JP2004072637A - Crystal resonator for surface mounting - Google Patents

Crystal resonator for surface mounting Download PDF

Info

Publication number
JP2004072637A
JP2004072637A JP2002232090A JP2002232090A JP2004072637A JP 2004072637 A JP2004072637 A JP 2004072637A JP 2002232090 A JP2002232090 A JP 2002232090A JP 2002232090 A JP2002232090 A JP 2002232090A JP 2004072637 A JP2004072637 A JP 2004072637A
Authority
JP
Japan
Prior art keywords
copper
crystal
solder
mounting
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002232090A
Other languages
Japanese (ja)
Other versions
JP3905804B2 (en
Inventor
Masaaki Miura
三浦 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2002232090A priority Critical patent/JP3905804B2/en
Publication of JP2004072637A publication Critical patent/JP2004072637A/en
Application granted granted Critical
Publication of JP3905804B2 publication Critical patent/JP3905804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface mounting resonator with simple structure of which the thermal impact characteristics are enhanced by absorbing impact, especially, thermal impact. <P>SOLUTION: In this crystal resonator for surface mounting constituted by storing a crystal chip electrically/mechanically connected with a terminal electrode on the inner bottom surface in a case main body formed in the rectangular shape having a mounting terminal on the bottom surface, covering the crystal chip, tightly sealing the crystal oscillator, it is constituted by providing a plate shaped metal plate of copper or a copper alloy, which is more flexible than soldering on the mounting terminal. In addition, the crystal resonator is constituted by forming rustproof film for preventing rust on the surface of the copper or the copper alloy. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は表面実装用の水晶振動子(以下、表面実装振動子とする)を産業上の技術分野とし、特に熱衝撃を吸収して熱衝撃特性を良好にした車載用の表面実装水晶振動子に関する。
【0002】
(発明の背景)表面実装振動子は端子としてのリード線を有しないことから、電磁放射が少なくEMI対策に適する。このことから、近年では、例えば自動車にエンジン制御装置を含む多くの電子制御装置の発振源として適用される。
【0003】
(従来技術の一例)第3図は一従来例を説明する表面実装振動子の図で、同図(a)は断面図、同図(b)はカバー3を除く平面図である。
表面実装振動子は、凹状とした容器本体1に水晶片2を収容してカバー3を被せ、水晶片2を密閉封入してなる。容器本体1は積層セラミックからなり、内底面には一対の端子電極4を有する。一対の端子電極4は容器本体1の一端側に設けられて導電路5が延出し、積層面から端面電極5aを経て両端側の裏面に延出する。そして、一対の実装端子6と電気的に接続する。
【0004】
一対の実装端子は、第4図に示したように両端側の中央領域に形成されて2端子とする「同図(a)」。あるいは両端側の両角部に形成されて4端子とし「同図(b)」、例えば両角部の実装端子6は電気的に共通接続する。水晶片2は両主面に図示しない励振電極を有し、一端部両側に引出電極を延出する。そして、一端部両側が導電性接着剤7によって端子電極4に固着されて電気的・機械的に接続する。
【0005】
そして、表面実装振動子8は、セット基板9上の回路端子10に塗布されたクリーム半田11上に載置され、高熱路を搬送されて実装される(第5図)。セット基板9は一般にガラスエポキシ材からなる。この場合、表面実装振動子8の端面電極5aに半田11が這い上がることによって、半田の溶融を確認できるとともに接続強度が高められる。
【0006】
【発明が解決しようとする課題】
(従来技術の問題点)しかしながら、上記構成の表面実装振動子では、制御装置等を構成する前述のセット基板9に搭載され、自動車内に日夜を問わずに放置される。特に、エンジン近傍や直射日光にさらされる場所では寒暖差が激しい。また、移動中には衝撃及び震動をもたらす。
【0007】
このため、例えばガラスエポキシ材からなるセット基板9との膨張係数が異なって、度重なる応力によって半田にクラック(欠け、ひび等)を生じる。そして、最悪の場合は剥離を引き起こす問題があった。ちなみに、容器本体(アルミナセラミック)の熱膨張率は5.5×10−6/℃、セット基板9のそれは14×10−6/℃であり、両者の差Δαは8.5×10−6/℃となる。なお、半田の膨張率は17.5×10−6/℃である。
【0008】
そして、半田接合部に生ずる歪みAは概ね次式(1)で示される。但し、mは約表面実装振動子の長さ(実装端子の端子間隔)端子2mの半値、ΔTは熱衝撃(ヒートサイクル)の最大と最小の温度差(例えば−40〜150℃とした場合はΔT=190℃)、hは表面実装振動子とセット基板9の距離(概ね半田11の厚み)である。なお、半田11の厚みに比較して電極5、10の厚みは無視できるほど小さい。
【0009】
要するに、歪みAは半田の厚みにのみ反比例して減少し、端子間隔2mの半値m、膨張係数差Δα、温度差ΔTに比例して増加する。
A≒(m・Δα・ΔT)/h・・・・(1)
【0010】
これらのことから、例えば第6図に示したように、容器本体1の底面に貫通孔を設けてガラス12により気密端子とし、水晶片2の両端部と電気的に接続した平板状のリード線13を導出して折曲して実装端子6とする。これにより、表面実装振動子8とセット基板9の距離hを大きくし、またリード線13のバネ性によって熱衝撃を吸収して半田のクラック発生を防止したものがある。
【0011】
しかし、この場合には、気密端子とするために構成が複雑でコストアップになる。さらに、気密端子としてガラス12を使用するので、落下等の衝撃によってガラス12の破損等及びこれによる気密漏れの問題もあった。
【0012】
(発明の目的)本発明は衝撃特に熱衝撃を吸収して熱衝撃性を向上した簡易構成の表面実装振動子を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は、容器本体の裏面に設けた実装端子上に平板状とした半田よりも柔軟な例えば銅や銅の合金とした金属板を設けた構成とする。これにより、特に熱衝撃によって半田に生ずる応力を銅や銅の合金とした金属板の柔軟性によって吸収し、言わば衝撃吸収板として機能してクラックの発生を防止する。以下、本発明の各実施例を説明する。
【0014】
【第1実施例、請求項1、2及び3】
第1図は本発明の第1実施例を説明する表面実装振動子の断面図である。なお、前従来例と同一部分には同番号を付与してその説明は簡略又は省略する。
表面実装振動子は、前述したように容器本体1に水晶片2を収容してカバー3を被せ、水晶片2を密閉封入してなる。ここでは、実装端子6は容器本体1の底面両端側の中央領域として2端子とする。そして、実装端子6上に銅板14を銀ロウによって接合(ロウ付け)する。銅板14の表面にはNiや金等の防錆材がメッキされる。
【0015】
このような構成であれば、銅板14の熱膨張率は約17.0×10−6/℃であり、半田11の17.5×10−6/℃と概ね等しい。したがって、銅板14と半田11とは熱衝撃に対して一体的に伸縮する。そして、銅板14は半田11に比較して柔軟性に富み伸縮自在である。一方、硬化後の半田は脆性材である。
【0016】
これらにより、容器本体1とセット基板9との熱膨張差によって、両者間に介在した半田11と銅14とに応力が発生すると、銅板14が先ず機械変形して応力を吸収する。したがって、半田11にクラックが発生することを防止する。銅板14は言わば熱衝撃吸収板として機能する。但し、銅板14で吸収する機械変形以上の応力が加わると、脆性材の半田11にクラックが生ずる。
【0017】
また、銅板14を介在させることによって、前述した(1)式の表面実装振動子とセット基板9との距離hを大きくするので、両者間に介在した特に半田11に対する歪みの発生を抑制できる。第2図は銅板14の厚み(横軸)を変化させたときの半田11に生ずる歪み量(縦軸)である。
【0018】
但し、ここでの歪み量は、従来の半田のみとした歪み量を100としたときの相対的な最大歪(%)で、FEMによるシミュレーション結果である。また、2m=8mm(表面実装振動子の長さ、実装端子間隔)、銅板の大きさは1.5×0.7mmである。
【0019】
この図(曲線)から明らかなように、銅板の厚みが0.2mmを超えて約0.3mmになると、従来の歪み量の約40%になり、約0.5mmで30%になり、それ以降は概ね飽和する。なお、銅板14の面積をこれより小さくすると(1.1×0.3mm)、厚み0.3mmで60%となるものの概ね同様の結果となった。なお、半田11の厚みは概ね50〜80μmであり、銅板14の厚みが支配的になる。
【0020】
これらの場合、端子間隔2mの半値mを4mmにして距離hを0.2mm以上にすると効果を示し始めるので、半値mと距離hとの比m/hを約20以下にすれば効果が期待できる。そして、実用的な効果は距離hを0.3mm以上にすればよいので、この場合は半値mと距離hとの比m/hを約13以下にすればよい。そして、銅板14の厚みを大きくすると高さ寸法も大きくなるので、現実的には銅板14の厚みは1mm(m/hが4)以内として、4<m/h<13又は20とすればよい。
【0021】
また、銅板14に代えて銅球にすると半田のみの場合よりもいい結果を得るが、銅球の先端に応力が集中して半田にクラックを生ずる。これに対して、銅板14の場合は平板なので応力が均一になり、銅球よりも最大歪みが小さくなる。
【0022】
【他の事項】
上記実施例では2端子とした例を示したが、4角部に実装端子6を設けた場合でも適用できる。また、表面実装振動子として説明したが、例えば多重モードを利用したフィルタ素子や、IC等を組み込んで一体化した発振器等の表面実装用の水晶デバイスに適用できる。ただし、これらの場合は、実装端子の種類は異なり、例えば発振器の場合は出力、電源、アース等の端子となる。
【0023】
【発明の効果】
本発明は、容器本体の裏面に設けた実装端子上に平板状とした半田よりも柔軟な例えば銅や銅の合金とした金属板を設けたので、衝撃特に熱衝撃を吸収して熱衝撃性を向上した簡易構成の表面実装振動子を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施例を説明するセット基板上に搭載した表面実装振動子の断面図である。
【図2】本発明の一実施例の作用を説明する従来例と比較した厚みをパラメータとした最大歪みの相対値である。
【図3】従来例を説明する表面実装振動子の断面図である。
【図4】従来例を説明する表面実装振動子の底面図である。
【図5】従来例の問題点を説明するセット基板上に搭載した表面実装振動子の側面図である。
【図6】他の従来例を説明するセット基板上に搭載した表面実装振動子の側面図である。
【符号の説明】
1 容器本体、2 水晶片、3 カバー、4 端子電極、5 導電路、6 実装端子、7 導電性接着剤、8 表面実装振動子、9 セット基板、10 回路端子、11 半田、12 ガラス、13 リード線、14 銅板.
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surface mounted crystal resonator (hereinafter referred to as a surface mounted resonator) in an industrial technical field, and in particular, a vehicle mounted surface mounted crystal resonator having improved thermal shock characteristics by absorbing thermal shock. About.
[0002]
(Background of the Invention) Since a surface mount resonator does not have a lead wire as a terminal, it has low electromagnetic radiation and is suitable for EMI measures. For this reason, in recent years, for example, it is applied to an automobile as an oscillation source of many electronic control devices including an engine control device.
[0003]
(Example of Prior Art) FIGS. 3 (a) and 3 (b) are views of a surface mount vibrator for explaining a conventional example, wherein FIG. 3 (a) is a sectional view and FIG.
The surface mount resonator is configured such that a crystal blank 2 is accommodated in a container body 1 having a concave shape, a cover 3 is covered, and the crystal blank 2 is hermetically sealed. The container body 1 is made of a laminated ceramic, and has a pair of terminal electrodes 4 on the inner bottom surface. The pair of terminal electrodes 4 are provided on one end side of the container body 1 and the conductive paths 5 extend therefrom, and extend from the lamination surface to the back surfaces on both end sides via the end surface electrodes 5a. Then, it is electrically connected to the pair of mounting terminals 6.
[0004]
As shown in FIG. 4, the pair of mounting terminals are formed in the central regions on both ends to form two terminals (FIG. 4A). Alternatively, four terminals are formed at both corners on both ends, as shown in FIG. 4B, for example, the mounting terminals 6 at both corners are electrically connected in common. The crystal blank 2 has excitation electrodes (not shown) on both main surfaces, and extraction electrodes extend on both sides of one end. Then, both ends of the one end are fixed to the terminal electrode 4 by the conductive adhesive 7 to be electrically and mechanically connected.
[0005]
Then, the surface-mounted vibrator 8 is placed on the cream solder 11 applied to the circuit terminals 10 on the set substrate 9, and is conveyed and mounted on a high heat path (FIG. 5). The set substrate 9 is generally made of a glass epoxy material. In this case, since the solder 11 crawls on the end surface electrode 5a of the surface mount vibrator 8, the melting of the solder can be confirmed and the connection strength can be increased.
[0006]
[Problems to be solved by the invention]
(Problems of the prior art) However, the surface mount resonator having the above configuration is mounted on the above-mentioned set substrate 9 constituting the control device and the like, and is left in the automobile regardless of day or night. In particular, there is a large difference in temperature between the engine and places exposed to direct sunlight. In addition, shock and vibration occur during movement.
[0007]
For this reason, the expansion coefficient differs from that of the set substrate 9 made of, for example, a glass epoxy material, and cracks (chips, cracks, etc.) occur in the solder due to repeated stress. In the worst case, there is a problem of causing peeling. Incidentally, the thermal expansion coefficient of the container body (alumina ceramic) is 5.5 × 10 −6 / ° C., that of the set substrate 9 is 14 × 10 −6 / ° C., and the difference Δα between them is 8.5 × 10 −6. / ° C. The expansion coefficient of the solder is 17.5 × 10 −6 / ° C.
[0008]
The distortion A generated at the solder joint is substantially represented by the following equation (1). Here, m is about the length of the surface mount oscillator (terminal interval between mounting terminals), the half value of the terminal 2m, and ΔT is the maximum and minimum temperature difference of thermal shock (heat cycle) (for example, when -40 to 150 ° C. ΔT = 190 ° C.) and h is the distance between the surface mount oscillator and the set substrate 9 (approximately the thickness of the solder 11). The thickness of the electrodes 5 and 10 is negligibly small compared to the thickness of the solder 11.
[0009]
In short, the strain A decreases in inverse proportion only to the thickness of the solder, and increases in proportion to the half value m of the terminal interval 2 m, the expansion coefficient difference Δα, and the temperature difference ΔT.
A ≒ (m · Δα · ΔT) / h (1)
[0010]
From these facts, as shown in FIG. 6, for example, a through hole is provided in the bottom surface of the container body 1 to form an airtight terminal by the glass 12, and a flat lead wire electrically connected to both ends of the crystal blank 2. 13 is derived and bent to form the mounting terminal 6. As a result, there is a type in which the distance h between the surface-mount vibrator 8 and the set board 9 is increased, and the thermal shock is absorbed by the resiliency of the lead wires 13 to prevent the occurrence of solder cracks.
[0011]
However, in this case, the configuration is complicated and the cost is increased because the terminals are airtight. Further, since the glass 12 is used as the hermetic terminal, there is a problem that the glass 12 is damaged by an impact such as a drop and the hermetic leakage is caused thereby.
[0012]
(Object of the Invention) It is an object of the present invention to provide a surface-mounted vibrator having a simple structure in which thermal shock is improved by absorbing a shock, particularly a thermal shock.
[0013]
[Means for Solving the Problems]
The present invention has a configuration in which a metal plate made of, for example, copper or a copper alloy, which is more flexible than a flat solder, is provided on a mounting terminal provided on the back surface of the container body. Thus, stress generated in the solder due to thermal shock is absorbed by the flexibility of the metal plate made of copper or a copper alloy, and functions as a so-called shock absorbing plate to prevent cracks. Hereinafter, embodiments of the present invention will be described.
[0014]
First Embodiment, Claims 1, 2 and 3
FIG. 1 is a sectional view of a surface-mount vibrator for explaining a first embodiment of the present invention. The same parts as those in the prior art are denoted by the same reference numerals, and description thereof will be simplified or omitted.
As described above, the surface mount resonator is configured such that the crystal piece 2 is housed in the container body 1, the cover 3 is covered, and the crystal piece 2 is hermetically sealed. Here, the mounting terminals 6 are two terminals as a central region on both ends of the bottom surface of the container body 1. Then, the copper plate 14 is joined (brazed) on the mounting terminals 6 with silver brazing. The surface of the copper plate 14 is plated with a rust preventive material such as Ni or gold.
[0015]
With such a configuration, the coefficient of thermal expansion of the copper plate 14 is about 17.0 × 10 −6 / ° C., which is substantially equal to 17.5 × 10 −6 / ° C. of the solder 11. Therefore, the copper plate 14 and the solder 11 expand and contract integrally with the thermal shock. The copper plate 14 is more flexible and expandable and contractable than the solder 11. On the other hand, the solder after curing is a brittle material.
[0016]
As a result, when a stress is generated in the solder 11 and the copper 14 interposed therebetween due to a difference in thermal expansion between the container body 1 and the set substrate 9, the copper plate 14 is first mechanically deformed to absorb the stress. Therefore, the occurrence of cracks in the solder 11 is prevented. The copper plate 14 functions as a so-called thermal shock absorbing plate. However, when a stress greater than the mechanical deformation absorbed by the copper plate 14 is applied, cracks occur in the brittle solder 11.
[0017]
Further, since the copper plate 14 is interposed, the distance h between the surface mount resonator of the above-described formula (1) and the set substrate 9 is increased, so that it is possible to suppress the generation of distortion, particularly for the solder 11, interposed therebetween. FIG. 2 shows the amount of distortion (vertical axis) generated in the solder 11 when the thickness (horizontal axis) of the copper plate 14 is changed.
[0018]
However, the strain amount here is a relative maximum strain (%) when the conventional solder only strain amount is set to 100, and is a simulation result by FEM. In addition, 2 m = 8 mm (the length of the surface mount oscillator, the interval between mounting terminals), and the size of the copper plate is 1.5 × 0.7 mm.
[0019]
As is clear from this figure (curve), when the thickness of the copper plate exceeds 0.2 mm and becomes about 0.3 mm, it becomes about 40% of the conventional strain amount, and about 0.5 mm becomes 30%. Thereafter, it is almost saturated. When the area of the copper plate 14 was made smaller (1.1 × 0.3 mm), the same result was obtained although the thickness was 0.3 mm and the area was 60%. The thickness of the solder 11 is approximately 50 to 80 μm, and the thickness of the copper plate 14 becomes dominant.
[0020]
In these cases, when the half value m of the terminal interval 2 m is set to 4 mm and the distance h is set to 0.2 mm or more, the effect starts to be exhibited. Therefore, if the ratio m / h between the half value m and the distance h is set to about 20 or less, the effect is expected. it can. Since the practical effect is only required to make the distance h 0.3 mm or more, the ratio m / h between the half value m and the distance h may be made about 13 or less. Since the height dimension increases when the thickness of the copper plate 14 is increased, the thickness of the copper plate 14 may be set to 4 <m / h <13 or 20 with the thickness of the copper plate 14 actually being within 1 mm (m / h is 4). .
[0021]
Further, when a copper ball is used instead of the copper plate 14, a better result is obtained than when only the solder is used, but stress concentrates on the tip of the copper ball and cracks occur in the solder. On the other hand, since the copper plate 14 is a flat plate, the stress is uniform, and the maximum distortion is smaller than that of the copper ball.
[0022]
[Other matters]
In the above-described embodiment, an example in which two terminals are used has been described. Also, the surface mount resonator has been described. However, the present invention can be applied to a surface mount crystal device such as a filter element using a multiple mode or an oscillator integrated with an integrated IC or the like. However, in these cases, the types of the mounting terminals are different. For example, in the case of an oscillator, the terminals are output, power supply, and ground.
[0023]
【The invention's effect】
The present invention provides a metal plate made of, for example, copper or a copper alloy, which is more flexible than the flat solder, on the mounting terminals provided on the back surface of the container body. Thus, a surface-mounted resonator having a simplified configuration with improved characteristics can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a surface-mount vibrator mounted on a set board for explaining an embodiment of the present invention.
FIG. 2 is a graph showing a relative value of a maximum strain using thickness as a parameter as compared with a conventional example illustrating the operation of an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a surface-mount vibrator for explaining a conventional example.
FIG. 4 is a bottom view of a surface-mount vibrator for explaining a conventional example.
FIG. 5 is a side view of a surface mount resonator mounted on a set board for explaining a problem of the conventional example.
FIG. 6 is a side view of a surface mount resonator mounted on a set board for explaining another conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Container main body, 2 crystal pieces, 3 covers, 4 terminal electrodes, 5 conductive paths, 6 mounting terminals, 7 conductive adhesives, 8 surface mount vibrators, 9 set substrates, 10 circuit terminals, 11 solders, 12 glasses, 13 Lead wire, 14 copper plate.

Claims (2)

実装端子を底面に有する矩形状とした容器本体内に内底面の端子電極と電気的・機械的に接続した水晶片を収容してカバーを被せ、前記水晶片を密閉封入してなる表面実装用の水晶振動子において、前記実装端子上に平板状とした半田よりも柔軟な銅又は銅の合金とした金属板を設けたことを特徴とする水晶振動子。For surface mounting, a crystal piece electrically and mechanically connected to the terminal electrode on the inner bottom is housed and covered in a rectangular container body with mounting terminals on the bottom, and the crystal piece is hermetically sealed. 3. The crystal resonator according to claim 1, wherein a metal plate made of copper or a copper alloy, which is more flexible than the flat solder, is provided on the mounting terminal. 前記銅又は銅の合金の表面には錆を防止する防錆膜が形成された請求項1の水晶振動子。2. The crystal unit according to claim 1, wherein a rust-preventing film for preventing rust is formed on a surface of said copper or copper alloy.
JP2002232090A 2002-08-08 2002-08-08 Surface mount crystal unit Expired - Fee Related JP3905804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002232090A JP3905804B2 (en) 2002-08-08 2002-08-08 Surface mount crystal unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002232090A JP3905804B2 (en) 2002-08-08 2002-08-08 Surface mount crystal unit

Publications (2)

Publication Number Publication Date
JP2004072637A true JP2004072637A (en) 2004-03-04
JP3905804B2 JP3905804B2 (en) 2007-04-18

Family

ID=32017650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232090A Expired - Fee Related JP3905804B2 (en) 2002-08-08 2002-08-08 Surface mount crystal unit

Country Status (1)

Country Link
JP (1) JP3905804B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260600A (en) * 2004-03-11 2005-09-22 Nippon Dempa Kogyo Co Ltd Crystal oscillator for surface mounting
JP2012165299A (en) * 2011-02-09 2012-08-30 Nippon Dempa Kogyo Co Ltd Surface mounting piezoelectric device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260600A (en) * 2004-03-11 2005-09-22 Nippon Dempa Kogyo Co Ltd Crystal oscillator for surface mounting
JP2012165299A (en) * 2011-02-09 2012-08-30 Nippon Dempa Kogyo Co Ltd Surface mounting piezoelectric device

Also Published As

Publication number Publication date
JP3905804B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
US8053953B2 (en) Electronic component for surface mounting
JP2013207686A (en) Crystal oscillator
JP2006279872A (en) Piezoelectric vibrator, manufacturing method therefor, and manufacturing method of piezoelectric oscillator using the piezoelectric vibrator
JP2006311380A (en) Piezoelectric vibrator and piezoelectric oscillator
JP2004064701A (en) Quartz oscillator for surface mounting
US7746184B2 (en) Bonding-type surface-mount crystal oscillator
JP2006032645A (en) Package for electronic component
JP2007158419A (en) Crystal oscillator for surface mount
JP2014103627A (en) Packaging structure of piezoelectric vibration device
JP2011199228A (en) Base of package for electronic component, and package for electronic component
JP2005065104A (en) Surface mounted piezoelectric vibrator and its manufacturing method
JP2009049258A (en) Method of packaging electronic component
JP3905804B2 (en) Surface mount crystal unit
CN107017861B (en) Crystal oscillator
JP2007201616A (en) Surface mount piezoelectric oscillator, and manufacturing method thereof
JP5300434B2 (en) Surface mount crystal oscillator
JP2005260600A (en) Crystal oscillator for surface mounting
JP2002076813A (en) Surface mounting crystal resonator
JP2006324797A (en) Crystal device for surface mounting
JP4481046B2 (en) Surface mount ceramic package
JP2003297453A (en) Surface-mounted gastight terminal and crystal resonator using the same
JP2004056269A (en) Piezoelectric oscillator
JP2003133886A (en) Crystal oscillator
JP2004297211A (en) Surface mount piezoelectric vibrator
JP2004297208A (en) Surface mount type piezoelectric vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070109

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20070112

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130119

LAPS Cancellation because of no payment of annual fees