JP2004071922A - Manufacturing method of infrared light emitting and receiving module - Google Patents

Manufacturing method of infrared light emitting and receiving module Download PDF

Info

Publication number
JP2004071922A
JP2004071922A JP2002230822A JP2002230822A JP2004071922A JP 2004071922 A JP2004071922 A JP 2004071922A JP 2002230822 A JP2002230822 A JP 2002230822A JP 2002230822 A JP2002230822 A JP 2002230822A JP 2004071922 A JP2004071922 A JP 2004071922A
Authority
JP
Japan
Prior art keywords
light emitting
resin
light
elements
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002230822A
Other languages
Japanese (ja)
Inventor
Koichi Haneda
羽田 浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Electronics Co Ltd
Original Assignee
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Electronics Co Ltd filed Critical Citizen Electronics Co Ltd
Priority to JP2002230822A priority Critical patent/JP2004071922A/en
Publication of JP2004071922A publication Critical patent/JP2004071922A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a low-cost infrared light emitting and receiving module, which dispenses with a separate molded body for shielding the light and exerts good productivity. <P>SOLUTION: Light emitting elements 2 and light receiving elements 3 are arranged, for mounting, at given positions on an integrated circuit board 1A for multiple units to make an array in which the elements are paired, followed by sealing to cover the upper surfaces of both elements with a translucent sealing resin 4. A plurality of linear grooves 5 are formed parallel to each other in the sealing resin 4, being located between the rows of elements 2 and 3, with a depth reaching the upper surface of the circuit board 1A. A liquid resin or coating material mixed in advance with infrared light cutting filters having a wavelength cutting function, is cast into the grooves 5 to form light shielding walls 6, followed by cutting along given orthogonal lines X, Y for pairing the elements 2 and 3, thereby forming a single infrared light emitting and receiving module 7. The plurality of grooves 5 are formed with a metal mold when sealed with resin. Alternatively, the grooves 5 may be formed by dicing after the resin sealing. Thus the light shielding molded body is dispensed with to skip an installation procedure, thereby enhancing productivity and enabling manufacture at a low cost. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、パーソナルコンピューター、プリンター、PDA、ファクシミリ、ページャー、携帯電話等の電子機器に使用される赤外投受光モジュールの製造方法に関する。
【0002】
【従来の技術】
近年、光通信機能を搭載したノート型パソコン、PDA、携帯電話等の携帯機器で赤外線データ通信モジュールの小型化がより強く要求されている。LEDからなる発光素子、フォトダイオードからなる受光素子、アンプ、ドライブ回路等が組み込まれたICチップからなる回路部をリードフレームに直接ダイボンド及びワイヤーボンドし、可視光カットエボキシ樹脂による樹脂モールドで、送信部と受信部を一パッケージ化した赤外線データ通信モジュールが開発されている。従来の一般的な赤外投受光モジュールについて、図4、図5により、その概略の構造を説明する。
【0003】
図4は、赤外投受光モジュールの平面図、図5は、図4のA−A線断面図である。図4、図5において、10はガラスエポキシ樹脂等よりなる平面が略長方形形状の絶縁性を有する回路基板で、その上面に図示しない所定の導電パターンが形成されている。回路基板10は、ガラスエポキシ基板を使用したが、アルミナセラミック基板、ポリエステルやポリイミド等のプラスチックフイルム基板などを使用しても良い。
【0004】
11は高速赤外LEDからなる発光素子であり、12はフォトダイオードからなる受光素子である。両者はそれぞれ回路基板10の上面側に実装されており、図示されていない導電パターンにダイボンド及びワイヤーボンドされ接続されている。
【0005】
13は遮光用成形品であり、金型を用いて成形し、前記回路基板10上に接着剤等で固着されている。遮光用成形品13には、前記発光素子11より出射された赤外光が横方向から漏れて封止樹脂中を通って受光素子12に伝搬するのを防止するために、遮光壁14が形成されている。
【0006】
15は前記発光素子11及び受光素子12を樹脂封止する可視光カット剤入りエポキシ系の透光性樹脂である。前記封止樹脂15は、赤外線光の出射及び集光の機能を持たせると同時に両素子の保護を行うものである。16は上記構成の赤外投受光モジュールである。
【0007】
【発明が解決しようとする課題】
しかしながら、上述した赤外投受光モジュールの製造方法は、遮光用成形品を製造するのに、金型を使用して成形する必要が有る。また、その遮光用成形品を回路基板上に固着する取り付け作業を要するので、その分、製造コストがアップしてしまうと言う問題があった。
【0008】
本発明は上記従来の課題に鑑みなされたものであり、その目的は、別体の遮光用成形品を持たない、量産性に優れた安価な赤外投受光モジュールの製造方法を提供するものである。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明における赤外投受光モジュールの製造方法は、平面が略長方形形状の上面に所定の導電パターンを形成した回路基板の上面側に、発光素子、受光素子等の光素子を実装し、該発光素子及び受光素子の上面を覆うように透光性樹脂で樹脂封止すると共に、前記両素子間に発光素子より出射された赤外光が横方向から受光素子に侵入するのを防止する遮光壁を有する赤外投受光モジュールの製造方法において、多数個取りする集合回路基板の所定位置に、発光素子、受光素子が一対になるようにアレイ状に配置・実装し、該発光素子及び受光素子の上面を覆うように透光性樹脂で樹脂封止すると共に、前記発光素子と受光素子の列間の遮光すべき部分に、前記集合回路基板の上面に達する深さで、前記封止樹脂に並列する複数の線状溝を形成し、該線状溝に液状樹脂又は塗料を流し込み遮光壁を形成した後、前記発光素子、受光素子が一対になるように直交する所定のカットラインに沿って切断し、単個の赤外投受光モジュールに形成したことを特徴とするものである。
【0010】
また、前記並列する複数の線状溝は、樹脂封止時に金型で形成したことを特徴とするものである。
【0011】
また、前記並列する複数の線状溝は、樹脂封止後にダイシングにより形成したことを特徴とするものである。
【0012】
また、前記液状樹脂又は塗料は、予め波長カット機能を有する赤外線カットフィルターを混ぜ込んだものであることを特徴とするものである。
【0013】
【発明の実施の形態】
以下、図面に基づいて本発明における赤外投受光モジュールの製造方法について説明する。図1〜図3は、本発明の実施の形態である赤外投受光モジュールとその製造方法に係わり、図1は、赤外投受光モジュールの平面図、図2は、図1のB−B線断面図である。図3(a)は、単個に分割前の集合回路基板の平面図である。図3(b)は、集合回路基板に発光素子、受光素子が一対になるようにアレイ状に配置・実装した状態の断面図である。図3(c)は、封止樹脂に発光素子と受光素子の列間に線状溝を形成した状態の断面図である。図3(d)は、線状溝に液状樹脂又は塗料を注入し遮光壁を形成した状態の断面図である。
【0014】
図1、図2において、1はガラスエポキシ樹脂等よりなる平面が略長方形形状の絶縁性を有する回路基板で、その上面に図示しない所定の導電パターンが形成されている。2は高速赤外LEDからなる発光素子であり、3はフォトダイオードからなる受光素子である。両者はそれぞれ回路基板1の上面側に実装されており、図示されていない導電パターンにダイボンド及びワイヤーボンドされ接続されている。
【0015】
4は前記発光素子2及び受光素子3を樹脂封止する、可視光カット剤入りエポキシ系の透光性の封止樹脂である。前記封止樹脂4には、前記発光素子2と受光素子3の間で回路基板1の上面に達する深さの線状溝5が形成されていて、該線状溝5に、予め波長カット機能を有する赤外線カットフィルターを混ぜ込んだ液状樹脂又は塗料を流し込み遮光壁6が形成されている。遮光壁6は、前記発光素子2より出射された赤外光が横方向から漏れて封止樹脂4中を通って受光素子3に伝搬するのを防止する機能を有するものである。
【0016】
次に、赤外投受光モジュールの製造方法について説明する。図3(a)、(b)において、多数個取りする集合回路基板1Aの所定位置に、発光素子2、受光素子3が一対になるように所定の位置にアレイ状に配置・実装する。
【0017】
図3(c)において、前記発光素子2及び受光素子3の上面を覆うように、トランスファーモールド等で透光性の封止樹脂4で樹脂封止する。この樹脂封止する際に、発光素子2と受光素子3の列間の遮光すべき部分に金型を使用して、前記集合回路基板1Aの上面に達する深さで、並列する複数の線状溝5を形成するものである。
【0018】
また、前記並列する複数の線状溝5を形成するのに、前記発光素子2及び受光素子3の上面を覆うように透光性の封止樹脂4で樹脂封止し、樹脂キュアー後、ダイシングにより線状溝5を形成しても良い。
【0019】
図3(d)において、前記線状溝5に、予め波長カット機能を有する赤外線カットフィルターを混ぜ込んだ液状樹脂又は塗料を流し込み、毛細管現象にて線状溝5全体に行き渡らせて遮光壁6を形成する。
【0020】
図3(a)において、前記発光素子2、受光素子3が一対になるように直交する所定のカットラインX、Yに沿って切断し、単個の赤外投受光モジュール7を形成する。
【0021】
以上述べた赤外投受光モジュールの製造方法において、別体の遮光用成形品を持たないで、遮光壁を設けた多数個取り生産ができる赤外投受光モジュールの製作が可能である。
【0022】
【発明の効果】
以上説明したように、本発明の赤外投受光モジュールの製造方法によれば、遮光用成形品が削減できる。従って、基板上への遮光用成形品の取り付け作業も不要になる。また、多数個取りの集合基板で生産ができるので、量産性に優れた安価な赤外投受光モジュールの製造方法を提供することが可能である。
【図面の簡単な説明】
【図1】本発明の実施の形態を係わる赤外投受光モジュールの平面図である。
【図2】図1のB−B線断面図である。
【図3】本発明の実施の形態を係わる赤外投受光モジュールの製造方法を示し、(a)は、単個に分割前の集合回路基板の平面図、(b)は、集合回路基板に発光素子、受光素子が一対になるようにアレイ状に配置・実装した状態の断面図、(c)は、封止樹脂に発光素子と受光素子の列間に線状溝を形成した状態の断面図、(d)は、線状溝に液状樹脂又は塗料を注入し遮光壁を形成した状態の断面図である。
【図4】従来の赤外投受光モジュールの平面図である。
【図5】図4のA−A線断面図である。
【符号の説明】
1 回路基板
1A 集合回路基板
2 発光素子(赤外LED)
3 受光素子(フォトダイオード)
4 封止樹脂
5 線状溝
6 遮光壁
7 赤外投受光モジュール
X、Y カットライン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an infrared light emitting and receiving module used in electronic devices such as a personal computer, a printer, a PDA, a facsimile, a pager, and a mobile phone.
[0002]
[Prior art]
In recent years, there has been a strong demand for smaller infrared data communication modules in portable devices such as notebook computers, PDAs, and mobile phones equipped with an optical communication function. A light emitting element composed of LED, a light receiving element composed of photodiode, a circuit part composed of an IC chip incorporating an amplifier, a drive circuit, etc., are directly die-bonded and wire-bonded to the lead frame, and transmitted by resin molding with visible light cut epoxy resin. An infrared data communication module in which a unit and a receiving unit are integrated into one package has been developed. The general structure of a conventional general infrared light emitting and receiving module will be described with reference to FIGS.
[0003]
FIG. 4 is a plan view of the infrared light emitting and receiving module, and FIG. 5 is a sectional view taken along line AA of FIG. 4 and 5, reference numeral 10 denotes an insulating circuit board made of glass epoxy resin or the like and having a substantially rectangular flat surface, and a predetermined conductive pattern (not shown) is formed on the upper surface thereof. Although a glass epoxy substrate is used for the circuit board 10, an alumina ceramic substrate, a plastic film substrate such as polyester or polyimide may be used.
[0004]
Numeral 11 denotes a light emitting element composed of a high-speed infrared LED, and numeral 12 denotes a light receiving element composed of a photodiode. Both are mounted on the upper surface side of the circuit board 10 and are connected to a conductive pattern (not shown) by die bonding and wire bonding.
[0005]
Reference numeral 13 denotes a light-shielding molded product, which is molded using a mold and fixed on the circuit board 10 with an adhesive or the like. In order to prevent the infrared light emitted from the light emitting element 11 from leaking from the lateral direction and propagating to the light receiving element 12 through the sealing resin, a light shielding wall 14 is formed on the light shielding molded article 13. Have been.
[0006]
Reference numeral 15 denotes an epoxy-based translucent resin containing a visible light cutting agent for sealing the light emitting element 11 and the light receiving element 12 with resin. The sealing resin 15 has a function of emitting and condensing infrared light and simultaneously protects both elements. Reference numeral 16 denotes an infrared light emitting / receiving module having the above configuration.
[0007]
[Problems to be solved by the invention]
However, in the above-described method for manufacturing an infrared light emitting and receiving module, it is necessary to mold using a mold in order to manufacture a molded article for shielding light. In addition, there is a problem that the mounting work for fixing the light-shielding molded product on the circuit board is required, and the manufacturing cost is increased accordingly.
[0008]
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a method of manufacturing an inexpensive infrared light emitting and receiving module excellent in mass productivity without having a separate light-shielding molded product. is there.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a method for manufacturing an infrared light emitting and receiving module according to the present invention includes a light emitting element, a light receiving element, and the like, on an upper surface side of a circuit board in which a predetermined conductive pattern is formed on an upper surface having a substantially rectangular flat surface. The optical element is mounted, and the light-emitting element and the light-receiving element are resin-sealed so as to cover the upper surfaces of the light-emitting element and the light-receiving element. In a method for manufacturing an infrared light emitting and receiving module having a light shielding wall for preventing intrusion, a light emitting element and a light receiving element are arranged and mounted in an array so as to form a pair at a predetermined position on a collective circuit board from which a large number of chips are taken. A resin-sealing resin to cover the upper surfaces of the light emitting element and the light receiving element, and a depth reaching the upper surface of the integrated circuit board in a portion to be shielded between the rows of the light emitting element and the light receiving element. In the sealing resin After forming a plurality of linear grooves in parallel, pouring a liquid resin or paint into the linear grooves to form a light-shielding wall, the light emitting element, along a predetermined cut line orthogonal to the light receiving element so as to form a pair. It is characterized by being cut and formed into a single infrared light emitting / receiving module.
[0010]
Further, the plurality of parallel linear grooves are formed by a mold during resin sealing.
[0011]
Further, the plurality of parallel linear grooves are formed by dicing after resin sealing.
[0012]
Further, the liquid resin or the paint is characterized in that an infrared cut filter having a wavelength cut function is mixed in advance.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for manufacturing an infrared light emitting and receiving module according to the present invention will be described with reference to the drawings. 1 to 3 relate to an infrared light emitting / receiving module and a method of manufacturing the same according to an embodiment of the present invention. FIG. 1 is a plan view of the infrared light emitting / receiving module, and FIG. It is a line sectional view. FIG. 3A is a plan view of the integrated circuit board before being divided into single pieces. FIG. 3B is a cross-sectional view showing a state where the light emitting element and the light receiving element are arranged and mounted in an array so as to be a pair on the collective circuit board. FIG. 3C is a cross-sectional view showing a state in which a linear groove is formed between the columns of the light emitting element and the light receiving element in the sealing resin. FIG. 3D is a cross-sectional view of a state in which a liquid resin or paint is injected into the linear groove to form a light shielding wall.
[0014]
In FIGS. 1 and 2, reference numeral 1 denotes a circuit board made of glass epoxy resin or the like and having a substantially rectangular insulated surface and having a predetermined conductive pattern (not shown) formed on the upper surface thereof. Reference numeral 2 denotes a light-emitting element including a high-speed infrared LED, and reference numeral 3 denotes a light-receiving element including a photodiode. Both are mounted on the upper surface side of the circuit board 1, and are connected to a conductive pattern (not shown) by die bonding and wire bonding.
[0015]
Reference numeral 4 denotes an epoxy-based translucent sealing resin containing a visible light cutting agent for sealing the light emitting element 2 and the light receiving element 3 with resin. A linear groove 5 having a depth reaching the upper surface of the circuit board 1 is formed between the light emitting element 2 and the light receiving element 3 in the sealing resin 4. A light shielding wall 6 is formed by pouring a liquid resin or paint mixed with an infrared cut filter having the following. The light shielding wall 6 has a function of preventing the infrared light emitted from the light emitting element 2 from leaking from the lateral direction and propagating to the light receiving element 3 through the sealing resin 4.
[0016]
Next, a method for manufacturing the infrared light emitting / receiving module will be described. 3A and 3B, the light emitting element 2 and the light receiving element 3 are arranged and mounted in a predetermined position in an array at a predetermined position on a collective circuit board 1A from which a large number of chips are taken.
[0017]
In FIG. 3C, the light-emitting element 2 and the light-receiving element 3 are covered with a light-transmissive sealing resin 4 by transfer molding or the like so as to cover the upper surfaces thereof. At the time of this resin sealing, a plurality of linear lines are arranged in a depth to reach the upper surface of the collective circuit board 1A by using a mold in a portion of the light-emitting element 2 and the light-receiving element 3 to be shielded from light. The groove 5 is formed.
[0018]
In order to form the plurality of parallel linear grooves 5, resin sealing is performed with a light-transmitting sealing resin 4 so as to cover upper surfaces of the light emitting element 2 and the light receiving element 3, and after resin curing, dicing is performed. May be used to form the linear groove 5.
[0019]
In FIG. 3D, a liquid resin or paint mixed with an infrared cut filter having a wavelength cut function in advance is poured into the linear groove 5, and the liquid resin or the paint is spread over the entire linear groove 5 by a capillary phenomenon. To form
[0020]
In FIG. 3A, a single infrared light emitting and receiving module 7 is formed by cutting the light emitting element 2 and the light receiving element 3 along predetermined orthogonal cut lines X and Y so as to form a pair.
[0021]
In the method for manufacturing an infrared light emitting and receiving module described above, it is possible to manufacture an infrared light emitting and receiving module provided with a light shielding wall and capable of mass production without a separate light shielding molded product.
[0022]
【The invention's effect】
As described above, according to the method of manufacturing an infrared light emitting and receiving module of the present invention, the number of light-shielding molded products can be reduced. Therefore, the work of mounting the light-shielding molded product on the substrate becomes unnecessary. In addition, since production can be performed using a multi-piece collective substrate, it is possible to provide a method for manufacturing an inexpensive infrared light emitting and receiving module that is excellent in mass productivity.
[Brief description of the drawings]
FIG. 1 is a plan view of an infrared light emitting and receiving module according to an embodiment of the present invention.
FIG. 2 is a sectional view taken along line BB of FIG.
3A and 3B show a method of manufacturing an infrared light emitting and receiving module according to the embodiment of the present invention, wherein FIG. 3A is a plan view of an integrated circuit board before being divided into single pieces, and FIG. Sectional view of a state in which a light emitting element and a light receiving element are arranged and mounted in an array so as to form a pair. FIG. FIG. 3D is a cross-sectional view of a state in which a liquid resin or paint is injected into the linear groove to form a light shielding wall.
FIG. 4 is a plan view of a conventional infrared light emitting and receiving module.
FIG. 5 is a sectional view taken along line AA of FIG. 4;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Circuit board 1A Assembly circuit board 2 Light emitting element (infrared LED)
3 Light receiving element (photodiode)
4 Sealing resin 5 Linear groove 6 Light shielding wall 7 Infrared light emitting / receiving module X, Y Cut line

Claims (4)

平面が略長方形形状の上面に所定の導電パターンを形成した回路基板の上面側に、発光素子、受光素子等の光素子を実装し、該発光素子及び受光素子の上面を覆うように透光性樹脂で樹脂封止すると共に、前記両素子間に発光素子より出射された赤外光が横方向から受光素子に侵入するのを防止する遮光壁を有する赤外投受光モジュールの製造方法において、多数個取りする集合回路基板の所定位置に、発光素子、受光素子が一対になるようにアレイ状に配置・実装し、該発光素子及び受光素子の上面を覆うように透光性樹脂で樹脂封止すると共に、前記発光素子と受光素子の列間の遮光すべき部分に、前記集合回路基板の上面に達する深さで、前記封止樹脂に並列する複数の線状溝を形成し、該線状溝に液状樹脂又は塗料を流し込み遮光壁を形成した後、前記発光素子、受光素子が一対になるように直交する所定のカットラインに沿って切断し、単個の赤外投受光モジュールに形成したことを特徴とする赤外投受光モジュールの製造方法。A light emitting element, a light receiving element, and other optical elements are mounted on the upper surface side of a circuit board in which a predetermined conductive pattern is formed on the upper surface of a substantially rectangular shape, and the light transmitting element covers the upper surface of the light emitting element and the light receiving element. In a method for manufacturing an infrared light emitting and receiving module having a light shielding wall for sealing a resin with a resin and for preventing infrared light emitted from the light emitting element from entering the light receiving element from the lateral direction between the two elements, A light emitting element and a light receiving element are arranged and mounted in an array at a predetermined position of a collective circuit board to be individually taken as a pair, and resin-encapsulated with a translucent resin so as to cover the upper surfaces of the light emitting element and the light receiving element. In addition, a plurality of linear grooves parallel to the sealing resin are formed in a portion to be shielded between the rows of the light emitting elements and the light receiving elements at a depth reaching the upper surface of the collective circuit board. Pour liquid resin or paint into the groove After being formed, the light emitting element and the light receiving element are cut along a predetermined cut line orthogonal to each other so as to form a pair, and formed into a single infrared light emitting and receiving module. Production method. 前記並列する複数の線状溝は、樹脂封止時に金型で形成したことを特徴とする請求項1記載の赤外投受光モジュールの製造方法。2. The method according to claim 1, wherein the plurality of parallel linear grooves are formed with a mold at the time of resin sealing. 前記並列する複数の線状溝は、樹脂封止後にダイシングにより形成したことを特徴とする請求項1記載の赤外投受光モジュールの製造方法。2. The method according to claim 1, wherein the plurality of parallel linear grooves are formed by dicing after resin sealing. 前記液状樹脂又は塗料は、予め波長カット機能を有する赤外線カットフィルターを混ぜ込んだものであることを特徴とする請求項1記載の赤外投受光モジュールの製造方法。2. The method according to claim 1, wherein the liquid resin or the paint is preliminarily mixed with an infrared cut filter having a wavelength cut function.
JP2002230822A 2002-08-08 2002-08-08 Manufacturing method of infrared light emitting and receiving module Pending JP2004071922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002230822A JP2004071922A (en) 2002-08-08 2002-08-08 Manufacturing method of infrared light emitting and receiving module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230822A JP2004071922A (en) 2002-08-08 2002-08-08 Manufacturing method of infrared light emitting and receiving module

Publications (1)

Publication Number Publication Date
JP2004071922A true JP2004071922A (en) 2004-03-04

Family

ID=32016765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230822A Pending JP2004071922A (en) 2002-08-08 2002-08-08 Manufacturing method of infrared light emitting and receiving module

Country Status (1)

Country Link
JP (1) JP2004071922A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317878A (en) * 2004-04-30 2005-11-10 Citizen Electronics Co Ltd Photo-reflector device and its manufacturing method
KR100733840B1 (en) 2006-04-10 2007-07-04 주식회사 래도 Light projecting apparatus of light emitting diode chip module
DE102007009531A1 (en) * 2007-02-27 2008-08-28 Osram Opto Semiconductors Gmbh Jet device manufacturing method, involves separating common casting bodies and common separation body in carrier body, and arranging transmission units, receiving units, transparent casting bodies and opaque separation body on carrier body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317878A (en) * 2004-04-30 2005-11-10 Citizen Electronics Co Ltd Photo-reflector device and its manufacturing method
KR100733840B1 (en) 2006-04-10 2007-07-04 주식회사 래도 Light projecting apparatus of light emitting diode chip module
DE102007009531A1 (en) * 2007-02-27 2008-08-28 Osram Opto Semiconductors Gmbh Jet device manufacturing method, involves separating common casting bodies and common separation body in carrier body, and arranging transmission units, receiving units, transparent casting bodies and opaque separation body on carrier body

Similar Documents

Publication Publication Date Title
KR100674871B1 (en) Side Emitting LED Package and Method of Manufacturing The Same
KR101176819B1 (en) Ambient light and proximity sensor package and method for manufacturing thereof
EP2372796B1 (en) Light emitting diode package and light unit including the same
US20100213487A1 (en) Side-emitting led package and manufacturing method of the same
US20080105941A1 (en) Sensor-type semiconductor package and fabrication
US8860047B2 (en) Semiconductor light-emitting device
CN101310381A (en) Semiconductor package, method of producing the same, semiconductor module, and electronic apparatus
KR101579623B1 (en) Semiconductor package for image sensor and fabricatingmethod thereof
TWI521671B (en) The package structure of the optical module
US8003426B2 (en) Method for manufacturing package structure of optical device
US6747261B1 (en) Image sensor having shortened wires
US20070194339A1 (en) Optical data communication module
KR20080006181A (en) Dam encap type led package or module and methode the same
JP2005317878A (en) Photo-reflector device and its manufacturing method
KR20090073598A (en) Led package
JP2004071922A (en) Manufacturing method of infrared light emitting and receiving module
US6897485B2 (en) Device for optical and/or electrical data transmission and/or processing
KR100899859B1 (en) Image Sensor Pakage of Optical Pointing Device
JP2010045107A (en) Method for manufacturing optical semiconductor device
KR100713180B1 (en) Sideview led package and method for manufacturing thereof
JP2001168122A (en) Method for manufacturing electronic part mount module and the same module
KR100455693B1 (en) Chip size package and its manufacturing method
KR101103336B1 (en) Photo diode package and manufacturing method thereof
CN116299850B (en) Silicon photon packaging structure and preparation method thereof
CN219477235U (en) Chip packaging structure and electronic equipment