JP2004059983A - Method for manufacturing oxide superconductive conductor and apparatus therefor - Google Patents

Method for manufacturing oxide superconductive conductor and apparatus therefor Download PDF

Info

Publication number
JP2004059983A
JP2004059983A JP2002218930A JP2002218930A JP2004059983A JP 2004059983 A JP2004059983 A JP 2004059983A JP 2002218930 A JP2002218930 A JP 2002218930A JP 2002218930 A JP2002218930 A JP 2002218930A JP 2004059983 A JP2004059983 A JP 2004059983A
Authority
JP
Japan
Prior art keywords
substrate
oxide
manufacturing
target
superconducting conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002218930A
Other languages
Japanese (ja)
Inventor
Kazutomi Kakimoto
柿本 一臣
Yasuhiro Iijima
飯島 康裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2002218930A priority Critical patent/JP2004059983A/en
Publication of JP2004059983A publication Critical patent/JP2004059983A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Physical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for obtaining a long oxide superconductive conductor provided with a uniform thin film of the oxide superconductive conductor, and to provide an apparatus therefor. <P>SOLUTION: The method for manufacturing the oxide superconductive conductor is characterized by depositing particles produced out of a target, while heating a substrate by supplying an electric current to it. The device having current-connecting terminals on rotation shafts in a unit for paying off the substrate and in a unit for winding it up, for supplying an electric current to the rotating shafts while sliding brushes to them, can be employed in order to supply the electric current to the substrate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、酸化物超電導線材等の長尺の酸化物超電導導体をスパッタリング、レーザ蒸着等の物理蒸着法を用いて作製する方法の改良に関するものである。
【0002】
【従来の技術】
従来、酸化物系の超電導体を製造する方法として、真空蒸着法、スパッタリング法、レーザー蒸着法、MBE法(分子線エピタキシー法)、CVD法(化学気相成長法)、IVD法(イオン気相成長法)などの成膜法が知られているが、これらの各種の成膜法において、均質で超電導特性の良好な酸化物超電導薄膜を製造できる方法として、真空成膜プロセスを用い、ターゲットから発生させた粒子を対向基板上に堆積させるレーザー蒸着法が主として用いられている。
【0003】
図4に代表的なレーザー蒸着方式の酸化物超電導導体製造装置の一例を示した。図中40は処理容器を示し、この処理容器40の内部の蒸着処理室40aの底部側には長尺のテープ状の基材47が、その上方側にはターゲットホルダー44に固定されたターゲット45が各々設けられ、基材47とターゲット45の間にフィルター板43が設けられている。一方、処理容器40の外部に設けられたレーザー発振器51を備えていて、反射ミラー52,54と集光レンズ53を介してレーザービームを窓55を通してターゲット45に照射する。これによってターゲット45からターゲットの構成粒子が叩き出されるかえぐり出され、基材47上に粒子が順次堆積して酸化物超電導薄膜が形成される。前記ターゲット45は酸化物超電導体、あるいは酸化物超電導体と近似組成の複合酸化物からなるものである。
【0004】
このようなレーザー蒸着装置では、一般にガスレーザー発振器が使用される。ガスレーザーとしては励起状態の原子又は分子と、基底状態の原子又は分子が結合した2量体を使用したエキシマーレーザーが利用できる。ガスレーザーは簡単な装置で高出力のレーザー発振が容易に得られる利点がある。たとえば、エキシマーレーザーはKrF、XeClあるいはArF等の希ガス2量体の混合気体中の放電やイオン照射によって生じる励起状態のエキシマーの誘導放出によって、パルス発振することを利用したものである。エキシマーレーザーでは、たとえば波長;190〜250nm、パルス幅;数ns、尖頭出力;数MW以上で高い繰り返し周波数で得られ、平均出力も大きい利点を有するので、産業用に広く利用されている。
前記フィルター板43に形成した窓孔43aによって、ターゲット45から発生して放射状に広がりつつ飛来する粒子(プルーム)のうち、一区画の粒子のみを基材47上に堆積させることができるので、長さ方向に整った均一組成の酸化物超電導薄膜を有する、長尺の酸化物超電導導体薄膜が形成される。そしてこの薄膜を熱処理することで酸化物超電導薄膜を得ることができる。
【0005】
このようなレーザー蒸着装置では、レーザー蒸着する際に加熱ヒータ46を作動させて基材47を間接加熱して500〜800℃に熱する。この他にも酸化物超電導膜性膜における加熱方法としては、CVD法などで用いられるhot−wallタイプ(反応管全体を外部加熱する方式)や、接触加熱、ランプ加熱等が知られている。
【0006】
【発明が解決しようとする課題】
しかしながら、hot−wallタイプでは雰囲気全体を加熱するため両面成膜できる点では有利であるが、成膜時に管内が蒸着粒子により汚染されるために温度が安定し難い欠点がある。ランプ加熱でもランプヒーターの輻射熱放射窓が蒸着粒子により汚れるため、長時間安定した成膜が得られない欠点がある。さらに、接触加熱方式では、温度安定性は良いが片面成膜しかできない欠点がある。
【0007】
【課題を解決するための手段】
本発明は上記課題を解決するため、基材に電流を流して直接加熱する加熱方式を採用した。すなわち、本発明の酸化物超電導導体の製造方法は、蒸着処理室内に設けた酸化物超電導体、または酸化物超電導体と同等の組成あるいは成膜中に逃避し易い成分を多く含有させた複合酸化物の焼結体からなるターゲットから発生させた粒子を、ターゲットの近傍を移動中の基材上に連続的に堆積させて酸化物超電導導体を製造する方法において、基材に電流を流して基材を加熱しながらターゲットから発生した粒子を堆積させて酸化物超電導導体を製造する方法を採用した。
この方法を採用すれば、自己発熱による加熱のため長時間にわたって安定した温度制御が可能となる。また、非接触加熱のため両面に酸化物超電導導体を形成することが可能となる。
【0008】
本発明の酸化物超電導導体の製造方法では、前記基材としてはハステロイを使用するのが好ましい。ハステロイは比抵抗が比較的高いので基材がヒーター線の役割を果たし、基材を高温に加熱することが容易となる。
【0009】
上記のような製造方法を採用するための酸化物超電導導体の製造装置として、本発明の酸化物超電導導体の製造装置は、酸化物超電導体または複合酸化物の焼結体からなるターゲットと長尺の基材を配置した蒸着処理室を具備し、レーザービームを前記ターゲットに照射して長尺の基材上に連続して酸化物超電導体層を形成する酸化物超電導導体の製造装置であって、長尺の基材を移動させる送出装置と巻取り装置を具備し、該送出装置と巻取り装置を介して長尺の基材に電流を印加することが可能なように構成した酸化物超電導導体の製造装置を採用した。この装置によれば、基材に電流を通して直接加熱するので基材の温度管理が正確かつ容易となり、また、基材両面に付帯設備がないので両面同時に酸化物超電導導体を形成することが可能となる。
【0010】
本発明の酸化物超電導導体の製造装置では、前記送出装置と巻取り装置のボビンに電流接続端子を具備した装置を利用することができる。また、前記送出装置と巻取り装置のボビンの回転軸を、前記電流接続端子と電気的に接続したものとする。そして、前記送出装置と巻取り装置のボビンの回転軸は、絶縁物を介してモーターシャフトに連結しておく。
酸化物超電導導体の製造装置をこのように構成することにより、長尺の基材のうち超電導導体層を形成する部分のみを最適温度に制御することが容易となり、長尺の基材に連続して均質な酸化物超電導導体層を形成することができる。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明を具体的に説明する。
図1は、本発明で使用する酸化物超電導導体の製造装置の一例につき、その構成を説明する図である。図1に示す酸化物超電導導体の製造装置では、長尺の基材1が送出装置12から巻取り装置13へ移動する間に、基材1の両面からレーザー蒸着により酸化物超電導体層を形成している。図1に示す例では2基のレーザー発振器11,21を使用し、レーザービーム15,25をターゲット16,26に照射して、これによってターゲット16,26から叩き出されるかえぐり出されたプルーム17,27を基材1の表面に当て、ターゲット構成粒子を基材1上に順次堆積させて酸化物超電導薄層を形成する。
【0012】
前記ターゲット16,26は酸化物超電導体、あるいは酸化物超電導体と近似組成の複合酸化物からなるものである。
ターゲット材料としては、例えば、YBaCu7−x、SmBaCu7−x、NdBaCu7−xなどで示される組成をもつレアアース系酸化物超電導材料のうちから選択された一種以上のものが用いられ、特に、YBaCu7−xのY系酸化物超電導材料が好んで用いられる。
【0013】
送出装置12及び巻取り装置13のボビンに電流接続端子34,34を取り付け、導線19を介して電源18と電気的に接続してある。このような装置を使用して、送出装置12及び巻取り装置13から基材1に対して電流を印加し、基材1の抵抗を利用して基材1自身を自己加熱し、基材1を500℃〜800℃、好ましくは600℃〜700℃に加熱してレーザー蒸着する。
なお、基材1の送出装置12及び巻取り装置13並びにターゲット16,26は処理容器中に収容されるが、図では処理容器は省略してある。
【0014】
基材1はハステロイやステンレス等の高張力のテープ状の金属薄帯を使用する。基材として高張力の金属薄帯を使用すれば、磁場発生時において超電導導線に加わる強大な電磁力にも耐える強度を有する超電導導体を得ることができる。
特にハステロイを使用すれば比抵抗が約102 μΩ・cm程度と比較的高いので、基材自身がヒーター線の役割を果たし、基材を高温に加熱することが容易となるので好ましい。
【0015】
図2は、送出装置12又は巻取り装置13の構造の一例を示す斜視図である。送出装置12又は巻取り装置13は、2枚のリール31,32によってボビン36が挟持されており、ボビン36にテープ状の基材が巻き付けられ、長尺の基材が送出装置12から巻取り装置13へ順次移送されるようになっている。
送出装置12又は巻取り装置13の中心部には銅リング33が取り付けられており、銅リング33には銅板からなる電流接続端子34が接続されている。そして銅リング33及び電流接続端子34は、絶縁材35を介してボビン36に固定されている。
【0016】
電流接続端子34に電流を印加する方法には特に制限はないが、一例を図3に示す。図3は図2に示す送出装置12又は巻取り装置13のシャフトを通る断面図を示す。図3の例では、モーター(M)のシャフト23と送出装置又は巻取り装置の回転軸28とが絶縁体からなるカップリング22によって連結されている。図中24はカップリング22を固定するボルトである。また、回転軸28には2枚のリール31,32が嵌められており、リール31,32の間のボビン36にテープ状の基材1が巻き取られている。
そして回転軸28にはブラシ20が摺動可能に取り付けられており、導線19を通じて電流が印加される。
このような構造により、レーザー蒸着工程中わたって安定して基材1に制御された電流を印加することにより、基材の温度を最適に保ち、均質なレーザー蒸着粒子を形成して、高特性な超電導体とすることを可能にしている。
【0017】
【実施例】
以下実施例を用いて説明する。
基材として厚さ0.1mmのハステロイテープを使用し、基材の両面にIBAD法によりGdZr中間層を形成した。次いで長さ10mのテープ状基材 の両端末の中間層を剥ぎ取ってハステロイ基材を露出させ、この基材を図1に示す構造の装置の送出装置に巻き付け、他端を巻取り装置に装填した。図1に示す構造の装置の電流接続端子34,34間に1〜50アンペア(A)の制御された交流電流を流し、基板温度を750℃に維持した。そして2基のレーザー発振器からレーザービームをYBCO(YBaCu7−x)ターゲットに照射し、厚さ1μmのYBCO膜を形成した。熱処理後そのYBCO膜のIc(77K)を測定した結果、10mの全長にわたってIc=200A、Jc=1MA/cmの均質な長尺超電導導体が得られていた。
【0018】
【発明の効果】
本発明によれば、基材の自己発熱により加熱されるので、基材温度を最適条件に制御するのが容易となり、長尺の基材全域にわたって均質で高Icの酸化物超電導体が形成できる。
本実施例ではテープ状基材の両面に酸化物超電導体を形成する例について説明したが、片面のみに酸化物超電導体を形成する場合にも適用できる。さらに、本実施例ではレーザー蒸着の例について説明したが、真空蒸着法、スパッタリング法、MBE法(分子線エピタキシー法)、CVD法(化学気相成長法)、IVD法(イオン気相成長法)などの成膜法にも適用できるのは勿論である。
【図面の簡単な説明】
【図1】本発明で使用する酸化物超電導導体の製造装置の一例の構成を説明する図である。
【図2】本発明で使用する酸化物超電導導体の製造装置の、送出装置12又は巻取り装置13の構造の一例を示す斜視図である。
【図3】図2に示す送出装置12又は巻取り装置13のシャフトを通る断面図を示す。
【図4】従来の酸化物超電導導体製造装置の一例を示す構成図である。
【符号の説明】
1・・・・・基材、11,21・・・・・レーザー発振器、10・・・・・超電導導体製造装置、12・・・・・送出装置、13・・・・・巻取り装置、16,26・・・・・ターゲット、 20・・・・・ブラシ、22・・・・・カップリング、31,32・・・・・リール、33・・・・・銅リング、34・・・・・電流接続端子、35・・・・・絶縁材、36・・・・・ボビン、38・・・・・ターゲット、47・・・・・基材、51・・・・・レーザー発振器、52,54・・・・・反射ミラー、53・・・・・集光レンズ、46・・・・・加熱ヒーター
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in a method for manufacturing a long oxide superconducting conductor such as an oxide superconducting wire using a physical vapor deposition method such as sputtering or laser vapor deposition.
[0002]
[Prior art]
Conventionally, methods for producing oxide-based superconductors include vacuum deposition, sputtering, laser deposition, MBE (molecular beam epitaxy), CVD (chemical vapor deposition), and IVD (ion vapor deposition). Film formation methods such as growth method) are known. Among these various film formation methods, a method of manufacturing a uniform oxide superconducting thin film having excellent superconducting properties by using a vacuum film formation process and forming a thin film from a target. A laser vapor deposition method of depositing the generated particles on a counter substrate is mainly used.
[0003]
FIG. 4 shows an example of a typical apparatus for manufacturing an oxide superconducting conductor of the laser deposition type. In the drawing, reference numeral 40 denotes a processing container, and a long tape-shaped base material 47 is provided on the bottom side of a vapor deposition processing chamber 40a inside the processing container 40, and a target 45 fixed to a target holder 44 is provided on the upper side thereof. Are provided, and a filter plate 43 is provided between the base material 47 and the target 45. On the other hand, a laser oscillator 51 provided outside the processing container 40 is provided, and a target 45 is irradiated with a laser beam through a window 55 via reflection mirrors 52 and 54 and a condenser lens 53. As a result, the constituent particles of the target are beaten out or extracted from the target 45, and the particles are sequentially deposited on the base material 47 to form an oxide superconducting thin film. The target 45 is made of an oxide superconductor or a composite oxide having a composition similar to that of the oxide superconductor.
[0004]
In such a laser deposition apparatus, a gas laser oscillator is generally used. As a gas laser, an excimer laser using a dimer in which atoms or molecules in an excited state and atoms or molecules in a ground state are bonded can be used. Gas lasers have the advantage that high-power laser oscillation can be easily obtained with a simple device. For example, an excimer laser utilizes pulse oscillation by stimulated emission of an excimer in an excited state generated by discharge or ion irradiation in a mixed gas of a rare gas dimer such as KrF, XeCl or ArF. Excimer lasers are widely used in industrial applications because they can be obtained at high repetition frequencies at, for example, wavelengths of 190 to 250 nm, pulse widths of several ns, peak outputs of several MW or more, and have high average outputs.
The window hole 43a formed in the filter plate 43 allows only one section of particles among the particles (plume) generated from the target 45 and radiating and flying to be deposited on the base material 47, so that the length is long. A long oxide superconducting conductor thin film having an oxide superconducting thin film of uniform composition arranged in the direction of the length is formed. Then, by heat-treating this thin film, an oxide superconducting thin film can be obtained.
[0005]
In such a laser vapor deposition apparatus, when performing laser vapor deposition, the heater 46 is operated to indirectly heat the substrate 47 to heat it to 500 to 800 ° C. In addition, as a heating method for the oxide superconducting film, a hot-wall type (a method of externally heating the entire reaction tube) used in a CVD method or the like, contact heating, lamp heating, and the like are known.
[0006]
[Problems to be solved by the invention]
However, the hot-wall type is advantageous in that both sides can be formed because the entire atmosphere is heated, but there is a drawback that the temperature is hardly stabilized because the inside of the tube is contaminated by vapor deposition particles during the film formation. Even when the lamp is heated, the radiant heat radiation window of the lamp heater is contaminated with the vapor-deposited particles. Further, the contact heating method has a disadvantage that the temperature stability is good but only one-sided film formation is possible.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention employs a heating method in which an electric current is applied to a substrate to directly heat the substrate. In other words, the method for producing an oxide superconductor of the present invention employs a composite oxide containing an oxide superconductor provided in a vapor deposition chamber, or a composition equivalent to the oxide superconductor or containing a large amount of a component that easily escapes during film formation. In a method of manufacturing an oxide superconducting conductor by continuously depositing particles generated from a target made of a sintered body of a product on a moving substrate in the vicinity of the target, an electric current is applied to the substrate to form a substrate. A method of manufacturing an oxide superconductor by depositing particles generated from a target while heating the material was adopted.
If this method is adopted, stable temperature control can be performed for a long time due to heating by self-heating. In addition, it is possible to form an oxide superconducting conductor on both surfaces due to non-contact heating.
[0008]
In the method for producing an oxide superconducting conductor of the present invention, it is preferable to use Hastelloy as the base material. Since Hastelloy has a relatively high specific resistance, the base material functions as a heater wire, and it is easy to heat the base material to a high temperature.
[0009]
As an apparatus for manufacturing an oxide superconducting conductor for adopting the manufacturing method as described above, the apparatus for manufacturing an oxide superconducting conductor of the present invention includes a target formed of a sintered body of an oxide superconductor or a composite oxide and a long sheet. An apparatus for producing an oxide superconducting conductor, comprising: a deposition processing chamber in which a base material is arranged; and irradiating a laser beam to the target to form an oxide superconductor layer continuously on a long base material. An oxide superconducting device comprising a sending device and a winding device for moving a long base material, and configured to be able to apply a current to the long base material via the sending device and the winding device. A conductor manufacturing device was adopted. According to this apparatus, the base material is directly heated by passing an electric current, so that the temperature control of the base material is accurate and easy, and since there is no auxiliary equipment on both sides of the base material, it is possible to form an oxide superconducting conductor simultaneously on both sides. Become.
[0010]
In the apparatus for manufacturing an oxide superconducting conductor according to the present invention, a device having a current connection terminal on a bobbin of the above-mentioned sending device and the winding device can be used. Further, it is assumed that the rotating shaft of the bobbin of the feeding device and the winding device is electrically connected to the current connection terminal. The rotating shafts of the sending device and the bobbin of the winding device are connected to a motor shaft via an insulator.
By configuring the manufacturing apparatus of the oxide superconducting conductor in this way, it is easy to control only the portion of the long base material where the superconducting conductor layer is to be formed at the optimum temperature, and to continuously connect the long base material to the long base material. Thus, a homogeneous oxide superconducting conductor layer can be formed.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described with reference to the drawings.
FIG. 1 is a diagram illustrating a configuration of an example of an apparatus for manufacturing an oxide superconductor used in the present invention. In the apparatus for manufacturing an oxide superconducting conductor shown in FIG. 1, an oxide superconductor layer is formed by laser evaporation from both sides of the substrate 1 while the long substrate 1 moves from the sending device 12 to the winding device 13. are doing. In the example shown in FIG. 1, two laser oscillators 11 and 21 are used, and laser beams 15 and 25 are irradiated on targets 16 and 26, whereby plumes 17 that are beaten out of targets 16 and 26 and are drawn out. , 27 are applied to the surface of the substrate 1, and target constituent particles are sequentially deposited on the substrate 1 to form an oxide superconducting thin layer.
[0012]
The targets 16 and 26 are made of an oxide superconductor or a composite oxide having a composition similar to that of the oxide superconductor.
As the target material, for example, a rare earth-based oxide having a composition represented by Y 1 Ba 2 Cu 3 O 7 -x , Sm 1 Ba 2 Cu 3 O 7 -x , Nd 1 Ba 2 Cu 3 O 7 -x, or the like One or more materials selected from superconducting materials are used. In particular, a Y-based oxide superconducting material of Y 1 Ba 2 Cu 3 O 7-x is preferably used.
[0013]
The current connection terminals 34, 34 are attached to the bobbins of the sending device 12 and the winding device 13, and are electrically connected to the power source 18 via the conducting wire 19. Using such a device, a current is applied to the substrate 1 from the sending device 12 and the winding device 13, and the substrate 1 itself is self-heated using the resistance of the substrate 1, and the substrate 1 is heated. Is heated to 500 ° C. to 800 ° C., preferably 600 ° C. to 700 ° C. for laser vapor deposition.
In addition, the sending device 12 and the winding device 13 of the base material 1 and the targets 16 and 26 are accommodated in a processing container, but the processing container is omitted in the figure.
[0014]
As the base material 1, a high-strength tape-shaped metal ribbon such as Hastelloy or stainless steel is used. If a high-strength metal ribbon is used as the base material, a superconducting conductor having strength enough to withstand a strong electromagnetic force applied to the superconducting wire when a magnetic field is generated can be obtained.
In particular, since relatively high specific resistance of about 10 2 μΩ · cm approximately With Hastelloy, substrate itself acts as a heater wire, so it is easy to heat the substrate to high temperatures preferred.
[0015]
FIG. 2 is a perspective view showing an example of the structure of the sending device 12 or the winding device 13. In the delivery device 12 or the take-up device 13, a bobbin 36 is sandwiched between two reels 31 and 32, a tape-shaped base material is wound around the bobbin 36, and a long base material is taken up from the delivery device 12. They are sequentially transferred to the device 13.
A copper ring 33 is attached to the center of the sending device 12 or the winding device 13, and a current connection terminal 34 made of a copper plate is connected to the copper ring 33. The copper ring 33 and the current connection terminal 34 are fixed to the bobbin 36 via an insulating material 35.
[0016]
Although there is no particular limitation on the method of applying a current to the current connection terminal 34, an example is shown in FIG. FIG. 3 shows a sectional view through the shaft of the delivery device 12 or the winding device 13 shown in FIG. In the example of FIG. 3, the shaft 23 of the motor (M) and the rotating shaft 28 of the sending device or the winding device are connected by a coupling 22 made of an insulator. In the figure, reference numeral 24 denotes a bolt for fixing the coupling 22. Further, two reels 31 and 32 are fitted on the rotating shaft 28, and the tape-shaped substrate 1 is wound on a bobbin 36 between the reels 31 and 32.
A brush 20 is slidably attached to the rotating shaft 28, and a current is applied through the conducting wire 19.
With such a structure, by applying a controlled current to the substrate 1 stably throughout the laser deposition process, the temperature of the substrate is kept optimal, uniform laser-deposited particles are formed, and high properties are obtained. It is possible to make it a superconductor.
[0017]
【Example】
Hereinafter, description will be made with reference to an embodiment.
A Hastelloy tape having a thickness of 0.1 mm was used as a substrate, and a Gd 2 Zr 2 O 5 intermediate layer was formed on both surfaces of the substrate by the IBAD method. Next, the intermediate layer at both ends of the tape-shaped base material having a length of 10 m was peeled off to expose the Hastelloy base material, and this base material was wound around the delivery device of the device having the structure shown in FIG. I loaded it. A controlled alternating current of 1 to 50 amperes (A) was passed between the current connection terminals 34, 34 of the device having the structure shown in FIG. 1 to maintain the substrate temperature at 750 ° C. Then, a laser beam was irradiated from two laser oscillators to a YBCO (Y 1 Ba 2 Cu 3 O 7-x ) target to form a 1 μm thick YBCO film. After the heat treatment, the YBCO film was measured for Ic (77 K). As a result, a uniform long superconductor having Ic = 200 A and Jc = 1 MA / cm 2 was obtained over the entire length of 10 m.
[0018]
【The invention's effect】
According to the present invention, since the substrate is heated by self-heating, it is easy to control the substrate temperature to the optimum condition, and a uniform and high Ic oxide superconductor can be formed over the entire length of the long substrate. .
In this embodiment, the example in which the oxide superconductor is formed on both surfaces of the tape-shaped substrate has been described. However, the present invention is also applicable to the case where the oxide superconductor is formed only on one surface. Further, in this embodiment, an example of laser vapor deposition has been described. However, vacuum vapor deposition, sputtering, MBE (molecular beam epitaxy), CVD (chemical vapor deposition), and IVD (ion vapor deposition) It is needless to say that the present invention can be applied to a film forming method such as this.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration of an example of an apparatus for manufacturing an oxide superconducting conductor used in the present invention.
FIG. 2 is a perspective view showing an example of the structure of a sending device 12 or a winding device 13 of the device for manufacturing an oxide superconducting conductor used in the present invention.
3 shows a section through the shaft of the delivery device 12 or the winding device 13 shown in FIG.
FIG. 4 is a configuration diagram illustrating an example of a conventional oxide superconductor manufacturing apparatus.
[Explanation of symbols]
1 ···· Base material, 11,21 ····· Laser oscillator, 10 ···· Superconducting conductor manufacturing device, 12 ····· Sending device, 13 ······ Winding device 16, 26 ... target, 20 ... brush, 22 ... coupling, 31, 32 ... reel, 33 ... copper ring, 34 ... ..Current connection terminals, 35... Insulating material, 36... Bobbin, 38... Target, 47... Substrate, 51... Laser oscillator 52 ..., A reflection mirror, 53, a condenser lens, 46, a heating heater

Claims (6)

蒸着処理室内に設けた酸化物超電導体、または酸化物超電導体と同等の組成あるいは成膜中に逃避し易い成分を多く含有させた複合酸化物の焼結体からなるターゲットから発生させた粒子を、ターゲットの近傍を移動中の基材上に連続的に堆積させて酸化物超電導導体を製造する方法において、基材に電流を流して基材を加熱しながらターゲットから発生した粒子を堆積させることを特徴とする酸化物超電導導体の製造方法。Particles generated from a target formed of a sintered body of an oxide superconductor provided in a vapor deposition processing chamber or a composite oxide containing a composition equivalent to the oxide superconductor or containing a large amount of components that easily escape during film formation. In a method of manufacturing an oxide superconducting conductor by continuously depositing on a moving substrate in the vicinity of a target, depositing particles generated from the target while heating the substrate by applying a current to the substrate. A method for producing an oxide superconducting conductor, comprising: 前記基材がハステロイであることを特徴とする請求項1に記載の酸化物超電導導体の製造方法。The method according to claim 1, wherein the base material is Hastelloy. 酸化物超電導体または複合酸化物の焼結体からなるターゲットと長尺の基材を配置した蒸着処理室を具備し、レーザービームを前記ターゲットに照射して長尺の基材上に連続して酸化物超電導体層を形成する酸化物超電導導体の製造装置であって、長尺の基材を移動させる送出装置と巻取り装置を具備し、該送出装置と巻取り装置を介して長尺の基材に電流を印加することが可能なように構成してなることを特徴とする酸化物超電導導体の製造装置。A target comprising a sintered body of an oxide superconductor or a composite oxide and a deposition processing chamber in which a long substrate is arranged, and a laser beam is continuously irradiated on the long substrate by irradiating the target with a laser beam. An apparatus for manufacturing an oxide superconductor that forms an oxide superconductor layer, comprising a sending device and a winding device that move a long base material, and a long device that is provided through the sending device and the winding device. An apparatus for manufacturing an oxide superconducting conductor, which is configured to be capable of applying a current to a substrate. 前記送出装置と巻取り装置のボビンに電流接続端子を具備してなることを特徴とする請求項3に記載の酸化物超電導導体の製造装置。The apparatus for manufacturing an oxide superconducting conductor according to claim 3, wherein a current connection terminal is provided on the bobbin of the sending device and the winding device. 前記送出装置と巻取り装置のボビンの回転軸が、前記電流接続端子と電気的に接続されていることを特徴とする請求項3に記載の酸化物超電導導体の製造装置。The apparatus for manufacturing an oxide superconducting conductor according to claim 3, wherein a rotating shaft of a bobbin of the sending device and the winding device is electrically connected to the current connection terminal. 前記送出装置及び巻取り装置のボビンの回転軸が、絶縁物を介してモーターシャフトに連結されていることを特徴とする請求項3に記載の酸化物超電導導体の製造装置。The apparatus for manufacturing an oxide superconducting conductor according to claim 3, wherein the rotating shafts of the bobbins of the sending device and the winding device are connected to a motor shaft via an insulator.
JP2002218930A 2002-07-26 2002-07-26 Method for manufacturing oxide superconductive conductor and apparatus therefor Withdrawn JP2004059983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002218930A JP2004059983A (en) 2002-07-26 2002-07-26 Method for manufacturing oxide superconductive conductor and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002218930A JP2004059983A (en) 2002-07-26 2002-07-26 Method for manufacturing oxide superconductive conductor and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2004059983A true JP2004059983A (en) 2004-02-26

Family

ID=31939965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002218930A Withdrawn JP2004059983A (en) 2002-07-26 2002-07-26 Method for manufacturing oxide superconductive conductor and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2004059983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189228A (en) * 2006-01-13 2007-07-26 European High Temperature Superconductors Gmbh & Co Kg Current adjusting electric device
CN113421710A (en) * 2021-05-21 2021-09-21 吕秀昌 Superconducting plasma material rod pretreatment device filled with rare earth material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189228A (en) * 2006-01-13 2007-07-26 European High Temperature Superconductors Gmbh & Co Kg Current adjusting electric device
CN113421710A (en) * 2021-05-21 2021-09-21 吕秀昌 Superconducting plasma material rod pretreatment device filled with rare earth material
CN113421710B (en) * 2021-05-21 2023-09-08 郭易之 Superconducting plasma material rod pretreatment device filled with rare earth material

Similar Documents

Publication Publication Date Title
US5158931A (en) Method for manufacturing an oxide superconductor thin film
JP2006228754A (en) Forming method of superconductor and reactor
JPH0217685A (en) Manufacture of metal oxide superconducting material layer using laser vaporization
WO1998017846A1 (en) Process for preparing polycrystalline thin film, process for preparing oxide superconductor, and apparatus therefor
JPH06293596A (en) Device for forming cushioning layer for arranged high tc tape superconduction and device for forming high-density condenser
JP3192666B2 (en) Method and apparatus for producing oxide superconducting film
JP2004059983A (en) Method for manufacturing oxide superconductive conductor and apparatus therefor
JP2004263227A (en) Thin film deposition method and deposition system
JP2963901B1 (en) Manufacturing method of superconducting thin film
JP2011146234A (en) Method of manufacturing oxide superconducting film
JPH05320882A (en) Formation of vapor-deposited thin film
JP5658891B2 (en) Manufacturing method of oxide superconducting film
JPH05101923A (en) Fabrication of oxide superconducting coil
WO2002072909A1 (en) Laminated film and method of forming film
JPH10226877A (en) This film forming method and equipment therefor
JP3187043B2 (en) Method for producing oxide superconductor by physical vapor deposition
JPH09275009A (en) Plate-shaped conductor with triaxial orientation oxide superconductors and laminated superconductive magnet
JPH0567517A (en) Manufacture of superconducting oxide coil
JPH0567515A (en) Manufacture of superconducting oxide coil
JP5122045B2 (en) Oxide superconductor and manufacturing method thereof
JP3705874B2 (en) Oxide superconductor manufacturing equipment
JP3856995B2 (en) Oxide superconducting thin film manufacturing apparatus and oxide superconducting thin film manufacturing method
JPH06228741A (en) Oxide superconducting tape producing heater and production of the tape
JP3428054B2 (en) Heater for producing oxide superconducting tape and method for producing oxide superconducting tape
JP2742418B2 (en) Method for producing oxide superconducting thin film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004