡動作しない場合にt=T3から流れ始めている入力電流の波形と、t=T3以前から複数パルスのチョッピングによる短絡動作を始める場合(破線)と、t=T3以後から複数パルスでチョッピングによる短絡動作を始める場合(実線)との、入力電流Isと直流電圧Vdとを示す。図5の実線に示すようにチョッピングによる短絡動作を、t=T3以後の位相から開始すると、リアクトル2に流れる電流が連続となり効率よく昇圧ができ、入力電流Isのピーク値を低減できる。一方、t=T3より以前の位相でチョッピングをする場合は、点線で示すように直流電圧Vdを高くできない。
【0038】
チョッピング周波数は、交流電源1の周波数の10〜100倍程度が良い。説明のために図5のパルスのデューティ比を50%で示してあるが、リアクトル2に流れる電流が連続であればデューティ比は50%以外でもよい。
【0039】
本実施例では、電源電圧Vsの半周期に行う短絡動作の回数と、短絡パルス信号96のデューティ比とによって直流電圧Vdを制御できる。また、切替移行期間に短絡動作の回数を徐々に増すことで、直流電圧Vdも徐々に上昇することができ、電力変換装置100を構成する素子と平滑コンデンサ6に与えるストレスを低減できる。
【0040】
本実施例も実施例1と同様に、電力変換装置100の負荷と電源電圧Vsに変動があった場合は、切替え前に直流電圧Vdを昇圧する必要最低値を変更する。本実施例では、実施例1の図3と図4の縦軸のパルス幅を短絡動作の回数または短絡パルス信号96のデューティに置き換えれば実施例1と同様の効果を得られる。
【0041】
図2に、本実施例の波形を併せて示す。図2中の短絡パルス信号96で、黒く塗りつぶした波形は、拡大図に示すように高い周波数でチョッピングする信号である。本実施例では、高い周波数のチョッピング信号で制御しているので、制御応答が高く、切替移行期間終了前後の入力電流Is波高値が小さい。本実施例では、整流回路4や短絡手段3が高速ダイオード(ファーストリカバリーダイオード)を備えている電力変換装置に特に有効である。
【0042】
(実施例3)
本実施例について図6を用いて説明する。本実施例は、切替移行期間中に、電源電圧Vsの半周期あたり複数回の短絡動作をするが、リアクトル2に流れる短絡電流が一回ゼロか、ゼロ近くになった後に、図6の短絡パルス信号96に示すように、2回目以降の短絡動作をする。言い換えると、ダイオードに流れるリカバリー電流が0になりダイオードがいったんターンオフした後に2回目以降の短絡動作する。これにより、入力電流Isのピーク値を低減し、直流電圧Vdの急変動も抑制する。本実施例は低速ダイオードを用いた電源装置に好適である。
【0043】
【発明の効果】
以上説明したように、本発明の電力変換装置によれば、短絡パルス幅とパルス数を制御して、全波整流回路から倍電圧整流回路に切替える際の直流電圧の変動を抑制し、入力する交流電流のピーク値を下げることができる。
【図面の簡単な説明】
【図1】実施例1の電力変換装置の構成を示す説明図。
【図2】実施例1,実施例2の電力変換装置の各部の波形の説明図。
【図3】実施例1の電力変換装置で整流回路を切替える際のパルス幅変化の説明図。
【図4】実施例1で、電源電圧変動時の短絡パルス幅の決定する方法の説明図。
【図5】実施例2で、複数回短絡動作させる際の短絡動作開始タイミングの説明図。
【図6】実施例3の電力変換装置の各部の波形の説明図。
【符号の説明】
1…交流電源、2…リアクトル、3…短絡手段、4…整流回路、5…整流回路切替手段、6…平滑コンデンサ、7…制御回路、8…ゼロクロス検出回路、10…インバータ回路、20…圧縮機、30…入力電流検出回路、92…ゼロクロス信号、96…短絡パルス信号、97…整流回路切替信号、100…電力変換装置、Tw…パルス幅、Td…ディレイ時間、Vd…直流電圧、Is…入力電流。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power converter that performs a short-circuit operation once or a plurality of times in a half cycle of an AC power supply to improve a power factor of a power supply, and in particular, switches a rectifier circuit from a full-wave rectifier circuit to a voltage doubler rectifier circuit. The present invention relates to a power conversion device provided with means.
[0002]
[Prior art]
The power supply device of the related art is provided with means for performing one or more short-circuiting operations in a power supply half cycle to improve the power factor of the power supply, and further switching the rectifier circuit to a full-wave rectifier circuit or a voltage doubler rectifier circuit. I have. When this rectifier circuit is switched from a full-wave rectifier circuit to a voltage doubler rectifier circuit, a charging current to a smoothing capacitor flows rapidly from a power supply, and at the same time, a DC voltage rises sharply. Such a sudden increase in current and DC voltage not only affects the load, but also affects the life of each element such as a reactor, short-circuit means, a rectifier circuit, and a smoothing capacitor. Therefore, it is necessary to control a transient state when switching the rectifier circuit.
[0003]
The power supply device described in JP-A-11-206130 is obtained after switching the output voltage of the power supply device to the voltage doubler rectifier circuit when switching the rectifier circuit from the full wave rectifier circuit to the voltage doubler rectifier circuit. The short-circuit time is controlled so that the output voltage value is obtained, thereby suppressing the DC voltage fluctuation when switching from the full-wave rectifier circuit to the voltage doubler rectifier circuit.
[0004]
[Problems to be solved by the invention]
In the prior art described in Japanese Patent Application Laid-Open No. 11-206130, the short-circuit time is controlled using only the output voltage value obtained after switching the rectifier circuit from the full-wave rectifier circuit to the voltage doubler rectifier circuit. The input current fluctuation is not considered. That is, when the rectifier circuit is switched, it is necessary to suppress the fluctuation of the DC voltage and the fluctuation of the input current to the device. In addition, the prior art does not take power fluctuation into consideration.
[0005]
SUMMARY OF THE INVENTION An object of the present invention is to provide a power converter that suppresses fluctuations in DC voltage and fluctuations in device input current when switching a rectifier circuit from a full-wave rectifier circuit to a voltage doubler rectifier circuit, The present invention provides a method for switching from a full-wave rectifier circuit to a voltage doubler rectifier circuit corresponding to the above.
[0006]
[Means for Solving the Problems]
When the rectifier circuit switching means switches the rectifier circuit from the full-wave rectifier circuit to the voltage doubler rectifier circuit, the power supply device of the present invention provides a rectifier circuit switch transition period in the state of the full-wave rectifier circuit, Is performed by a method different from that before the transition period.
[0007]
(1) The power supply device of the present invention boosts the DC voltage to the required minimum voltage value before switching to the voltage doubler rectifier circuit, and rapidly changes the DC voltage when switching the rectifier circuit from the full-wave rectifier circuit to the voltage doubler rectifier circuit. Reduce the fluctuation and the peak value of the power supply current.
[0008]
In the power supply device of the present invention, the DC voltage is boosted by either (2) a method of extending the short-circuit time or (3) a method of performing the short-circuit operation a plurality of times in a half cycle of the AC power supply.
[0009]
Since the required minimum voltage value to be boosted before switching the rectifier circuit varies depending on conditions such as the input power and the power supply voltage, the power supply of the present invention requires (4) the output DC voltage of the power converter or the power supply voltage or the power supply. Using at least one of the input current, input power, or output power of the converter, the short-circuit time, the number of short-circuits, or the ratio between the short-circuit time and the short-circuit rest period is controlled to boost the DC voltage and perform switching. Of the DC voltage and the peak value of the power supply current.
[0010]
In the power supply device of the present invention, (5) the short-circuit time or the number of short-circuits, or the short-circuit time and the short-circuit pause period, so that the difference between the peak values of the current flowing in the AC power supply immediately before and immediately after the switching is within 20%. , The fluctuation of the DC voltage when switching from the full-wave rectifier circuit to the voltage doubler rectifier circuit is suppressed, and the peak value of the power supply current is reduced.
[0011]
In the power supply device of the present invention, (6) the rectifier circuit is switched near the zero-cross timing of the AC power supply, so that the current of the AC power supply is small and the influence on the rectifier circuit switching means 5 can be minimized. If there is a delay in the operation of the rectifier circuit switching means, {circle around (7)} one or more short-circuit operations between zero crossing and the operation of the rectifier circuit switching means, and a drop in the DC voltage boosted before switching. To prevent DC voltage fluctuations.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0013]
(Example 1)
FIG. 1 is a basic configuration diagram of a motor control device 101 using the power conversion device 100 of the present embodiment. As shown in FIG. 1, a power conversion device 100 includes a reactor 2 having one end connected to one output terminal of an AC power supply 1, a short-circuit unit 3 for short-circuiting the AC power supply 1 via the reactor 2, A rectifier circuit 4 having the other end of the reactor 2 not connected to the reactor and the other end of the AC power supply 1 not connected to the reactor 2 as an AC input, and a rectifier circuit 4 connected in series to both ends of a DC output thereof. Smoothing capacitor 6, rectifier circuit switching means 5 connected between a connection point between one of the AC inputs of rectifier circuit 4 and smoothing capacitor 61 and smoothing capacitor 62 constituting smoothing capacitor 6, and detection of zero crossing of AC power supply 1 And a short-circuit pulse signal 96 for inputting the DC voltage Vd of the smoothing capacitor 6 and short-circuiting the short-circuit means 3 using the zero-cross signal 92 as a reference timing. A control circuit 7 that outputs a rectification circuit switching signal 97 to the rectification circuit switching means 5 and an input that detects an input current Is input from the AC power supply 1 and outputs an input current value 98 to the control circuit 7 And a current detection circuit 30.
[0014]
FIG. 1 shows an inverter circuit 10 connected to the DC output of the power converter 100 and a compressor 20 having a built-in electric motor. The control circuit 7 of the present embodiment is constituted by a semiconductor integrated circuit such as a microcomputer, for example, and all operations are processed by software.
[0015]
The zero-crossing detection circuit 8 inputs the voltage at both ends of the AC power supply 1 and, at the timing when the AC voltage (abbreviated as power supply voltage Vs) of the AC power supply 1 passes through the zero-cross point and changes the polarity, changes from a High signal to a Low signal, Alternatively, it outputs a zero-cross signal 92 that switches from a Low signal to a High signal, and inputs this zero-cross signal 92 to the control circuit 7.
[0016]
The control circuit 7 uses the rising or falling edge of the input zero-cross signal 92 as a reference timing to start a short-circuiting operation of the short-circuiting means 3 (abbreviated as delay time Td) and a short-circuiting time (pulse). The width Tw is abbreviated.), And a short-circuit pulse signal 96 (High, Low signal) is output to the short-circuit means 3. The delay time Td and the pulse width Tw are stored in the control circuit 7 or calculated by the control circuit 7.
[0017]
The short-circuit means 3 performs a short-circuit opening / closing operation according to the short-circuit pulse signal 96. In this embodiment, when the short-circuit pulse signal 96 output from the control circuit 7 is High, the short-circuit means 3 performs a short-circuit operation. The short-circuit means 3 includes a diode bridge and a power semiconductor switching element such as an IGBT, a bipolar transistor, and a power MOSFET, and short-circuits the AC power supply 1 via the reactor 2 according to the short-circuit pulse signal 96.
[0018]
The rectifier circuit switching means 5 is constituted by a bidirectional switch such as a combination of a power relay, a triac, a diode bridge and a power semiconductor switching element (IGBT, bipolar transistor, power MOSFET), and the rectifier circuit switching signal 97 output by the control circuit 7. The rectifier circuit 4 is switched in response to the (High, Low signal). In the present embodiment, the rectifier circuit 4 is switched to a full-wave rectifier circuit when the rectifier circuit switching signal 97 is a low signal, and is switched to a voltage doubler rectifier circuit when the rectifier circuit switching signal 97 is a high signal.
[0019]
The control circuit 7 receives the DC voltage Vd at both ends of the smoothing capacitor 6 and the input current value 98, controls the short-circuit pulse signal 96, and outputs a rectifier circuit switching signal 97.
[0020]
In the power supply device according to the present embodiment, the short-circuiting means 3 short-circuits the AC power supply 1 once or a plurality of times per half cycle of the power supply via the reactor 2, and the current of the AC power supply 1 (hereinafter abbreviated as input current Is). ) Converts AC power to DC power while widening the conduction angle and improving the power factor of the power supply. In the power converter 100 of the present embodiment, the rectifier circuit switching means 5 allows the rectifier circuit 4 to operate as both a full-wave rectifier circuit and a voltage doubler rectifier circuit, so that the DC voltage Vd is set to a predetermined value with the pulse width Tw. In addition to controlling, a wide range of DC voltage Vd can be output.
[0021]
FIG. 2 shows operation waveforms of the respective parts when the rectifier circuit 4 is switched from the full-wave rectifier circuit to the voltage doubler rectifier circuit. In FIG. 2, in one cycle of the power supply before t = T1, the power conversion device 100 operates with the full-wave rectifier circuit, and the short-circuiting means 3 performs a short-circuit operation once in a half cycle of the power supply voltage Vs of the AC power supply 1 to forcibly. The power factor is improved by passing current. As shown in the waveform of the input current Is in FIG. 2, the conduction angle is wider and the power factor is improved as compared with the waveform of the input current Is when no short-circuit operation is performed. The delay time Td and the pulse width Tw of the short-circuit pulse signal 96 during this period are values stored in the control circuit 7 in advance. The delay time Td and the pulse width Tw can be determined by calculation from the DC voltage Vd input to the control circuit 7, the input current Is, the output current of the power conversion device 100, or the like. Note that the power factor improving operation can be performed even if a plurality of short-circuit operations are performed in a half cycle of the power supply voltage Vs.
[0022]
Here, when the rectifier circuit 4 is switched from the full-wave rectifier circuit to the voltage doubler rectifier circuit without the switching transition period, the input current Is, which is the charging current for the smoothing capacitor 6, flows rapidly, and at the same time, the DC voltage Vd rises sharply. .
[0023]
In the prior art described in Japanese Patent Application Laid-Open No. H11-206130, the voltage value obtained after switching to the voltage doubler rectifier circuit at a certain point in the switching transition period (the period from t = T1 to T2 in FIG. 2). The pulse width Tw is controlled until the voltage is increased. When the DC voltage Vd is boosted, the fluctuation of the DC voltage Vd before and after switching is small, but the power factor improving operation is performed by the full-wave rectifying circuit because the voltage is rapidly increased to a voltage value obtained after switching to the voltage doubler rectifying circuit. Since the operation is performed with a pulse width Tw wider than the pulse width Tw when the input current Is is being performed, the peak value of the input current Is increases. As described above, in the related art described in Japanese Patent Application Laid-Open No. H11-206130, the peak value of the input current Is immediately after the switching decreases, but the peak value of the input current Is immediately before the switching increases. Conversely, if the boost before switching is not sufficient, the peak value of the input current Is immediately before switching is small, but the peak value of the input current Is immediately after switching is high.
[0024]
In this embodiment, as shown in FIG. 2, when the pulse width Tw of the short-circuit pulse signal enters the switching transition period, control is performed to gradually increase the pulse width Tw before the switching transition point T1, and immediately before and after the switching. The input current Is is boosted to a voltage value at which the peak value becomes substantially the same. As a result, the peak value of the input current Is is reduced, and at the same time, a sudden change in the DC voltage Vd is prevented.
[0025]
The change in the peak value of the input current Is immediately before and after the switching may be in the range of 0 to 20% in consideration of variations in elements, power supply conditions, detection errors of the zero-cross detection circuit 8, and the like. In addition, the delay time Td and the value of the pulse width Tw for raising the peak value of the input current Is immediately before and after the switching to the same voltage value are obtained in advance by simulation or experiment and set in the control circuit 7.
[0026]
As shown in the present embodiment, when the amount of change in the peak value of the input current Is immediately before and after the switching is in the range of 0 to 20%, the voltage value to be boosted during the switching transition period is switched to the voltage doubler rectifier circuit. A voltage value smaller than a voltage value obtained later is sufficient. The reason for this is that the voltage is boosted by the charging current flowing when switching to the voltage doubler rectifier circuit.
[0027]
The minimum required value for boosting the DC voltage Vd before switching differs depending on conditions such as input power and power supply voltage Vs at the time of switching.
[0028]
The change in the pulse width Tw when switching from the full-wave rectifier circuit to the voltage doubler rectifier circuit will be described with reference to FIG. The horizontal axis in FIG. 3 is time, and the vertical axis is pulse width Tw. FIG. 3 shows the time from when the short-circuit means 3 is performing the power factor improving operation in the full-wave rectifier circuit to immediately before switching to the voltage doubler rectifier circuit via the switching transition period. However, the actual pulse width Tw changes stepwise at every half cycle of the power supply cycle indicated by the vertical dotted line in the figure, but is shown as a straight line in FIG. 3 for convenience of explanation.
[0029]
FIG. 3 shows a case where the pulse width Tw during the operation of the full-wave rectifier circuit before the switching transition period is controlled according to the magnitude of the input power, and a case where the pulse width Tw during the operation of the full-wave rectification circuit before the switching transition period is fixed. The control method in the case of three values will be described. Further, in the switching transition period in FIG. 3, the change in the pulse width Tw when the power supply voltage Vs is 80%, 100%, and 120% is shown for each of the three control methods. Further, when the pulse width Tw is a fixed value, the change of the pulse width Tw in three cases where the magnitude of the input power is different is also shown. In FIG. 3, the pulse width Twb at the end of the switching transition period (t = T2) is a pulse width for generating the minimum DC voltage Vd required for switching to the voltage doubler rectifier circuit.
[0030]
As shown in FIG. 3, the initial pulse width Tw in the switching transition period starts from the pulse width Tw before entering the switching transition period, and in the switching transition period, the pulse width Tw depends on the load at that time. Tw is increased. In this embodiment, the pulse width Tw is changed depending on the magnitude of the input power and the magnitude of the power supply voltage Vs.
[0031]
An example in which the pulse width Tw before the transition period is fixed will be described. Before the switching transition period, the pulse width Tw does not change due to the input power or the like, but changes into the switching transition period depending on the magnitude of the input power and the power supply voltage Vs. As shown in FIG. 3, the pulse width Tw is a straight line A when the input power is small, a straight line B when the input power is a reference value, and a straight line C when the input power is large. As described above, in the power converter according to the present embodiment, the gradient for changing the pulse width Tw during the switching transition period is changed in accordance with the magnitude of the input power, that is, the magnitude of the load, thereby suppressing the rapid fluctuation of the DC voltage Vd at the time of switching. In addition, the peak of the input current Is is reduced.
[0032]
When the power supply voltage Vs fluctuates, the DC voltage Vd also fluctuates, so that the required minimum value of the voltage boosted before switching the rectifier circuit 4 also fluctuates. In the power supply device of the present embodiment, if the delay time Td of the short-circuit pulse signal 96 and the pulse width Tw are the same, the value of the power supply voltage Vs is equal to the DC voltage Vd obtained during the full-wave rectification circuit or the voltage doubler rectification circuit. The change in the value is substantially proportional to the change in the power supply voltage Vs. Therefore, the DC voltage Vd is input to the control circuit 7 to determine the fluctuation of the power supply voltage Vs.
[0033]
A method of determining the boost pulse width Twb when the power supply voltage Vs fluctuates will be described with reference to FIG. The horizontal axis of FIG. 4 indicates the power supply voltage Vs, and the vertical axis indicates the boost pulse width Twb. FIG. 4 shows a method of determining the boost pulse width Twb when the power supply voltage Vs fluctuates by ± 20%. From the boost pulse width Twb (100%) corresponding to the reference power supply voltage Vs (100%), the boost pulse width Twb is increased or decreased according to the fluctuation of the power supply voltage Vs, and the voltage value to be boosted before switching is changed. For example, when the power supply voltage Vs is 120% of the reference value, the boost pulse width Twb is set to 97% of the reference value. The reason for this is that the DC voltage Vd during voltage doubler rectification also increases because the power supply voltage Vs increases, but the charging current flowing when switching to the voltage doubler rectifier circuit also increases, and the boost due to the charging current also increases. Therefore, when the power supply voltage Vs becomes higher, the boost pulse width Twb is made narrower than the reference value. When the power supply voltage Vs is 80% of the reference value, the boosting width becomes smaller because the charging current decreases, so the boosting pulse width Twb is set to 103% of the reference value.
[0034]
As shown in FIG. 4, as the power supply voltage Vs increases, the boost pulse width Twb monotonically decreases, and the slope of the monotonically decreasing function depends on the circuit constant of the power supply converter and the magnitude of the power supply voltage Vs. When the relationship between the power supply voltage Vs and the boost pulse width Twb in FIG. 4 is applied to FIG. 3, it becomes as shown by a dashed line in FIG. 3, and when the power supply voltage Vs is large, the pulse width Tw is set to a small value. In the power converter of the present embodiment, the slope of the solid line shown in FIG. 3 is changed according to the change in the load, and the pulse width Tw is adjusted as shown by the solid line and the dashed line in FIG. 3 according to the change in the power supply voltage Vs. Therefore, it is possible to cope with both the fluctuation of the input power and the fluctuation of the power supply voltage Vs.
[0035]
Next, the timing of switching the rectifier circuit 4 from the full-wave rectifier circuit to the voltage doubler rectifier circuit and the timing of the short-circuit operation will be described. When the rectifier circuit 4 is switched, a charging current flows to the smoothing capacitor 6 over at least a half cycle of the AC power supply 1. If the short-circuiting means 3 performs a short-circuit operation while the charging current is flowing, the DC voltage Vd greatly increases, and an overshoot occurs when the rectifier circuit 4 is switched. That is, the short-circuit operation is stopped during at least a half cycle or more of the power supply voltage Vs after the rectifier circuit switching unit 5 switches to the voltage doubler rectifier circuit. When the rectifier circuit 4 is switched near the zero cross of the power supply voltage Vs, the input current Is to the power converter 100 is small and the influence of the rectifier circuit switching means 5 is small. Switching from Low to High at the same timing as the rise or fall.
[0036]
However, actually, the operation of the rectifier circuit switching means 5 is not instantaneous but delayed. For example, in a mechanical switch circuit such as a power relay, the delay is several milliseconds or more. When the short circuit operation is stopped at the same time as the rectifier circuit switching signal 97 when there is a delay before the rectifier circuit 4 switches, the DC voltage Vd boosted immediately before the switch is reduced. When the boosted DC voltage Vd decreases, the peak value of the input current Is immediately after the switching of the rectifier circuit 4 increases. Therefore, when there is a switching delay, the power converter according to the present embodiment performs one short-circuit operation after the rectification circuit switching signal 97 switches from Low to High until the rectification circuit switching unit 5 operates. One or more times to prevent a drop in boosted voltage.
[0037]
(Example 2)
This embodiment will be described with reference to FIG. FIG. 5 shows a waveform of the input current starting to flow from t = T3 when the short-circuit means 3 does not perform a short-circuit operation, a case where a short-circuit operation by chopping a plurality of pulses is started before t = T3 (broken line), and after t = T3. 5 shows the input current Is and the DC voltage Vd when a short-circuit operation by chopping is started with a plurality of pulses (solid line). As shown by the solid line in FIG. 5, when the short-circuit operation due to chopping is started from the phase after t = T3, the current flowing through the reactor 2 becomes continuous, the voltage can be efficiently boosted, and the peak value of the input current Is can be reduced. On the other hand, when chopping is performed at a phase earlier than t = T3, the DC voltage Vd cannot be increased as indicated by the dotted line.
[0038]
The chopping frequency is preferably about 10 to 100 times the frequency of the AC power supply 1. For the sake of explanation, the duty ratio of the pulse in FIG. 5 is shown as 50%, but the duty ratio may be other than 50% as long as the current flowing through the reactor 2 is continuous.
[0039]
In the present embodiment, the DC voltage Vd can be controlled by the number of short-circuit operations performed in a half cycle of the power supply voltage Vs and the duty ratio of the short-circuit pulse signal 96. Further, by gradually increasing the number of short-circuit operations during the switching transition period, the DC voltage Vd can also be gradually increased, and the stress applied to the elements constituting the power conversion device 100 and the smoothing capacitor 6 can be reduced.
[0040]
In the present embodiment, similarly to the first embodiment, when there is a change between the load of the power conversion device 100 and the power supply voltage Vs, the minimum necessary value for boosting the DC voltage Vd is changed before switching. In this embodiment, the same effects as in the first embodiment can be obtained by replacing the pulse width on the vertical axis in FIGS. 3 and 4 of the first embodiment with the number of short-circuit operations or the duty of the short-circuit pulse signal 96.
[0041]
FIG. 2 also shows the waveform of the present embodiment. In the short-circuit pulse signal 96 in FIG. 2, the waveform painted out in black is a signal that is chopped at a high frequency as shown in the enlarged view. In the present embodiment, since the control is performed by the chopping signal having the high frequency, the control response is high, and the peak value of the input current Is before and after the end of the switching transition period is small. This embodiment is particularly effective for a power converter in which the rectifier circuit 4 and the short-circuit means 3 include a high-speed diode (fast recovery diode).
[0042]
(Example 3)
This embodiment will be described with reference to FIG. In the present embodiment, the short-circuit operation is performed a plurality of times per half cycle of the power supply voltage Vs during the switching transition period, but after the short-circuit current flowing through the reactor 2 once becomes zero or close to zero, the short-circuit operation shown in FIG. As indicated by the pulse signal 96, the second and subsequent short-circuit operations are performed. In other words, after the recovery current flowing through the diode becomes 0 and the diode is once turned off, the second and subsequent short-circuit operations are performed. As a result, the peak value of the input current Is is reduced, and a sudden change in the DC voltage Vd is also suppressed. This embodiment is suitable for a power supply device using a low-speed diode.
[0043]
【The invention's effect】
As described above, according to the power conversion device of the present invention, the short-circuit pulse width and the number of pulses are controlled to suppress the fluctuation of the DC voltage when switching from the full-wave rectifier circuit to the voltage doubler rectifier circuit, and to input. The peak value of the alternating current can be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram illustrating a configuration of a power conversion device according to a first embodiment.
FIG. 2 is an explanatory diagram of waveforms of respective units of the power conversion devices according to the first and second embodiments.
FIG. 3 is an explanatory diagram of a pulse width change when a rectifier circuit is switched in the power converter according to the first embodiment.
FIG. 4 is an explanatory diagram of a method of determining a short-circuit pulse width when a power supply voltage fluctuates in the first embodiment.
FIG. 5 is an explanatory diagram of a short-circuit operation start timing when a short-circuit operation is performed a plurality of times in the second embodiment.
FIG. 6 is an explanatory diagram of waveforms of each unit of the power conversion device according to the third embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... AC power supply, 2 ... Reactor, 3 ... Short circuit means, 4 ... Rectifier circuit, 5 ... Rectifier circuit switching means, 6 ... Smoothing capacitor, 7 ... Control circuit, 8 ... Zero cross detection circuit, 10 ... Inverter circuit, 20 ... Compression , 30 ... Input current detection circuit, 92 ... Zero cross signal, 96 ... Short circuit pulse signal, 97 ... Rectifier circuit switching signal, 100 ... Power converter, Tw ... Pulse width, Td ... Delay time, Vd ... DC voltage, Is ... Input current.

Claims (11)

一端を交流電源に接続したリアクトルと、一端を該リアクトルの他端に接続した短絡手段と、交流入力側の一端を前記リアクトルの他端に接続し、交流入力側の多端を前記短絡手段の他端に接続した整流回路と、該整流回路を全波整流回路と倍電圧整流回路とに切替える整流回路切替手段と、前記整流回路の直流出力の両端に接続した平滑コンデンサと、前記交流電源のゼロクロスを検出するゼロクロス検出回路と、前記短絡手段と整流回路切替手段とを制御する制御回路とを具備した電力変換装置において、
前記制御回路が、全波整流回路の状態の整流回路切替移行期間の後で前記整流回路切替手段によって前記整流回路を全波整流回路から倍電圧整流回路に切替え、前記制御回路による短絡制御が該整流回路切替移行期間と、前記整流回路切替移行期間以前とでは異なっていて、かつ前記整流回路切替移行期間の初めの前記平滑コンデンサ両端の直流電圧より、前記整流回路切替移行期間の終わりの前記直流電圧が高いことを特徴とする電力変換装置。
A reactor having one end connected to the AC power supply, short-circuit means having one end connected to the other end of the reactor, one end on the AC input side being connected to the other end of the reactor, and a multi-end on the AC input side being connected to the other end of the short-circuit means. A rectifier circuit connected to one end of the rectifier circuit; a rectifier circuit switching means for switching the rectifier circuit between a full-wave rectifier circuit and a voltage doubler rectifier circuit; a smoothing capacitor connected to both ends of a DC output of the rectifier circuit; In a power conversion device comprising a control circuit for controlling the zero-cross detection circuit and the short-circuit means and the rectifier circuit switching means,
The control circuit switches the rectifier circuit from the full-wave rectifier circuit to the voltage doubler rectifier circuit by the rectifier circuit switching means after the rectifier circuit switching transition period of the state of the full-wave rectifier circuit, and the short-circuit control by the control circuit is performed. The rectifier circuit switching transition period is different from before the rectifier circuit switching transition period, and the DC voltage at the end of the rectifier circuit switching transition period is smaller than the DC voltage across the smoothing capacitor at the beginning of the rectifier circuit switching transition period. A power converter characterized by high voltage.
請求項1に記載の電力変換装置において、前記制御回路が整流回路切替移行期間前の短絡時間より、前記整流回路切替移行期間内の短絡時間を相対的に長く制御し、前記整流回路切替移行期間内の短絡時間を時間経過とともに長く制御することを特徴とする電力変換装置。2. The power converter according to claim 1, wherein the control circuit controls a short circuit time in the rectifier circuit switching transition period to be relatively longer than a short circuit time before the rectifier circuit switching transition period, and the rectifier circuit switching transition period. 3. A power conversion device characterized in that a short-circuit time in the inside is controlled to be longer as time passes. 請求項2に記載の電力変換装置において、前記制御回路が前記整流回路切替移行期間の短絡時間の長短を入力電力の大小に基づいて制御することを特徴とする電力変換装置。3. The power converter according to claim 2, wherein the control circuit controls the length of the short-circuit time during the rectifier circuit switching transition period based on the magnitude of the input power. 4. 請求項1に記載の電力変換装置において、前記制御回路が整流回路切替移行期間前の短絡時間より、前記整流回路切替移行期間内の短絡時間を長く制御し、かつ前記制御回路が整流回路切替移行期間前の短絡回数より、前記整流回路切替移行期間内の短絡回数を多く制御することを特徴とする電力変換装置。2. The power converter according to claim 1, wherein the control circuit controls a short circuit time in the rectifier circuit switching transition period longer than a short circuit time before the rectifier circuit switching transition period, and the control circuit switches the rectifier circuit switching transition. A power converter, wherein the number of short circuits in the rectifier circuit switching transition period is controlled to be larger than the number of short circuits before the period. 請求項4に記載の電力変換装置において、前記制御回路が前記整流回路移行期間内の短絡回数を時間経過とともに増加することを特徴とする電力変換装置。5. The power converter according to claim 4, wherein the control circuit increases the number of short circuits during the transition period of the rectifier circuit over time. 6. 請求項4に記載の電力変換装置において、前記制御回路が前記整流回路移行期間内の短絡回数または、短絡時間と短絡休止期間との比率であるデューティ比を、前記電力変換装置の入力電力の大小に基づいて制御することを特徴とする電力変換装置。5. The power converter according to claim 4, wherein the control circuit determines the number of short circuits within the rectifier circuit transition period or a duty ratio that is a ratio between a short circuit time and a short circuit suspension period to a magnitude of input power of the power converter. A power conversion device characterized by performing control based on: 請求項4に記載の電力変換装置において、前記制御回路が前記整流回路移行期間内の短絡時間と短絡休止期間の比率であるデューティ比を、前記短絡動作によって流れる電源電流が連続するように制御することを特徴とする電力変換装置。5. The power converter according to claim 4, wherein the control circuit controls a duty ratio, which is a ratio of a short-circuit time and a short-circuit pause period, in the rectifier circuit transition period so that a power supply current flowing by the short-circuit operation is continuous. A power converter characterized by the above-mentioned. 請求項1に記載の電力変換装置において、前記制御回路が整流回路切替移行期間前は、交流電源半周期に1回短絡制御し、前記整流回路切替移行期間内では、交流電源半周期に2回以上短絡制御することを特徴とする電力変換装置。2. The power converter according to claim 1, wherein the control circuit performs short-circuit control once in a half cycle of the AC power supply before the transition period of the rectifier circuit switching, and twice in a half cycle of the AC power supply in the transition period of the rectifier circuit switching. 3. A power conversion device characterized in that short-circuit control is performed as described above. 請求項1に記載の電力変換装置において、前記制御回路が前記整流回路切替移行期間中の短絡時間、もしくは短絡回数、もしくは短絡時間と短絡休止期間の比率であるデューティ比を、前記整流回路切替以降期間最後の交流電流のピーク値と、前記整流回路切替以降期間直後の交流電流のピーク値の差を0〜20%に制御することを特徴とする電力変換装置。2. The power converter according to claim 1, wherein the control circuit sets the short-circuit time during the rectifier circuit switching transition period, the number of short-circuits, or a duty ratio that is a ratio between the short-circuit time and the short-circuit suspension period after the rectifier circuit switching. A power converter, wherein the difference between the peak value of the AC current at the end of the period and the peak value of the AC current immediately after the period after the switching of the rectifier circuit is controlled to 0 to 20%. 請求項1に記載の電力変換装置において、前記制御回路が整流回路を全波整流回路から倍電圧整流回路に切替えた後、半周期以上の期間、短絡動作停止制御をすることを特徴とする電力変換装置。2. The power converter according to claim 1, wherein after the control circuit switches the rectifier circuit from the full-wave rectifier circuit to the voltage doubler rectifier circuit, the short-circuit operation stop control is performed for a period of half a cycle or more. Conversion device. 請求項1に記載の電力変換装置において、前記制御回路が前記整流回路切替手段が、交流電源の電圧のゼロクロスタイミングかその近傍で、前記整流回路を全波整流回路から倍電圧整流回路もしくは倍電圧整流回路から全波整流回路に切替える制御を行うことを特徴とする電力変換装置。2. The power converter according to claim 1, wherein the control circuit switches the rectifier circuit from the full-wave rectifier circuit to a double voltage rectifier circuit or a double voltage rectifier circuit at or near a zero-cross timing of the AC power supply voltage. A power conversion device that performs control for switching from a rectifier circuit to a full-wave rectifier circuit.
JP2002232268A 2002-08-09 2002-08-09 Power converter Pending JP2004072958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002232268A JP2004072958A (en) 2002-08-09 2002-08-09 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002232268A JP2004072958A (en) 2002-08-09 2002-08-09 Power converter

Publications (1)

Publication Number Publication Date
JP2004072958A true JP2004072958A (en) 2004-03-04

Family

ID=32017730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232268A Pending JP2004072958A (en) 2002-08-09 2002-08-09 Power converter

Country Status (1)

Country Link
JP (1) JP2004072958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108604867A (en) * 2016-01-28 2018-09-28 三菱电机株式会社 Power-converting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108604867A (en) * 2016-01-28 2018-09-28 三菱电机株式会社 Power-converting device
CN108604867B (en) * 2016-01-28 2020-07-03 三菱电机株式会社 Power conversion device

Similar Documents

Publication Publication Date Title
JP4678215B2 (en) Switching power supply
US6194885B1 (en) Boosting active filter system and controller for boosting active filter
JP3695382B2 (en) Power supply device, motor drive device, and control method for power supply device
JP3687641B2 (en) Inverter air conditioner
JP2001314084A (en) Power supply apparatus, motor drive apparatus and air conditioner
JP3848903B2 (en) Power converter
JP2008193815A (en) Power supply system
JP3934982B2 (en) Power supply
JP2003106616A (en) Inverter air conditioner
WO2019026712A1 (en) Driving device, control method, and program
JP2000188867A (en) Converter circuit and device for controlling dc voltage
JP2007295739A (en) Dc power supply
KR100418127B1 (en) Power supply apparatus
JP4013846B2 (en) Phase control device
JP2004072958A (en) Power converter
JP2008228511A (en) Power supply
JP4893120B2 (en) Induction heating device
JP2004023819A (en) Power supply device
JP2000116134A (en) Power supply
JPH09266673A (en) Dc power device
JP3753823B2 (en) Power supply
JP2001231262A (en) Controller for direct current motor
JP4248560B2 (en) Power converter
JP2000150110A (en) Heater control device
JP2022143053A (en) Power conversion device and washing machine including the same