JP2004056875A - Noncontact transmission mechanism - Google Patents

Noncontact transmission mechanism Download PDF

Info

Publication number
JP2004056875A
JP2004056875A JP2002208707A JP2002208707A JP2004056875A JP 2004056875 A JP2004056875 A JP 2004056875A JP 2002208707 A JP2002208707 A JP 2002208707A JP 2002208707 A JP2002208707 A JP 2002208707A JP 2004056875 A JP2004056875 A JP 2004056875A
Authority
JP
Japan
Prior art keywords
roller
rotary transmission
transmission mechanism
outer peripheral
rollers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002208707A
Other languages
Japanese (ja)
Inventor
Masahiro Yamamoto
山本 雅弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritsu Koki Co Ltd
Original Assignee
Noritsu Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritsu Koki Co Ltd filed Critical Noritsu Koki Co Ltd
Priority to JP2002208707A priority Critical patent/JP2004056875A/en
Publication of JP2004056875A publication Critical patent/JP2004056875A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Rolls And Other Rotary Bodies (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Delivering By Means Of Belts And Rollers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To rationally constitute a noncontact transmission mechanism in which a pair of carrying rollers are synchronously driven. <P>SOLUTION: A noncontact transmission mechanism T is constituted by providing a rotary transmission body W to a spindle 13 that integrally rotates with a drive roller 11, and a spindle 14 of a press-contact roller 12 which can be switched between the state where it is press-contacted to the drive roller 11 and the state where it is away from the drive roller 11. A region magnetized in N-pole and a region magnetized in S-pole are alternately formed as tilted against an axial center on the outer peripheral surface of one rotary transmission body W, while the magnetized regions are formed as tilted in opposite direction on the outer peripheral surface of the other rotary transmission body W. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、2つの回転伝動体の間で磁力の作用によって回転力を伝えるよう構成してある非接触伝動機構に関に関する。
【0002】
【従来の技術】
上記のように構成された非接触伝動機構に関連する技術として特開平9‐77222号公報、あるいは、特開平11‐55932号公報に示されるものが存在する。これらの従来技術のうち、前者は駆動用傘車の傾斜面と従動用傘車の斜面夫々に対して周方向にN極とS極とを配置し、夫々の傾斜面を近接配置することにより、駆動用傘車の回転力を磁力を介して従動用傘車に伝える構成が記載され、又、従来の技術のうち後者は第1の磁石式歯車と、第2の磁石式歯車とに対して周方向にN極とS極とを交互に配置し、磁力によって夫々の歯車が連動して回転する構成が記載されている。
【0003】
【発明が解決しようとする課題】
ここで、紙葉体としての印画紙を圧着して搬送する状態と、印画紙から離間する非圧着状態とに切換え自在な一対の搬送ローラを同期駆動するよう、夫々の搬送ローラの支軸に回転伝動体を備え、磁力によって夫々の支軸に動力を伝える非接触伝動機構を考えると、一対の搬送ローラの一方が駆動回転し、他方が従動回転するものである場合には、従動側の搬送ローラが非接触状態にある場合でも、非接触伝動機構により、従動側の搬送ローラを駆動側の搬送ローラからの駆動力によって回転させることが可能となる。このように従動側の搬送ローラを予め回転させるものでは、この一対の搬送ローラを印画紙の露光を行うデジタル露光部に配置した場合には、印画紙を圧着して搬送する際には、予め回転する状態の従動側の搬送ローラを駆動側の搬送ローラの側に圧着させるので、例えば、非回転状態の搬送ローラを圧着させるものと比較して、圧着時のショックを低減すると云う良好な面を現出する。
【0004】
そこで、この非接触伝動機構として、公報番号を挙げた従来の技術に示される回転伝動体と同様に回転伝動体の外周に対してN極とS極とを交互に配置したものを想定すると、この従来の技術では、非接触状態で回転動力を伝動する機能を有するものであるが、N極とS極との中間位置には磁力が極めて弱い領域が形成されるので、搬送ローラの駆動時に、夫々の回転伝動体において磁力が極めて弱い領域同士が対向する回転位相関係となった場合には、一方の回転伝動体から他方の回転伝動体に対して伝えられる回転力も弱くなり、この回転位相においては紙葉体の搬送速度を低下させることが考えられる。
【0005】
しかしながら、デジタル露光部では、紙葉体としての印画紙を副走査方向に向けて決まった速度で搬送しながら、この副走査方向と直交する主走査方向に向けて光線を照射する形態で露光を行うので、この印画紙の搬送速度が一定しない場合には、搬送速度の乱れが露光ムラとなって現れるものとなり、改善の余地がある。
【0006】
本発明の目的は、一対の回転伝動体の間で回転速度差を発生させることなく円滑な動力伝達を現出する非接触伝動機構を合理的に構成する点にある。
【0007】
【課題を解決するための手段】
本発明の請求項1に係る非接触伝動機構の特徴、作用・効果は次の通りである。
〔特徴〕
2つの回転伝動体の間で磁力の作用によって回転力を伝えるよう構成してある非接触伝動機構において、紙葉体を圧着して搬送する圧着状態と、紙葉体から離間する非圧着状態とに切換自在な一対の搬送ローラを備え、この一対の搬送ローラと一体回転する支軸夫々に対して前記回転伝動体が備えられると共に、夫々の回転伝動体は、該回転伝動体の軸芯方向で一方の端部から他方の端部に亘る領域に形成されるN極の帯磁領域とS極の帯磁領域とを周方向に交互に配置し、かつ、他方の回転伝動体の帯磁領域を前記一方の端部側から他方の端部側に離間する部位で周方向で前記変位方向と逆方向に変位する形状に形成してある点にある。
【0008】
〔作用・効果〕
上記特徴によると、夫々の回転伝動体の外周面のうち互いに最も接近する部位において、回転伝動体の軸芯に沿う方向での特定の領域で、一方の回転伝動体の外周面の帯磁領域(例えばN極)と、他方の回転伝動体の外周面の帯磁領域(例えばS極)とが対向する位置関係で磁力で引き合う位置関係に設定した後に、一方の回転伝動体が回転した場合には磁力の作用によって他方の回転伝動体が逆方向に回転するものとなり、この回転に伴い最も接近する位置関係にあった帯磁領域(例えば、N極)と帯磁領域(例えば、S極)とが離間する位置関係となるが、周方向に変位する形状に形成した帯磁領域同士が接近することで磁力によって引き合う関係が継続するものとなり、しかも、前記特定の領域に隣接する帯磁領域同士(例えば、S極とN極)が接近する方向に移動するので、この帯磁領域の間で磁気によって引き合う力が新たに生ずるものとなる。その結果、回転時には夫々の回転伝動体の間に作用する磁力を大きく低下させる不都合を回避して、夫々の搬送ローラを滑らかに同期回転させ得る非接触伝動機構が合理的に構成された。
【0009】
本発明の請求項2に係る非接触伝動機構の特徴、作用・効果は次の通りである。
〔特徴〕
請求項1記載の非接触伝動機構において、前記帯磁領域が、前記軸芯と直交する方向視で、前記軸芯と傾斜する姿勢の帯状に形成されている点にある。
【0010】
〔作用・効果〕
上記特徴によると、夫々の回転軸芯に沿う方向での特定の位置では、夫々の回転伝動体が外周面のうち最も接近する部位において磁力によって互いに引き合う帯磁領域が、回転時により離間するものの、夫々の帯磁領域が軸芯と傾斜する姿勢の帯状に形成されているので、帯状の帯磁領域の何れかの領域が接近する位置関係で互いに引き合う状態を維持できる。その結果、帯磁領域の形状の設定によって夫々の回転伝動体の間に作用する磁力の変動を抑制して円滑な伝動を現出するものとなった。
【0011】
本発明の請求項3に係る非接触伝動機構の特徴、作用・効果は次の通りである。
〔特徴〕
請求項1記載の非接触伝動機構において、前記帯磁領域が、前記軸芯と直交する方向視で、軸芯方向に設定距離離間する位置で周方向に設定距離だけ段階的に変位する鉤状の境界部分を有する形状に形成されている点にある。
【0012】
〔作用・効果〕
上記特徴によると、夫々の回転軸芯に沿う方向での特定の位置では、夫々の回転伝動体が外周面のうち最も接近する部位において磁力によって互いに引き合う帯磁領域が、回転時により離間するものの、夫々の帯磁領域の境界部分が周方向に段階的に変位するので、回転に伴い次に続く帯状の帯磁領域を接近する位置関係で互いに引き合う状態に設定できる。その結果、帯磁領域の形状の設定によって夫々の回転伝動体の間に作用する磁力の変動を抑制して円滑な伝動を現出するものとなった。
【0013】
本発明の請求項4に係る非接触伝動機構の特徴、作用・効果は次の通りである。
〔特徴〕
請求項1〜3のいずれか1項に記載の非接触伝動機構において、前記一対の搬送ローラが異なる外周長に設定され、この外周長の比率と、夫々の支軸に備えた前記回転伝動体の外周長の比率とを等しく設定すると共に、夫々の回転伝動体の外周に形成される帯磁領域の数の比率を、この回転伝動体の外周長の比率に等しい数に設定してある点にある。
【0014】
〔作用・効果〕
上記特徴によると、夫々の搬送ローラの外周長の比率と、回転伝動体の外周長の比率とを等しく設定し、この比率と、夫々の回転伝動体の外周に形成される帯磁領域の数の比率とを等しく設定することにより、搬送ローラの回転時においては、回転伝動体を介して連動する搬送ローラの外周の周速度を等しい値に設定できる。その結果、外周長の比率が異なる搬送ローラであっても、等しい周速度で円滑に駆動できるものとなった。
【0015】
本発明の請求項5に係る非接触伝動機構の特徴、作用・効果は次の通りである。
〔特徴〕
請求項1〜4のいずれか1項に記載の非接触伝動機構において、前記一対の搬送ローラの一方が駆動側の搬送ローラで成り、他方が従動側の搬送ローラで成ると共に、夫々の搬送ローラで前記紙葉体を圧着して搬送する際において、この紙葉体から従動側の搬送ローラに作用する回転力を、夫々の搬送ローラの支軸に備えた前記回転伝動体同士の間の磁力によって搬送ローラの間に作用する回転力より強く設定してある点にある。
【0016】
〔作用・効果〕
上記特徴によると、搬送ローラで紙葉体を圧着して搬送する状態にある場合には、従動側の搬送ローラに対しては、紙葉体の移動力に起因する回転力と、非接触伝動機構からの回転力とが作用するものであるが、紙葉体から従動側の搬送ローラに作用する回転力が、回転伝動体から従動側の搬送ローラに作用する回転力より強いので、例えば、紙葉体の搬送時に何らかの原因で、回転伝動体同士の最も接近する部位においてN極とS極とが最も強く引き合う位置関係から外れた場合でも、このN極とS極とが最も強く引き合う位置関係(最も接近する位置関係)となる方向に回転伝動体が回転する不都合を阻止し、回転伝動体からの回転力に起因する力を紙葉体に伝えることが無い。その結果、紙葉体の搬送時に不要な外力が作用する不都合を回避して紙葉体を円滑に搬送し得る非接触伝動機構が合理的に構成された。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、プリンタプロセッサを示す概略ブロック図である。
【0018】
(プリンタプロセッサの全体構造)
このプリンタプロセッサは、現像処理済みの写真フィルム(図示せず)の画像コマから画像情報をR、B、Gの三原色に色分解して読み取りデジタル画像データに変換するためのフィルムスキャナSと、このフィルムスキャナSで得られたデジタル画像データを処理してプリントデータを作成可能なコントローラCと、このプリントデータに基づいて紙葉体としての印画紙1に露光し、コマ画像に対応する画像の潜像を形成する露光ヘッドHを有するデジタルプリント部と、露光された印画紙1を現像処理する現像処理部Dとを備えている。現像処理部Dで現像された印画紙1は、乾燥工程を経て仕上がりプリントとしてプリンタプロセッサ上面のトレイ上に排出される。
【0019】
デジタルプリント部には、この実施の形態ではPLZTシャッタ方式が採用されている。つまり、PLZT素子からなるシャッタアレイが露光ヘッドHを構成している。このPLZT素子からなるシャッタアレイは、チタン酸ジルコン酸鉛にランタンを添加することにより得られる透明強誘電性セラミックス材料(PLZT)から構成され、その材料の有する電気光学効果を利用したもので、各シャッタには光源から多数の光ファイバを介してR、G、B各色の光が導入される。このシャッタアレイは印画紙1の幅方向、つまり主走査方向に沿って延びている。各PLZT素子、すなわちシャッタに所定レベルの電圧が印加されると、シャッタは光透過状態になり、その電圧の印加が停止されると光遮断状態となる。従って、コントローラCからプリントデータに基づいて各画素に対応するシャッタに駆動電圧が印加されると、そのシャッタが開いて光源から導入されている色の光が印画紙1に照射される。光源には、R、G、Bの3色の光学フィルタからなる回転フィルタが備えられており、この回転フィルタを回転位相制御することにより、R、G、Bの内の1つの色のフィルタが選択的に光源に対向し、その色のフィルタを介して選択色の光が光ファイバーを通じてシャッタに送られる。デジタルプリント部の方式としては、このPLZTシャッタ方式以外に液晶シャッタ方式、蛍光ビーム方式、FOCRT方式、DMD(デジタルマイクロミラーデバイス)方式などが知られており、設計時に露光仕様に応じて選択することができる。
【0020】
このデジタルプリント部は、2列に並んだカット印画紙1を同時に露光できる。又、図1に示されるように、印画紙搬送ラインは、搬送上手側から、乳剤面を外側にして印画紙1をロール状に収納した2つの印画紙マガジンM、M、ペーパーカッター2、バックプリント部3、振り分け装置4、前搬送装置5、露光搬送装置F、後搬送装置6夫々が配置されている。従って、印画紙1に対する露光処理を行う際には、2つの印画紙マガジンM、Mの何れか一方から引き出された印画紙2をペーパーカッター2でプリントサイズに合わせてカットし、この印画紙1の裏面側(基材層)にバックプリント部3で必要な印字を行い、必要な場合には振り分け装置4で2列に振り分け、このように2列に振り分けられた印画紙1を前搬送部5でデジタルプリント部に送り込み、デジタルプリント部においては露光ヘッドHで露光を行いながら露光搬送装置Fが印画紙2の搬送を行い、このデジタルプリント部で露光が完了した印画紙1を後搬送部6が現像処理部Dに送るよう処理形態が設定されている。
【0021】
振り分け装置4は、ペーパーカッター2によってカットされた印画紙1を受け取って、前搬送の左右の列位置に交互に移載するチャッカー式のX−Y移動機構から構成されている。又、幅広の大版印画紙1を取り扱う場合は1列での露光となるので、印画紙1を供給するラインから受け取った印画紙1を、主走査方向には移動させることなく、そのまま前搬送装置5に引き渡す処理が行われる。
【0022】
図2に示すように、前搬送装置5は印画紙1を挟み込んで搬送する一対の搬入ローラ5a、5bを備えて成り、後搬送装置6はデジタルプリント部から送り出された印画紙1を上方に送る一対の駆動搬出ローラ43、圧着搬出ローラ44を備えると共に、この搬出ローラ43、44からの印画紙1を固定ガイド部材41と可動ガイド部材42との間に沿って略水平方向に送るよう複数のローラを備えて構成されている(複数のローラの詳細は後述する)。
【0023】
(印画紙搬送装置の構造)
前記露光搬送装置Fは、主走査方向に2列に並んだ印画紙1を受け取って高い露光品質を実現するために露光ヘッドHを支持する枠体と一体化され、搬送上手側(搬入ローラ5a、5bの側)に配置された第1露光搬送ローラユニット10と、搬送下手側(搬出ローラ43、44の側)に配置された第2露光搬送ローラユニット20と、露光ヘッドHからの光線によって露光が行われる露光位置に印画紙1をガイドするガイド部材8(図6を参照)とを備えて構成されている。
【0024】
図3〜図6に示すように、第1露光搬送ローラユニット10は、印画紙2の基材層側に接当する第1駆動ローラ11と、この第1駆動ローラ11及び印画紙2の乳剤層側に対向する第1圧着ローラ12を有し、第2露光搬送ローラユニット20は、印画紙1の基材層側に接当する第2駆動ローラ21と、この第2駆動ローラ21及び印画紙1の乳剤層側に対向する第2圧着ローラ22を有する。又、第1、第2駆動ローラ11、21は等しい直径に構成され、剛性の高い外周面を備えている。因みに、この実施の形態では、アルミニウム製のローラの外周面を更にセラミック層で被覆することによって夫々の駆動ローラ11、12が形成されている。他方、圧着ローラとしての第1、第2圧着ローラ12,22も等しい直径に形成され、その外周面は、ゴム等の弾性材料からなる。
【0025】
これら第1駆動ローラ11と第1圧着ローラ12、及び、第2駆動ローラ21と第2圧着ローラ22とは搬送ローラの一例であり、第1駆動ローラ11と第2駆動ローラ21とが駆動側の搬送ローラとして機能し、第1圧着ローラ12と第2圧着ローラ22とが従動側の搬送ローラとして機能する。又、第1駆動ローラ11と第1圧着ローラ12との直径に対して、第2駆動ローラ21と第2圧着ローラ22との直径が小径に設定されている。
【0026】
第1駆動ローラ11と第2駆動ローラ21と一体回転する支軸13,23はフレーム32に対して並行姿勢の軸芯周りで回動自在に支持され、夫々の支軸13、23に対して同径の入力プーリ11P、21Pを備えている。又、フレーム32に備えたステッピングモータ型の搬送モータ33の駆動軸に備えた出力プーリ33Pと、このフレーム32に支持した大径の第1中間プーリ34との間にタイミングベルト35を巻回し、この第1中間プーリ34の側面に形成された小径の第2中間プーリ36と、前記夫々の入力プーリ11P、21Pとに亘ってタイミングベルト37を巻回して、この搬送モータ33の駆動力によって第1、第2駆動ローラ11、21を同期駆動できるよう構成してある。
【0027】
前記第1、第2圧着ローラ12、22は、この第1、第2圧着ローラ12、22と一体回転する金属製の支軸14、24に対してゴムなどの弾性材料を備えて成っている。又、前記フレーム32に対して第1、第2駆動ローラ11、21の軸芯と並行する姿勢(主走査方向と並行する姿勢)の揺動支軸15周りで揺動自在に支持された一対の第1アーム16、16の揺動端同士に亘って、第1圧着ローラ12の支軸14を回転自在に支持し、これと同様に、前記フレーム32に対して第1、第2駆動ローラ11、21の軸芯と並行する姿勢(主走査方向と並行する姿勢)の揺動支軸25軸芯周りで揺動自在に支持された一対の第2アーム26、26の揺動端同士に亘って、第2圧着ローラ22の支軸24を回転自在に支持している。そして、夫々の第1、第2アーム16、26の揺動によって、夫々に対応する第1、第2駆動ローラ11、21の外周面と、第1、第2圧着ローラ12、22の外周面との間に印画紙1を挟込む状態と第1、第2駆動ローラ11、21の外周面から第1、第2圧着ローラ12、22の外周面を大きく離間させる状態とに切換え自在に構成されている。
【0028】
第1、第2アーム16、26夫々に対し、第1、第2圧着ローラ12、22を対応する第1、第2駆動ローラ11、21の側に付勢するバネ38、38を備えており、又、図3、図7に示すように、第1、第2圧着ローラ12、22の支軸14、24の端部に対して第1、第2カムフォロアー17、27を備え、この第1、第2カムフォロアー17、27に接触する第1、第2回転カム18、28をフレーム32に支持してある。前記第1、第2カムフォロア17、27は、正確な円形を呈し、金属製など剛性の高い外周面を備えている。
【0029】
そして、前記第1、第2回転カム18、28の側面に形成した入力プーリ18P、28Pと、ステッピングモータ型の第1、第2カムモータ19、29の出力プーリ19P、29Pとに亘ってタイミングベルト39、39を巻回してある。夫々の第1、第2回転カム18、28は前述のように正確な円形の外周面を有するものであり、幾何学上の中心から偏芯した位置に対して回転中心X1、X2を設定することにより、この回転中心X1、X2からの距離が大きい外周面が対応する第1、第2カムフォロアー17、27に接触することで、対応する第1、第2圧着ローラ12、22を離間位置に設定し、回転中心X1、X2からの距離が小さい外周面が対応する第1、第2カムフォロアー17、27に接触することで夫々の圧着ローラで印画紙1を圧着する位置に設定するよう構成されている。
【0030】
この機構では、第1、第2圧着ローラ12、22とも、印画紙1が送り込まれるまでは離間位置に待機させ、印画紙1が駆動ローラと圧着可能な位置に達すると離間位置から圧着位置に切換える作動を行わせ、又、印画紙1を送り出すタイミングに達すると圧着ローラを圧着位置から離間位置に切換えるよう作動形態が設定される。その結果、必要に応じて、第1圧着ローラ12と第2圧着ローラ22の位置の組み合わせに基づいて、印画紙1が第1露光搬送ローラユニット10のみによって搬送される形態と、第2露光搬送ローラユニット20のみによって搬送される形態と、第1・第2露光搬送ローラユニット10,20の双方によって搬送される形態とが実現される。
【0031】
又、図6に示すように、露光ヘッドHでの露光位置において印画紙の裏面側に接触する中央ガイド部8Cと、これより搬送方向の上手位置に配置された前ガイド部8Fと、中央ガイド部8Cより搬送方向下手位置に配置された後ガイド部8Rとを有したガイド部材8が備えられ、中央ガイド部8Cのガイド面と、前ガイド部材8Fのガイド面と、後ガイド部8Rのガイド面とが平滑となるよう相対的な位置関係が設定され、又、このガイド部材8と対向する位置に印画紙1の浮き上がりを阻止する阻止部材9を備えている。
【0032】
(連動回転構造)
これまで説明した構成は、従来からのプリンタプロセッサと基本的に変わるところが無く、本発明では、駆動側の搬送ローラとしての第1、第2駆動ローラ11、21の回転に連動して従動側の搬送ローラとしての第1、第2圧着ローラ12、22を回転させるために一対の回転伝動体W(後述する駆動側回転伝動体Waと従動側回転伝動体Wbとの上位概念)で成る非接触伝動機構Tを備えている点に特徴を有する。
【0033】
図3〜図5、図8、図9に示すように、第1駆動ローラ11の支軸13に備えた駆動側回転伝動体Waと、第1圧着ローラ12の支軸14に備えた従動側回転伝動体Wbとで非接触伝動機構Tが構成され、これと同様に第2駆動ローラ21の支軸23に備えた駆動側回転伝動体Waと、第2圧着ローラ22の支軸24に備えた従動側回転伝動体Wbとで非接触伝動機構Tが構成されている。
【0034】
前記夫々の非接触伝動機構Tの駆動側回転伝動体Waと、従動側回転伝動体Wbとは、夫々の回転伝動体Wの軸芯方向で一方の端部から他方の端部に亘る領域に形成されるN極の帯磁領域(図中にNで示した領域)とS極の帯磁領域(図中にSで示した領域)とを等しい幅の帯状で周方向に交互に配置し、かつ、この帯磁領域を軸芯に直交する方向視で軸芯と傾斜する姿勢で(スパイラル状で)形成した永久磁石(マグネット)で構成されている。尚、永久磁石としてネオジム(Nd)系や、同じ希土類のサマリウム(Sm)系のものや、バリウム(Ba)やストロンチウム(Sr)や鉛(Pb)等のフェライト系のもの、あるいは、アルニコ磁石を用いることが可能である。
【0035】
又、駆動側回転伝動体Waと従動側回転伝動体WbとのN極、S極夫々の帯磁領域は、傾斜方向を互いに逆向きに設定してあり、この設定により駆動側回転伝動体Waと従動側伝動体Wbとを逆向きに回転させるよう構成してある。特に、駆動側回転伝動体Waと従動側回転伝動体Wbとの帯磁領域を、円周方向を直線とする形態で展開すると図10のように表すことが可能である。
【0036】
前述したように、第1、第2駆動ローラ11、21が第2圧着ローラ21、22より大径に形成されており、第1駆動ローラ11の周長と、第1圧着ローラ12の周長との比率、及び、第2駆動ローラ21の周長と、第2圧着ローラ22の周長との比率が等しく設定され、この比率を前記駆動側回転伝動体Waの周長と、従動側回転伝動体Wbの周長との比率に等しく設定している。そして、この駆動側回転伝動体Waの外周面に形成される帯磁領域の数と、従動側回転伝動体Wbの外周面に形成される帯磁領域の数との比率を周長の比率に設定してある。具体的には、駆動ローラと圧着ローラとの全周長の比率は、10:6(5:3)であり、駆動側回転伝動体Waの周長と従動側回転伝動体Wbの周長との比率、及び、帯磁領域の数の比率を、この比率の値に設定してある。
【0037】
又、第1駆動ローラ11と、第1圧着ローラ12とで印画紙1を圧着して搬送する際において、印画紙1の搬送に伴って印画紙1から第1圧着ローラ21に作用する回転力を、第1駆動ローラ11の支軸13に備えた駆動側回転伝動体Waと第1圧着ローラ21の支軸23に備えた従動側回転伝動体Wbとの間に磁気によって第1圧着ローラ21の支軸23に作用する回転力より大きく設定してある。この設定は第2駆動ローラ21と、第2圧着ローラ22との間の非接触伝動機構Tにおいても同様に設定されている。具体的に第1露光搬送ユニット10を例に挙げて説明すると、第1駆動ローラ11と第1圧着ローラ12とで印画紙1を圧着した状態において、第1圧着ローラ12が印画紙1をグリップするものであり、この印画紙1を介して従動側回転伝動体Wbに作用する回転力(トルク)を、駆動側回転伝動体Waと従動側回転伝動体Wbとの間に作用する磁気に起因する回転力(トルク)より大きく設定することにより、夫々の回転伝動体Wの回転位相が適正な位相から外れることがあっても、印画紙1の搬送時には、この位相を適正な関係に設定する方向に作用する力を印画紙1に作用させないものにしている。この設定は第2露光発送ユニット20においても同様に行われている。
【0038】
これにより、第1、第2駆動ローラ11、21が駆動回転した場合には、この回転に伴って駆動側回転伝動体Waが回転し、この回転に連係して従動側回転伝動体Wbが回転するものとなる。この回転の際には、夫々の回転伝動体Wの帯磁領域が逆向きとなる傾斜姿勢で形成されているので、従動側回転伝動体Wbは駆動側回転伝動体Waの回転方向と逆向きに回転するものとなる。しかも、夫々の回転伝動体Wの外周面のうち互いに最も接近する部位において、回転伝動体Wの軸芯に沿う方向での特定の領域で、駆動側回転伝動体Waの外周面の帯磁領域(例えばN極)と、従動側回転伝動体Wbの外周面の帯磁領域(例えばS極)とが対向する位置関係で磁力で引き合う位置関係に維持した後に、駆動側回転伝動体Waが回転した場合には磁力の作用によって従動側回転伝動体Wbが逆方向に回転するものとなり、この回転に伴い最も接近する位置関係にあった帯磁領域(例えば、N極)と帯磁領域(例えば、S極)とが離間する位置関係となるが、周方向に変位して形成した(傾斜する姿勢で形成した)帯磁領域同士が接近することで磁力によって引き合う関係が新たに作り出されるものとなり、前記特定の領域に隣接する帯磁領域同士(例えば、S極とN極)が接近する方向に移動するので、この帯磁領域の間で磁気によって引き合う力が増すものとなり、圧着時には夫々の回転伝動体Wの間に作用する磁力を大きく低下させる不都合を回避して、第1、第2駆動ローラ11、21と第1、第2圧着ローラ1222とを滑らかに同期回転させるものにしている。
【0039】
又、駆動側回転伝動体Waの周長と従動側回転伝動体Wbの周長との比率を第1、第2駆動ローラ11、21と、第1、第2圧着ローラ12、22との比率と等しく設定し、駆動側回転伝動体Waと従動側回転伝動体Wbとに形成した帯磁領域の数に比率を前記比率に等しく設定してあるので、第1、第2駆動ローラ11、21と第1、第2圧着ローラ12、22とが同期回転する際には、この第2圧着ローラ12、22の周速度と、第1、第2駆動ローラ11、21の周速度とを一致させる速度で同期回転させるものとなっている。
【0040】
図8に示すように圧着ローラが離間位置に設定された状態では駆動ローラとの間隔d1が1.5mmとなり、圧着ローラが駆動ローラに圧着する状態では夫々の間隔d2が0.5mmとなるよう、夫々の状態において駆動側回転体Waと従動側回転体Wbとの間に隙間が形成されるよう相対的な位置関係が設定されている。尚、印画紙1の厚さは0.2mm程度であり、圧着ローラと駆動ローラとに印画紙1を挟み込んだ場合には駆動側回転体Waと従動側回転体Wbとの間に形成される隙間は0.7mm程度となる。
【0041】
又、後搬送装置6は、図2に示すように、前述のように表面側(感光面側)に配置される固定ガイド部材41と印画紙1の裏面側に配置される可動ガイド部材42とを備えると共に、複数のローラとして、固定ガイド部材41の側に位置固定状態で支持された前記駆動搬出ローラ43と、これに対向する位置で可動ガイド部材42と一体的に移動する前記圧着搬出ローラ44とを備え、これより搬送方向の下手位置において固定ガイド部材41の側に固定状態で配置された駆動型の中間ローラ45と、この中間ローラ45と対向する位置において可動ガイド部材42と一体的に移動自在に支持された複数のガイドローラ46、46とを備え、更に、これより搬送方向の下手位置に駆動ローラ47と圧着ローラ48とで成る複数の搬送ローラを備えている。
【0042】
又、駆動搬出ローラ43と中間ローラ45と搬送ローラを構成する複数の駆動ローラ47とを連動させるよう複数のタイミングベルト49と、これらを駆動するステッピングモータ型の後搬送モータ50を備えると共に、可動ガイド部材42を接近方向と離間方向に作動させる電動アクチュエータ61を備えている。
【0043】
この後搬送装置6は、デジタルプリント部から印画紙1が送り出される際には、可動ガイド部材42を待機位置に保持し、デジタルプリント部から印画紙1の後端が送り出されたタイミングで電動アクチュエータ61を駆動して可動ガイド部材42を接近方向に移動させ、駆動搬出ローラ43と圧着搬出ローラ44とを圧着させて印画紙1を挟み込んで搬送を開始する。又、可動ガイド部材42を接近方向に移動させた際には中間ローラ45と複数のガイドローラ46夫々との間に印画紙1の厚みより充分に広い間隙が形成され、この部位において印画紙1が垂直方向から水平方向に向けて移動方向が変換され、これより下手位置の駆動ローラ47と圧着ローラ48で印画紙1を挟み込んで、この印画紙1を現像処理部Dに送り込むものとなっている。
【0044】
(露光処理)
露光処理が開始される以前には、第1、第2圧着ローラ12、22は第1、第2駆動ローラ11、21から離間した位置に保持されており、露光されるべき印画紙1が前搬送装置5からデジタルプリント部に送られることにより、その印画紙1の前端が第1露光搬送ユニット10で搬送可能な位置に達したタイミングで第1圧着ローラ12を圧着位置に切換え、第1駆動ローラ11と第1圧着ローラとに印画紙1を挟込んで搬送を開始する。このように搬送を開始する制御に先立ち、非接触伝動機構Tによって第1圧着ローラ12は第1駆動ローラ11の周速度と等しい周速度で同期回転しており、第1駆動ローラ11と第1圧着ローラ12とで印画紙1を圧着した際には駆動負荷を変動させることなく印画紙1に対して搬送力を作用させて搬送を開始できるものにしている。
【0045】
このように、第1露光搬送ユニット10で印画紙1の搬送を開始した直後に搬送速度を乱すことなく露光ヘッドHでの露光を開始し、この露光を継続した状態で印画紙1の先端部が第2露光搬送ユニット20で搬送可能な位置に達したタイミングで印画紙1を挟込んで搬送を開始する。このように搬送を開始するに先立ち、非接触伝動機構Tによって第2圧着ローラ22は第2駆動ローラ21の周速度と等しい周速度で同期回転しており、第2駆動ローラ21と第2圧着ローラ22とで印画紙1を圧着した際には駆動負荷を変動させることなく印画紙1に対して搬送力を作用させて搬送を開始できるものにしており、印画紙1の搬送速度を乱す不都合を回避している。そして、この状態では第1露光搬送ユニット10と、第2露光搬送ユニット20とで印画紙1を搬送する形態となる。
【0046】
又、第1露光搬送ユニット10は印画紙1の後端を送り出す以前に、第1駆動ローラ11から第1圧着ローラ12を離間させる作動を行うものとなっている。更に、前述のように後搬送装置6の駆動搬出ローラ43と圧着搬出ローラ44とは印画紙1を搬送しない状態では離間位置で待機している。そして、この待機状態では露光が行われている印画紙1の先端部が後搬送装置6で搬送可能な領域に達することがあっても、露光が終了するまでは搬送力を作用させないように構成されている。この後、印画紙1の後端が第2露光搬送ユニット20から送り出されるタイミングで可動ガイド部材41が固定ガイド部材42の方向に接近する作動を行い、この移動に伴って圧着搬出ローラ44が駆動搬出ローラ43に接近して夫々の間に印画紙1を挟込む制御が行われ、この後搬送装置6で印画紙1の搬送を開始する。
【0047】
このように、本発明では印画紙1を搬送する系に配置された駆動型のローラと、この駆動型のローラから離間する位置と、この駆動型のローラに対して圧着、若しくは、接近する位置とに切換え自在なローラとを非接触伝動機構Tで連動回転させることにより、印画紙1を挟込んで搬送するものでは、圧着する側のローラを搬送方向に向けて予め回転させることにより、印画紙1を挟込んだ際に駆動トルクを変動させること無く印画紙1を搬送して露光ムラを回避できるものとなり、又、間隙において印画紙1を搬送するものでは、印画紙1に接触する複数のローラを同期回転させて搬送速度を乱すことなく円滑に搬送できるものとなるのである。
【0048】
別実施の形態〕
本発明は上記実施の形態以外に、例えば、以下のように構成することも可能である(この別実施の形態では前記実施の形態と同じ機能を有するものには、実施の形態と共通の番号、符号を付している)。
【0049】
(a)図11に示すように、回転伝動体Wの外周に対して形成される帯磁領域が、軸芯と直交する方向視で、軸芯方向に設定距離離間する位置で周方向に設定距離だけ段階的に変位する鉤状の境界部分を有する形状に形成する。この別実施の形態では回転伝動体Wの軸芯に沿う方向で段階状に変位する位置に帯磁領域を形成したものであり、このように帯磁領域を形成することにより、円滑な回転を現出するものとなっている。
【0050】
(b)図12に示すように、回転伝動体Wの外周に対して形成される帯磁領域が、軸芯と直交する方向視で、軸芯方向に設定距離離間する位置で周方向に設定距離だけ段階的に変位する鉤状の境界部分を有する形状で、かつ、この帯磁領域の形状を回転伝動体Wの軸芯に沿う方向での幅方向の中央で線対象となるように形成する。この別実施の形態では回転伝動体Wの軸芯に沿う方向で段階状に変位する位置に帯磁領域を形成したものであり、このように帯磁領域を形成することにより、円滑な回転を現出するものとなっている。
【0051】
(c)単一の部材に代えて、軸状の部材の外周に対して永久磁石(マグネット)を貼り付けることや、可撓性の永久磁石を巻き付けて固定することでN極とS極とを交互に現れるよう回転伝動機構Wを構成する。
【図面の簡単な説明】
【図1】プリンタプロセッサの概略を示す図
【図2】印画紙の搬送経路を示す側面図
【図3】第1、第2露光ユニットを示す斜視図
【図4】非接触伝動機構の配置を示す断面図
【図5】露光搬送装置の駆動系の構成と非接触伝動機構の断面とを示す図
【図6】露光搬送装置の断面図
【図7】カムフォロアーの構造を示す側面図
【図8】駆動側回転伝動体と従動側回転伝動体との配置を示す断面図
【図9】駆動側回転伝動体と従動側回転伝動体とを示す斜視図
【図10】駆動側回転伝動体と従動側回転伝動体との帯磁領域を示す展開図
【図11】別実施の形態(a)の帯磁領域を示す展開図
【図12】別実施の形態(b)の帯磁領域を示す展開図
【符号の説明】
1       紙葉体
11、12   搬送ローラ
21、22   搬送ローラ
13、23   支軸
W       回転伝動体
T       非接触伝動機構
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-contact transmission mechanism configured to transmit a rotational force between two rotary transmission elements by the action of a magnetic force.
[0002]
[Prior art]
As a technique related to the non-contact transmission mechanism configured as described above, there is a technique disclosed in Japanese Patent Application Laid-Open No. 9-77222 or Japanese Patent Application Laid-Open No. 11-55932. Among these prior arts, the former arranges the north pole and the south pole in the circumferential direction with respect to the inclined surface of the driving umbrella and the inclined surface of the driven umbrella, respectively, and arranges each inclined surface close to each other. A configuration is described in which the rotational force of the driving umbrella wheel is transmitted to the driven umbrella wheel via a magnetic force. In the prior art, the latter is based on a first magnetic gear and a second magnetic gear. A configuration is described in which N poles and S poles are alternately arranged in the circumferential direction, and respective gears rotate in conjunction with each other by magnetic force.
[0003]
[Problems to be solved by the invention]
Here, a pair of transport rollers that can be switched between a state in which the photographic paper as a paper sheet is pressed and transported and a non-pressed state in which the paper is separated from the photographic paper are synchronously driven so that the support shafts of the respective transport rollers are driven. Considering a non-contact transmission mechanism that includes a rotary transmission and transmits power to each support shaft by magnetic force, when one of a pair of transport rollers is driven to rotate and the other is driven to rotate, the driven roller on the driven side is used. Even when the transport roller is in a non-contact state, the non-contact power transmission mechanism allows the driven transport roller to be rotated by the driving force from the drive-side transport roller. In such a case where the driven roller is rotated in advance, if the pair of transport rollers is arranged in the digital exposure unit for exposing the photographic paper, when the photographic paper is pressed and transported, Since the driven conveyance roller in the rotating state is pressed against the conveyance roller on the driving side, for example, compared with a method in which the non-rotated conveyance roller is pressed, a good surface for reducing the shock at the time of pressing is provided. Appears.
[0004]
Therefore, assuming that this non-contact transmission mechanism has N poles and S poles alternately arranged on the outer periphery of the rotary transmission body in the same manner as the rotary transmission body shown in the prior art cited in the publication number, This conventional technique has a function of transmitting rotational power in a non-contact state. However, an extremely weak magnetic field is formed at an intermediate position between the N pole and the S pole, so that when the transport roller is driven, If the regions of extremely low magnetic force in each of the rotary transmission members have a rotational phase relationship facing each other, the rotational force transmitted from one rotary transmission member to the other rotary transmission member also becomes weak, and this rotational phase In, it is conceivable to reduce the transport speed of the paper sheet.
[0005]
However, in the digital exposure section, exposure is performed in such a manner that light is irradiated in a main scanning direction orthogonal to the sub-scanning direction while the photographic paper as a paper sheet is conveyed at a fixed speed in the sub-scanning direction. Therefore, if the transport speed of the photographic paper is not constant, disturbance in the transport speed appears as exposure unevenness, and there is room for improvement.
[0006]
An object of the present invention is to rationally configure a non-contact power transmission mechanism that produces smooth power transmission without generating a rotational speed difference between a pair of rotary power transmission bodies.
[0007]
[Means for Solving the Problems]
The features, operations and effects of the non-contact transmission mechanism according to claim 1 of the present invention are as follows.
〔Characteristic〕
In a non-contact transmission mechanism configured to transmit a rotational force by the action of a magnetic force between two rotary transmission elements, a crimped state in which a sheet is pressed and conveyed, and a non-pressed state in which the sheet is separated from the sheet. And a pair of transport rollers that can be switched to each other. The rotary transmission is provided for each of the spindles that rotate integrally with the pair of transport rollers, and each of the rotary transmissions is disposed in the axial direction of the rotary transmission. The magnetized region of the N pole and the magnetized region of the S pole formed in the region from one end to the other end are alternately arranged in the circumferential direction, and the magnetized region of the other rotary transmission body is This is a point which is formed at a position separated from one end side to the other end side so as to be displaced in a circumferential direction in a direction opposite to the displacement direction.
[0008]
[Action / Effect]
According to the above-mentioned feature, in a region which is closest to each other among the outer peripheral surfaces of the respective rotary transmissions, in a specific region in a direction along the axis of the rotary transmission, a magnetized region of the outer peripheral surface of one of the rotary transmissions ( If one of the rotary transmissions is rotated after a magnetic pole (for example, S-pole) and a magnetic field (for example, an S-pole) on the outer peripheral surface of the other rotary transmission are opposed to each other by magnetic force. Due to the action of the magnetic force, the other rotary transmission element rotates in the opposite direction, and the magnetized area (eg, N pole) and the magnetized area (eg, S pole) which have the closest positional relationship with this rotation are separated from each other. However, when the magnetized regions formed in a shape displaced in the circumferential direction approach each other, the relationship attracted by the magnetic force continues, and further, the magnetized regions adjacent to the specific region (for example, S very Since the N pole) is moved in a direction approaching, attracting force by magnetic between the magnetized region is assumed to occur in the new. As a result, a non-contact transmission mechanism capable of smoothly and synchronously rotating the respective transport rollers has been rationally configured, while avoiding the disadvantage of greatly reducing the magnetic force acting between the respective rotary transmission members during rotation.
[0009]
The features, functions and effects of the non-contact transmission mechanism according to claim 2 of the present invention are as follows.
〔Characteristic〕
2. The non-contact power transmission mechanism according to claim 1, wherein the magnetized region is formed in a belt-like shape that is inclined with respect to the axis when viewed in a direction perpendicular to the axis.
[0010]
[Action / Effect]
According to the above feature, at a specific position in a direction along each rotation axis, the magnetic regions attracted to each other by magnetic force in a portion where the respective rotary transmission elements are closest to each other in the outer peripheral surface, although separated at the time of rotation, Since each of the magnetized regions is formed in a belt shape having a posture inclined with respect to the axis, it is possible to maintain a state in which any of the band-shaped magnetized regions is attracted to each other in a positional relationship in which the magnetized regions approach each other. As a result, by setting the shape of the magnetized region, fluctuations in the magnetic force acting between the rotary transmission members are suppressed, and smooth transmission is realized.
[0011]
The features, operations and effects of the non-contact transmission mechanism according to claim 3 of the present invention are as follows.
〔Characteristic〕
The non-contact transmission mechanism according to claim 1, wherein the magnetized region has a hook-like shape that is displaced stepwise by a set distance in a circumferential direction at a position separated by a set distance in the axial direction when viewed in a direction perpendicular to the axis. The point is that it is formed in a shape having a boundary portion.
[0012]
[Action / Effect]
According to the above feature, at a specific position in a direction along each rotation axis, the magnetic regions attracted to each other by magnetic force in a portion where the respective rotary transmission elements are closest to each other in the outer peripheral surface, although separated at the time of rotation, Since the boundary portions of the respective magnetized regions are displaced stepwise in the circumferential direction, it is possible to set a state in which the following band-shaped magnetized regions are attracted to each other in a close positional relationship with the rotation. As a result, by setting the shape of the magnetized region, fluctuations in the magnetic force acting between the rotary transmission members are suppressed, and smooth transmission is realized.
[0013]
The features, functions and effects of the non-contact transmission mechanism according to claim 4 of the present invention are as follows.
〔Characteristic〕
The non-contact transmission mechanism according to any one of claims 1 to 3, wherein the pair of transport rollers are set to have different outer peripheral lengths, and the ratio of the outer peripheral lengths and the rotary transmission member provided on each support shaft. And the ratio of the number of magnetized regions formed on the outer periphery of each rotary transmission body is set to a number equal to the ratio of the outer circumference length of each rotary transmission body. is there.
[0014]
[Action / Effect]
According to the above feature, the ratio of the outer peripheral length of each transport roller and the ratio of the outer peripheral length of the rotary transmission body are set to be equal, and this ratio and the number of magnetized regions formed on the outer circumference of each rotary transmission body are set. By setting the ratio to be equal, it is possible to set the peripheral speed of the outer periphery of the transport roller interlocked via the rotary transmission to the same value when the transport roller rotates. As a result, even if the transport rollers have different outer peripheral length ratios, they can be smoothly driven at the same peripheral speed.
[0015]
The features, operations and effects of the non-contact transmission mechanism according to claim 5 of the present invention are as follows.
〔Characteristic〕
5. The non-contact transmission mechanism according to claim 1, wherein one of the pair of transport rollers is a drive-side transport roller, and the other is a driven-side transport roller. When the sheet is pressed and conveyed, the rotating force acting on the driven-side conveying roller from the sheet is converted into a magnetic force between the rotary transmission members provided on the support shafts of the respective conveying rollers. Is set to be stronger than the rotational force acting between the conveying rollers.
[0016]
[Action / Effect]
According to the above feature, when the sheet is pressed and conveyed by the conveying roller, the rotational force caused by the moving force of the sheet and the non-contact transmission Although the rotational force from the mechanism acts, since the rotational force acting on the driven-side transport roller from the paper sheet is stronger than the rotational force acting on the driven-side transport roller from the rotary transmission body, for example, Even if the N pole and the S pole deviate from the position where the N pole and the S pole attract the strongest at the part where the rotary transmissions are closest to each other for some reason during the transport of the paper sheet, the position where the N pole and the S pole attract the strongest. The inconvenience of rotation of the rotary transmission in the direction of the relationship (closest positional relationship) is prevented, and the force resulting from the rotational force from the rotary transmission is not transmitted to the paper sheet. As a result, a non-contact transmission mechanism capable of smoothly transporting the paper sheet while avoiding the disadvantage that unnecessary external force acts when the paper sheet is transported is rationally configured.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic block diagram showing a printer processor.
[0018]
(Overall structure of printer processor)
The printer processor includes a film scanner S for separating image information from image frames of a developed photographic film (not shown) into three primary colors of R, B, and G, and converting the read image information into digital image data. A controller C capable of processing digital image data obtained by the film scanner S to create print data, and exposing a photographic paper 1 as a paper sheet based on the print data to form a latent image corresponding to a frame image. A digital printing unit having an exposure head H for forming an image, and a development processing unit D for developing the exposed photographic paper 1 are provided. The photographic paper 1 developed in the development processing section D is discharged to a tray on the upper surface of the printer processor as a finished print through a drying process.
[0019]
In this embodiment, a PLZT shutter system is adopted for the digital print section. That is, the shutter head formed of the PLZT elements constitutes the exposure head H. The shutter array composed of this PLZT element is composed of a transparent ferroelectric ceramic material (PLZT) obtained by adding lanthanum to lead zirconate titanate, and utilizes the electro-optic effect of the material. Light of each color of R, G, and B is introduced into the shutter from a light source via a number of optical fibers. The shutter array extends in the width direction of the printing paper 1, that is, in the main scanning direction. When a voltage of a predetermined level is applied to each PLZT element, that is, the shutter, the shutter enters a light transmitting state, and when the application of the voltage is stopped, the shutter enters a light blocking state. Therefore, when a drive voltage is applied from the controller C to the shutter corresponding to each pixel based on the print data, the shutter opens and the light of the color introduced from the light source is irradiated on the photographic paper 1. The light source is provided with a rotary filter composed of optical filters of three colors of R, G, and B. By controlling the rotation phase of the rotary filter, a filter of one of R, G, and B is formed. The light of the selected color is selectively transmitted to the shutter through the optical fiber through the filter of the color selectively facing the light source. In addition to the PLZT shutter system, a liquid crystal shutter system, a fluorescent beam system, a FOCRT system, a DMD (digital micromirror device) system, and the like are known as the digital printing system. Can be.
[0020]
The digital printing section can simultaneously expose the cut photographic papers 1 arranged in two rows. As shown in FIG. 1, the photographic paper transport line includes two photographic paper magazines M, M, a paper cutter 2, and a paper cutter 2 in which the photographic paper 1 is housed in a roll shape with the emulsion side facing out from the upper side of the transport. The printing unit 3, the sorting device 4, the front conveyance device 5, the exposure conveyance device F, and the rear conveyance device 6 are arranged. Therefore, when performing the exposure process on the photographic paper 1, the photographic paper 2 pulled out from one of the two photographic paper magazines M, M is cut by the paper cutter 2 in accordance with the print size, and the photographic paper 1 is cut. The necessary printing is performed by the back print unit 3 on the back side (base layer) of the printing paper, and if necessary, the printing paper 1 sorted in two rows by the sorting device 4 is transferred to the front transport unit. In step 5, the photographic paper 2 is conveyed by the exposure transport device F while exposing with the exposure head H, and the photographic paper 1 that has been exposed in the digital print portion is transported to the digital transport section. The processing mode is set so that 6 is sent to the development processing section D.
[0021]
The sorting device 4 is composed of a chucker-type XY moving mechanism that receives the photographic paper 1 cut by the paper cutter 2 and alternately transfers the photographic printing paper 1 to the left and right column positions in the previous conveyance. Further, when handling a large-sized photographic printing paper 1, exposure is performed in one row. Therefore, the photographic printing paper 1 received from the line for supplying the photographic printing paper 1 is directly conveyed without being moved in the main scanning direction. The process of handing over to the device 5 is performed.
[0022]
As shown in FIG. 2, the front transport device 5 includes a pair of carry-in rollers 5a and 5b that sandwich and transport the photographic paper 1, and the rear transport device 6 moves the photographic paper 1 sent from the digital printing section upward. It includes a pair of drive discharge rollers 43 and a pressure discharge roller 44 for feeding, and a plurality of photographic papers 1 from the discharge rollers 43 and 44 are fed in a substantially horizontal direction along a space between the fixed guide member 41 and the movable guide member 42. (The details of the plurality of rollers will be described later).
[0023]
(Structure of photographic paper transport device)
The exposure transport device F is integrated with a frame supporting the exposure head H to receive the photographic papers 1 arranged in two rows in the main scanning direction and to realize high exposure quality, and to the transport upper side (the loading roller 5a). , 5b), the second exposure and conveyance roller unit 20 disposed on the lower side of the conveyance (the side of the unloading rollers 43 and 44), and the light from the exposure head H And a guide member 8 (see FIG. 6) for guiding the photographic printing paper 1 to an exposure position where the exposure is performed.
[0024]
As shown in FIGS. 3 to 6, the first exposure / conveyance roller unit 10 includes a first drive roller 11 in contact with the base layer side of the photographic paper 2, and an emulsion of the first drive roller 11 and the photographic paper 2. The second exposure / conveyance roller unit 20 has a first pressure roller 12 facing the layer side. The second exposure / conveyance roller unit 20 includes a second drive roller 21 in contact with the base material layer side of the printing paper 1, and the second drive roller 21 and the printing The paper 1 has a second pressure roller 22 facing the emulsion layer side. The first and second drive rollers 11 and 21 are configured to have the same diameter and have a highly rigid outer peripheral surface. Incidentally, in this embodiment, the respective drive rollers 11 and 12 are formed by further covering the outer peripheral surface of the aluminum roller with a ceramic layer. On the other hand, the first and second pressure rollers 12 and 22 as pressure rollers are also formed to have the same diameter, and the outer peripheral surface is made of an elastic material such as rubber.
[0025]
The first drive roller 11 and the first pressure roller 12 and the second drive roller 21 and the second pressure roller 22 are examples of conveyance rollers, and the first drive roller 11 and the second drive roller 21 are driven on the drive side. , And the first pressure roller 12 and the second pressure roller 22 function as driven roller on the driven side. Further, the diameter of the second drive roller 21 and the second pressure roller 22 is set to be smaller than the diameter of the first drive roller 11 and the first pressure roller 12.
[0026]
The support shafts 13 and 23 that rotate integrally with the first drive roller 11 and the second drive roller 21 are rotatably supported around an axis in a parallel posture with respect to the frame 32, and are supported by the respective support shafts 13 and 23. Input pulleys 11P and 21P having the same diameter are provided. Further, a timing belt 35 is wound between an output pulley 33P provided on a drive shaft of a stepping motor type transfer motor 33 provided on the frame 32 and a large-diameter first intermediate pulley 34 supported on the frame 32, The timing belt 37 is wound around the small-diameter second intermediate pulley 36 formed on the side surface of the first intermediate pulley 34 and the input pulleys 11P and 21P. The first and second drive rollers 11 and 21 can be driven synchronously.
[0027]
The first and second pressure rollers 12 and 22 are made of an elastic material such as rubber for metal shafts 14 and 24 that rotate integrally with the first and second pressure rollers 12 and 22. . Further, a pair of pivotally supported swingable shafts 15 around the frame 32 in a posture parallel to the axis of the first and second drive rollers 11 and 21 (a posture parallel to the main scanning direction). The support shaft 14 of the first pressure roller 12 is rotatably supported across the swing ends of the first arms 16, 16. Similarly, the first and second drive rollers are supported with respect to the frame 32. A swing support shaft 25 in a posture parallel to the axes of the shafts 11 and 21 (a posture parallel to the main scanning direction). The swing ends of a pair of second arms 26 and 26 supported swingably around the shaft center. The support shaft 24 of the second pressure roller 22 is rotatably supported throughout. By the swinging of the first and second arms 16 and 26, the outer peripheral surfaces of the first and second drive rollers 11 and 21 and the outer peripheral surfaces of the first and second pressure rollers 12 and 22 respectively correspond. Between the outer peripheral surfaces of the first and second drive rollers 11 and 21 and the outer peripheral surfaces of the first and second pressure bonding rollers 12 and 22 are largely separated from each other. Have been.
[0028]
The first and second arms 16 and 26 are provided with springs 38 and 38 for urging the first and second pressure rollers 12 and 22 toward the corresponding first and second drive rollers 11 and 21 respectively. Also, as shown in FIGS. 3 and 7, first and second cam followers 17 and 27 are provided at ends of the spindles 14 and 24 of the first and second pressure rollers 12 and 22, respectively. First and second rotating cams 18 and 28 that contact the first and second cam followers 17 and 27 are supported by a frame 32. Each of the first and second cam followers 17 and 27 has an accurate circular shape and has a highly rigid outer peripheral surface such as a metal.
[0029]
The timing belt extends between the input pulleys 18P and 28P formed on the side surfaces of the first and second rotary cams 18 and 28 and the output pulleys 19P and 29P of the stepping motor type first and second cam motors 19 and 29. 39, 39 are wound. Each of the first and second rotary cams 18 and 28 has an accurate circular outer peripheral surface as described above, and sets the rotational centers X1 and X2 at positions eccentric from the geometric center. As a result, the outer peripheral surfaces having a large distance from the rotation centers X1 and X2 come into contact with the corresponding first and second cam followers 17 and 27, so that the corresponding first and second pressure rollers 12 and 22 are separated from each other. , And the outer peripheral surface having a small distance from the rotation centers X1 and X2 is brought into contact with the corresponding first and second cam followers 17 and 27 so as to be set at a position where the photographic printing paper 1 is pressed by the respective pressing rollers. It is configured.
[0030]
In this mechanism, both the first and second pressure rollers 12 and 22 are made to stand by at a separation position until the photographic paper 1 is fed, and when the photographic paper 1 reaches a position where the photographic paper 1 can be pressure-bonded to the drive roller, the photographic paper 1 is moved from the separation position to the pressure position. The switching operation is performed, and the operation mode is set so that the pressing roller is switched from the pressing position to the separated position when the timing for sending out the printing paper 1 is reached. As a result, as necessary, a mode in which the photographic paper 1 is transported only by the first exposure transport roller unit 10 based on a combination of the positions of the first pressure roller 12 and the second pressure roller 22 and a second exposure transport A mode in which the sheet is conveyed only by the roller unit 20 and a mode in which the sheet is conveyed by both the first and second exposure and conveyance roller units 10 and 20 are realized.
[0031]
Further, as shown in FIG. 6, a central guide portion 8C which comes into contact with the back side of the photographic paper at the exposure position of the exposure head H, a front guide portion 8F which is disposed at a position farther from the central portion in the transport direction, and a central guide portion 8C. A guide member 8 having a rear guide portion 8R disposed at a position lower in the transport direction than the portion 8C is provided, and a guide surface of the central guide portion 8C, a guide surface of the front guide member 8F, and a guide of the rear guide portion 8R. A relative positional relationship is set so that the surface becomes smooth, and a blocking member 9 for blocking the photographic printing paper 1 from rising is provided at a position facing the guide member 8.
[0032]
(Interlocking rotating structure)
The configuration described so far is basically the same as a conventional printer processor, and in the present invention, the first and second driving rollers 11 and 21 as the driving-side transport rollers are linked to each other to rotate on the driven side. Non-contact formed of a pair of rotary transmissions W (a superordinate concept of a drive-side rotary transmission Wa and a driven-side rotary transmission Wb described later) for rotating the first and second pressure bonding rollers 12 and 22 as transport rollers. It is characterized by having a transmission mechanism T.
[0033]
As shown in FIG. 3 to FIG. 5, FIG. 8, and FIG. 9, the drive side rotary transmission body Wa provided on the support shaft 13 of the first drive roller 11 and the driven side provided on the support shaft 14 of the first pressure roller 12. A non-contact transmission mechanism T is constituted by the rotation transmission body Wb. Similarly, a non-contact transmission mechanism T is provided on the support shaft 23 of the second drive roller 21 and on the support shaft 24 of the second pressure roller 22. The non-contact transmission mechanism T is constituted by the driven-side rotary transmission Wb.
[0034]
The driving-side rotary transmission Wa and the driven-side rotary transmission Wb of each of the non-contact transmission mechanisms T are located in a region extending from one end to the other end in the axial direction of each rotary transmission W. The formed N-pole magnetized regions (regions indicated by N in the drawing) and S-pole magnetized regions (regions indicated by S in the drawing) are alternately arranged in the circumferential direction in a band shape having the same width, and The magnetizing region is formed of a permanent magnet (magnet) formed in a posture (spiral shape) inclined with respect to the axis when viewed in a direction perpendicular to the axis. As the permanent magnet, a neodymium (Nd) system, a samarium (Sm) system of the same rare earth, a ferrite system such as barium (Ba), strontium (Sr), or lead (Pb), or an alnico magnet is used. It can be used.
[0035]
The magnetic directions of the N-pole and the S-pole of the driving-side rotary transmission member Wa and the driven-side rotary transmission member Wb are set such that their inclination directions are opposite to each other. The driven transmission Wb is configured to rotate in the opposite direction. In particular, when the magnetized regions of the driving-side rotary transmission body Wa and the driven-side rotary transmission body Wb are developed in a form in which the circumferential direction is a straight line, it can be expressed as shown in FIG.
[0036]
As described above, the first and second drive rollers 11 and 21 are formed to have a larger diameter than the second pressure rollers 21 and 22, and have a circumference of the first drive roller 11 and a circumference of the first pressure roller 12. And the ratio between the circumference of the second drive roller 21 and the circumference of the second pressure roller 22 are set to be equal, and this ratio is set to the circumference of the drive-side rotation transmission member Wa and the rotation of the driven-side rotation transmission member Wa. It is set equal to the ratio with the circumference of the transmission Wb. Then, the ratio of the number of magnetized regions formed on the outer peripheral surface of the driving-side rotary transmission body Wa to the number of magnetized regions formed on the outer peripheral surface of the driven-side rotary transmission member Wb is set to the ratio of the circumference. It is. Specifically, the ratio of the entire circumference of the drive roller to the pressure roller is 10: 6 (5: 3), and the circumference of the drive-side rotary transmission Wa and the circumference of the driven-side rotary transmission Wb are equal to each other. And the ratio of the number of magnetized regions are set to the value of this ratio.
[0037]
Further, when the printing paper 1 is pressed and conveyed by the first driving roller 11 and the first pressing roller 12, the rotational force acting on the first pressing roller 21 from the printing paper 1 with the conveyance of the printing paper 1. Between the drive-side rotary transmission member Wa provided on the support shaft 13 of the first drive roller 11 and the driven-side rotary transmission member Wb provided on the support shaft 23 of the first pressure roller 21 by magnetic force. Is set to be larger than the rotational force acting on the support shaft 23. This setting is similarly set in the non-contact transmission mechanism T between the second drive roller 21 and the second pressure roller 22. Specifically, the first exposure transport unit 10 will be described as an example. In a state where the printing paper 1 is pressed by the first driving roller 11 and the first pressing roller 12, the first pressing roller 12 grips the printing paper 1. The rotational force (torque) acting on the driven-side rotary transmission Wb via the printing paper 1 is caused by magnetism acting between the drive-side rotary transmission Wa and the driven-side rotary transmission Wb. By setting the rotation force (torque) to be larger than the rotation force (torque), even if the rotation phase of each rotary transmission W may deviate from an appropriate phase, this phase is set to an appropriate relationship when the photographic paper 1 is transported. The force acting in the direction is not applied to the printing paper 1. This setting is similarly performed in the second exposure sending unit 20.
[0038]
Accordingly, when the first and second drive rollers 11 and 21 are driven to rotate, the drive-side rotary transmission Wa is rotated with this rotation, and the driven-side rotary transmission Wb is rotated in conjunction with this rotation. Will do. At the time of this rotation, the magnetized regions of the respective rotary transmissions W are formed in an inclined posture in which the rotation direction is opposite, so that the driven-side rotary transmission Wb is opposite to the rotation direction of the drive-side rotary transmission Wa. It turns. In addition, in a portion of the outer peripheral surface of each rotary transmission W that is closest to each other, a magnetized region (a specific area in the direction along the axis of the rotary transmission W) on the outer peripheral surface of the drive-side rotary transmission Wa. When the drive-side rotary transmission Wa rotates after maintaining a magnetic attraction between the driven-side rotary transmission Wb and the magnetized region (for example, the S-pole) on the outer peripheral surface of the driven-side rotary transmission Wb. The driven-side rotary transmission Wb rotates in the opposite direction due to the action of the magnetic force. The magnetized region (for example, the N pole) and the magnetized region (for example, the S pole) which are in the closest positional relationship with this rotation. Are separated from each other, but when the magnetized regions formed by being displaced in the circumferential direction (formed in an inclined posture) approach each other, a relationship attracted by magnetic force is newly created, and the specific region is formed. Next to The magnetized regions (for example, S pole and N pole) move in the approaching direction, so that the attractive force between the magnetized regions increases due to magnetism, and acts between the respective rotary power transmission members W during compression. The first and second drive rollers 11 and 21 and the first and second pressure rollers 1222 are smoothly and synchronously rotated in order to avoid the inconvenience of greatly reducing the magnetic force.
[0039]
Further, the ratio of the circumference of the drive-side rotary transmission Wa to the circumference of the driven-side rotary transmission Wb is defined as the ratio of the first and second drive rollers 11 and 21 to the first and second pressure rollers 12 and 22. And the ratio of the number of magnetized regions formed on the driving-side rotary transmission body Wa and the driven-side rotary transmission body Wb is set to be equal to the above-described ratio, so that the first and second driving rollers 11 and 21 When the first and second pressure rollers 12 and 22 rotate synchronously, the speed at which the peripheral speed of the second pressure rollers 12 and 22 matches the peripheral speed of the first and second drive rollers 11 and 21. And rotate synchronously.
[0040]
As shown in FIG. 8, when the pressure roller is set at the separated position, the distance d1 between the pressure roller and the drive roller is 1.5 mm, and when the pressure roller is pressed against the drive roller, each distance d2 is 0.5 mm. The relative positional relationship is set so that a gap is formed between the driving-side rotator Wa and the driven-side rotator Wb in each state. The thickness of the printing paper 1 is about 0.2 mm, and is formed between the driving-side rotating body Wa and the driven-side rotating body Wb when the printing paper 1 is sandwiched between the pressure roller and the driving roller. The gap is about 0.7 mm.
[0041]
As shown in FIG. 2, the post-conveying device 6 includes a fixed guide member 41 disposed on the front side (photosensitive surface side) and a movable guide member 42 disposed on the back side of the printing paper 1 as described above. And a plurality of rollers, the drive discharge roller 43 supported in a fixed position on the side of the fixed guide member 41, and the pressure discharge roller which moves integrally with the movable guide member 42 at a position opposed thereto. And a drive-type intermediate roller 45 fixedly disposed on the side of the fixed guide member 41 at a lower position in the transport direction, and integrated with the movable guide member 42 at a position facing the intermediate roller 45. And a plurality of guide rollers 46, 46 movably supported by a plurality of rollers. Further, a plurality of transport rollers including a drive roller 47 and a pressure roller 48 are provided at a lower position in the transport direction. Eteiru.
[0042]
Further, a plurality of timing belts 49 are provided so that the drive unloading roller 43, the intermediate roller 45, and a plurality of drive rollers 47 constituting a transport roller are interlocked, and a stepping motor type rear transport motor 50 for driving these belts is provided. An electric actuator 61 for operating the guide member 42 in the approaching direction and the separating direction is provided.
[0043]
Thereafter, when the printing paper 1 is sent out from the digital printing section, the transport device 6 holds the movable guide member 42 at the standby position, and at the timing when the rear end of the printing paper 1 is sent out from the digital printing section, the electric actuator is driven. 61 is driven to move the movable guide member 42 in the approaching direction, and the drive discharge roller 43 and the pressure discharge roller 44 are pressed against each other to sandwich the photographic paper 1 and to start conveyance. When the movable guide member 42 is moved in the approaching direction, a gap sufficiently larger than the thickness of the printing paper 1 is formed between the intermediate roller 45 and each of the plurality of guide rollers 46. The moving direction is changed from the vertical direction to the horizontal direction. The printing paper 1 is sandwiched between the driving roller 47 and the pressure roller 48 at the lower position, and the printing paper 1 is sent to the developing unit D. I have.
[0044]
(Exposure processing)
Before the exposure process is started, the first and second pressure rollers 12 and 22 are held at positions separated from the first and second drive rollers 11 and 21 so that the photographic paper 1 to be exposed is When the front end of the photographic paper 1 reaches the position where the photographic paper 1 can be conveyed by the first exposure conveyance unit 10 by being sent from the conveyance device 5 to the digital printing section, the first pressure roller 12 is switched to the pressure position, and the first drive is performed. The printing paper 1 is sandwiched between the roller 11 and the first pressure roller, and the conveyance is started. Prior to the control to start the conveyance in this manner, the first pressure roller 12 is synchronously rotated at a peripheral speed equal to the peripheral speed of the first drive roller 11 by the non-contact power transmission mechanism T. When the photographic printing paper 1 is pressed against the photographic printing paper 1 by the pressing roller 12, the conveyance can be started by applying a conveying force to the photographic printing paper 1 without changing the driving load.
[0045]
As described above, immediately after the photographic paper 1 is started to be conveyed by the first exposure / conveyance unit 10, the exposure by the exposure head H is started without disturbing the conveyance speed. At the timing when the sheet reaches a position where the second exposure and conveyance unit 20 can convey the photographic paper 1 and starts conveyance. Prior to the start of the conveyance, the non-contact transmission mechanism T causes the second pressure roller 22 to rotate synchronously at a peripheral speed equal to the peripheral speed of the second drive roller 21, and the second pressure roller 22 and the second pressure roller 22 When the photographic paper 1 is pressed against the roller 22, the conveyance can be started by applying a conveying force to the photographic paper 1 without changing the driving load, so that the conveyance speed of the photographic paper 1 is disturbed. Have been around. In this state, the photographic paper 1 is transported by the first exposure transport unit 10 and the second exposure transport unit 20.
[0046]
Further, the first exposure transport unit 10 performs an operation of separating the first pressure roller 12 from the first drive roller 11 before sending out the rear end of the photographic paper 1. Further, as described above, the drive discharge roller 43 and the pressure discharge roller 44 of the post-conveyance device 6 are on standby at the separated position when the photographic paper 1 is not conveyed. In this standby state, even if the leading end of the photographic paper 1 on which the exposure is being performed may reach an area that can be transported by the rear transport device 6, the transport force is not applied until the exposure is completed. Have been. Thereafter, at the timing when the rear end of the photographic paper 1 is sent out from the second exposure / conveyance unit 20, the movable guide member 41 performs an operation of approaching the direction of the fixed guide member 42, and with this movement, the pressure-carrying-out roller 44 is driven. The control is performed such that the photographic printing paper 1 is sandwiched between the printing papers 1 approaching the carry-out rollers 43, and then the conveyance of the photographic printing paper 1 by the conveyance device 6 is started.
[0047]
As described above, according to the present invention, the drive-type roller disposed in the system for transporting the photographic paper 1, the position separated from the drive-type roller, and the position pressed or approached to the drive-type roller When the printing paper 1 is conveyed by sandwiching the rollers that can be switched between the non-contact transmission mechanism T and the non-contact transmission mechanism T, the roller on the side to be pressed is preliminarily rotated in the conveying direction to print. When the photographic paper 1 is conveyed without fluctuating the driving torque when the paper 1 is sandwiched, uneven exposure can be avoided. By rotating these rollers synchronously, it is possible to carry smoothly without disturbing the carrying speed.
[0048]
Another embodiment]
The present invention can be configured, for example, as follows, in addition to the above-described embodiment. (In this alternative embodiment, components having the same functions as those of the above-described embodiment are denoted by the same reference numerals as those of the embodiment.) , With a sign).
[0049]
(A) As shown in FIG. 11, the magnetized region formed on the outer periphery of the rotary transmission W is separated from the axis by a set distance in the axial direction when viewed in a direction perpendicular to the axis. It is formed into a shape having a hook-shaped boundary portion that is displaced only stepwise. In this alternative embodiment, the magnetized region is formed at a position displaced stepwise in the direction along the axis of the rotary transmission W. By forming the magnetized region in this manner, smooth rotation can be achieved. It is what you do.
[0050]
(B) As shown in FIG. 12, the magnetized area formed on the outer periphery of the rotary transmission W is set at a position separated from the axis by a set distance in the axial direction in a direction perpendicular to the axis. The shape of the magnetized region is formed so as to be line-symmetric at the center in the width direction in the direction along the axis of the rotary transmission W only in a stepwise displaced manner. In this alternative embodiment, the magnetized region is formed at a position displaced stepwise in the direction along the axis of the rotary transmission W. By forming the magnetized region in this manner, smooth rotation can be achieved. It is what you do.
[0051]
(C) Instead of a single member, by attaching a permanent magnet (magnet) to the outer periphery of the shaft-shaped member, or by winding and fixing a flexible permanent magnet, the N-pole and the S-pole are formed. Are arranged alternately in the rotation transmission mechanism W.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a printer processor.
FIG. 2 is a side view showing a conveyance path of photographic paper.
FIG. 3 is a perspective view showing first and second exposure units.
FIG. 4 is a sectional view showing an arrangement of a non-contact transmission mechanism.
FIG. 5 is a diagram showing a configuration of a drive system of the exposure transport device and a cross section of a non-contact transmission mechanism.
FIG. 6 is a cross-sectional view of the exposure transport device.
FIG. 7 is a side view showing the structure of a cam follower.
FIG. 8 is a cross-sectional view showing the arrangement of a driving-side rotary transmission and a driven-side rotary transmission.
FIG. 9 is a perspective view showing a driving-side rotary transmission and a driven-side rotary transmission;
FIG. 10 is an exploded view showing the magnetized regions of the driving-side rotary transmission and the driven-side rotary transmission.
FIG. 11 is a developed view showing a magnetized region according to another embodiment (a).
FIG. 12 is a developed view showing a magnetized region according to another embodiment (b).
[Explanation of symbols]
1 paper leaf
11, 12 Transport roller
21, 22 transport roller
13,23 Support shaft
W rotating transmission
T non-contact transmission mechanism

Claims (5)

2つの回転伝動体の間で磁力の作用によって回転力を伝えるよう構成してある非接触伝動機構であって、
紙葉体を圧着して搬送する圧着状態と、紙葉体から離間する非圧着状態とに切換自在な一対の搬送ローラを備え、この一対の搬送ローラと一体回転する支軸夫々に対して前記回転伝動体が備えられると共に、
夫々の回転伝動体は、該回転伝動体の軸芯方向で一方の端部から他方の端部に亘る領域に形成されるN極の帯磁領域とS極の帯磁領域とを周方向に交互に配置し、かつ、一方の回転伝動体の帯磁領域を軸芯方向での一方の端部側から他方の端部側に離間する部位で周方向に変位する形状に形成し、かつ、他方の回転伝動体の帯磁領域を前記一方の端部側から他方の端部側に離間する部位で周方向で前記変位方向と逆方向に変位する形状に形成してある非接触伝動機構。
A non-contact transmission mechanism configured to transmit a rotational force by an action of a magnetic force between two rotary transmission elements,
A pair of transport rollers that can be switched between a pressure-bonded state in which the paper sheet is pressed and transported and a non-pressure-bonded state in which the paper sheet is separated from the paper sheet, and a support shaft that rotates integrally with the pair of transport rollers. A rotating transmission is provided,
Each of the rotary transmission members is formed by alternately forming a magnetic region of N pole and a magnetic region of S pole formed in a region extending from one end to the other end in the axial direction of the rotary transmission in the circumferential direction. Arranged, and the magnetized region of one of the rotary transmission members is formed in a shape that is displaced in the circumferential direction at a portion separated from one end side to the other end side in the axial direction, and the other rotation is A non-contact power transmission mechanism, wherein a magnetized region of a power transmission body is formed at a position separated from the one end side to the other end side and has a shape displaced in a circumferential direction in a direction opposite to the displacement direction.
前記帯磁領域が、前記軸芯と直交する方向視で、前記軸芯と傾斜する姿勢の帯状に形成されている請求項1記載の非接触伝動機構。The non-contact power transmission mechanism according to claim 1, wherein the magnetized region is formed in a belt shape that is inclined with respect to the axis when viewed in a direction perpendicular to the axis. 前記帯磁領域が、前記軸芯と直交する方向視で、軸芯方向に設定距離離間する位置で周方向に設定距離だけ段階的に変位する鉤状の境界部分を有する形状に形成されている請求項1記載の非接触伝動機構。The magnetized region is formed in a shape having a hook-shaped boundary portion that is displaced stepwise by a set distance in a circumferential direction at a position separated by a set distance in the axial direction when viewed in a direction perpendicular to the axis. Item 2. The non-contact transmission mechanism according to Item 1. 前記一対の搬送ローラが異なる外周長に設定され、この外周長の比率と、夫々の支軸に備えた前記回転伝動体の外周長の比率とを等しく設定すると共に、夫々の回転伝動体の外周に形成される帯磁領域の数の比率を、この回転伝動体の外周長の比率に等しい数に設定してある請求項1〜3のいずれか1項に記載の非接触伝動機構。The pair of transport rollers are set to different outer peripheral lengths, and the ratio of the outer peripheral length and the ratio of the outer peripheral length of the rotary transmission members provided on the respective spindles are set to be equal, and the outer peripheral length of each of the rotary transmission members is set. The non-contact power transmission mechanism according to any one of claims 1 to 3, wherein a ratio of the number of magnetized regions formed in the rotation transmission member is set to a number equal to a ratio of an outer peripheral length of the rotary transmission body. 前記一対の搬送ローラの一方が駆動側の搬送ローラで成り、他方が従動側の搬送ローラで成ると共に、夫々の搬送ローラで前記紙葉体を圧着して搬送する際において、この紙葉体から従動側の搬送ローラに作用する回転力を、夫々の搬送ローラの支軸に備えた前記回転伝動体同士の間の磁力によって搬送ローラの間に作用する回転力より強く設定してある請求項1〜4のいずれか1項に記載の非接触伝動機構。One of the pair of transport rollers is a drive-side transport roller, and the other is a driven-side transport roller, and when the sheet is pressed and transported by the respective transport rollers, the sheet is removed from the sheet. The rotating force acting on the driven transport rollers is set to be stronger than the rotating force acting between the transport rollers due to the magnetic force between the rotary transmission members provided on the support shafts of the respective transport rollers. The non-contact power transmission mechanism according to any one of claims 4 to 4.
JP2002208707A 2002-07-17 2002-07-17 Noncontact transmission mechanism Withdrawn JP2004056875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208707A JP2004056875A (en) 2002-07-17 2002-07-17 Noncontact transmission mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002208707A JP2004056875A (en) 2002-07-17 2002-07-17 Noncontact transmission mechanism

Publications (1)

Publication Number Publication Date
JP2004056875A true JP2004056875A (en) 2004-02-19

Family

ID=31932779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208707A Withdrawn JP2004056875A (en) 2002-07-17 2002-07-17 Noncontact transmission mechanism

Country Status (1)

Country Link
JP (1) JP2004056875A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275033A (en) * 2007-04-26 2008-11-13 Honda Motor Co Ltd Magnetic shaft coupling structure
JP2008285255A (en) * 2007-05-16 2008-11-27 Shoei Koki:Kk Conveying device
JP2013086913A (en) * 2011-10-17 2013-05-13 Hirano Tecseed Co Ltd Web stabilization device
WO2013149119A1 (en) * 2012-03-29 2013-10-03 Gloucester Engineering Co., Inc. Driven layon roller apparatus for film or sheet winders
JP2015044137A (en) * 2013-08-27 2015-03-12 株式会社豊田自動織機 Coating device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275033A (en) * 2007-04-26 2008-11-13 Honda Motor Co Ltd Magnetic shaft coupling structure
JP2008285255A (en) * 2007-05-16 2008-11-27 Shoei Koki:Kk Conveying device
JP4541383B2 (en) * 2007-05-16 2010-09-08 株式会社松栄工機 Transport device
JP2013086913A (en) * 2011-10-17 2013-05-13 Hirano Tecseed Co Ltd Web stabilization device
WO2013149119A1 (en) * 2012-03-29 2013-10-03 Gloucester Engineering Co., Inc. Driven layon roller apparatus for film or sheet winders
US20140197265A1 (en) * 2012-03-29 2014-07-17 Gloucester Engineering Co., Inc. Driven layon roller apparatus for film or sheet winders
JP2015044137A (en) * 2013-08-27 2015-03-12 株式会社豊田自動織機 Coating device

Similar Documents

Publication Publication Date Title
US20080145102A1 (en) Surface-moving-body driving device, belt device, and image forming apparatus
CN102243464A (en) Fixing apparatus and image forming apparatus including the same
JP2004056875A (en) Noncontact transmission mechanism
JP2008151165A (en) Drive force transmission device
JP2011219270A (en) Sheet curl correction apparatus, and image forming apparatus
JPS63214775A (en) Color image forming device
JP2002218735A (en) Non-contact transmission mechanism
JP2002211785A (en) Paper conveying equipment
US20050035538A1 (en) Media registration mechanism for image forming device
JP2009067487A (en) Image forming apparatus
JP2530024Y2 (en) Photosensitive material transport device for copy camera
JP2002296972A (en) Belt transferring device
JP3249241B2 (en) Document reading device
JP3526186B2 (en) Transport device and image forming device
JP4701867B2 (en) Image forming apparatus
JP4186120B2 (en) Photographic paper transport device
JP2001108026A (en) Assembling method for power transmission, power transmission, image forming device
JP3712102B2 (en) Photographic paper transport device
JP2000281232A (en) Sheet material-transporting equipment and image-forming device
JP4096257B2 (en) Photosensitive material transfer device
JP2001192149A (en) Image forming device
JP2007153549A (en) Image forming device
JPS58113957A (en) Electrophotographic device
JP2005096921A (en) Exposure device
JPS63133138A (en) Document feeder for optical system moving type copying machine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004