JP2004045755A - 半透過・反射型電気光学装置、およびそれを用いた電子機器 - Google Patents

半透過・反射型電気光学装置、およびそれを用いた電子機器 Download PDF

Info

Publication number
JP2004045755A
JP2004045755A JP2002203008A JP2002203008A JP2004045755A JP 2004045755 A JP2004045755 A JP 2004045755A JP 2002203008 A JP2002203008 A JP 2002203008A JP 2002203008 A JP2002203008 A JP 2002203008A JP 2004045755 A JP2004045755 A JP 2004045755A
Authority
JP
Japan
Prior art keywords
light
film
reflection
optical device
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002203008A
Other languages
English (en)
Inventor
Satoshi Takenaka
竹中 敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002203008A priority Critical patent/JP2004045755A/ja
Publication of JP2004045755A publication Critical patent/JP2004045755A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

【課題】反射モードおよび透過モードのいずれにおいても表示光量の増大を図ることのできる半透過・反射型電気光学装置、およびそれを備えた電子機器を提供すること。
【解決手段】反射型電気光学装置100のTFTアレイ基板10には、凹凸形成膜13a、画素電極9a、上層絶縁膜7aおよび光反射膜8aがこの順に形成されている。光反射膜8aの裏面は、透光性基板10′の裏面側から入射した光を反射して光透過窓8dを挟んで対向する光反射膜8aの表面に導く導光反射面8fを備えている。このため、透光性基板10′の裏面側から入射した光のうち、従来なら光反射膜8aで遮られて透過モードでの表示に寄与しなかった光も、その一部が導光反射面8eで反射して表示に寄与する。
【選択図】   図6

Description

【0001】
【発明の属する技術分野】
本発明は、半透過・反射型電気光学装置、およびそれを用いた電子機器に関するものである。さらに詳しくは、半透過・反射型電気光学装置の画素構成に関するものである。
【0002】
【従来の技術】
液晶装置などの電気光学装置は、各種機器の直視型の表示装置として用いられている。このような電気光学装置のうち、例えば、画素スイッチング用の非線形素子としてTFTを用いたアクティブマトリクス型の液晶装置では、図14および図15に示すように、電気光学物質としての液晶50を挟持するTFTアレイ基板10および対向基板20のうち、TFTアレイ基板10の方には、画素スイッチング用のTFT(薄膜トランジスタ/Thin Film Transistor)30と、このTFT30に電気的に接続するITO膜などの透明導電膜からなる画素電極9aとが形成されている。
【0003】
また、液晶装置のうち、反射型のものでは、対向基板20の側から入射してきた外光を対向基板20の方に向けて反射するための光反射膜8aが透光性の画素電極9aの下層側に形成されており、図15に矢印LAで示すように、対向基板20側から入射した光をTFTアレイ基板10側で反射し、対向基板20側から出射された光によって画像を表示する(反射モード)。
【0004】
但し、反射型の液晶装置において、光反射膜8aで反射された光の方向性が強いと、画像をみる角度で明るさが異なるなどの視野角依存性が顕著に出てしまう。そこで、液晶装置を製造する際、層間絶縁膜4、あるいはその表面に形成した表面保護膜(図示せず)の表面に、アクリル樹脂などといった感光性樹脂を800nm〜1500nmの厚さに塗布した後、フォトリソグラフィ技術を用いて、感光性樹脂層からなる凹凸形成膜13aを所定のパターンで選択的に残すことにより、光反射膜8aの表面に凹凸パターン8gを付与している。また、このままでは、凹凸パターン8gに凹凸形成膜13aのエッジがそのまま出てしまうので、凹凸形成膜13aの上層にもう1層、流動性の高い感光性樹脂層からなる上層絶縁膜7aを塗布、形成することにより、光反射膜8aの表面にエッジのない、なだらかな形状の凹凸パターン8gを付与している。このような凹凸パターンの従来例としては、例えば特開平10−319422号公報に記載された技術が知られている。
【0005】
また、反射型の液晶装置のうち、透過モードでの表示も可能な半透過・反射型の液晶装置では、光反射膜8aに対して、画素電極9aと平面的に重なる領域に光透過窓8dが形成されている。この光透過窓8dに相当する領域は、凹凸形成膜13aが全面に形成されているか、凹凸形成膜13aが一切形成されていないため、平坦面である。
【0006】
このように構成した半透過・反射型の液晶装置においては、TFTアレイ基板10の側にバックライト装置(図示せず)を配置し、このバックライト装置から出射された光をTFTアレイ基板10の側から入射させれば、図16に矢印LB1、LB2で示すように、光反射膜8aに向かう光は、光反射膜8aで遮られて表示に寄与しないものの、図15および図16に矢印LB0で示すように、光反射膜8aが形成されていない光透過窓8dに向かう光は、光透過窓8dを介して対向基板20側に透過し、表示に寄与する(透過モード)。
【0007】
なお、半透過・反射型の液晶装置としては、特願2001−377304号などとして特許出願されている。
【0008】
【発明が解決しようとする課題】
しかしながら、従来の半透過・反射型の液晶装置では、光反射膜8aおよび光透過窓8dの面積によって、反射モードでの表示光量、および透過モードでの表示光量が完全に規定されているため、一方のモードでの表示の明るさを高めると、他方のモードでの表示の明るさが犠牲になってしまい、双方のモードで表示の明るさを向上させることができないという問題点がある。
【0009】
以上の問題点に鑑みて、本発明の課題は、反射モードおよび透過モードのいずれにおいても表示光量の増大を図ることのできる半透過・反射型電気光学装置、およびそれを備えた電子機器を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明では、電気光学物質を保持する透光性基板上に、所定の凹凸を形成する透光性の凹凸形成膜、透光性の画素電極、透光性の上層絶縁膜、および前記画素電極に電気的に接続する光反射膜がこの順に形成され、かつ、前記光反射膜には、透過表示領域を形成するための光透過窓が形成された半透過・反射型電気光学装置において、前記光透過窓周辺の前記光反射膜は、裏面の一部が前記光透過窓を挟んで向かい合う領域の前記光反射膜の表面と対向する導光反射面を備え、前記透光性基板の裏面側から入射した光の一部を、前記導光反射面で反射させて前記透光性基板の表面側に導くことを特徴とする。
【0011】
本発明を適用した半透過・反射型電気光学装置では、光反射膜が形成されているので、反射モードでの表示を行うことができるとともに、光反射膜に光透過窓が形成されているので、透過モードでの表示を行うこともできる。ここで、光反射膜の裏面は、透光性基板の裏面側から入射した光を反射して光透過窓を挟んで対向する光反射膜の表面に導く導光反射面を備えているため、透光性基板の裏面側から入射した光のうち、従来なら光反射膜で遮られて透過モードでの表示に寄与しなかった光も、本発明では、その一部が導光反射面で反射して光反射膜の表面に導かれて表示に寄与することになる。しかも、凹凸形成膜と光反射膜との間には、透光性の上層絶縁膜に加えて、透光性の画素電極が介在しているので、上層絶縁膜の表面には凹凸形成膜の凹凸が丸く反映され、かつ、導光反射面から光反射膜の表面側への導光路を広く確保できる。それ故、光透過窓の面積を拡大させなくても、透過モードでの表示光量を増大させることができるので、反射モードでの表示の明るさを犠牲にすることなく、透過モードでの表示の明るさを向上することができる。
【0012】
本発明において、少なくとも、前記光透過窓の形成領域と平面的に重なる領域では、前記凹凸形成膜および前記上層絶縁膜が除去されていることが好ましい。このように構成すると、導光反射面に対して光透過膜を介して対向部分において、光反射膜の表面が斜面をなして対向する部分が広い。それ故、導光反射面から反射してきた光を光反射膜の表面的で電気的光学物質の層に向けて確実に反射することができる。
【0013】
本発明において、前記上層絶縁膜は、前記光透過窓の外周縁のうち、前記導光反射面が前記光透過窓を挟んで向かい合う領域では前記光反射膜と前記画素電極とが直接、重なるように除去されていることが好ましい。このように構成すると、光反射膜と画素電極との電気的な接続を光透過窓の周辺で行うことができる。それ故、例えば、TFTアクティブマトリクス型の半透過・反射型電気光学装置において、画素スイッチング用のTFTの上層側では、TFTのドレイン領域と画素電極とのコンタクトホールを介しての電気的な接続、および光反射膜と画素電極とのコンタクトホールを介して電気的な接続のうちの前者のみを行えばよい。
【0014】
本発明において、前記画素電極の下層側には、該上層絶縁膜の表面に対して前記光透過窓の外周縁に沿う枠状凸部を構成する枠状突起が形成され、前記枠状凸部の前記光透過窓が形成されている側とは反対側の麓部分から頂上部分に被さる前記光反射膜の裏面によって前記導光反射面が形成され、前記光透過窓を挟んで前記導光反射面に向かい合う部分で、前記枠状凸部の前記光透過窓が形成されている側の麓部分から頂上部分に前記光反射膜が被さることによって、当該光反射膜の表面が前記導光反射面に対向し、かつ、前記導光反射面で反射してきた光が導かれてくる反射面が形成されている構成を採用することができる。
【0015】
本発明において、前記導光反射面で反射してきた光に対する前記反射面は、前記導光反射面に対して略平行な面として対向していることが好ましい。
【0016】
本発明において、前記枠状突起は、前記凹凸形成膜と同層に形成された透光性膜からなることが好ましい。
【0017】
この場合、前記枠状突起および前記凹凸形成膜は、例えば、上面部分が丸みをもって形成されることが好ましい。このように構成すると、光反射膜表面での光散乱性を高めることができる。また、光反射膜の裏面において導光反射面として機能する部分、およびこの導光反射面から光が導かれてくる光反射膜の表面部分は、斜面になっている必要があるが、枠状突起の上面に丸みを付与すると、枠状突起の表面側に形成された光反射膜の裏面および表面において、導光反射面などとして利用できない平坦部分の面積を狭めることができるので、光反射膜の裏面において導光反射面として機能する部分、およびこの導光反射面から光が導かれてくる光反射膜の表面部分を広めることができる。従って、透過モードの際の光の利用効率を高めることができる。なお、ここで言う「上面部分が丸みをもって」とは、上面部分と側面との境目に相当する部分が曲面になっていれば、釣鐘形状のように上面全体が曲面からなる形状、およびお椀形状のように上面の一部に平坦面が残っている形状のいずれであってもよい。
【0018】
本発明において、前記光反射膜は、前記枠状凸部の高さ寸法より膜厚が薄いことが好ましい。このように構成すると、光反射膜の導光反射面からみると、この導光反射面に対して光透過窓を介して対向する部分を下方に位置させることができる。
【0019】
本発明において、前記光反射膜には、前記光透過窓が複数、形成されていることが好ましい。このように構成すると、光透過窓の面積を一定とした場合に、大きな光透過窓を1つ形成した場合と比較して、小さな光透過窓を多数、形成した方が導光反射面を広く形成できるので、透過モードの際の光の利用効率を高めることができる。
【0020】
本発明において、前記光透過窓の平面形状は、例えば、前記導光反射面が形成されている辺に対して平行な辺を備えた多角形である。このように構成すると、光反射膜の導光反射面、およびこの導光反射面に対して光透過窓を介して対向する部分を効率よく形成することができるので、透過モードの際の光の利用効率を高めることができる。
【0021】
本発明において、前記電気光学物質は、例えば、液晶である。
【0022】
本発明を適用した電気光学装置は、モバイルコンピュータや携帯電話機などといった電子機器の表示装置として用いることができる。
【0023】
【発明の実施の形態】
図面を参照して、本発明の実施の形態を説明する。
【0024】
[実施の形態1]
(電気光学装置の基本的な構成)
図1は、本発明を適用した電気光学装置を各構成要素とともに対向基板の側から見た平面図であり、図2は、図1のH−H′断面図である。図3は、電気光学装置の画像表示領域においてマトリクス状に形成された複数の画素における各種素子、配線等の等価回路図である。なお、本形態の説明に用いた各図では、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材毎に縮尺を異ならしめてある。
【0025】
図1および図2において、本形態の電気光学装置100は、シール材52により貼り合わされたTFTアレイ基板10と対向基板20との間に、電気光学物質としての液晶50が挟持されており、シール材52の形成領域の内側領域には、遮光性材料からなる周辺見切り53が形成されている。シール材52の外側の領域には、データ線駆動回路101、および実装端子102がTFTアレイ基板10の一辺に沿って形成されており、この一辺に隣接する2辺に沿って走査線駆動回路104が形成されている。TFTアレイ基板10の残る一辺には、画像表示領域の両側に設けられた走査線駆動回路104の間をつなぐための複数の配線105が設けられており、更に、周辺見切り53の下などを利用して、プリチャージ回路や検査回路が設けられることもある。また、対向基板20のコーナー部の少なくとも1箇所においては、TFTアレイ基板10と対向基板20との間で電気的導通をとるための上下導通材106が形成されている。また、データ線駆動回路101、及び走査線駆動回路104等は、シール材52と重なってもよいし、シール材52の内側領域に形成されてもよい。
【0026】
なお、データ線駆動回路101および走査線駆動回路104をTFTアレイ基板10の上に形成する代わりに、たとえば、駆動用LSIが実装されたTAB(テープ オートメイテッド、ボンディング)基板をTFTアレイ基板10の周辺部に形成された端子群に対して異方性導電膜を介して電気的および機械的に接続するようにしてもよい。なお、電気光学装置100では、使用する液晶50の種類、すなわち、TN(ツイステッドネマティック)モード、STN(スーパーTN)モード等々の動作モードや、ノーマリホワイトモード/ノーマリブラックモードの別に応じて、偏光フィルム、位相差フィルム、偏光板などが所定の向きに配置されるが、ここでは図示を省略してある。また、電気光学装置100をカラー表示用として構成する場合には、対向基板20において、TFTアレイ基板10の各画素電極(後述する。)に対向する領域にRGBのカラーフィルタをその保護膜とともに形成する。
【0027】
このような構造を有する電気光学装置100の画面表示領域10aにおいては、図3に示すように、複数の画素100aがマトリクス状に構成されているとともに、これらの画素100aの各々には、画素電極9a、およびこの画素電極9aを駆動するための画素スイッチング用のTFT30が形成されており、画素信号S1、S2・・・Snを供給するデータ線6aが当該TFT30のソースに電気的に接続されている。データ線6aに書き込む画素信号S1、S2・・・Snは、この順に線順次に供給しても構わないし、相隣接する複数のデータ線6a同士に対して、グループ毎に供給するようにしてもよい。また、TFT30のゲートには走査線3aが電気的に接続されており、所定のタイミングで、走査線3aにパルス的に走査信号G1、G2・・・Gmをこの順に線順次で印加するように構成されている。画素電極9aは、TFT30のドレインに電気的に接続されており、スイッチング素子であるTFT30を一定期間だけそのオン状態とすることにより、データ線6aから供給される画素信号S1、S2・・・Snを各画素に所定のタイミングで書き込む。このようにして画素電極9aを介して液晶に書き込まれた所定レベルの画素信号S1、S2、・・・Snは、図2に示す対向基板20の対向電極21との間で一定期間保持される。
【0028】
ここで、液晶50は、印加される電圧レベルにより分子集合の配向や秩序が変化することにより、光を変調し、階調表示を可能にする。ノーマリーホワイトモードであれば、印加された電圧に応じて入射光がこの液晶50の部分を通過する光量が低下し、ノーマリーブラックモードであれば、印加された電圧に応じて入射光がこの液晶50の部分を通過する光量が増大していく。その結果、全体として電気光学装置100からは画素信号S1、S2、・・・Snに応じたコントラストを持つ光が出射される。
【0029】
なお、保持された画素信号S1、S2、・・・Snがリークするのを防ぐために、画素電極9aと対向電極との間に形成される液晶容量と並列に蓄積容量60を付加することがある。例えば、画素電極9aの電圧は、ソース電圧が印加された時間よりも3桁も長い時間だけ蓄積容量60により保持される。これにより、電荷の保持特性は改善され、コントラスト比の高い電気光学装置100が実現できる。なお、蓄積容量60を形成する方法としては、図3に例示するように、蓄積容量60を形成するための配線である容量線3bとの間に形成する場合、あるいは前段の走査線3aとの間に形成する場合もいずれであってもよい。
【0030】
(TFTアレイ基板の構成)
図4は、本形態の電気光学装置に用いたTFTアレイ基板の相隣接する複数の画素群の平面図である。図5は、電気光学装置の画素の一部を図4のA−A′線に相当する位置で切断したときの断面図である。
【0031】
図4において、TFTアレイ基板10上には、複数の透明なITO(Indium Tin Oxide)膜からなる画素電極9aがマトリクス状に形成されており、これら各画素電極9aに対して画素スイッチング用のTFT30がそれぞれ接続している。また、画素電極9aの縦横の境界に沿って、データ線6a、走査線3a、および容量線3bが形成され、TFT30は、データ線6aおよび走査線3aに対して接続している。すなわち、データ線6aは、コンタクトホールを介してTFT30の高濃度ソース領域1dに電気的に接続し、走査線3aは、その突出部分がTFT30のゲート電極を構成している。なお、蓄積容量60は、画素スイッチング用のTFT30を形成するための半導体膜1の延設部分1fを導電化したものを下電極とし、この下電極41に容量線3bが上電極として重なった構造になっている。
【0032】
このように構成した画素領域のA−A′線における断面は、図5に示すように表わされ、TFTアレイ基板10の基体たる透光性基板10′の表面には、厚さが300nm〜500nmのシリコン酸化膜(絶縁膜)からなる下地保護膜11が形成され、この下地保護膜11の表面には、厚さが30nm〜100nmの島状の半導体膜1aが形成されている。この半導体膜1aは、基板温度が150℃〜450℃の温度条件下で、透光性基板10′の全面に、アモルファスのシリコン膜からなる半導体膜をプラズマCVD法により30nm〜100nmの厚さに形成した後、半導体膜に対してレーザ光を照射してレーザアニールを施し、アモルファスの半導体膜を一度溶融させた後、冷却固化過程を経て結晶化させたものである。
【0033】
このように形成した半導体膜1aの表面には、厚さが約50〜150nmのシリコン酸化膜からなるゲート絶縁膜2が形成され、このゲート絶縁膜2の表面に、厚さが300nm〜800nmの走査線3aが形成されている。半導体膜1aのうち、走査線3aに対してゲート絶縁膜2を介して対峙する領域がチャネル領域1a′になっている。このチャネル領域1a′に対して一方側には、低濃度ソース領域1bおよび高濃度ソース領域1dを備えるソース領域が形成され、他方側には低濃度ドレイン領域1cおよび高濃度ドレイン領域1eを備えるドレイン領域が形成されている。
【0034】
画素スイッチング用のTFT30の表面側には、厚さが300nm〜800nmのシリコン酸化膜からなる層間絶縁膜4が形成され、この層間絶縁膜4の表面には、厚さが100nm〜300nmのシリコン窒化膜からなる表面保護膜(図示せず)が形成されることがある。層間絶縁膜4の表面には、厚さが300nm〜800nmのデータ線6aが形成され、このデータ線6aは、層間絶縁膜4に形成されたコンタクトホールを介して高濃度ソース領域1dに電気的に接続している。層間絶縁膜4の表面にはデータ線6aと同時形成されたドレイン電極6bが形成され、このドレイン電極6bは、層間絶縁膜4に形成されたコンタクトホールを介して高濃度ドレイン領域1eに電気的に接続している。
【0035】
また、層間絶縁膜4の上層(データ線6aおよびドレイン電極6bの上層)には、感光性樹脂からなる凹凸形成膜13aが所定のパターンで形成され、本形態では、この凹凸形成膜13aの上層にITO膜からなる画素電極9aが形成されている。
【0036】
画素電極9aの上層には、感光性樹脂からなる上層絶縁膜7aが形成され、この上層絶縁膜7aの上層にアルミニウム膜などからなる光反射膜8aが形成されている。従って、光反射膜8aの表面には、凹凸形成膜13aの凹凸が画素電極9aおよび上層絶縁膜7aを介して凹凸パターン8gとして反映されている。
【0037】
ここで、画素電極9aは、凹凸形成膜13aに形成されたコンタクトホール13mを介してドレイン電極6bに電気的に接続し、光反射膜8aは、上層絶縁膜7aに形成されたコンタクトホール7mを介して画素電極9aに電気的に接続している。
【0038】
なお、光反射膜8aの表面側にはポリイミド膜からなる配向膜12が形成されている。この配向膜12は、ポリイミド膜に対してラビング処理が施された膜である。
【0039】
なお、高濃度ドレイン領域1eからの延設部分1f(下電極)に対しては、ゲート絶縁膜2と同時形成された絶縁膜(誘電体膜)を介して容量線3bが上電極として対向することにより、蓄積容量60が構成されている。
【0040】
なお、TFT30は、好ましくは上述のようにLDD構造をもつが、低濃度ソース領域1b、および低濃度ドレイン領域1cに相当する領域に不純物イオンの打ち込みを行わないオフセット構造を有していてもよい。また、TFT30は、ゲート電極(走査線3aの一部)をマスクとして高濃度で不純物イオンを打ち込み、自己整合的に高濃度のソースおよびドレイン領域を形成したセルフアライン型のTFTであってもよい。
【0041】
また、本形態では、TFT30のゲート電極(走査線3a)をソース−ドレイン領域の間に1個のみ配置したシングルゲート構造としたが、これらの間に2個以上のゲート電極を配置してもよい。この際、各々のゲート電極には同一の信号が印加されるようにする。このようにデュアルゲート(ダブルゲート)、あるいはトリプルゲート以上でTFT30を構成すれば、チャネルとソース−ドレイン領域の接合部でのリーク電流を防止でき、オフ時の電流を低減することが出来る。これらのゲート電極の少なくとも1個をLDD構造或いはオフセット構造にすれば、さらにオフ電流を低減でき、安定したスイッチング素子を得ることができる。
【0042】
(凹凸パターンおよび光透過窓周辺の構成)
図6(A)、(B)はそれぞれ、本発明に係る電気光学装置において、TFTアレイ基板の光透過窓周辺の平面図、および断面図である。
【0043】
図5を参照して説明したように、TFTアレイ基板10において、光反射膜8aの表面には、凸部8bおよび凹部8cを備えた凹凸パターン8gが形成されており、本形態では、図4に示すように、凸部8b、およびそれを構成する凹凸形成膜13aが正六角形の平面形状を有するものとして表してある。但し、凸部8bおよび凹凸形成膜13aの平面形状については、正六角形に限らず、その他の多角形、円形、楕円形など、種々の形状のものを採用することができる。
【0044】
このような凹凸パターン8gを構成するにあたって、本形態のTFTアレイ基板10では、図5に示すように、光反射膜8aの下層側のうち、凹凸パターン8gの凸部8bに相当する領域に、透光性の感光性樹脂からなる凹凸形成膜13aが所定のパターンで選択的に残されており、その上層側に形成される光反射膜8aの表面に凹凸パターン8gを付与している。
【0045】
また本形態では、凹凸形成膜13aの上層に画素電極9aが形成され、かつ、画素電極9aの上層にもう1層、流動性の高い透光性の第2の感光性樹脂からなる上層絶縁膜7aを塗布、形成することにより、光反射膜8aの表面になだらかな形状の凹凸パターン8gを付与している。
【0046】
さらに本形態では、光反射膜8aにおいて、画素電極9aと平面的に重なる領域には、矩形の光透過窓8dが複数、形成されている。従って、光透過窓8dに相当する部分には、ITOからなる画素電極9aは存在するが、光反射膜8aが存在しない。また、光透過窓8dに相当する部分では、凹凸形成層13aが除去されている。
【0047】
図5および図6(A)、(B)に示すように、本形態ではさらに、画素電極9aの下層側には、上層絶縁膜7aの表面に対して、複数の光透過窓8aの各々の外周縁に沿って枠状凸部7bを形成する枠状突起13bが形成されている。枠状突起13bは、凹凸形成膜13aと同時形成された膜であり、凹凸形成膜13aと同様、上面部分が丸みをもっている。
【0048】
ここで、光透過窓8dの2辺81d、82dに相当する領域では、枠状凸部7bの光透過窓8dが形成されている側とは反対側の麓部分から頂上部分に被さるように光反射膜8aが形成されている一方、枠状凸部7bの光透過窓8dが形成されている側には光透過膜8aが形成されていない。これに対して、光透過窓8dの他の2辺83d、84dに相当する領域において、光反射膜8aは、枠状凸部7bの光透過窓8dが形成されている側の麓部分から頂上部分に被さるように形成されている。また、光反射膜8aは、枠状凸部7bの高さ寸法より膜厚がかなり薄い。
【0049】
従って、光透過窓8dの2辺81d、82dに相当する領域において、枠状凸部7bの光透過窓8dが形成されている側とは反対側の麓部分から頂上部分に対して光反射膜8aが被さることによって、光反射膜8aの裏面には、透光性基板10′の裏面側から入射した光を、図6(B)に矢印LB11で示すように反射して、光透過窓8aを挟んで対向する光反射膜8aの表面(反射面8f)に導く導光反射面8eが形成されている。これに対して、光透過窓8dの他の2辺83d、84dに相当する領域において、枠状凸部7bの光透過窓8dが形成されている側の麓部分から頂上部分に光反射膜8aが被さることによって、光反射膜8aの表面には、導光反射面8eで反射してきた光を対向基板20の側に向けて反射する反射面8fが形成されている。ここで、導光反射面8eと、この導光反射面8eで反射してきた光に対する反射面8fとは、略平行な面として対向している。
【0050】
なお、凸部8b、およびそれを構成する下層側透光性膜13aは、光透過窓8dの内側の領域に形成されていてもよい。
【0051】
(対向基板の構成)
再び図5において、対向基板20では、TFTアレイ基板10に形成されている画素電極9aの縦横の境界領域と対向する領域にブラックマトリクス、あるいはブラックストライプなどと称せられる遮光膜23が形成され、その上層側には、ITO膜からなる対向電極21が形成されている。また、対向電極21の上層側には、ポリイミド膜からなる配向膜22が形成され、この配向膜22は、ポリイミド膜に対してラビング処理が施された膜である。
【0052】
(本形態の作用・効果)
このように構成した半透過・反射型の電気光学装置100では、画素電極9aの下層側に光反射膜8aが形成されているため、図5に矢印LAで示すように、対向基板20側から入射した光をTFTアレイ基板10側で反射し、対向基板20側から出射された光によって画像を表示する(反射モード)。
【0053】
また、TFTアレイ基板10の裏面側に配置されたバックライト装置(図示せず)から出射された光のうち、光反射膜8aが形成されていない光透過窓8dに向かう光は、矢印LB0で示すように、光透過窓8dを介して対向基板20側に透過し、表示に寄与する(透過モード)。
【0054】
また、本形態では、光反射膜8aの裏面には、透光性基板10′の裏面側から入射した光を反射して光透過窓8dを挟んで対向する光反射膜8aの表面(反射面8f)に導く導光反射面8fを備えている。このため、透光性基板10′の裏面側から入射した光のうち、従来なら光反射膜8aで遮られて透過モードでの表示に寄与しなかった光も、本形態では、その一部が、図6(B)に矢印LB11で示すように、導光反射面8eで反射して光反射膜8aの表面側の反射面8fに導かれて表示に寄与することになる。
【0055】
しかも、凹凸形成膜13aと光反射膜8aとの間には、透光性の上層絶縁膜7aに加えて、透光性の画素電極9aが介在しているので、その分、上層絶縁膜7aの表面には凹凸形成膜13aの凹凸がより丸く反映され、かつ、導光反射面8eから光反射膜8aの表面側への導光路を広く確保できる。
【0056】
それ故、本形態によれば、光透過窓8dの面積を拡大させなくても、透過モードでの表示光量を増大させることができるので、反射モードでの表示の明るさを犠牲にすることなく、透過モードでの表示の明るさを向上することができる。
【0057】
また、本形態において、光反射膜8aは、枠状凸部7bの高さ寸法より膜厚が薄いため、光反射膜8aの導光反射面8eからみると、この導光反射面8eに対して光透過窓8dを介して対向する部分を下方に位置させることができるので、導光反射面8eで反射してきた光を光反射膜8aの表面側の反射面8fに効率よく導くことができる。
【0058】
また、本形態において、光反射膜8aには光透過窓58dが複数、形成されている。このため、光透過窓8dの面積を同一とした場合に、大きな光透過窓8dを1つ形成した場合と比較して、本形態の方が導光反射面8eを広く形成できるので、透過モードにおける光の利用効率を高めることができる。
【0059】
さらに本形態では、枠状突起13bおよび凹凸形成膜13aの上面部分が丸みをもって形成されているため、光反射膜8aの表面での光散乱性を高めることができる。また、光反射膜8aの裏面において導光反射面8eとして機能する部分、およびこの導光反射面8eから光が導かれてくる光反射膜の表面部分(反射面8f)は、斜面になっている必要があるが、枠状突起13bの上面に丸みを付与すると、枠状突起13bの表面側に形成された光反射膜8aの裏面および表面において、導光反射面8eなどとして利用できない平坦部分の面積を狭めることができので、光反射膜の裏面において導光反射面8eとして機能する部分、およびこの導光反射面8eから光が導かれてくる光反射膜の表面部分(反射面8f)を広めることができる。従って、透過モードの際の光の利用効率を高めることができる。
【0060】
(TFTアレイ基板の製造方法)
このような構成の電気光学装置100の製造工程のうち、TFTアレイ基板10の製造工程を、図7および図8を参照して説明する。図7および図8はいずれも、本形態のTFTアレイ基板10の製造方法のうち、画素スイッチング用のTFT30を形成した以降の工程を示す工程断面図であり、いずれの図においても、図4のA−A′線における断面に対応する。
【0061】
本形態では、図7(A)に示すように、まず、ガラス製等の基板10′の上に下地保護膜11を形成した後、下地保護膜11の表面に形成した島状の半導体膜1aを利用して、図4および図5を参照して説明したTFT30を形成する。
【0062】
次に、データ線6aおよびドレイン電極6bの表面側に対して、スピンコート法などを用いて、図7(B)に示すように、感光性樹脂13を塗布した後、露光、現像工程を行って、図7(C)に示すように、感光性樹脂13を凹凸パターン8gの凸部8bに相当する領域に凹凸形成膜13aを選択的に残す。この際、枠状突起13bも形成する。
【0063】
次に、加熱処理を行って、凹凸形成膜13a、および枠状突起13bを構成する感光性樹脂13を溶融させ、図7(D)に示すように、凹凸形成膜13a、および枠状突起13bの上面を丸くする。なお、凹凸形成膜13aは、TFT30の形成領域にも残されるので、凹凸形成膜13aには、画素電極9aとドレイン電極6bとを電気的に接続するためのコンタクトホール13mを形成する。
【0064】
次に、凹凸形成膜13aおよび枠状突起13bの表面側に厚さが40nm〜200nmのITO膜をスパッタ法などで形成した後、フォトリソグラフィ技術を用いて、ITO膜にエッチングを行って、図8(E)に示すように、画素電極9aを形成する。その結果、画素電極9aは、コンタクトホール13mを介してドレイン電極6bと電気的に接続される。
【0065】
次に、図8(F)に示すように、画素電極9aの表面側に対して、スピンコート法などを用いて、感光性樹脂7を塗布した後、露光、現像工程を行って、図8(G)に示すように、上層絶縁膜7aを形成する。その結果、上層絶縁膜7aの表面には、凹凸形成膜13aの有無に対応する凹凸が形成されるとともに、枠状突起13bに対応する枠状凸部7bが形成される。この際、上層絶縁膜7aには、光反射膜8aと画素電極9aとを電気的に接続するためのコンタクトホール7mを形成する。
【0066】
次に、上層絶縁膜7aの表面にアルミニウムなどの金属膜を形成した後、フォトリソグラフィ技術を用いて、金属膜をパターングし、図8(H)に示すように、光反射膜8aを形成する。この際、光反射膜8aに光透過窓8dを形成する。このようにして形成した光反射膜8aでは、凹凸形成膜13aの表面形状が上層絶縁膜7aを介して反映されるので、光反射膜8aの表面には、エッジのない、なだらかな凹凸パターン8aが形成される。また、光反射膜8aは、コンタクトホール7mを介して画素電極9aと電気的に接続される。
【0067】
また、光反射膜8aを形成する際、図6(A)、(B)を参照して説明したように、光透過窓8dの2辺81d、82dに相当する領域では、枠状凸部7bの光透過窓8dが形成されている側とは反対側の麓部分から頂上部分に被さるように光透過膜8aを形成して導光反射面8eを形成する一方、光透過窓8dの他の2辺83d、84dに相当する領域では、枠状凸部7bの光透過窓8dが形成されている側とは反対側の麓部分から頂上部分に対して光反射膜8aを被せて、導光反射面8eで反射してきた光を対向基板20の側に向けて反射する反射面8fを形成する。
【0068】
しかる後には、図5に示すように、光反射膜8aの表面側にポリイミド膜(配向膜12)を形成する。それには、ブチルセロソルブやn−メチルピロリドンなどの溶媒に5〜10重量%のポリイミドやポリアミド酸を溶解させたポリイミド・ワニスをフレキソ印刷した後、加熱・硬化(焼成)する。そして、ポリイミド膜を形成した基板をレーヨン系繊維からなるパフ布で一定方向に擦り、ポリイミド分子を表面近傍で一定方向に配列させる。その結果、後で充填した液晶分子とポリイミド分子との相互作用により液晶分子が一定方向に配列する。
【0069】
[実施の形態2]
(TFTアレイ基板の構成)
図9は、本発明の実施の形態2に係る電気光学装置を、図4のA−A′線に相当する位置での切断した断面図である。図10(A)、(B)はそれぞれ、図9に示す電気光学装置において、TFTアレイ基板の光透過窓周辺の平面図、および断面図である。なお、本形態の電気光学装置の基本的な構成は、実施の形態1の電気光学装置と同様であるため、共通する部分には同一の符号を付して図示することにして、それらの詳細な説明を省略する。
【0070】
図9において、本形態の電気光学装置に用いたTFTアレイ基板10でも、基体たる透光性基板10′の表面には、シリコン酸化膜(絶縁膜)からなる下地保護膜11が形成されている。この下地保護膜11の表面には島状の半導体膜1aが形成され、この半導体膜1aを用いて画素スイッチング用のTFT30が形成されている。
【0071】
層間絶縁膜4の上層(データ線6aおよびドレイン電極6bの上層)には、感光性樹脂からなる凹凸形成膜13aが所定のパターンで形成され、本形態では、この凹凸形成膜13aの上層にITO膜からなる画素電極9aが形成されている。画素電極9aの上層には、感光性樹脂からなる上層絶縁膜7aが形成され、この上層絶縁膜7aの上層にアルミニウム膜などからなる光反射膜8aが形成されている。従って、光反射膜8aの表面には、凹凸形成膜13aの凹凸が画素電極9aおよび上層絶縁膜7aを介して凹凸パターン8gとして反映されている。また、凹凸形成膜13aの上層に画素電極9aが形成され、かつ、画素電極9aの上層にもう1層、流動性の高い透光性の第2の感光性樹脂からなる上層絶縁膜7aが塗布、形成されているので、光反射膜8aの表面には、なだらかな形状の凹凸パターン8gが付与されている。
【0072】
さらに本形態では、光反射膜8aにおいて、画素電極9aと平面的に重なる領域には、矩形の光透過窓8dが複数、形成されている。従って、光透過窓8dに相当する部分には、ITOからなる画素電極9aは存在するが、光反射膜8aが存在しない。
【0073】
また、図9および図10(A)、(B)に示すように、本形態ではさらに、画素電極9aの下層側には、上層絶縁膜7aの表面に対して、複数の光透過窓8aの各々の外周縁に沿って枠状凸部7bを形成する枠状突起13bが形成されている。枠状突起13bは、凹凸形成膜13aと同時形成された膜であり、凹凸形成膜13aと同様、上面部分が丸みをもっている。
【0074】
ここで、光透過窓8dの2辺81d、82dに相当する領域では、枠状凸部7bの光透過窓8dが形成されている側とは反対側の麓部分から頂上部分に被さるように光反射膜8aが形成されている一方、枠状凸部7bの光透過窓8dが形成されている側には光透過膜8aが形成されていない。これに対して、光透過窓8dの他の2辺83d、84dに相当する領域において、光反射膜8aは、枠状凸部7bの光透過窓8dが形成されている側の麓部分から頂上部分に被さるように形成されている。また、光反射膜8aは、枠状凸部7bの高さ寸法より膜厚がかなり薄い。
【0075】
従って、光透過窓8dの2辺81d、82dに相当する領域において、枠状凸部7bの光透過窓8dが形成されている側とは反対側の麓部分から頂上部分に対して光反射膜8aが被さることによって、光反射膜8aの裏面には、透光性基板10′の裏面側から入射した光を、図10(B)に矢印LB11で示すように反射して、光透過窓8aを挟んで対向する光反射膜8aの表面(反射面8f)に導く導光反射面8eが形成されている。これに対して、光透過窓8dの他の2辺83d、84dに相当する領域において、枠状凸部7bの光透過窓8dが形成されている側の麓部分から頂上部分に光反射膜8aが被さることによって、光反射膜8aの表面には、導光反射面8eで反射してきた光を対向基板20の側に向けて反射する反射面8fが形成されている。ここで、導光反射面8eと、この導光反射面8eで反射してきた光に対する反射面8fとは、略平行な面として対向している。
【0076】
さらに、本形態では、枠状突起13b(枠状凸部7b)で囲まれた領域のうち、光透過窓8dと平面的に重なる領域では、凹凸形成膜13aおよび上層絶縁膜7aの双方が除去されている。しかも、光透過窓8dの外周縁のうち、導光反射面8eが光透過窓8dを挟んで向かい合う領域では光反射膜8aと画素電極9aとが直接、重なるように上層絶縁膜7aが除去されている。このため、TFT30の上層側で光反射膜8aと画素電極9aとは、コンタクトホールを介しての電気的な接続が行われていない。
【0077】
このように構成した半透過・反射型の電気光学装置100でも、実施の形態1と同様、光反射膜8aの裏面には、透光性基板10′の裏面側から入射した光を反射して光透過窓8dを挟んで対向する光反射膜8aの表面(反射面8f)に導く導光反射面8fを備えている。このため、透光性基板10′の裏面側から入射した光のうち、従来なら光反射膜8aで遮られて透過モードでの表示に寄与しなかった光も、本形態では、その一部が、図9(B)に矢印LB11で示すように、導光反射面8eで反射して光反射膜8aの表面側の反射面8fに導かれて表示に寄与することになる。しかも、凹凸形成膜13aと光反射膜8aとの間には、透光性の上層絶縁膜7aに加えて、透光性の画素電極9aが介在しているので、その分、上層絶縁膜7aの表面には凹凸形成膜13aの凹凸がより丸く反映され、かつ、導光反射面8eから光反射膜8aの表面側への導光路を広く確保できる。それ故、光透過窓8dの面積を拡大させなくても、透過モードでの表示光量を増大させることができるので、反射モードでの表示の明るさを犠牲にすることなく、透過モードでの表示の明るさを向上することができる。
【0078】
さらに、光透過窓8dの他の2辺83d、84dに相当する領域において、光透過窓8dでは上層絶縁膜7aが除去されているので、そこに上層絶縁膜7aが残っている場合と比較して、枠状凸部7bの内側の斜面が広い。このため、導光反射面8eで反射してきた光が導かれてくる反射面8fが広い。それ故、従来なら光反射膜8aで遮られて透過モードでの表示に寄与しなかった光を効率よく表示に寄与させることができる。
【0079】
さらにまた、光反射膜8aと画素電極9aとの電気的な接続を光透過窓8dの周辺で行っているため、TFT30の上層側で光反射膜8aと画素電極9aとをコンタクトホールを介して電気的に接続する必要がない。
【0080】
(TFTの製造方法)
このような構成のTFTアレイ基板10を製造するにあたって、本形態では、凹凸形成膜13aを形成するまでは実施の形態1と同様、図7を参照して説明した工程を行い、それ以降は、図8を参照して説明した説明した工程に代えて、図11(E)〜(H)に示す工程を行う。
【0081】
すなわち、図11(E)に示すように、凹凸形成膜13aおよび枠状突起13bの表面側にITO膜からなる画素電極9aを形成した後、図11(F)に示すように、画素電極9aの表面側に対して、スピンコート法などを用いて、感光性樹脂7を塗布した後、露光、現像工程を行って、図11(G)に示すように、上層絶縁膜7aを形成する。その際、本形態では、枠状突起13bの内側領域のうち、後述する光透過膜8dと略重なる領域からは上層絶縁膜7aを除去する。また、上層絶縁膜7aには、光反射膜8aと画素電極9aとを電気的に接続するためのコンタクトホール(図8(F)を参照)を形成しない。
【0082】
次に、上層絶縁膜7aの表面にアルミニウムなどの金属膜を形成した後、フォトリソグラフィ技術を用いて、金属膜をパターングし、図11(H)に示すように、光反射膜8aを形成する。この際、光反射膜8aに光透過窓8dを形成する。このようにして形成した光反射膜8aでは、凹凸形成膜13aの表面形状が上層絶縁膜7aを介して反映されるので、光反射膜8aの表面には、エッジのない、なだらかな凹凸パターン8aが形成される。
【0083】
また、光反射膜8aを形成する際、図10(A)、(B)を参照して説明したように、光透過窓8dの2辺81d、82dに相当する領域では、枠状凸部7bの光透過窓8dが形成されている側とは反対側の麓部分から頂上部分に被さるように光透過膜8aを形成して導光反射面8eを形成する一方、光透過窓8dの他の2辺83d、84dに相当する領域では、枠状凸部7bの光透過窓8dが形成されている側とは反対側の麓部分から頂上部分に対して光反射膜8aを被せて、導光反射面8eで反射してきた光を対向基板20の側に向けて反射する反射面8fを形成する。また、光反射膜8aについては、光透過窓8dの2辺83d、84dに相当する領域で画素電極9aに直接、積層された状態にして画素電極9aと電気的に接続する。
【0084】
しかる後には、図9に示すように、光反射膜8aの表面側にポリイミド膜(配向膜12)を形成する。
【0085】
[その他の実施の形態]
上記形態では、画素スイッチング用のアクティブ素子としてTFTを用いた例を説明したが、アクティブ素子としてMIM(Metal InsulatorMetal)素子などの薄膜ダイオード素子(TFD素子/Thin Film Diode素子)を用いた場合も同様である。
【0086】
[電気光学装置の電子機器への適用]
このように構成した半透過・反射型の電気光学装置100は、各種の電子機器の表示部として用いることができるが、その一例を、図12、および図13を参照して説明する。
【0087】
図12は、本発明に係る電気光学装置を表示装置として用いた電子機器の回路構成を示すブロック図である。
【0088】
図12において、電子機器は、表示情報出力源70、表示情報処理回路71、電源回路72、タイミングジェネレータ73、そして液晶装置74を有する。また、液晶装置74は、液晶表示パネル75および駆動回路76を有する。液晶装置74としては、前述した電気光学装置100を用いることができる。
【0089】
表示情報出力源70は、ROM(Read Only Memory)、RAM(Random Access Memory)等といったメモリ、各種ディスク等といったストレージユニット、デジタル画像信号を同調出力する同調回路等を備え、タイミングジェネレータ73によって生成された各種のクロック信号に基づいて、所定フォーマットの画像信号等といった表示情報を表示情報処理回路71に供給する。
【0090】
表示情報処理回路71は、シリアル−パラレル変換回路や、増幅・反転回路、ローテーション回路、ガンマ補正回路、クランプ回路等といった周知の各種回路を備え、入力した表示情報の処理を実行して、その画像信号をクロック信号CLKと共に駆動回路76へ供給する。電源回路72は、各構成要素に所定の電圧を供給する。
【0091】
図13(A)、(B)はそれぞれ、本発明に係る電子機器の一実施形態であるモバイル型のパーソナルコンピュータの説明図、および携帯電話機の説明図である。
【0092】
これらの電子機器のうち、図13(A)に示すパーソナルコンピュータ80は、キーボード81を備えた本体部82と、液晶表示ユニット83とを有する。液晶表示ユニット83は、前述した電気光学装置100を含んで構成される。また、図13(B)に示す携帯電話機90は、複数の操作ボタン91と、前述した電気光学装置100からなる表示部とを有している。
【0093】
【発明の効果】
以上説明したとおり、本発明を適用した半透過・反射型電気光学装置では、反射モードでの表示を行うことができるとともに、光反射膜に光透過窓が形成されているので、透過モードでの表示を行うこともできる。ここで、光反射膜の裏面は、透光性基板の裏面側から入射した光を反射して光透過窓を挟んで対向する光反射膜の表面に導く導光反射面を備えているため、透光性基板の裏面側から入射した光のうち、従来なら光反射膜で遮られて透過モードでの表示に寄与しなかった光も、本発明では、その一部が導光反射面で反射して光反射膜の表面に導かれて表示に寄与することになる。しかも、凹凸形成膜と光反射膜との間には、透光性の上層絶縁膜に加えて、透光性の画素電極が介在しているので、上層絶縁膜の表面には凹凸形成膜の凹凸が丸く反映され、かつ、導光反射面から光反射膜の表面側への導光路を広く確保できる。それ故、光透過窓の面積を拡大させなくても、透過モードでの表示光量を増大させることができるので、反射モードでの表示の明るさを犠牲にすることなく、透過モードでの表示の明るさを向上することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る電気光学装置を対向基板の側からみたときの平面図である。
【図2】図1のH−H′線における断面図である。
【図3】図1に示す電気光学装置において、マトリクス状の複数の画素に形成された素子などの等価回路図である。
【図4】図1に示す電気光学装置のTFTアレイ基板の各画素の構成を示す平面図である。
【図5】図1に示す電気光学装置を、図4のA−A′線に相当する位置での切断した断面図である。
【図6】(A)、(B)はそれぞれ、図1に示す電気光学装置において、TFTアレイ基板の光透過窓周辺の平面図、および断面図である。
【図7】(A)〜(D)は、図1に示す電気光学装置に用いたTFTアレイ基板の製造方法を示す工程断面図である。
【図8】(E)〜(H)は、図1に示す電気光学装置に用いたTFTアレイ基板の製造方法を示す工程断面図である。
【図9】本発明の実施の形態2に係る電気光学装置を、図4のA−A′線に相当する位置での切断した断面図である。
【図10】(A)、(B)はそれぞれ、図9に示す電気光学装置において、TFTアレイ基板の光透過窓周辺の平面図、および断面図である。
【図11】(E)〜(H)は、図9に示す電気光学装置に用いたTFTアレイ基板の製造方法を示す工程断面図である。
【図12】本発明に係る電気光学装置を表示装置として用いた電子機器の回路構成を示すブロック図である。
【図13】(A)、(B)はそれぞれ、本発明に係る電気光学装置を用いたモバイル型のパーソナルコンピュータを示す説明図、および携帯電話機の説明図である。
【図14】従来の電気光学装置のTFTアレイ基板に形成された各画素の構成を示す平面図である。
【図15】従来の電気光学装置の断面図である。
【図16】従来の電気光学装置のTFTアレイ基板に形成した凹凸パターンおよび光透過窓の説明図である。
【符号の説明】
1a 半導体膜
2 ゲート絶縁膜
3a 走査線
3b 容量線
4 層間絶縁膜
6a データ線
6b ドレイン電極
7a 上層絶縁膜
7b 枠状凸部
8a 光反射膜
8b 凹凸パターンの凸部
8c 凹凸パターンの凹部
8d 光透過窓
8e 導光反射面
8f 反射面
8g 光反射膜表面の凹凸パターン
9a 画素電極
10 TFTアレイ基板
11 下地保護膜
13a 凹凸形成膜
13b 枠状突起
20 対向基板
21 対向電極
23 遮光膜
30 画素スイッチング用のTFT
50 液晶
60 蓄積容量
100 電気光学装置
100a 画素

Claims (12)

  1. 電気光学物質を保持する透光性基板上に、所定の凹凸を形成するための透光性の凹凸形成膜、透光性の画素電極、透光性の上層絶縁膜、および前記画素電極に電気的に接続する光反射膜がこの順に形成され、かつ、前記光反射膜には、透過表示領域を形成するための光透過窓が形成された半透過・反射型電気光学装置において、
    前記光透過窓周辺の前記光反射膜は、裏面の一部が前記光透過窓を挟んで向かい合う領域の前記光反射膜の表面と対向する導光反射面を備え、
    前記透光性基板の裏面側から入射した光の一部を、前記導光反射面で反射させて前記透光性基板の表面側に導くことを特徴とする半透過・反射型電気光学装置。
  2. 請求項1において、少なくとも、前記光透過窓の形成領域と平面的に重なる領域では、前記凹凸形成膜および前記上層絶縁膜の双方が除去されていることを特徴とする半透過・反射型電気光学装置。
  3. 請求項2おいて、前記上層絶縁膜は、前記光透過窓の外周縁のうち、前記導光反射面が前記光透過窓を挟んで向かい合う領域で前記光反射膜と前記画素電極とが直接、重なるように除去されていることを特徴とする半透過・反射型電気光学装置。
  4. 請求項1ないし3のいずれかにおいて、前記画素電極の下層側には、該上層絶縁膜の表面に対して前記光透過窓の外周縁に沿う枠状凸部を構成する枠状突起が形成され、
    前記枠状凸部の前記光透過窓が形成されている側とは反対側の麓部分から頂上部分に被さる前記光反射膜の裏面によって前記導光反射面が形成され、
    前記光透過窓を挟んで前記導光反射面に向かい合う部分で、前記枠状凸部の前記光透過窓が形成されている側の麓部分から頂上部分に前記光反射膜が被さることによって、当該光反射膜の表面が前記導光反射面に対向し、かつ、前記導光反射面で反射してきた光が導かれてくる反射面が形成されていることを特徴とする半透過・反射型電気光学装置。
  5. 請求項4において、前記導光反射面で反射してきた光に対する前記反射面は、前記導光反射面に対して略平行な面として対向していることを特徴とする半透過・反射型電気光学装置。
  6. 請求項4または5において、前記枠状突起は、前記凹凸形成膜と同層に形成された透光性膜からなることを特徴とする半透過・反射型電気光学装置。
  7. 請求項6において、前記枠状突起および前記凹凸形成膜は、上面部分が丸みをもって形成されていることを特徴とする半透過・反射型電気光学装置。
  8. 請求項5ないし7のいずれかにおいて、前記光反射膜は、前記枠状凸部の高さ寸法より膜厚が薄いことを特徴とする半透過・反射型電気光学装置。
  9. 請求項1ないし8のいずれかにおいて、前記光反射膜には、前記光透過窓が複数、形成されていることを特徴とする半透過・反射型電気光学装置。
  10. 請求項1ないし9のいずれかにおいて、前記光透過窓の平面形状は、前記導光反射面が形成されている辺に対して平行な辺を備えた多角形であることを特徴とする半透過・反射型電気光学装置。
  11. 請求項1ないし10のいずれかにおいて、前記電気光学物質は、液晶であることを特徴とする半透過・反射型電気光学装置。
  12. 請求項1ないし11のいずれかに規定する半透過・反射型電気光学装置を表示装置として用いたことを特徴とする電子機器。
JP2002203008A 2002-07-11 2002-07-11 半透過・反射型電気光学装置、およびそれを用いた電子機器 Withdrawn JP2004045755A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203008A JP2004045755A (ja) 2002-07-11 2002-07-11 半透過・反射型電気光学装置、およびそれを用いた電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203008A JP2004045755A (ja) 2002-07-11 2002-07-11 半透過・反射型電気光学装置、およびそれを用いた電子機器

Publications (1)

Publication Number Publication Date
JP2004045755A true JP2004045755A (ja) 2004-02-12

Family

ID=31709027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203008A Withdrawn JP2004045755A (ja) 2002-07-11 2002-07-11 半透過・反射型電気光学装置、およびそれを用いた電子機器

Country Status (1)

Country Link
JP (1) JP2004045755A (ja)

Similar Documents

Publication Publication Date Title
JP3714244B2 (ja) 半透過・反射型電気光学装置の製造方法、半透過・反射型電気光学装置、および電子機器
KR100511578B1 (ko) 반사형 전기 광학 장치 및 전자기기
JP2003098538A (ja) 電気光学装置及びその製造方法
US20040141136A1 (en) Electro-optic device and electronic apparatus
JP4154880B2 (ja) 電気光学装置及びその製造方法
JP4035992B2 (ja) 電気光学装置、電子機器、および電気光学装置の製造方法
JP3951694B2 (ja) 半透過・反射型電気光学装置、電子機器、および半透過・反射型電気光学装置の製造方法
JP4400027B2 (ja) 半透過・反射型電気光学装置、およびそれを用いた電子機器
JP3979077B2 (ja) 電気光学装置および電子機器
JP2003029275A (ja) 電気光学装置、電子機器、および電気光学装置の製造方法
US20080239220A1 (en) Liquid crystal display device and electronic apparatus
JP2004045756A (ja) 半透過・反射型電気光学装置、およびそれを用いた電子機器
JP2005275432A (ja) 電気光学装置および電子機器
JP2004045754A (ja) 半透過・反射型電気光学装置、およびそれを用いた電子機器
JP2003195285A (ja) 反射型電気光学装置、電子機器、および反射型電気光学装置の製造方法
JP2003029298A (ja) 薄膜半導体装置、電気光学装置、電子機器、薄膜半導体装置並びに電気光学装置の製造方法
JP4023111B2 (ja) 電気光学装置の製造方法
JP2004045755A (ja) 半透過・反射型電気光学装置、およびそれを用いた電子機器
JP3932844B2 (ja) 電気光学装置及びその製造方法
JP2003005173A (ja) 電気光学装置および電子機器
JP2004117695A (ja) 半導体装置、電気光学装置、電子機器、半導体装置の製造方法、および電気光学装置の製造方法
JP3800029B2 (ja) 電気光学装置および電子機器
JP2003262863A (ja) 半透過・反射型電気光学装置、電子機器、および半透過・反射型電気光学装置の製造方法
JP2003058073A (ja) 電気光学装置の製造方法、電気光学装置、および電子機器
JP2004302379A (ja) 電気光学装置、およびそれを用いた電子機器

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004