JP2004052730A - Closed type electric compressor - Google Patents

Closed type electric compressor Download PDF

Info

Publication number
JP2004052730A
JP2004052730A JP2002214757A JP2002214757A JP2004052730A JP 2004052730 A JP2004052730 A JP 2004052730A JP 2002214757 A JP2002214757 A JP 2002214757A JP 2002214757 A JP2002214757 A JP 2002214757A JP 2004052730 A JP2004052730 A JP 2004052730A
Authority
JP
Japan
Prior art keywords
electric compressor
insulator
refrigerant
hermetic electric
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002214757A
Other languages
Japanese (ja)
Inventor
Hirofumi Mizukami
水上 裕文
Takakatsu Hatae
波多江 孝勝
Kenji Sasaki
佐々木 健治
Takahide Nagao
長尾 崇秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Refrigeration Co
Priority to JP2002214757A priority Critical patent/JP2004052730A/en
Publication of JP2004052730A publication Critical patent/JP2004052730A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems of low productivity and inability to reduce cost and improve reliability although an insulator is applied to electrically insulate a motor stator core and a coil of a closed type electric compressor used for refrigerating equipment. <P>SOLUTION: Liquid crystal polymer resin is used as the material of the insulator 3 to provide the closed type electric compressor of excellent productivity while realizing the improvement of reliability of the closed type electric compressor. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍機器用途に使用される密閉型電動圧縮機に係わるものである。
【0002】
【従来技術】
従来、冷凍機器に使用される密閉型電動圧縮機の電動機固定子鉄心と導電性巻線とを電気絶縁する絶縁体には、ポリエチレンテレフタレート(PET)の絶縁フィルムやポリフェニレンサルファイド(PPS)のインシュレータが適用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、PETは圧縮機運転により電動機固定子温度が上昇した場合、PET中に含まれているオリゴマー成分が抽出されやすいことが要因となり、冷凍サイクル中のキャピラリチューブ閉塞の危険性や圧縮機メカ部に堆積することでメカ部のロック現象を引き起こす危険性がある。またPETは、ポリエステル系の材料であることから、冷凍サイクル中に存在する水分と温度により加水分解を起こしやすい。加水分解が進行することで、フィルムの強度低下を招き、運転中の振動によってフィルムが割れ、電動機の耐圧不良に至る危険性もある。
【0004】
一方、PPSのインシュレータは、オリゴマ量が少なく、耐熱性も良好で、密閉型電動圧縮機の信頼性はPETと比較して向上している。しかし、PPSは離型不良によるインシュレータの割れ問題、バリの発生による二次加工の必要性、成形サイクル時間が短縮出来ない問題、金型寿命が短いなどの問題があり、成形加工費の増大につながっている。
【0005】
本願発明はこのような課題に鑑み発明されたものであり、信頼性が高く、成形加工費の安価な密閉型電動圧縮機を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は上記従来の課題を解決するもので、密閉容器内に、電動機と、圧縮機部と、冷媒および冷凍機油とを備えるとともに、前記電動機を構成する絶縁体が液晶ポリマーとしたものであって、信頼性が高く、生産性が良好な密閉型電動圧縮機を提供するものである。
【0007】
【発明の実施の形態】
本願請求項1に記載の発明は、密閉容器内に、電動機と、圧縮機部と、冷媒および冷凍機油とを備えるとともに、前記電動機を構成する絶縁体が液晶ポリマーであることを特徴とする密閉型電動圧縮機であって、樹脂成形の際、金型からの離型性向上や成形サイクルの短縮化を可能とし、また、オリゴマーの低抽出性や耐熱性向上により信頼性を向上することができる。
【0008】
請求項2記載の発明は、液晶ポリマーが、パラヒドロキシ安息香酸と2,6−ヒドロキシナフトエ酸を原料とした全芳香族ポリエステルの共重合体である請求項1記載の密閉型電動圧縮機であって、樹脂の靭性が向上し、インシュレータの信頼性を向上することができる。
【0009】
請求項3記載の発明は、液晶ポリマーの充填剤をガラス繊維とし、かつその充填量が20〜50wt%である請求項1から請求項2のいずれか一項に記載の密閉型電動圧縮機であって、樹脂のフィブリルを防止し、最適なインシュレータの強度を確保することができる。
【0010】
請求項4記載の発明は、前記電動機の固定子が、固定子鉄心の内径側に突出した複数の歯部に絶縁体を介して突極集中巻線を施されたことを特徴とする請求項1から請求項3のいずれか一項に記載の密閉型電動圧縮機であって、電動機巻線のコイルエンド高さを低くすることが可能となり、電動機の小型化が図れる。
【0011】
請求項5記載の発明は、冷媒が塩素を含まないHFC冷媒であることを特徴とする請求項1から請求項4のいずれか一項に記載の密閉型電動圧縮機であって、HFC冷媒環境下でもインシュレータの信頼性の向上が図れる。
【0012】
請求項6記載の発明は、冷凍機油がポリアルキレングリコールまたはポリオールエステルであることを特徴とする請求項1から請求項5のいずれか一項に記載の密閉型圧縮機用電動機であって、吸湿性が高い冷凍機油環境下においても、インシュレータの信頼性の向上が図れる。
【0013】
請求項7記載の発明は、冷媒が塩素を含まないHC冷媒であることを特徴とする請求項1から請求項4のいずれかに記載の密閉型電動圧縮機であって、HC冷媒環境下でもインシュレータの信頼性の向上が図れる。
【0014】
【実施例】
以下、本発明の具体例について説明する。なお、本発明はこれらの実施例により限定されるものではない。
【0015】
(実施例1)
図1はインシュレータおよび絶縁フィルムの固定子への装着状態を示し、図2はインシュレータを使用した密閉型電動圧縮機用電動機の固定子の斜視図である。
【0016】
電動機の固定子1は、図1に示すように固定子鉄心2の端面にインシュレータ3およびスロット部に絶縁フィルム5を装着した後、固定子鉄心の内径側に突出した複数の歯部に突極集中巻線4が施されて構成されている(図2参照)。
【0017】
なお、液晶ポリマー(以下、「LCP」と示す)の射出成形により形成されるインシュレータ3の成形に際しては、低強度となるウェルドの発生を抑制することが重要であり、ゲートの数、位置、径その他の金型構成を考慮する必要がある。
【0018】
すなわち、ゲートの数を少なく(より具体的には、ティースの数より少なく)することで、金型内への空気の巻き込みおよびウェルド発生部を減少させることが可能となり、また、逆にゲートの数を多くすることで、一つのウェルドの大きさを小さくすることが可能となる。
【0019】
すなわち、最適なインシュレータ3の強度を確保するためには、インシュレータ3の形状および金型構成を考慮する必要がある。
【0020】
図3に密閉型電動圧縮機を示す。密閉型電動圧縮機は外殻となる密閉容器7内に電動機6、圧縮機部8等を組み込まれ、また、冷媒および冷凍機油(図示省略)が封入されている。運転時において密閉容器7内は冷媒および冷凍機油の混合雰囲気となっている。
【0021】
(実施例2)
表1は、供試材としてLCP、PPSおよびPETフィルムによる抽出量を示すものであり、図1のインシュレータ(成形品)をペレット状に切削しアルコールにて洗浄したものおよびフィルム(厚み250μm品)を5mm×5mmに切断し、アルコールにて洗浄したものを使用した。抽出溶媒にはクロロホルムを使用しソックスレー方式による抽出を6時間実施した後、抽出後溶媒を蒸発乾固させ計量し、抽出率を算出した。
【0022】
LCPの抽出量はPPSの約1/4、PETフィルムの約1/18表1から明らかなように、オリゴマーの抽出率は、PETフィルムよりもかなり低減され、さらにはPPSよりも低オリゴマー化の効果が得られる。
【0023】
【表1】

Figure 2004052730
【0024】
本実施例は、スロット内の絶縁にフィルムを使用しているが、スロット絶縁にもLCP成形品を使用すれば、さらに低オリゴマー化の効果が得られる。
【0025】
(実施例3)
表2は図1のインシュレータ成形品を実際に成形した場合の成形条件、成形性、成形品の特性を示したものである。
【0026】
【表2】
Figure 2004052730
【0027】
LCPは、PPSとの樹脂性状の違いから、溶融状態から急冷しても徐冷しても結晶化度は変化しないことから、金型温度を高温にする必要もないことから、表2のようにPPSと比較して低い金型温度できる。したがって、成形サイクル時間も約半減化することが可能となっている。
【0028】
また、流動性が良好であることから、ランナーやスプル径を小さくすることが可能となることで、ランナー、スプル量が少なくでき、製品の低コスト化に効果がある。
【0029】
成形性に関しては、前述したように流動性が良好であることから、射出圧力を低くするこが可能なことと、成形収縮率もPPSと比較して低いことから、離型抵抗が小さくなっている。したがって、離型不良が低減し、さらには離型時に成形品にかかる応力が小さくなっている。このことにより、製品ロスコストの低減および製品の絶縁信頼性の向上に効果がある。
【0030】
また、PPSのような金型腐食性のガスの発生がないことから、金型寿命が約2倍となり、長期間安定した成形品を得ることができる。
【0031】
成形品特性も成形収縮率が低く、金型内で結晶化が進行しないことから、固定子鉄心の内径側に突出した複数の歯部(ティース部)のそりがPPSよりもかなり小さくすることができる。
【0032】
また、LCPは樹脂の性状から、金型のパーティング部のバリが発生しにくい。表2のようにバリの大きさはPPSに比べてかなり小さいバリとなっており、成形後のバリ取りが不要になる。したがって、二次加工が不要になることで成形品のコストを低減することができる。
【0033】
60℃95%RHの雰囲気に100時間放置した後の吸湿量を表2に示した。表2のようにLCPはPPSよりも吸湿量が少ないことから、圧縮機内に持ち込む水分量も低減することが可能で、圧縮機の信頼性を向上することができる。
【0034】
成形品の強度は、図1に示す環状の成形品を10mm/分の圧縮速度で圧縮し、破壊したときの荷重を測定した。LCPの欠点としてウエルド強度が低いことがあげられるが、ゲート数をティース部と同一個数にし、金型の空気抜けを良化することで、PPSに近い成形品の強度を確保している。
【0035】
(実施例4)
表3に組成の異なった全芳香族ポリエステルの共重合体で成形した成形品強度を示す。ガラス繊維の充填量は同一とし、表2と同様な成形条件にて成形した成形品を前述と同様な方法で成形品強度を測定した。
【0036】
【表3】
Figure 2004052730
【0037】
成形品強度は、パラヒドロキシ安息香酸と2,6−ヒドロキシナフトエ酸を原料とした全芳香族ポリエステルの共重合体が最も高い。したがって、成形品の絶縁信頼性を向上することができる。
【0038】
(実施例5)
表4にガラス繊維の充填量を変化させた場合の成形品の特性を示す。ベースの樹脂は、パラヒドロキシ安息香酸と2,6−ヒドロキシナフトエ酸を原料とした全芳香族ポリエステルの共重合体として、ガラス繊維の充填量のみ変化させ、成形品強度は、前述と同様な方法で測定した。
【0039】
【表4】
Figure 2004052730
【0040】
成形品強度は、ガラス繊維の充填量が30wt%が最も良好で、充填量が20〜50wt%内であれば、巻線が可能となる。ガラス繊維量が0wt%の場合は、LCP特有のフィブリルが発生するうえ、強度不足が原因で巻線テンションによるティースのコーナー部の変形が大きい問題も発生している。逆に、ガラス繊維の充填量が60wt%の場合は、成形品自体の強度および靭性が低下することで、ティースのコーナー部にクラックが発生している。
【0041】
(実施例6)
表5に冷媒と冷凍機油に対する適合性試験結果を示す。試験方法は、以下の手順により実施した。
【0042】
【表5】
Figure 2004052730
【0043】
密閉圧力容器中に容器容量の半分まで水分量を調整した冷凍機油と各成形品を投入したのち、圧力容器を密閉し、50Paで真空引きを30秒行なう。その後、各冷媒を140℃で3MPaになる量を液の状態で充填する。充填後、冷媒のリークがないか確認し、140℃のオイルバスで2000h加熱放置する。2000h終了後、成形品を取りだし前述と同様な方法で成形品強度を測定し、試験前の強度と比較し強度保持率を算出した。
【0044】
成形品の抽出率は、試験後の成形品を洗浄、粉砕し実施例1と同様な方法でクロロホルムによる抽出率を測定した後、試験前の成形品の抽出率と試験後の抽出率から冷媒/冷凍機油適合性試験後の抽出率を算出した。
【0045】
なお、PAGおよびPOEの水分量は200〜300ppm、鉱油の水分量は20〜40ppmに調整したものを使用した。
【0046】
表5から明らかなように、LCPの成形品はHFC冷媒、HC冷媒、PAG油、POE油との適合性において、PETフィルムのような強度低下は起こらず、PPSよりも低抽出性を有しており、密閉型電動圧縮機の信頼性を向上することができる。
【0047】
【発明の効果】
上記実施例から明らかなように請求項1記載の発明によれば、樹脂成形の際、金型からの離型性向上や成形サイクルの短縮化を可能とし、また、オリゴマーの低抽出性や耐熱性向上により信頼性を向上することができる。
【0048】
請求項2記載の発明によれば、樹脂の靭性が向上し、インシュレータの信頼性を向上することができる。
【0049】
請求項3記載の発明によれば、樹脂のフィブリルを防止し、最適なインシュレータの強度を確保することができる。
【0050】
請求項4記載の発明によれば、電動機巻線のコイルエンド高さを低くすることが可能となり、電動機の小型化が図れる。
【0051】
請求項5記載の発明によれば、HFC冷媒環境下でもインシュレータの信頼性の向上が図れる。
【0052】
請求項6記載の発明によれば、吸湿性が高い冷凍機油環境下においても、インシュレータの信頼性の向上が図れる。
【0053】
請求項7記載の発明によれば、HC冷媒環境下でもインシュレータの信頼性の向上が図れる。
【図面の簡単な説明】
【図1】本発明の一実施の形態によるインシュレータの斜視図
【図2】インシュレータを使用した密閉型電動圧縮機用電動機の斜視図
【図3】密閉型電動圧縮機を示す図
【符号の説明】
1 固定子
2 固定子鉄心
3 インシュレータ
4 突極集中巻線
5 絶縁フィルム
6 電動機
7 密閉容器
8 圧縮機部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hermetic electric compressor used for refrigeration equipment.
[0002]
[Prior art]
Conventionally, an insulating film of polyethylene terephthalate (PET) or an insulator of polyphenylene sulfide (PPS) has been used as an insulator for electrically insulating a motor stator core and a conductive winding of a hermetic electric compressor used for refrigeration equipment. Has been applied.
[0003]
[Problems to be solved by the invention]
However, in PET, when the motor stator temperature rises due to the compressor operation, the oligomer components contained in the PET are easily extracted, which causes danger of blockage of the capillary tube during the refrigeration cycle and the mechanical mechanism of the compressor. There is a risk of causing a locking phenomenon of the mechanical part by accumulating on the surface. In addition, since PET is a polyester-based material, it is easily hydrolyzed by moisture and temperature present in the refrigeration cycle. As the hydrolysis proceeds, the strength of the film may be reduced, and the film may be broken by vibration during operation, leading to a danger that the electric motor will have poor pressure resistance.
[0004]
On the other hand, the insulator of PPS has a small amount of oligomer and good heat resistance, and the reliability of the hermetic electric compressor is improved as compared with PET. However, PPS has problems such as cracking of an insulator due to poor mold release, necessity of secondary processing due to generation of burrs, a problem that a molding cycle time cannot be shortened, and a short life of a mold. linked.
[0005]
The present invention has been made in view of such a problem, and an object of the present invention is to provide a hermetic electric compressor having high reliability and low molding cost.
[0006]
[Means for Solving the Problems]
The present invention solves the above-mentioned conventional problems, in which an electric motor, a compressor section, a refrigerant and a refrigerating machine oil are provided in a closed container, and an insulator constituting the electric motor is a liquid crystal polymer. Thus, the present invention provides a hermetic electric compressor having high reliability and good productivity.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 of the present application is characterized in that an electric motor, a compressor section, a refrigerant and a refrigerating machine oil are provided in an airtight container, and an insulator constituting the electric motor is a liquid crystal polymer. This is a type of electric compressor that can improve the releasability from the mold and shorten the molding cycle during resin molding, and can also improve the reliability by low oligomer extraction and heat resistance. it can.
[0008]
The invention according to claim 2 is the hermetic electric compressor according to claim 1, wherein the liquid crystal polymer is a copolymer of a wholly aromatic polyester made from parahydroxybenzoic acid and 2,6-hydroxynaphthoic acid. As a result, the toughness of the resin is improved, and the reliability of the insulator can be improved.
[0009]
According to a third aspect of the present invention, there is provided the hermetic electric compressor according to any one of the first to second aspects, wherein the filler of the liquid crystal polymer is glass fiber, and the filling amount is 20 to 50 wt%. Accordingly, fibril of the resin can be prevented, and the optimum strength of the insulator can be secured.
[0010]
The invention according to claim 4 is characterized in that the stator of the electric motor is provided with salient pole concentrated windings via insulators on a plurality of teeth protruding toward the inner diameter side of the stator core. The hermetic electric compressor according to any one of claims 1 to 3, wherein the height of the coil end of the electric motor winding can be reduced, and the electric motor can be downsized.
[0011]
The invention according to claim 5 is the hermetic electric compressor according to any one of claims 1 to 4, wherein the refrigerant is an HFC refrigerant containing no chlorine. Even below, the reliability of the insulator can be improved.
[0012]
The invention according to claim 6 is the electric motor for a hermetic compressor according to any one of claims 1 to 5, wherein the refrigerating machine oil is a polyalkylene glycol or a polyol ester. The reliability of the insulator can be improved even in a refrigeration oil environment with high reliability.
[0013]
The invention according to claim 7 is the hermetic electric compressor according to any one of claims 1 to 4, wherein the refrigerant is an HC refrigerant that does not contain chlorine. The reliability of the insulator can be improved.
[0014]
【Example】
Hereinafter, specific examples of the present invention will be described. The present invention is not limited by these examples.
[0015]
(Example 1)
FIG. 1 shows a state in which an insulator and an insulating film are mounted on a stator. FIG. 2 is a perspective view of a stator of a motor for a hermetic electric compressor using an insulator.
[0016]
As shown in FIG. 1, a stator 1 of an electric motor is provided with an insulator 3 on an end face of a stator core 2 and an insulating film 5 on a slot portion, and then has salient poles on a plurality of teeth protruding toward the inner diameter side of the stator core. A concentrated winding 4 is provided (see FIG. 2).
[0017]
When molding the insulator 3 formed by injection molding of a liquid crystal polymer (hereinafter, referred to as “LCP”), it is important to suppress the occurrence of low-strength welds. Other mold configurations need to be considered.
[0018]
In other words, by reducing the number of gates (more specifically, less than the number of teeth), it becomes possible to reduce air entrainment in the mold and the occurrence of welds. By increasing the number, the size of one weld can be reduced.
[0019]
That is, in order to secure the optimum strength of the insulator 3, it is necessary to consider the shape and the mold configuration of the insulator 3.
[0020]
FIG. 3 shows a hermetic electric compressor. The hermetic electric compressor incorporates an electric motor 6, a compressor section 8 and the like in a hermetically sealed container 7 serving as an outer shell, and also contains a refrigerant and refrigerating machine oil (not shown). During operation, the inside of the closed container 7 is in a mixed atmosphere of the refrigerant and the refrigerating machine oil.
[0021]
(Example 2)
Table 1 shows the amounts of LCP, PPS and PET films extracted as test materials. The insulator (molded product) shown in FIG. 1 was cut into pellets, washed with alcohol, and the film (250 μm thick). Was cut into 5 mm x 5 mm and washed with alcohol. After performing extraction by Soxhlet method for 6 hours using chloroform as an extraction solvent, the solvent was evaporated to dryness after the extraction, and weighed to calculate an extraction rate.
[0022]
As can be seen from Table 1, the extraction amount of LCP is about 1/4 of PPS and about 1/18 of PET film. The effect is obtained.
[0023]
[Table 1]
Figure 2004052730
[0024]
In the present embodiment, a film is used for insulation in the slot. However, if an LCP molded product is used also for slot insulation, the effect of lowering the oligomer can be obtained.
[0025]
(Example 3)
Table 2 shows molding conditions, moldability, and characteristics of the molded article when the insulator molded article of FIG. 1 was actually molded.
[0026]
[Table 2]
Figure 2004052730
[0027]
LCP has a different resin property from PPS, and since the crystallinity does not change even if it is cooled rapidly or slowly from the molten state, it is not necessary to raise the mold temperature. The mold temperature can be lower than that of PPS. Therefore, the molding cycle time can be reduced by about half.
[0028]
In addition, since the fluidity is good, the diameter of the runner and sprue can be reduced, so that the amount of runner and sprue can be reduced, which is effective in reducing the cost of the product.
[0029]
Regarding the moldability, as described above, since the fluidity is good, it is possible to lower the injection pressure, and since the molding shrinkage ratio is lower than that of PPS, the mold release resistance is reduced. I have. Therefore, the release failure is reduced, and the stress applied to the molded product during the release is reduced. This is effective in reducing the product loss cost and improving the insulation reliability of the product.
[0030]
Further, since there is no generation of mold corrosive gas such as PPS, the mold life is approximately doubled, and a long-term stable molded product can be obtained.
[0031]
Since the molded product characteristics also have a low molding shrinkage and crystallization does not progress in the mold, the warpage of the teeth (teeth portions) protruding toward the inner diameter side of the stator core can be considerably smaller than PPS. it can.
[0032]
In addition, due to the properties of the resin, LCP is unlikely to cause burrs at the parting part of the mold. As shown in Table 2, the size of the burr is considerably smaller than that of the PPS, and it is not necessary to remove the burr after molding. Therefore, the cost of the molded product can be reduced by eliminating the need for secondary processing.
[0033]
Table 2 shows the amount of moisture absorbed after being left in an atmosphere of 60 ° C. and 95% RH for 100 hours. As shown in Table 2, LCP has a smaller amount of moisture absorption than PPS. Therefore, the amount of moisture brought into the compressor can be reduced, and the reliability of the compressor can be improved.
[0034]
The strength of the molded article was measured by compressing the annular molded article shown in FIG. 1 at a compression speed of 10 mm / min and measuring the load when the article was broken. One of the drawbacks of the LCP is that the weld strength is low. However, the number of gates is made the same as the number of the teeth and the air escape of the mold is improved, so that the strength of the molded product close to the PPS is secured.
[0035]
(Example 4)
Table 3 shows the strength of molded articles molded from copolymers of wholly aromatic polyesters having different compositions. The filled amount of the glass fiber was the same, and the molded product molded under the same molding conditions as in Table 2 was measured for the molded product strength by the same method as described above.
[0036]
[Table 3]
Figure 2004052730
[0037]
The strength of the molded article is highest for a copolymer of a wholly aromatic polyester made from parahydroxybenzoic acid and 2,6-hydroxynaphthoic acid. Therefore, the insulation reliability of the molded product can be improved.
[0038]
(Example 5)
Table 4 shows the characteristics of the molded article when the filling amount of the glass fiber was changed. The base resin is a copolymer of wholly aromatic polyester made from parahydroxybenzoic acid and 2,6-hydroxynaphthoic acid, and only the filling amount of glass fiber is changed. Was measured.
[0039]
[Table 4]
Figure 2004052730
[0040]
The strength of the molded product is best when the filling amount of the glass fiber is 30 wt%, and when the filling amount is within the range of 20 to 50 wt%, winding becomes possible. When the glass fiber content is 0 wt%, fibrils peculiar to LCP are generated, and the corner portion of the teeth is greatly deformed by the winding tension due to insufficient strength. Conversely, when the filling amount of the glass fiber is 60 wt%, the strength and toughness of the molded product itself are reduced, and cracks are generated at the corners of the teeth.
[0041]
(Example 6)
Table 5 shows the compatibility test results for the refrigerant and the refrigerating machine oil. The test method was implemented according to the following procedure.
[0042]
[Table 5]
Figure 2004052730
[0043]
After charging the refrigerating machine oil whose moisture content has been adjusted to half of the container capacity and each molded product into a closed pressure container, the pressure container is sealed, and vacuuming is performed at 50 Pa for 30 seconds. Thereafter, each refrigerant is charged in an amount of 3 MPa at 140 ° C. in a liquid state. After filling, it is confirmed whether there is any leakage of the refrigerant, and the mixture is heated and left in a 140 ° C. oil bath for 2000 hours. After 2,000 hours, the molded product was taken out, the molded product strength was measured by the same method as described above, and compared with the strength before the test, the strength retention was calculated.
[0044]
The extraction rate of the molded article was determined by washing and pulverizing the molded article after the test, measuring the extraction rate with chloroform in the same manner as in Example 1, and measuring the extraction rate of the molded article before the test and the extraction rate after the test. / The extraction rate after the refrigerating machine oil compatibility test was calculated.
[0045]
The water content of PAG and POE was adjusted to 200 to 300 ppm, and the water content of mineral oil was adjusted to 20 to 40 ppm.
[0046]
As is clear from Table 5, the molded product of LCP does not cause a decrease in strength like a PET film in compatibility with HFC refrigerant, HC refrigerant, PAG oil, and POE oil, and has lower extractability than PPS. As a result, the reliability of the hermetic electric compressor can be improved.
[0047]
【The invention's effect】
As is clear from the above embodiment, according to the first aspect of the present invention, it is possible to improve the releasability from the mold and shorten the molding cycle during resin molding, and also to achieve low oligomer extraction and heat resistance. The reliability can be improved by improving the performance.
[0048]
According to the second aspect of the invention, the toughness of the resin is improved, and the reliability of the insulator can be improved.
[0049]
According to the third aspect of the present invention, fibrils of the resin can be prevented, and the optimum strength of the insulator can be secured.
[0050]
According to the fourth aspect of the present invention, it is possible to reduce the height of the coil end of the motor winding, and to reduce the size of the motor.
[0051]
According to the invention described in claim 5, the reliability of the insulator can be improved even in an HFC refrigerant environment.
[0052]
According to the invention described in claim 6, the reliability of the insulator can be improved even in a refrigerating machine oil environment having high hygroscopicity.
[0053]
According to the invention described in claim 7, the reliability of the insulator can be improved even in an HC refrigerant environment.
[Brief description of the drawings]
FIG. 1 is a perspective view of an insulator according to an embodiment of the present invention. FIG. 2 is a perspective view of a motor for a hermetic electric compressor using an insulator. FIG. 3 is a diagram showing a hermetic electric compressor. ]
DESCRIPTION OF SYMBOLS 1 Stator 2 Stator iron core 3 Insulator 4 Salient pole concentrated winding 5 Insulating film 6 Electric motor 7 Airtight container 8 Compressor part

Claims (7)

密閉容器内に、電動機と、圧縮機部と、冷媒および冷凍機油とを備えるとともに、前記電動機を構成する絶縁体が液晶ポリマーであることを特徴とする密閉型電動圧縮機。A hermetic electric compressor comprising an electric motor, a compressor section, a refrigerant and refrigerating machine oil in a closed container, and wherein an insulator constituting the electric motor is a liquid crystal polymer. 液晶ポリマーが、パラヒドロキシ安息香酸と2,6−ヒドロキシナフトエ酸を原料とした全芳香族ポリエステルの共重合体である請求項1記載の密閉型電動圧縮機。2. The hermetic electric compressor according to claim 1, wherein the liquid crystal polymer is a copolymer of a wholly aromatic polyester made from parahydroxybenzoic acid and 2,6-hydroxynaphthoic acid. 液晶ポリマーの充填剤をガラス繊維とし、かつその充填量が20〜50wt%である請求項1から請求項2のいずれか一項に記載の密閉型電動圧縮機。The hermetic electric compressor according to any one of claims 1 to 2, wherein the filler of the liquid crystal polymer is glass fiber, and the filling amount is 20 to 50 wt%. 電動機の固定子が、固定子鉄心の内径側に突出した複数の歯部に絶縁体を介して突極集中巻線を施されたことを特徴とする請求項1から請求項3のいずれか一項に記載の密閉型電動圧縮機。4. The motor according to claim 1, wherein the stator of the motor has a plurality of teeth protruding toward the inner diameter side of the stator core, and a salient pole concentrated winding is provided via an insulator. Item 12. The hermetic electric compressor according to the item. 冷媒が塩素を含まないHFC冷媒であることを特徴とする請求項1から請求項4のいずれか一項に記載の密閉型電動圧縮機。The hermetic electric compressor according to any one of claims 1 to 4, wherein the refrigerant is an HFC refrigerant containing no chlorine. 冷凍機油がポリアルキレングリコール(PAG)またはポリオールエステル(POE)であることを特徴とする請求項1から請求項5のいずれか一項に記載の密閉型圧縮機用電動機。The motor for a hermetic compressor according to any one of claims 1 to 5, wherein the refrigerating machine oil is polyalkylene glycol (PAG) or polyol ester (POE). 冷媒が塩素を含まないHC冷媒であることを特徴とする請求項1から請求項4のいずれか一項に記載の密閉型電動圧縮機。The hermetic electric compressor according to any one of claims 1 to 4, wherein the refrigerant is an HC refrigerant containing no chlorine.
JP2002214757A 2002-07-24 2002-07-24 Closed type electric compressor Pending JP2004052730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002214757A JP2004052730A (en) 2002-07-24 2002-07-24 Closed type electric compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002214757A JP2004052730A (en) 2002-07-24 2002-07-24 Closed type electric compressor

Publications (1)

Publication Number Publication Date
JP2004052730A true JP2004052730A (en) 2004-02-19

Family

ID=31936967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002214757A Pending JP2004052730A (en) 2002-07-24 2002-07-24 Closed type electric compressor

Country Status (1)

Country Link
JP (1) JP2004052730A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041146A1 (en) * 2004-10-14 2006-04-20 Matsushita Electric Industrial Co., Ltd. Refrigerator
WO2006041147A1 (en) * 2004-10-14 2006-04-20 Matsushita Electric Industrial Co., Ltd. Compressor, refrigerating device, and refrigerator
JP2008141821A (en) * 2006-11-30 2008-06-19 Daikin Ind Ltd Insulator for motor, motor and compressor
JP2010059855A (en) * 2008-09-03 2010-03-18 Panasonic Corp Hermetic compressor, resin component for hermetic compressor, and method for manufacturing resin component for hermetic compressor
JP2010166643A (en) * 2009-01-13 2010-07-29 Mitsubishi Electric Corp Hermetically sealed compressor and refrigeration cycle device
US20110011124A1 (en) * 2008-03-18 2011-01-20 Hideki Matsuura Refrigeration apparatus
WO2015015881A1 (en) * 2013-07-29 2015-02-05 三菱電機株式会社 Heat pump device
WO2015156064A1 (en) * 2014-04-10 2015-10-15 三菱電機株式会社 Heat pump device
KR20200121735A (en) 2019-04-16 2020-10-26 우에노 세이야쿠 가부시키 가이샤 Liquid crystal polyester resin
WO2021205590A1 (en) * 2020-04-09 2021-10-14 三菱電機株式会社 Refrigeration cycle device and air-conditioning device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041146A1 (en) * 2004-10-14 2006-04-20 Matsushita Electric Industrial Co., Ltd. Refrigerator
WO2006041147A1 (en) * 2004-10-14 2006-04-20 Matsushita Electric Industrial Co., Ltd. Compressor, refrigerating device, and refrigerator
JP2008141821A (en) * 2006-11-30 2008-06-19 Daikin Ind Ltd Insulator for motor, motor and compressor
JP4670799B2 (en) * 2006-11-30 2011-04-13 ダイキン工業株式会社 Insulator for motor, motor and compressor
US20110011124A1 (en) * 2008-03-18 2011-01-20 Hideki Matsuura Refrigeration apparatus
US8691108B2 (en) * 2008-03-18 2014-04-08 Daikin Industries, Ltd. Refrigeration apparatus
JP2010059855A (en) * 2008-09-03 2010-03-18 Panasonic Corp Hermetic compressor, resin component for hermetic compressor, and method for manufacturing resin component for hermetic compressor
JP2010166643A (en) * 2009-01-13 2010-07-29 Mitsubishi Electric Corp Hermetically sealed compressor and refrigeration cycle device
EP2207254A3 (en) * 2009-01-13 2013-12-25 Mitsubishi Electric Corporation Hermetic compressor and refrigerating cycle apparatus
CN104344605A (en) * 2013-07-29 2015-02-11 三菱电机株式会社 Heat pump device
AU2016208392B2 (en) * 2013-07-29 2017-12-21 Mitsubishi Electric Corporation Heat pump apparatus
WO2015015881A1 (en) * 2013-07-29 2015-02-05 三菱電機株式会社 Heat pump device
JPWO2015015881A1 (en) * 2013-07-29 2017-03-02 三菱電機株式会社 Heat pump equipment
AU2014297674B2 (en) * 2013-07-29 2016-06-16 Mitsubishi Electric Corporation Heat pump apparatus
CN106164606A (en) * 2014-04-10 2016-11-23 三菱电机株式会社 Heat pump assembly
JP2015200480A (en) * 2014-04-10 2015-11-12 三菱電機株式会社 Heat pump device
WO2015156064A1 (en) * 2014-04-10 2015-10-15 三菱電機株式会社 Heat pump device
US9915465B2 (en) 2014-04-10 2018-03-13 Mitsubishi Electric Corporation Heat pump compressor including liquid crystal polymer insulating material
CN106164606B (en) * 2014-04-10 2019-08-23 三菱电机株式会社 Heat pump assembly
KR20200121735A (en) 2019-04-16 2020-10-26 우에노 세이야쿠 가부시키 가이샤 Liquid crystal polyester resin
WO2021205590A1 (en) * 2020-04-09 2021-10-14 三菱電機株式会社 Refrigeration cycle device and air-conditioning device
JPWO2021205590A1 (en) * 2020-04-09 2021-10-14
JP7386971B2 (en) 2020-04-09 2023-11-27 三菱電機株式会社 Refrigeration cycle equipment and air conditioning equipment

Similar Documents

Publication Publication Date Title
JP2004052730A (en) Closed type electric compressor
US5490319A (en) Thermotropic liquid crystal polymer composition and insulator
TWI508112B (en) High-voltage coil
US5459190A (en) Thermotropic liquid crystal polymer composition and insulator
Cheng et al. Enhanced energy storage properties of polypropylene/maleic anhydride‐grafted polypropylene/nano‐ZrO2 ternary system
JP5981089B2 (en) Insulating resin sheet for fixing coil, stator for motor using insulating resin sheet for fixing coil, and method for manufacturing stator for motor
JPH05271465A (en) Themotropic liquid crystalline polymer composition and insulating material
CN102074364A (en) Electrolyte for chip aluminum electrolytic capacitor and preparation method thereof
JP2007091842A (en) Polybutylene terephthalate resin composition
JP5906741B2 (en) Thermally conductive resin composition
JP6450597B2 (en) Coil insulation structure for rotating electrical machine, method for manufacturing the same, and rotating electrical machine comprising the coil insulation structure
JP2013014758A (en) Thermally conductive resin composition
TWM559543U (en) Induction motor stator package structure
JP2009221872A (en) Hermetic compressor and refrigerating cycle device
CN113056522A (en) Polyarylene sulfide resin composition, method for preparing the same, and heat insulating material manufactured using the same
JP3748324B2 (en) Coil for rotating electrical machine
KR20170018005A (en) Curable composition for an electrical machine, and associated method
JP6007610B2 (en) Thermally conductive resin composition
CN1194860C (en) Prepreg composite material and its production method
JP6237618B2 (en) Thermally conductive resin composition
CN108003617A (en) A kind of thin film capacitor PPS films
JPS5921245A (en) Magnetic wedge for rotary electric machine
US20240006102A1 (en) Magnetic body and magnetic element
JP2018011394A (en) Insulator, and manufacturing method of insulator
JP5949078B2 (en) POLYESTER RESIN COMPOSITION FOR ELECTRICAL AND ELECTRONIC COMPONENT, METHOD FOR PRODUCING ELECTRIC ELECTRONIC COMPONENT, AND ELECTRONIC ELECTRONIC COMPONENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041129

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050620

RD01 Notification of change of attorney

Effective date: 20050620

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Effective date: 20070416

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A02 Decision of refusal

Effective date: 20070828

Free format text: JAPANESE INTERMEDIATE CODE: A02