JP2004051083A - Tire for heavy load - Google Patents

Tire for heavy load Download PDF

Info

Publication number
JP2004051083A
JP2004051083A JP2003130595A JP2003130595A JP2004051083A JP 2004051083 A JP2004051083 A JP 2004051083A JP 2003130595 A JP2003130595 A JP 2003130595A JP 2003130595 A JP2003130595 A JP 2003130595A JP 2004051083 A JP2004051083 A JP 2004051083A
Authority
JP
Japan
Prior art keywords
tire
groove
tread
point
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003130595A
Other languages
Japanese (ja)
Other versions
JP4629960B2 (en
Inventor
Satoshi Tsuda
津田 訓
Minoru Nishi
西 実
Masakazu Washitsuka
鷲塚 政和
Mitsuharu Koya
小矢 光晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2003130595A priority Critical patent/JP4629960B2/en
Publication of JP2004051083A publication Critical patent/JP2004051083A/en
Application granted granted Critical
Publication of JP4629960B2 publication Critical patent/JP4629960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tire for a heavy load capable of preventing uneven wear such as shoulder wear, two-belt wear and center wear eventually obtaining the uniformity of the wear at a high level. <P>SOLUTION: In the tire for the heavy load, two or more longitudinal major grooves extending in the circumferential direction are formed on a tread part. In a shoulder groove of the longitudinal major grooves arranged at the outmost side of a tire in the axial direction, a groove center line passes though an area which is apart from a tire equator C at a distance of 0.4 to 0.7 times the half width of tread grounding. In a grounding surface shape outline, an angle γ where a straight line J1, which passes from an equatorial point Pa on the equator to a tread end point Pd on the tread end, forms an axial line of the tire; an angle α where a straight line J2, which passes from the equatorial point Pa to a groove side rim point Pb of the tire equator side, forms the axial line of the tire; and angle β where a straight line J3, which passes from a groove side rim point Pc of the tread contacting end side of the shoulder groove to the tread end point Pd, forms the axial line of the tire, meet requirements: 0°<γ≤12°, 0°<α≤15°, -5°β≤γ and β≤α. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、接地面形状を特定することによってトレッド接地端近傍での肩落ち摩耗や、ショルダー溝に沿った陸部での軌道摩耗といった偏摩耗を抑制し摩耗の均一化を図りうる重荷重用タイヤに関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、一般的な重荷重用夕イヤのトレッド面は、単一の円弧或いは複数の円弧を用いた凸状の円弧曲線で形成されている。従って、図5に略示する如く、接地面形状aは、そのタイヤ周方向の接地長さbが、タイヤ赤道C側からトレッド接地端E側に向かって徐々に小となり、かつタイヤ周方向の前縁g、後縁rはそれぞれ外方へ凸となる滑らかな円弧状をなす。また重荷重用タイヤでは、タイヤ軸方向の最外側に配されるショルダー溝fが設けられ、ショルダー部ysとセンター部ycとを区分している。
【0003】
ところで、このようなタイヤでは、接地面の輪郭線において、タイヤ赤道上の赤道点p1とトレッド接地端E上の接地端点P2とを通る直線j1がタイヤ軸方向線となす角度γよりも、ショルダー溝fのトレッド接地端側の溝側縁点p3と前記接地端点p2とを通る直線J2がタイヤ軸方向線となす角度βの方が大きくなる。つまりγ<βとなる。しかしながら、前記角度βが大きくなると、トレッド接地端Eでの接地長さb2が小さくなり、該接地端E付近が路面に対して滑り易くなる。このため、ショルダー部Ysに摩耗が集中し該ショルダー部Ysが早期に摩耗するいわゆる肩落ち摩耗を招きやすい。
【0004】
このような肩落ち摩耗を改善するために、例えばトレッド面の曲率半径を大きくして前記角度γ及びβをともに小さくして前記接地長さb2、b1の差を減じることが考えられる。しかしながら、このような手法では、ショルダー溝fより内側のトレッドセンター部ycが、外側のトレッドショルダー部ysに比して摩耗する所謂センター摩耗を招いたり、又ショルダー溝fの一方/他方の側縁が摩耗する所謂軌道摩耗を招くなど、摩耗の均一化に対して充分満足のいく結果を得るに至っていない。関連する先行技術としては、次のものがある。
【0005】
【特許文献1】
特開平10−119510号公報
【特許文献2】
特開平9−309301号公報
【特許文献3】
特開平7−186628号公報
【0006】
本発明は、以上のような問題点に鑑み案出なされたもので、接地面形状の輪郭線を一定の形状に特定することを基本として、肩落ち摩耗、軌道摩耗、センター摩耗等の偏摩耗を抑制でき、ひいては摩耗の均一化を高レベルで図りうる重荷重用タイヤを提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明のうち請求項1記載の発明は、トレッド部に、タイヤ周方向に連続してのびる2本以上の縦主溝を有する重荷重用タイヤであって、前記縦主溝のうちのタイヤ軸方向の最外側に配されるショルダー溝は、その溝中心線が、タイヤ赤道Cからトレッド接地半巾の0.4〜0.7倍の距離を隔てた領域を通るとともに、正規リムにリム組みしかつ正規内圧を充填した正規状態のタイヤに正規荷重を負荷したときの接地面形状の輪郭線において、タイヤ赤道上の赤道点Paとトレッド接地端上の接地端点Pdとを通る直線J1がタイヤ軸方向線となす角度γ、前記赤道点Paと前記ショルダー溝のタイヤ赤道側の溝側縁点Pbとを通る直線J2がタイヤ軸方向線となす角度α、及び前記ショルダー溝のトレッド接地端側の溝側縁点Pcと前記接地端点Pdとを通る直線J3がタイヤ軸方向線となす角度βにおいて、下記の条件を満たすことを特徴としている。
0°<γ≦12°
0°<α≦15°
−5°≦β≦γ
β≦α
(ただし上記角度α、β及びγは、直線J1、J2及びJ3がタイヤ軸方向外側に向かってタイヤ周方向の接地長さを減じる向きに傾くときを正の角度とする。)
【0008】
また本明細書において、前記「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば当該規格がJATMAの場合、標準リムよりリム巾の狭いリムがあるサイズについては、「リム巾が標準リムより1ランク狭いリム」、標準リムよりリム巾の狭いリムが設定されていないサイズについては、「標準リム」とする。また前記規格がTRAの場合、”Design Rim”よりリム巾の狭いリムがあるサイズは、「リム巾が”Design Rim”より1ランク狭いリム」とし、”Design Rim”よりリム巾の狭いリムが設定されていないサイズについては、”Design Rim”とする。さらに当該規格がETRTOの場合、”Measuring Rim ”よりリム巾の狭いリムがあるサイズについては、「リム巾が”Measuring Rim ”より1ランク狭いリム」とし、”Measuring Rim ”よりリム巾の狭いリムが設定されていないサイズについては、”Measuring Rim ”とする。
【0009】
また前記「正規内圧」とは、前記規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表 ”TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” に記載の最大値、ETRTOであれば ”INFLATION PRESSURE” とする。また前記「正規荷重」とは、前記規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表 ”TIRELOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” に記載の最大値、ETRTOであれば ”LOAD CAPACITY”とする。
【0010】
また本明細書において、「接地端」とは、前記正規内圧状態のタイヤに正規荷重を付加した時に接地するトレッド接地面のタイヤ軸方向外端を意味し、この外端(接地端)とタイヤ赤道との間のタイヤ軸方向の距離を「トレッド接地半巾」とする。
【0011】
また請求項2記載の発明は、前記トレッド部は、金属コードを用いた少なくとも3層のベルトプライからなるベルト層が配されてなる請求項1記載の重荷重用タイヤである。
【0012】
【発明の実施の形態】
以下本発明の実施の一形態を図面に基づき説明する。
図1には、トラック、バス等に使用される重荷重用タイヤの断面図、図2はそのトレッド部の展開図をそれぞれ示している。図において、重荷重用タイヤ1は、トレッド部2からサイドウォール部3をへてビード部4のビードコア5に至るカーカス6と、トレッド部2の内方かつ前記カーカス6の外側に配されたベルト層7とを具えている。
【0013】
前記カーカス6は、金属コードからなるカーカスコードをタイヤ赤道Cに対して70〜90度の角度で配列した1枚以上、本例では1枚のカーカスプライ6Aにより構成されている。前記カーカスプライ6Aは、前記ビードコア5、5間をトロイド状に跨る本体部6aの両側に、前記ビードコア5の周りをタイヤ軸方向内側から外側に折り返して係止された折返し部6bを一体に有したものを示す。また、カーカスプライ6Aの本体部6aと折返し部6bとの間には、ビードコア5からタイヤ半径方向外方にのびるビードエーペックスゴム8が配置され、ビード部4ないしサイドウォール部3の曲げ剛性を補強している。
【0014】
また前記ベルト層7は、金属コードを用いた少なくとも3枚、本例では4枚のベルトプライ4Aないし4Dから形成されたものを示す。具体的にはベルト層7は、前記ベルトコードをタイヤ赤道に対して例えば60±15°の角度で配列されかつタイヤ半径方向で最も内側に配された第1のベルトプライ7Aと、ベルトコードをタイヤ赤道Cに対して例えば10〜35°の小角度で配列した第2〜4のベルトプライ7B、7C及び7Dとの4枚構造の場合を例示している。
【0015】
本実施形態のベルト層7では、第1のベルトプライ7Aのタイヤ軸方向のプライ巾は、第2のベルトプライ7Bのプライ巾に比して小かつ第3のベルトプライ7Cのプライ巾とほぼ同一としている。また最大巾をなす第2のベルトプライ7Bのプライ巾WBは、例えばトレッド接地巾WTの0.80〜0.95倍に設定される。これにより、ベルト層7は、トレッド部2の略全巾をタガ効果を有して締め付け、トレッド部2の剛性を高め得る。なお、最も巾が狭い第4のベルトプライ7Dは、例えば第1〜3のベルトプライ7Aないし7D及びカーカス6等を外傷より保護するのに役立つ。
【0016】
また本実施形態の重荷重用タイヤ1は、図2に示す如く、トレッド部2にタイヤ周方向に連続してのびる2本以上の縦主溝Gが設けられている。本実施形態の縦主溝Gは、ジグサグ状でタイヤ周方向にのびるものが例示されるが、直線状でも良く、また波状とすることもできる。また縦主溝Gは、溝がのびる向きと直角に測定した溝巾WGが5mm以上、より好ましくは7〜10mm程度で構成され、また溝深さWD(図1に示す)が9mm以上、より好ましくは14.5〜17.5mm程度で構成される。本実施形態の縦主溝Gは、タイヤ赤道Cに沿ってのびる1本の内の縦主溝Giと、その両外側に設けられてかつタイヤ軸方向の最外側に位置することとなるショルダー溝Gsとの合計3本からなる場合を例示している。
【0017】
またショルダー溝Gsは、トレッド部2を、該ショルダー溝Gよりタイヤ軸方向内側のセンター部Ycと、タイヤ軸方向外側のショルダー部Ysとに区分する。このため、ショルダ溝Gsがトレッド接地端E側に近づきすぎると、ショルダー部Ysの剛性を低下させ、該ショルダー部Ysに摩耗が集中してゴム欠けや肩落ち摩耗などを招きやすくなる。逆に、ショルダー溝Gsがタイヤ赤道C側に近づきすぎると、ショルダー部Ysの剛性が過度に高められ、センター部Ycに摩耗が集中しやすくなる。そこで、本発明では前記ショルダー溝Gsの溝中心線Nを、タイヤ赤道Cからトレッド接地半巾WT/2の0.4〜0.7倍の距離を隔てた領域を通るように配する。即ち、溝中心線Nのタイヤ赤道Cからの距離Knは、トレッド接地半巾WT/2の0.4〜0.7倍、特に好ましくは前記距離Knをトレッド接地半巾WT/2の0.5〜0.65倍に設定する。なおショルダー溝Gsが、ジグザグないし波状をなす場合には、ジグザグないし波の振巾の中心を、溝中心線Nとして定める。
【0018】
また本実施形態では、トレッド部2に、内の縦主溝Giとショルダー溝Gsとの間をタイヤ周方向に連続してのびる縦細溝Ghが設けられたものを例示している。この縦細溝Ghは縦主溝Gよりも溝巾が小であり、センター部Ycの剛性を緩和してバランスさせるのに役立つ。またトレッド部2には、トレッド接地端Eとショルダー溝Gsとの間を継ぐ第1の横溝Gy1と、ショルダー溝Gsと前記縦細溝Ghとの間をのびる第2の横溝Gy2と、前記縦細溝Ghと内の縦主溝Giとの間を継ぐ第3の横溝Gy3とが設けられたものを示す。これにより、トレッド部2は、ブロックB1ないしB3が多数区画されたブロックパターンを具える。
【0019】
また本発明では、正規リムにリム組みしかつ正規内圧を充填した正規状態のタイヤに正規荷重を付加したときの接地面形状10(図3及びその部分拡大図である図4に示す)の輪郭線Fを次のように特定している。即ち、図4に拡大して示す如く、輪郭線Fのタイヤ赤道上の赤道点Paとトレッド接地端E上の接地端点Pdとを通る直線J1がタイヤ軸方向線となす角度γ、前記赤道点Paと前記ショルダー溝Gsのタイヤ赤道側の溝側縁点Pbとを通る直線J2がタイヤ軸方向線となす角度α、及びショルダー溝Gsのトレッド接地端E側の溝側縁点Pcと前記接地端点Pdとを通る直線J3がタイヤ軸方向線となす角度βにおいて、下記の条件を満たす。
0°<γ≦12°
0°<α≦15°
−5°≦β≦γ
β≦α
ここで、上記角度α、β及びγは、直線J1、J2及びJ3がタイヤ軸方向外側に向かってタイヤ周方向の接地長さを減じる向きに傾くときを正の角度としている。なお本例のようにタイヤ赤道C上に縦主溝Gが形成される場合、前記赤道点Paは前記縦主溝Gの溝縁間を滑らかに継いだ曲線とタイヤ赤道Cとの交点として求める。
【0020】
発明者らの種々の実験の結果、トレッド部2の摩耗を均一にコントロールするためには、上記角度α、β及びγを一定の角度範囲に規制することが非常に有効であることが判明した。即ち、前記角度γが12°よりも大になると、ショルダー部Ysの接地圧が低下し易くかつセンター部Ycでの荷重負担が過度に高まるため、ショルダー部Ysに比してセンター部Ycの摩耗が早くなるなどセンター摩耗が進行してしまう。逆に、前記角度γが0°以下になると、センター部Ycに比べて、ショルダー部Ysの接地圧が上昇し、該ショルダー部Ysでの走行中の発熱が大となって温度上昇によるベルト端でに剥離損傷などを誘発させる傾向がある。特に好ましくは前記角度γを5〜12゜、さらに好ましくは8〜11゜とするのが望ましい。
【0021】
また前記角度αが15°よりも大になると、ショルダー溝Gsのタイヤ赤道C側の溝側縁点Pb付近の接地圧が、ショルダー溝のトレッド接地端E側の溝側縁点Pc付近の接地圧に比べて過度に低くなり、溝側縁点Pb付近での滑りが大きくなる。つまり、ショルダー溝Gsの内側に軌道摩耗が生じやすくなる。また前記角度αが0°以下になると、センター部Ycでの接地圧が著しく大きくなり、センター部Ycが早期に摩耗するセンター摩耗が生じやすい。特に好ましくは前記角度αを5〜12゜、さらに好ましくは8〜11゜とするのが望ましい。
【0022】
さらに、前記角度βが−5゜未満であると、ショルダー溝Gsのトレッド接地端E側の溝側縁点Pc付近において接地圧の低下が生じやすく、該溝側縁点Pc付近での摩耗が早期に生じてしまう。また前記角度βが前記角度γよりも大になると、ショルダー溝Gsのトレッド接地端E側の溝側縁点Pcに対してトレッド接地端Eでの接地長さが小さくなり、前記肩落ち摩耗が生じやすい。このような観点より角度βは、好ましくは5°以上とするのが望ましい。
【0023】
このような接地面形状10を得るためには、例えばトレッドゴムの厚さを規定する方法、トレッド面の曲率半径を規定する方法、ベルト層の曲率半径を規定する方法、又はこれらを組み合わせた方法等が挙げられる。
【0024】
【実施例】
図1、図2の基本構造を有するサイズ11R22.5 14PRの重荷重用タイヤ、表1の仕様に基づき試作するとともに、各試供タイヤの接地形状、摩耗性能をテストした。テスト方法は、次の通りである。
【0025】
(a)接地形状
JATMA規格に基づいた供試タイヤを、正規リム(7.50×22.5)にリム組みし、正規内圧(700kPa)かつ正規荷重(26.72kN)で平面に押し付け、接地形状を採取するとともに、各角度α、β、γを測定した。なお接地面はタイヤ周上の4カ所で採取し、前記角度α、β、γは各接地面で得られた値を平均して求めた。
【0026】
(b)摩耗性能
試供タイヤを、リム(7.50×22.5)、内圧(700kPa)にて、トラック(2−2・Dタイプ)の前輪に装着し、60、000kmの距離を走行するとともに、走行後のトレッド接地端での肩落ち摩耗の発生状況、ショルダー溝の側縁での軌道摩耗の発生状況を、目視によって外観確認した。また、内の縦主溝の摩耗量をY(mm)、ショルダー溝の摩耗量をZ(mm)とし、Y−Z(mm)を求めた。Y−Z値が大きいほどセンター摩耗であり、小さいほどショルダー摩耗となり、0に近いほど摩耗が均一化されたことを示す。
テストの結果を表1に示す。
【0027】
【表1】

Figure 2004051083
【0028】
【発明の効果】
以上説明したように、本発明の重荷重用タイヤは、接地形状を特定したことにより、肩落ち摩耗、軌道摩耗、センター摩耗等を抑制し、摩耗の均一化を高レベルで達成しうる。
【図面の簡単な説明】
【図1】本発明の一実施例のタイヤの断面図である。
【図2】トレッド部を展開した展開図である。
【図3】接地面形状を示す線図である。
【図4】その部分拡大図である。
【図5】従来タイヤにおける接地面形状を示す線図である。
【符号の説明】
1 重荷重用タイヤ
2 トレッド部
3 サイドウォール部
4 ビード部
5 ビードコア
6 カーカス
7 ベルト層
10 接地面形状
F 接地面形状の輪郭線
G 縦主溝
Gs ショルダー溝
N ショルダー溝の溝中心線[0001]
BACKGROUND OF THE INVENTION
The present invention provides a heavy-duty tire that can prevent uneven wear such as shoulder fall wear near the tread ground contact edge and track wear on land portions along the shoulder groove by specifying the shape of the contact surface, thereby achieving uniform wear. About.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, a tread surface of a general heavy load evening ear is formed by a convex arc curve using a single arc or a plurality of arcs. Therefore, as schematically shown in FIG. 5, the contact surface shape a has a contact length b in the tire circumferential direction that gradually decreases from the tire equator C side toward the tread contact end E side, and in the tire circumferential direction. The leading edge g and the trailing edge r each have a smooth arc shape that protrudes outward. Further, in the heavy duty tire, a shoulder groove f disposed on the outermost side in the tire axial direction is provided, and the shoulder portion ys and the center portion yc are separated.
[0003]
By the way, in such a tire, in the contour line of the contact surface, the shoulder is more than the angle γ formed by the straight line j1 passing through the equator point p1 on the tire equator and the contact point P2 on the tread contact end E with the tire axial line. An angle β formed by a straight line J2 passing through the groove side edge point p3 on the tread ground contact end side of the groove f and the ground contact end point p2 with the tire axial line is larger. That is, γ <β. However, as the angle β increases, the contact length b2 at the tread contact end E decreases, and the vicinity of the contact end E easily slips on the road surface. For this reason, wear concentrates on the shoulder portion Ys, and the shoulder portion Ys is likely to wear so-called shoulder fall wear that wears out early.
[0004]
In order to improve such shoulder wear, it is conceivable to reduce the difference between the contact lengths b2 and b1 by increasing the radius of curvature of the tread surface and reducing both the angles γ and β, for example. However, in such a technique, the tread center portion yc on the inner side of the shoulder groove f causes so-called center wear that wears in comparison with the outer tread shoulder portion ys, or one / the other side edge of the shoulder groove f. As a result, so-called orbital wear is caused, resulting in a sufficiently satisfactory result for uniform wear. Related prior art includes the following.
[0005]
[Patent Document 1]
JP-A-10-119510 [Patent Document 2]
Japanese Patent Laid-Open No. 9-309301 [Patent Document 3]
JP-A-7-186628 [0006]
The present invention has been devised in view of the above problems, and is based on identifying the contour line of the contact surface shape to a certain shape, and uneven wear such as shoulder drop wear, track wear, and center wear. An object of the present invention is to provide a heavy-duty tire capable of suppressing the above-described problems and, in turn, achieving a uniform wear at a high level.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention is a heavy duty tire having two or more longitudinal main grooves extending continuously in the tire circumferential direction in the tread portion, and the tire axial direction of the longitudinal main grooves. The shoulder groove arranged on the outermost side of the tire passes through a region where the groove center line is separated from the tire equator C by a distance of 0.4 to 0.7 times the tread ground half width, and is assembled to a regular rim. A straight line J1 passing through the equator point Pa on the tire equator and the contact point Pd on the tread ground end in the contour line of the contact surface shape when a normal load is applied to the tire in a normal state filled with the normal internal pressure is the tire axial direction. An angle γ formed by a line, an angle α formed by a straight line J2 passing through the equator point Pa and a groove side edge point Pb on the tire equator side of the shoulder groove, and a groove on the tread grounding end side of the shoulder groove The side edge point Pc and the contact point A characteristic is that the following condition is satisfied at an angle β formed by a straight line J3 passing through the ground end point Pd and the tire axial direction line.
0 ° <γ ≦ 12 °
0 ° <α ≦ 15 °
−5 ° ≦ β ≦ γ
β ≦ α
(However, the angles α, β, and γ are positive angles when the straight lines J1, J2, and J3 are inclined in the direction of reducing the contact length in the tire circumferential direction toward the outer side in the tire axial direction.)
[0008]
In the present specification, the “regular rim” is a rim determined for each tire in a standard system including a standard on which a tire is based. For example, when the standard is JATMA, the rim width is larger than the standard rim. For a size having a narrow rim, “a rim whose rim width is one rank narrower than the standard rim”, and for a size for which a rim whose rim width is narrower than the standard rim is not set, “standard rim”. If the standard is TRA, the size of the rim with a rim width narrower than “Design Rim” is “the rim width is one rank lower than“ Design Rim ””, and the rim width is smaller than “Design Rim”. The size not set is assumed to be “Design Rim”. Further, when the standard is ETRTO, a rim having a rim narrower than “Measuring Rim” is defined as “a rim whose rim width is one rank lower than“ Measuring Rim ””, and a rim having a rim narrower than “Measuring Rim”. A size for which is not set is “Measuring Rim”.
[0009]
The “regular internal pressure” is the air pressure defined by the standard for each tire. The maximum air pressure for JATMA is the maximum value described in the table “TIRE LOAD LIMITS AT VARIOUS COLD INFRATION PRESURES”. If it is ETRTO, “INFLATION PRESURE” is assumed. The “regular load” is a load determined by the standard for each tire. The maximum load capacity is JATMA, and the maximum value described in the table “TIRELAD LIMITS AT VARIOUS COLD INFLATION PRESURE” is TRA. If it is ETRTO, it is set to “LOAD CAPACITY”.
[0010]
Further, in this specification, the “grounding end” means the outer end in the tire axial direction of the tread grounding surface that contacts the tire when a normal load is applied to the tire in the normal internal pressure state, and this outer end (grounding end) and the tire The distance in the tire axial direction from the equator is the “tread grounding half width”.
[0011]
The invention according to claim 2 is the heavy duty tire according to claim 1, wherein the tread portion is provided with a belt layer made of at least three belt plies using a metal cord.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of a heavy duty tire used for trucks, buses, etc., and FIG. 2 is a development view of the tread portion thereof. In the figure, a heavy load tire 1 includes a carcass 6 extending from a tread portion 2 through a sidewall portion 3 to a bead core 5 of a bead portion 4, and a belt layer disposed inside the tread portion 2 and outside the carcass 6. 7 and.
[0013]
The carcass 6 is composed of one or more carcass plies 6A in this example, in which carcass cords made of metal cords are arranged at an angle of 70 to 90 degrees with respect to the tire equator C. The carcass ply 6A has integrally a folded portion 6b that is locked by folding the bead core 5 from the inside to the outside in the tire axial direction on both sides of the body portion 6a straddling the bead cores 5 and 5 in a toroidal shape. Shows what Further, a bead apex rubber 8 extending from the bead core 5 outward in the tire radial direction is disposed between the main body portion 6a and the folded portion 6b of the carcass ply 6A to reinforce the bending rigidity of the bead portion 4 or the sidewall portion 3. doing.
[0014]
The belt layer 7 is formed of at least three belt plies 4A to 4D using a metal cord, in this example, four sheets. Specifically, the belt layer 7 includes a first belt ply 7A arranged at an angle of, for example, 60 ± 15 ° with respect to the tire equator and disposed on the innermost side in the tire radial direction, and a belt cord. The case of the four-sheet structure of the second to fourth belt plies 7B, 7C, and 7D arranged at a small angle of, for example, 10 to 35 ° with respect to the tire equator C is illustrated.
[0015]
In the belt layer 7 of the present embodiment, the ply width in the tire axial direction of the first belt ply 7A is smaller than the ply width of the second belt ply 7B and substantially the same as the ply width of the third belt ply 7C. Identical. The ply width WB of the second belt ply 7B having the maximum width is set to 0.80 to 0.95 times the tread grounding width WT, for example. As a result, the belt layer 7 can tighten the substantially full width of the tread portion 2 with a tagging effect, and can increase the rigidity of the tread portion 2. The fourth belt ply 7D having the narrowest width is useful for protecting, for example, the first to third belt plies 7A to 7D, the carcass 6 and the like from injury.
[0016]
In addition, as shown in FIG. 2, the heavy load tire 1 of the present embodiment is provided with two or more vertical main grooves G extending continuously in the tire circumferential direction in the tread portion 2. The longitudinal main groove G of the present embodiment is illustrated as being zigzag and extending in the tire circumferential direction, but may be linear or wave-like. Further, the longitudinal main groove G is configured so that the groove width WG measured at right angles to the direction in which the groove extends is 5 mm or more, more preferably about 7 to 10 mm, and the groove depth WD (shown in FIG. 1) is 9 mm or more. Preferably it is comprised by about 14.5-17.5 mm. The longitudinal main groove G of the present embodiment includes one longitudinal main groove Gi extending along the tire equator C, and a shoulder groove provided on both outer sides and positioned on the outermost side in the tire axial direction. The case where it consists of a total of three with Gs is illustrated.
[0017]
The shoulder groove Gs divides the tread portion 2 into a center portion Yc on the inner side in the tire axial direction from the shoulder groove G and a shoulder portion Ys on the outer side in the tire axial direction. For this reason, if the shoulder groove Gs is too close to the tread grounding end E side, the rigidity of the shoulder portion Ys is reduced, and wear is concentrated on the shoulder portion Ys, which easily causes rubber chipping or shoulder wear. On the contrary, if the shoulder groove Gs is too close to the tire equator C side, the rigidity of the shoulder portion Ys is excessively increased, and wear tends to concentrate on the center portion Yc. Therefore, in the present invention, the groove center line N of the shoulder groove Gs is arranged so as to pass through a region separated from the tire equator C by a distance 0.4 to 0.7 times the tread grounding half width WT / 2. That is, the distance Kn of the groove center line N from the tire equator C is 0.4 to 0.7 times the tread ground half width WT / 2, and particularly preferably the distance Kn is 0.5 to 0.5 t of the tread ground half width WT / 2. Set to 0.65 times. When the shoulder groove Gs has a zigzag or wave shape, the center of the zigzag or wave amplitude is defined as the groove center line N.
[0018]
Further, in the present embodiment, the tread portion 2 is illustrated with a vertical narrow groove Gh extending continuously between the vertical main groove Gi and the shoulder groove Gs in the tire circumferential direction. The vertical narrow groove Gh has a groove width smaller than that of the vertical main groove G, and helps to relax and balance the rigidity of the center portion Yc. The tread portion 2 includes a first horizontal groove Gy1 that connects between the tread grounding end E and the shoulder groove Gs, a second horizontal groove Gy2 that extends between the shoulder groove Gs and the vertical thin groove Gh, and the vertical The thing provided with the 3rd horizontal groove Gy3 which connects between the narrow groove Gh and the internal vertical main groove Gi is shown. Accordingly, the tread portion 2 includes a block pattern in which a large number of blocks B1 to B3 are partitioned.
[0019]
Further, according to the present invention, the contour of the contact surface shape 10 (shown in FIG. 3 and its partially enlarged view shown in FIG. 4) when a normal load is applied to a tire in a normal state in which a rim is assembled on a normal rim and filled with a normal internal pressure. The line F is specified as follows. That is, as shown in an enlarged view in FIG. 4, the angle γ between the straight line J1 passing through the equator point Pa on the tire equator of the contour line F and the ground contact point Pd on the tread ground contact E and the tire axial direction line, An angle α formed by a straight line J2 passing through Pa and a groove side edge point Pb on the tire equator side of the shoulder groove Gs with a tire axial direction line, and a groove side edge point Pc on the tread ground end E side of the shoulder groove Gs and the ground contact The following condition is satisfied at an angle β formed by the straight line J3 passing through the end point Pd and the tire axial direction line.
0 ° <γ ≦ 12 °
0 ° <α ≦ 15 °
−5 ° ≦ β ≦ γ
β ≦ α
Here, the angles α, β, and γ are positive when the straight lines J1, J2, and J3 are inclined in the direction of decreasing the contact length in the tire circumferential direction toward the outer side in the tire axial direction. When the longitudinal main groove G is formed on the tire equator C as in this example, the equator point Pa is obtained as an intersection of the curve that smoothly connects the groove edges of the longitudinal main groove G and the tire equator C. .
[0020]
As a result of various experiments by the inventors, it has been found that in order to uniformly control the wear of the tread portion 2, it is very effective to regulate the angles α, β and γ within a certain angle range. . That is, when the angle γ is greater than 12 °, the contact pressure of the shoulder portion Ys is likely to be reduced and the load on the center portion Yc is excessively increased, so that the wear of the center portion Yc is larger than that of the shoulder portion Ys. The center wear progresses, for example, as the speed increases. On the other hand, when the angle γ is 0 ° or less, the contact pressure of the shoulder portion Ys rises compared to the center portion Yc, and the heat generated during traveling at the shoulder portion Ys increases, resulting in a belt end due to temperature rise. It tends to induce peeling damage. Particularly preferably, the angle γ is 5 to 12 °, more preferably 8 to 11 °.
[0021]
When the angle α is larger than 15 °, the contact pressure near the groove side edge Pb on the tire equator C side of the shoulder groove Gs is reduced to the ground contact near the groove side edge Pc on the tread ground end E side of the shoulder groove. The pressure is excessively lower than the pressure, and the slip near the groove side edge point Pb is increased. That is, track wear is likely to occur inside the shoulder groove Gs. Further, when the angle α is 0 ° or less, the contact pressure at the center portion Yc is remarkably increased, and the center wear that the center portion Yc wears quickly tends to occur. Particularly preferably, the angle α is 5 to 12 °, and more preferably 8 to 11 °.
[0022]
Further, if the angle β is less than −5 °, the contact pressure is likely to decrease near the groove side edge point Pc on the tread ground end E side of the shoulder groove Gs, and the wear near the groove side edge point Pc occurs. It happens early. Further, when the angle β is larger than the angle γ, the contact length at the tread ground end E becomes smaller than the groove side edge point Pc on the tread ground end E side of the shoulder groove Gs, and the shoulder drop wear is reduced. Prone to occur. From such a viewpoint, the angle β is preferably set to 5 ° or more.
[0023]
In order to obtain such a ground contact surface shape 10, for example, a method of defining the thickness of the tread rubber, a method of defining the radius of curvature of the tread surface, a method of defining the radius of curvature of the belt layer, or a method combining these Etc.
[0024]
【Example】
A heavy-duty tire of size 11R22.5 14PR having the basic structure shown in FIGS. 1 and 2 was manufactured based on the specifications shown in Table 1, and the ground contact shape and wear performance of each sample tire were tested. The test method is as follows.
[0025]
(A) Grounding shape Test tires based on JATMA standards are assembled on a regular rim (7.50 × 22.5) and pressed against a flat surface with a regular internal pressure (700 kPa) and a regular load (26.72 kN). While collecting the shape, the angles α, β, and γ were measured. The contact surfaces were sampled at four locations on the tire circumference, and the angles α, β, and γ were obtained by averaging the values obtained at each contact surface.
[0026]
(B) Wear performance test tire is mounted on the front wheel of a truck (2-2 • D type) with a rim (7.50 × 22.5) and internal pressure (700 kPa) and travels a distance of 60,000 km. At the same time, the appearance of shoulder drop wear at the tread contact edge after running and the occurrence of track wear at the side edge of the shoulder groove were visually confirmed. Further, YZ (mm) was obtained by assuming that the wear amount of the inner longitudinal main groove was Y (mm) and the wear amount of the shoulder groove was Z (mm). The larger the YZ value is, the center wear is, the smaller the shoulder wear is, and the closer the value is to 0, the more uniform the wear is.
The test results are shown in Table 1.
[0027]
[Table 1]
Figure 2004051083
[0028]
【The invention's effect】
As described above, the heavy load tire of the present invention can achieve uniform wear at a high level by suppressing the shoulder drop wear, the track wear, the center wear and the like by specifying the contact shape.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a tire according to an embodiment of the present invention.
FIG. 2 is a development view in which a tread portion is developed.
FIG. 3 is a diagram showing a ground plane shape.
FIG. 4 is a partially enlarged view thereof.
FIG. 5 is a diagram showing a contact surface shape in a conventional tire.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heavy load tire 2 Tread part 3 Side wall part 4 Bead part 5 Bead core 6 Carcass 7 Belt layer 10 Ground surface shape F Ground surface shape outline G Vertical main groove Gs Shoulder groove N Groove centerline of shoulder groove

Claims (2)

トレッド部に、タイヤ周方向に連続してのびる2本以上の縦主溝を有する重荷重用タイヤであって、
前記縦主溝のうちのタイヤ軸方向の最外側に配されるショルダー溝は、その溝中心線が、タイヤ赤道Cからトレッド接地半巾の0.4〜0.7倍の距離を隔てた領域を通るとともに、
正規リムにリム組みしかつ正規内圧を充填した正規状態のタイヤに正規荷重を付加したときの接地面形状の輪郭線において、
タイヤ赤道上の赤道点Paとトレッド接地端上の接地端点Pdとを通る直線J1がタイヤ軸方向線となす角度γ、
前記赤道点Paと前記ショルダー溝のタイヤ赤道側の溝側縁点Pbとを通る直線J2がタイヤ軸方向線となす角度α、及び
前記ショルダー溝のトレッド接地端側の溝側縁点Pcと前記接地端点Pdとを通る直線J3がタイヤ軸方向線となす角度βにおいて、下記の条件を満たすことを特徴とする重荷重用タイヤ。
0°<γ≦12°
0°<α≦15°
−5°≦β≦γ
β≦α
(ただし上記角度α、β及びγは、直線J1、J2及びJ3がタイヤ軸方向外側に向かってタイヤ周方向の接地長さを減じる向きに傾くときを正の角度とする。)
A heavy duty tire having two or more longitudinal main grooves extending continuously in the tire circumferential direction in the tread portion,
The shoulder groove disposed on the outermost side in the tire axial direction of the longitudinal main grooves is a region in which the groove center line is separated from the tire equator C by a distance 0.4 to 0.7 times the tread ground half width. As you pass
In the contour line of the contact surface shape when a normal load is applied to a normal state tire that is assembled with a normal rim and filled with a normal internal pressure,
An angle γ formed by a straight line J1 passing through the equator point Pa on the tire equator and the ground contact point Pd on the tread ground contact edge with the tire axial line;
An angle α formed by a straight line J2 passing through the equator point Pa and a groove side edge point Pb on the tire equator side of the shoulder groove with a tire axial direction line, a groove side edge point Pc on the tread grounding end side of the shoulder groove, and the A heavy duty tire characterized by satisfying the following condition at an angle β formed by a straight line J3 passing through the ground contact point Pd and a tire axial line.
0 ° <γ ≦ 12 °
0 ° <α ≦ 15 °
−5 ° ≦ β ≦ γ
β ≦ α
(However, the angles α, β, and γ are positive angles when the straight lines J1, J2, and J3 are inclined in the direction of reducing the contact length in the tire circumferential direction toward the outer side in the tire axial direction.)
前記トレッド部は、金属コードを用いた少なくとも3層のベルトプライからなるベルト層が配されてなる請求項1記載の重荷重用タイヤ。The heavy duty tire according to claim 1, wherein the tread portion is provided with a belt layer including at least three belt plies using a metal cord.
JP2003130595A 2002-05-30 2003-05-08 Heavy duty tire Expired - Fee Related JP4629960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003130595A JP4629960B2 (en) 2002-05-30 2003-05-08 Heavy duty tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002157877 2002-05-30
JP2003130595A JP4629960B2 (en) 2002-05-30 2003-05-08 Heavy duty tire

Publications (2)

Publication Number Publication Date
JP2004051083A true JP2004051083A (en) 2004-02-19
JP4629960B2 JP4629960B2 (en) 2011-02-09

Family

ID=31949094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003130595A Expired - Fee Related JP4629960B2 (en) 2002-05-30 2003-05-08 Heavy duty tire

Country Status (1)

Country Link
JP (1) JP4629960B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182099A (en) * 2005-12-29 2007-07-19 Sumitomo Rubber Ind Ltd Tire for heavy load
US7980279B2 (en) 2006-08-28 2011-07-19 Sumitomo Rubber Industries, Ltd. Heavy duty tire
CN112384375A (en) * 2018-07-11 2021-02-19 住友橡胶工业株式会社 Heavy duty pneumatic tire and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596912A (en) * 1991-10-09 1993-04-20 Sumitomo Rubber Ind Ltd Heavy duty tire
JPH07164823A (en) * 1993-12-17 1995-06-27 Toyo Tire & Rubber Co Ltd Pneumatic tire for heavy load
JPH10315712A (en) * 1997-05-16 1998-12-02 Sumitomo Rubber Ind Ltd Radial tire for heavy load

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596912A (en) * 1991-10-09 1993-04-20 Sumitomo Rubber Ind Ltd Heavy duty tire
JPH07164823A (en) * 1993-12-17 1995-06-27 Toyo Tire & Rubber Co Ltd Pneumatic tire for heavy load
JPH10315712A (en) * 1997-05-16 1998-12-02 Sumitomo Rubber Ind Ltd Radial tire for heavy load

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182099A (en) * 2005-12-29 2007-07-19 Sumitomo Rubber Ind Ltd Tire for heavy load
JP4486592B2 (en) * 2005-12-29 2010-06-23 住友ゴム工業株式会社 Heavy duty tire
US7918256B2 (en) 2005-12-29 2011-04-05 Sumitomo Rubber Industries, Ltd. Heavy duty tire having ground contacting face at 70% and 100% maximum tire load
US7980279B2 (en) 2006-08-28 2011-07-19 Sumitomo Rubber Industries, Ltd. Heavy duty tire
CN112384375A (en) * 2018-07-11 2021-02-19 住友橡胶工业株式会社 Heavy duty pneumatic tire and method of manufacturing the same

Also Published As

Publication number Publication date
JP4629960B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
EP3335911B1 (en) Heavy-duty tire
JP5444393B2 (en) Motorcycle tires
JP4478104B2 (en) Heavy duty tire
JP4015623B2 (en) Heavy duty tire
US8925599B2 (en) Heavy duty tire
JP2003159912A (en) Pneumatic tire
EP2623339B1 (en) Motorcycle tire
WO2007018009A1 (en) Tire for construction vehicle
JP2009262675A (en) Pneumatic tire
EP1459909B1 (en) Heavy-duty tire
JP4180910B2 (en) Heavy duty radial tire
EP3415342A1 (en) Heavy-duty tire
JP3808778B2 (en) Heavy duty tire
WO2019244912A1 (en) Heavy duty pneumatic tire
JP2004161202A (en) Heavy duty pneumatic tire
JPH05229307A (en) Radial tire for heavy load
EP0676305B1 (en) Pneumatic tyre
JP4629960B2 (en) Heavy duty tire
JP2007069665A (en) Pneumatic tire
JP4392147B2 (en) Heavy duty tire
CN108284711B (en) Pneumatic tire
JPH06143922A (en) Radial tire for heavy load
JP4388309B2 (en) Heavy duty tire
JP4363902B2 (en) Heavy duty tire
JPH05319034A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4629960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees