JP2004037768A - Ultraviolet ray and infrared ray shielding body - Google Patents

Ultraviolet ray and infrared ray shielding body Download PDF

Info

Publication number
JP2004037768A
JP2004037768A JP2002193809A JP2002193809A JP2004037768A JP 2004037768 A JP2004037768 A JP 2004037768A JP 2002193809 A JP2002193809 A JP 2002193809A JP 2002193809 A JP2002193809 A JP 2002193809A JP 2004037768 A JP2004037768 A JP 2004037768A
Authority
JP
Japan
Prior art keywords
ultraviolet
infrared
parts
absorber
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002193809A
Other languages
Japanese (ja)
Other versions
JP4016385B2 (en
Inventor
Kenji Saito
斉藤 健次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002193809A priority Critical patent/JP4016385B2/en
Publication of JP2004037768A publication Critical patent/JP2004037768A/en
Application granted granted Critical
Publication of JP4016385B2 publication Critical patent/JP4016385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively and easily shield ultraviolet rays, near infrared rays of 800 to 1200 nm and far infrared rays in an ultraviolet ray and infrared ray shielding body. <P>SOLUTION: Silicone denatured acrylic resin of 21g, dibutyl tin dilaurate 10 wt. mixed xylene solution of 2g, indium oxide doped with tin of 10g, benzotriazole base ultraviolet ray absorbent of 2.2g, coumarin base ultraviolet ray absorbent of 0.03g and iminium base pigments of about 0.3g as a near infrared ray absorbent are dissolved in an organic solvent, uniformly mixed and applied on a glass plate by a casting method. When compared with a comparison example 1 for which the ultraviolet ray absorbent and the near infrared ray absorbent are excluded and a comparison example 2 of only the glass plate, the effect of shielding the ultraviolet rays and the near infrared rays of 800 to 1200 nm is clearly excellent in an embodiment 1 on each ray's transmissivity. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、紫外線、近赤外線及び遠赤外線を高効率で遮蔽し、かつ可視光線を高効率で透過させるフィルム状または塗膜状の紫外線・赤外線遮蔽体に関するものである。
【0002】
【従来の技術】
家屋、ビル等の建築物や自動車用の窓ガラスとして、紫外線及び赤外線を遮蔽するガラスあるいはガラスに貼り付けるフィルム等が注目されている。特に近赤外線は室内や車内の温度を上げるので、冷房のためのエネルギーを節約する省エネの観点からも、可視光線を効果的に取り込みかつ近赤外線を遮蔽する材料が求められていた。このような技術としては、▲1▼特開平8−041441号公報に記載されている「紫外線、近赤外線遮蔽用インジウム−錫酸化物粉末とこれを用いた紫外線、近赤外線遮蔽ガラスおよびその製造方法」、▲2▼特開平8−134432号公報に記載されている「ガラス用光線遮蔽剤」、▲3▼特開平10−279329号公報に記載されている「赤外線遮蔽ガラス」等がある。
【0003】
【発明が解決しようとする課題】
しかしながら、▲1▼の公報に記載の材料では近赤外領域の800〜1200nmでの透過率が高く、また紫外線領域の透過率が15%程度もある。▲2▼の公報に記載の材料では紫外線透過率が5%であり、近赤外線透過率(1600nm)が10%であるが、焼き付けという方法をとるために簡便に行うことが困難である。▲3▼の材料では赤外線透過率が低くなるが可視光透過率も低くなり、クリアな視界が得られない。このように、従来の技術においては特に近赤外領域の800〜1200nmの光線を有効にかつ容易に遮蔽することができないという問題点があった。
【0004】
そこで、本発明は、可視光線透過率を殆ど下げることなく紫外線、800〜1200nmの近赤外線及び遠赤外線とを有効にかつ容易に遮蔽することができる紫外線・赤外線遮蔽体を提供することを課題とするものである。
【0005】
【課題を解決するための手段】
請求項1の発明にかかる紫外線・赤外線遮蔽体は、金属酸化物半導体と近赤外線吸収剤と紫外線吸収剤とを可視光に対して透明な合成樹脂に均一に混合してフィルム状に成形してなるものである。
【0006】
ここで、各成分を透明な合成樹脂に均一に混合する方法としては、ニーダー等で加熱混錬しても良いし、有機溶剤を用いて全成分を溶解混合した後、有機溶剤を乾燥除去しても良い。
【0007】
金属酸化物半導体は赤外線吸収効果を有し、具体的な化合物としては錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫等があるが、可視領域における透明性から錫ドープ酸化インジウムが特に好ましい。近赤外線吸収剤は近赤外線吸収効果を有し、具体的な化合物としてはポリメチン系色素、アミニウム系色素、イミニウム系色素等がある。紫外線吸収剤は紫外線吸収効果を有し、具体的な化合物としてはベンゾフェノン系、ベンゾトリアゾール系、クマリン系吸収剤等がある。可視光に対して透明な合成樹脂としては、ポリアクリレート、ポリエステル、ポリウレタン、ポリビニルアルコール、ポリカーボネート、ポリエチレンテレフタレート、塩化ビニル、フッ素樹脂、ゴム等がある。
【0008】
これらの金属酸化物半導体と近赤外線吸収剤と紫外線吸収剤とを可視光に対して透明な合成樹脂に均一に混合してフィルム状に成形したものは、可視光に対して透明な合成樹脂がフィルムの基材となって、金属酸化物半導体が遠赤外線を含む赤外線を吸収し、近赤外線吸収剤が近赤外線を吸収し、紫外線吸収剤が紫外線を吸収するため、太陽光線のうち可視光線(約400nm〜約800nm)のみが透過し、赤外線、紫外線は殆ど遮断されてしまう。したがって、このフィルムを建築物や自動車の窓ガラスに貼ることによって、皮膚に有害な紫外線も熱をもたらす近赤外線もシャットアウトすることができ、日焼け防止効果や冷房装置の省エネ効果が得られる。また、冬場においても、暖房の熱が外に放出されにくいため保温効果も有すると考えられる。
【0009】
このようにして、可視光線透過率を殆ど下げることなく紫外線、約800nm〜約1200nmの近赤外線及び遠赤外線とを有効にかつ容易に遮蔽することができる紫外線・赤外線遮蔽体となる。
【0010】
請求項2の発明にかかる紫外線・赤外線遮蔽体は、金属酸化物半導体と近赤外線吸収剤と紫外線吸収剤と可視光に対して透明な合成樹脂とを有機溶剤に均一に混合して基材に塗布して前記有機溶剤を乾燥除去してなるものである。
【0011】
請求項1の発明との違いは、合成樹脂を含む各成分を有機溶剤に溶かして塗料状とし、窓ガラス等に流延法で流して塗布したり刷毛で塗布したりした後、有機溶剤を乾燥させて塗膜として紫外線・赤外線遮蔽体を形成する点である。この方法では一々フィルム状に成形してさらにそれを切って窓ガラス等に貼り付けるといった手間が掛からず、溶液から一工程で紫外線・赤外線遮蔽体を形成することができるので、工期の短縮及び低コスト化が可能になる。そして、成分は請求項1の発明と同様なので、皮膚に有害な紫外線も熱をもたらす近赤外線もシャットアウトすることができ、日焼け防止効果や冷房装置の省エネ効果が得られる。また、冬場においても、暖房の熱が外に放出されにくいため保温効果も有すると考えられる。
【0012】
このようにして、可視光線透過率を殆ど下げることなく紫外線、約800nm〜約1200nmの近赤外線及び遠赤外線とを有効にかつ容易に遮蔽することができる紫外線・赤外線遮蔽体となる。
【0013】
請求項3の発明にかかる紫外線・赤外線遮蔽体は、請求項1または請求項2の構成において、前記合成樹脂100部に対して、金属酸化物半導体を0.1〜150部、近赤外線吸収剤を0.01〜50部、紫外線吸収剤を0.1〜30部の範囲で混合したものである。
【0014】
このように、各成分の合成樹脂に対する割合を一定範囲内に限定することによって、赤外線吸収剤・紫外線吸収剤が少な過ぎて十分な赤外線・紫外線遮蔽効果が得られなかったり、逆に赤外線吸収剤・紫外線吸収剤が多過ぎて可視光の透過率が減少したり、コストアップにつながるという不具合を防止することができる。
【0015】
このようにして、可視光線透過率を殆ど下げることなく紫外線、約800nm〜約1200nmの近赤外線及び遠赤外線とを有効にかつ容易に遮蔽することができる紫外線・赤外線遮蔽体となる。
【0016】
請求項4の発明にかかる紫外線・赤外線遮蔽体は、請求項1または請求項2の構成において、前記合成樹脂100部に対して、金属酸化物半導体を10〜70部、近赤外線吸収剤を0.05〜3部、紫外線吸収剤を1〜15部の範囲で混合したものである。
【0017】
これによって、各成分の合成樹脂に対する割合がさらに適正な範囲に狭められて限定されている。したがって、より確実に十分な赤外線・紫外線遮蔽効果を得ることができる。
【0018】
請求項5の発明にかかる紫外線・赤外線遮蔽体は、請求項2の構成において、前記合成樹脂としてシリコーン変性アクリル樹脂100部に対して樹脂硬化用のジブチル錫ジラウレート10重量混合キシレン溶液10部、金属酸化物半導体として錫ドープ酸化インジウム略48部、紫外線吸収剤としてベンゾトリアゾール系紫外線吸収剤とクマリン系紫外線吸収剤を合わせて略11部、近赤外線吸収剤としてイミニウム系色素略1.42部を、有機溶剤としてイソプロピルアルコール及び混合キシレンに溶解させて均一に混合し、可視光に対して透明な基材としてのガラスに流延法で塗布して乾燥したものである。
【0019】
発明者らの実験によれば、このような各成分の具体的化合物と混合比の場合が、紫外線・赤外線遮蔽体として最も良好な効果が得られた。特に800nm〜1200nmの近赤外線の遮蔽率が極めて優れたものとなった。また、紫外線・赤外線遮蔽体の形成方法としても、有機溶剤に溶かしてガラスの上を流す流延法が容易に均一な膜厚が得られ、特に大きな窓ガラス等の場合には施工性が良い。
【0020】
このようにして、可視光線透過率を殆ど下げることなく紫外線、約800nm〜約1200nmの近赤外線及び遠赤外線とを有効にかつ容易に遮蔽することができる紫外線・赤外線遮蔽体となる。
【0021】
請求項6の発明にかかる紫外線・赤外線遮蔽体は、請求項2の構成において、前記合成樹脂としてシリコーン変性アクリル樹脂100部に対して樹脂硬化用のジブチル錫ジラウレート10重量混合キシレン溶液10部、金属酸化物半導体として錫ドープ酸化インジウム略38部、紫外線吸収剤としてベンゾトリアゾール系紫外線吸収剤とクマリン系紫外線吸収剤を合わせて略11部、近赤外線吸収剤としてイミニウム系色素略1.19部を、有機溶剤としてイソプロピルアルコール及び混合キシレンに溶解させて均一に混合し、可視光に対して透明な基材としてのガラスに流延法で塗布して乾燥したものである。
【0022】
発明者らの実験によれば、このような各成分の具体的化合物と混合比とした場合が、請求項5に記載の紫外線・赤外線遮蔽体と比較して、800nm〜1200nmの近赤外線の遮蔽率がほんの僅か劣るが、可視光の透過率が高くなってより透明性において優れたものとなった。
【0023】
このようにして、可視光線透過率を殆ど下げることなく紫外線、約800nm〜約1200nmの近赤外線及び遠赤外線とを有効にかつ容易に遮蔽することができる紫外線・赤外線遮蔽体となる。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。
【0025】
実施の形態1
まず、本発明の実施の形態1について、図1乃至図5を参照して説明する。図1は本発明の実施の形態にかかる紫外線・赤外線遮蔽体の紫外線から赤外線にかけての透過率を実施の形態2、比較例1、比較例2と比較して示す図である。図2は本発明の実施の形態1にかかる紫外線・赤外線遮蔽体の熱遮断効果を試験する試験装置の構成を示す模式図である。図3は本発明の実施の形態1にかかる紫外線・赤外線遮蔽体の熱遮断効果を比較例2と比較して示す図である。図4は本発明の実施の形態1にかかる紫外線・赤外線遮蔽体の赤外線遮断効果を比較例1と比較して示したものである。図5は本発明の実施の形態1にかかる紫外線・赤外線遮蔽体の保温効果を試験する試験装置の構成を示す正面図である。
【0026】
始めに、本実施の形態1の紫外線・赤外線遮蔽体の形成方法について説明する。可視光に対して透明な合成樹脂としてのシリコーン変性アクリル樹脂21g、樹脂硬化剤としてのジブチル錫ジラウレート10重量混合キシレン溶液2g、金属酸化物半導体としての錫ドープ酸化インジウム10g、紫外線吸収剤としてのベンゾトリアゾール系紫外線吸収剤2.2gとクマリン系紫外線吸収剤0.03g、近赤外線吸収剤としてのイミニウム系色素略0.3gを、有機溶剤としてのイソプロピルアルコール22g及び混合キシレン32.47gに溶解させて均一に混合して、有機混合溶液を作成した。この有機混合溶液を、基材としてのガラス板(45cm×35cm,厚さ4mm)に流延法で塗布した。塗布された膜厚は平均15μmであった。これを1週間室温で乾燥して、波長200〜2100nmの光線の透過率を測定した。
【0027】
この際、比較のため比較例1,2の試料の透過率も測定した。比較例2は何も塗布していないガラス板(45cm×35cm,厚さ4mm)である。
【0028】
比較例1の試料の作成方法を説明する。可視光に対して透明な合成樹脂としてのシリコーン変性アクリル樹脂21g、樹脂硬化剤としてのジブチル錫ジラウレート10重量混合キシレン溶液2g、金属酸化物半導体としての錫ドープ酸化インジウム5gを、有機溶剤としてのイソプロピルアルコール11g及び混合キシレン51gに溶解させて均一に混合して、有機混合溶液を作成した。
【0029】
実施の形態1との違いは、錫ドープ酸化インジウムが半分の5gに減っていること、近赤外線吸収剤としてのイミニウム系色素及び紫外線吸収剤が入っていないこと、そして有機溶剤の割合が異なっていることである。この有機混合溶液を、基材としてのガラス板(45cm×35cm,厚さ4mm)に流延法で塗布した。塗布された膜厚は平均15μmであった。これを1週間室温で乾燥して、波長200〜2100nmの光線の透過率を測定した。
【0030】
図1に3種の試料の透過率データを示す。図1に示されるように、比較例1は約1200nmより上の波長で透過率が10%以下になったのに対して、実施の形態1においては約900nmより上の波長で透過率が10%になっている。また、波長800nmにおける透過率が、比較例1では約80%であるのに対して、実施の形態1では約30%と半分以下になっている。要するに近赤外線(波長800nm〜1200nm)の透過率が実施の形態1と比較例1とでは著しく異なっていて、実施の形態1では近赤外線を殆ど通さないのに対して、比較例1では近赤外線をかなりの割合で透過させる。
【0031】
また、比較例1には紫外線吸収剤が入っていないので、当然のことながらガラス板(比較例2)と同様に紫外線を透過させる。これに対して、実施の形態1においては、約300nm〜約400nmの紫外線を全く透過させない。
【0032】
従来の赤外線遮蔽体は、この比較例1のような特性を示すものが殆どであった。これに対して、実施の形態1の紫外線・赤外線遮蔽体は、近赤外線吸収剤としてイミニウム系色素を少量添加することによって、近赤外線の透過率を大幅に下げることができる。
【0033】
このようにして、実施の形態1の紫外線・赤外線遮蔽体は、可視光線透過率を殆ど下げることなく紫外線、約800nm〜約1200nmの近赤外線及び遠赤外線とを有効にかつ容易に遮蔽することができる紫外線・赤外線遮蔽体となる。
【0034】
次に、本実施の形態1の紫外線・赤外線遮蔽体の熱遮断効果について、図2及び図3を参照して説明する。熱遮断効果の試験は、図2に示されるような試験装置を用いて行った。試料の基板(ガラス板45cm×35cm)1より縦横の寸法がやや小さく深さが約25cmのプラスティックボックス2に、測定部がプラスティックボックス2の中央部で底から約5cmの位置にくるようにデジタル温度計3を取り付けた。それからプラスティックボックス2の周囲をダンボールで覆い、試料をプラスティックボックス2に蓋をするように載置し、その真上30cmの位置から300Wの白熱ランプ4で照射した。このような試験装置を2組用いて、それぞれに試料として実施の形態1の紫外線・赤外線遮蔽体と比較例2のガラス板を載置して、デジタル温度計3の示す内部温度の変化を測定した。
【0035】
結果を図3に示す。図3に示されるように、比較例2のガラス板においては急激に温度が上昇しているのに対して、実施の形態1においては緩やかに温度上昇している。これは、最も加熱効果の大きい800nm〜1200nmの近赤外線を遮蔽することによって、熱の侵入を大幅に減少させることができるものと考えられる。その結果、図3に示されるように、白熱ランプ4を60分照射した後の温度は、比較例2の場合が約53℃に対して実施の形態1の場合が約40℃と13℃も低くなっている。このようにして、本実施の形態1の紫外線・赤外線遮蔽体が優れた熱遮断効果を有していることが立証された。
【0036】
さらに、本実施の形態1の紫外線・赤外線遮蔽体をガラスに塗布したもので熱貫流率を測定したところ、3.14〜3.17であり、複層ガラスに近い値を示した。
【0037】
また、図4に示されるように、本実施の形態1の紫外線・赤外線遮蔽体の赤外線(熱線)遮断効果を計算により求めて、同じく計算により求めた比較例1と比較したところ、本実施の形態1の紫外線・赤外線遮蔽体については熱線を88%カットしており、比較例の67%カットと比較して極めて優れている。特に800nm〜1200nmにおける近赤外線については殆どカットしていることが分かり、上述した試験結果を裏付けている。
【0038】
このように、本実施の形態1の紫外線・赤外線遮蔽体による熱線遮断効果によって、夏場の冷房のための省エネルギーが図れることが分かるが、同じく熱線遮断効果によって、冬場の暖房のための省エネルギーをも図ることができる。図5に示されるような実験装置5を組み立てて実験を行った。まず、アルミ板で前面の開いた箱6を組み立てて、中央に1.5mmの厚さのアルミ板の仕切り7を入れる。この箱6の内面を厚さ約1cmの断熱材で覆い、左右の仕切られた空間内にそれぞれハロゲンランプ8をセットする。そして、箱6の前面には測定試料1としての本実施の形態1の塗膜を施したガラス板(30cm×27.5cm,厚さ4mm)を仕切り7の左側に、比較例2として何も塗布していない同じ寸法のガラス板を仕切り7の右側に嵌め込み、前端から約5cm入ったところにそれぞれデジタル温度計3を挿入して床面の温度を測定した。
【0039】
その結果、測定開始から1時間後の温度は、本実施の形態1の塗膜を施したガラス板を嵌め込んだ左側は約100℃、比較例2のガラス板を嵌め込んだ右側は約75℃で、25℃の温度差がついた。このように、本実施の形態1の塗膜(紫外線・赤外線遮蔽体)は近赤外線を遮断して外に出さないために、保温効果も期待できる。
【0040】
実施の形態2
次に、本発明にかかる実施の形態2の紫外線・赤外線遮蔽体について、図1を参照して説明する。本実施の形態2の紫外線・赤外線遮蔽体は、可視光に対して透明な合成樹脂としてのシリコーン変性アクリル樹脂21g、樹脂硬化剤としてのジブチル錫ジラウレート10重量混合キシレン溶液2g、金属酸化物半導体としての錫ドープ酸化インジウム8g、紫外線吸収剤としてのベンゾトリアゾール系紫外線吸収剤2.2gとクマリン系紫外線吸収剤0.03g、近赤外線吸収剤としてのイミニウム系色素略0.25gを、有機溶剤としてのイソプロピルアルコール20g及び混合キシレン46.52gに溶解させて均一に混合して、有機混合溶液を作成した。
【0041】
実施の形態1との相違は、錫ドープ酸化インジウムとイミニウム系色素の配合量が減少していることと、有機溶剤の割合が変わっていることである。この有機混合溶液を、基材としてのガラス板(45cm×35cm,厚さ4mm)に流延法で塗布した。塗布された膜厚は平均15μmであった。これを1週間室温で乾燥して、波長200〜2100nmの光線の透過率を測定した。
【0042】
その結果、図1に示されるように、実施の形態1と比較して900nm〜1300nmにかけての透過率は僅かに増加しているが、代わりに400nm〜800nmの可視領域の透過率が増加している。これによって、より透明性に優れた紫外線・赤外線遮蔽体となる。
【0043】
上記各実施の形態においては、各成分を有機溶剤に均一に溶解させてガラス板に流延法で塗布して乾燥させ、塗膜として紫外線・赤外線遮蔽体を形成した例について説明したが、各成分をニーダー等で均一に混練してカレンダー成形等でフィルムとして紫外線・赤外線遮蔽体を形成することもできる。フィルムとしての紫外線・赤外線遮蔽体も、上述したような塗膜としての紫外線・赤外線遮蔽体と同様の優れた特性を示す。
【0044】
また、上記各実施の形態においては、可視光に対して透明な基材としてガラス板を用いたが、アクリル板、塩化ビニル樹脂等を始めとして他の様々な透明体を用いることもできる。
【0045】
さらに、上記各実施の形態においては、可視光に対して透明な合成樹脂としてシリコーン変性アクリル樹脂を用いたが、これに限られず様々な透明な合成樹脂に混ぜることができるため、様々な生活用品として広い範囲で応用が可能である。
【0046】
紫外線・赤外線遮蔽体のその他の部分の構成、形状、数量、材質、大きさ、接続関係等についても、上記各実施の形態に限定されるものではない。
【0047】
【発明の効果】
以上説明したように、請求項1の発明にかかる紫外線・赤外線遮蔽体は、金属酸化物半導体と近赤外線吸収剤と紫外線吸収剤とを可視光に対して透明な合成樹脂に均一に混合してフィルム状に成形してなるものである。
【0048】
ここで、各成分を透明な合成樹脂に均一に混合する方法としては、ニーダー等で加熱混錬しても良いし、有機溶剤を用いて全成分を溶解混合した後、有機溶剤を乾燥除去しても良い。
【0049】
金属酸化物半導体は赤外線吸収効果を有し、具体的な化合物としては錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫等があるが、可視領域における透明性から錫ドープ酸化インジウムが特に好ましい。近赤外線吸収剤は近赤外線吸収効果を有し、具体的な化合物としてはポリメチン系色素、アミニウム系色素、イミニウム系色素等がある。紫外線吸収剤は紫外線吸収効果を有し、具体的な化合物としてはベンゾフェノン、ベンゾトリアゾール、クマリン等がある。可視光に対して透明な合成樹脂としては、ポリアクリレート、ポリエステル、ポリウレタン、ポリビニルアルコール、ポリカーボネート、ポリエチレンテレフタレート、塩化ビニル、フッ素樹脂、ゴム等がある。
【0050】
これらの金属酸化物半導体と近赤外線吸収剤と紫外線吸収剤とを可視光に対して透明な合成樹脂に均一に混合してフィルム状に成形したものは、可視光に対して透明な合成樹脂がフィルムの基材となって、金属酸化物半導体が遠赤外線を含む赤外線を吸収し、近赤外線吸収剤が近赤外線を吸収し、紫外線吸収剤が紫外線を吸収するため、太陽光線のうち可視光線(約400nm〜約800nm)のみが透過し、赤外線、紫外線は殆ど遮断されてしまう。したがって、このフィルムを建築物や自動車の窓ガラスに貼ることによって、皮膚に有害な紫外線も熱をもたらす近赤外線もシャットアウトすることができ、日焼け防止効果や冷房装置の省エネ効果が得られる。
【0051】
このようにして、可視光線透過率を殆ど下げることなく紫外線、約800nm〜約1200nmの近赤外線及び遠赤外線とを有効にかつ容易に遮蔽することができる紫外線・赤外線遮蔽体となる。
【0052】
請求項2の発明にかかる紫外線・赤外線遮蔽体は、金属酸化物半導体と近赤外線吸収剤と紫外線吸収剤と可視光に対して透明な合成樹脂とを有機溶剤に均一に混合して基材に塗布して前記有機溶剤を乾燥除去してなるものである。
【0053】
請求項1の発明との違いは、合成樹脂を含む各成分を有機溶剤に溶かして塗料状とし、窓ガラス等に流延法で流して塗布したり刷毛で塗布したりした後、有機溶剤を乾燥させて紫外線・赤外線遮蔽体皮膜を形成する点である。この方法では一々フィルム状に成形してさらにそれを窓ガラス等に貼り付けるといった手間が掛からず、溶液から一工程で紫外線・赤外線遮蔽体を形成することができるので、工期の短縮及び低コスト化が可能になる。そして、成分は請求項1の発明と同様なので、皮膚に有害な紫外線も熱をもたらす近赤外線もシャットアウトすることができ、日焼け防止効果や冷房装置の省エネ効果が得られる。
【0054】
このようにして、可視光線透過率を殆ど下げることなく紫外線、約800nm〜約1200nmの近赤外線及び遠赤外線とを有効にかつ容易に遮蔽することができる紫外線・赤外線遮蔽体となる。
【0055】
請求項3の発明にかかる紫外線・赤外線遮蔽体は、請求項1または請求項2の構成において、前記合成樹脂100部に対して、金属酸化物半導体を0.1〜150部、近赤外線吸収剤を0.01〜50部、紫外線吸収剤を0.1〜30部の範囲で混合したものである。
【0056】
このように、各成分の合成樹脂に対する割合を一定範囲内に限定することによって、赤外線吸収剤・紫外線吸収剤が少な過ぎて十分な赤外線・紫外線遮蔽効果が得られなかったり、逆に赤外線吸収剤・紫外線吸収剤が多過ぎて可視光の透過率が減少したり、コストアップにつながるという不具合を防止することができる。
【0057】
このようにして、可視光線透過率を殆ど下げることなく紫外線、約800nm〜約1200nmの近赤外線及び遠赤外線とを有効にかつ容易に遮蔽することができる紫外線・赤外線遮蔽体となる。
【0058】
請求項4の発明にかかる紫外線・赤外線遮蔽体は、請求項1または請求項2の構成において、前記合成樹脂100部に対して、金属酸化物半導体を10〜70部、近赤外線吸収剤を0.05〜3部、紫外線吸収剤を1〜15部の範囲で混合したものである。
【0059】
これによって、各成分の合成樹脂に対する割合がさらに適正な範囲に狭められて限定されている。したがって、より確実に十分な赤外線・紫外線遮蔽効果を得ることができる。
【0060】
請求項5の発明にかかる紫外線・赤外線遮蔽体は、請求項2の構成において、前記合成樹脂としてシリコーン変性アクリル樹脂100部に対して樹脂硬化用のジブチル錫ジラウレート10重量混合キシレン溶液10部、金属酸化物半導体として錫ドープ酸化インジウム略48部、紫外線吸収剤としてベンゾトリアゾール系紫外線吸収剤とクマリン系紫外線吸収剤を合わせて略11部、近赤外線吸収剤としてイミニウム系色素略1.42部を、有機溶剤としてイソプロピルアルコール及び混合キシレンに溶解させて均一に混合し、可視光に対して透明な基材としてのガラスに流延法で塗布して乾燥したものである。
【0061】
発明者らの実験によれば、このような各成分の具体的化合物と混合比の場合が、紫外線・赤外線遮蔽体として最も良好な効果が得られた。特に800nm〜1200nmの近赤外線の遮蔽率が極めて優れたものとなった。また、紫外線・赤外線遮蔽体の形成方法としても、有機溶剤に溶かしてガラスの上を流す流延法が容易に均一な膜厚が得られ、特に大きな窓ガラス等の場合には施工性が良い。
【0062】
このようにして、可視光線透過率を殆ど下げることなく紫外線、約800nm〜約1200nmの近赤外線及び遠赤外線とを有効にかつ容易に遮蔽することができる紫外線・赤外線遮蔽体となる。
【0063】
請求項6の発明にかかる紫外線・赤外線遮蔽体は、請求項2の構成において、前記合成樹脂としてシリコーン変性アクリル樹脂100部に対して樹脂硬化用のジブチル錫ジラウレート10重量混合キシレン溶液10部、金属酸化物半導体として錫ドープ酸化インジウム略38部、紫外線吸収剤としてベンゾトリアゾール系紫外線吸収剤とクマリン系紫外線吸収剤を合わせて略11部、近赤外線吸収剤としてイミニウム系色素略1.19部を、有機溶剤としてイソプロピルアルコール及び混合キシレンに溶解させて均一に混合し、可視光に対して透明な基材としてのガラスに流延法で塗布して乾燥したものである。
【0064】
発明者らの実験によれば、このような各成分の具体的化合物と混合比とした場合が、請求項5に記載の紫外線・赤外線遮蔽体と比較して、800nm〜1200nmの近赤外線の遮蔽率がほんの僅か劣るが、可視光の透過率が高くなってより透明性において優れたものとなった。
【0065】
このようにして、可視光線透過率を殆ど下げることなく紫外線、約800nm〜約1200nmの近赤外線及び遠赤外線とを有効にかつ容易に遮蔽することができる紫外線・赤外線遮蔽体となる。
【図面の簡単な説明】
【図1】図1は本発明の実施の形態1,2にかかる紫外線・赤外線遮蔽体の紫外線から赤外線にかけての透過率を比較例1、比較例2と比較して示す図である。
【図2】図2は本発明の実施の形態1にかかる紫外線・赤外線遮蔽体の熱遮断効果を試験する試験装置の構成を示す模式図である。
【図3】図3は本発明の実施の形態1にかかる紫外線・赤外線遮蔽体の熱遮断効果を比較例2と比較して示す図である。
【図4】図4は本発明の実施の形態1にかかる紫外線・赤外線遮蔽体の赤外線遮断効果を比較例1と比較して示したものである。
【図5】図5は本発明の実施の形態1にかかる紫外線・赤外線遮蔽体の保温効果を試験する試験装置の構成を示す正面図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a film-like or film-like ultraviolet / infrared light shield that blocks ultraviolet light, near infrared light and far infrared light with high efficiency, and transmits visible light with high efficiency.
[0002]
[Prior art]
2. Description of the Related Art As window glass for buildings such as houses and buildings, and automobiles, glass that blocks ultraviolet rays and infrared rays, films attached to glass, and the like have attracted attention. In particular, since near-infrared rays increase the temperature in a room or in a car, a material that effectively captures visible light and blocks near-infrared rays has been demanded from the viewpoint of energy saving for saving energy for cooling. As such a technique, (1) JP-A-8-041441 discloses "indium-tin oxide powder for ultraviolet and near-infrared shielding, ultraviolet and near-infrared shielding glass using the same, and a method for producing the same. And (2) "Light shielding agent for glass" described in JP-A-8-134432, and (3) "Infrared shielding glass" described in JP-A-10-279329.
[0003]
[Problems to be solved by the invention]
However, the material described in the publication (1) has a high transmittance in the near infrared region at 800 to 1200 nm and a transmittance in the ultraviolet region of about 15%. The material described in the publication of (2) has an ultraviolet transmittance of 5% and a near-infrared transmittance (1600 nm) of 10%, but it is difficult to carry out simply because of the method of baking. In the case of the material (3), the infrared transmittance is low, but the visible light transmittance is also low, so that a clear view cannot be obtained. As described above, the conventional technique has a problem that the light of 800 to 1200 nm in the near infrared region cannot be effectively and easily shielded.
[0004]
Therefore, an object of the present invention is to provide an ultraviolet / infrared light shield that can effectively and easily shield ultraviolet light, near-infrared light and far-infrared light of 800 to 1200 nm without substantially lowering the visible light transmittance. Is what you do.
[0005]
[Means for Solving the Problems]
The ultraviolet / infrared shield according to the first aspect of the present invention is obtained by uniformly mixing a metal oxide semiconductor, a near-infrared absorber, and an ultraviolet absorber in a synthetic resin transparent to visible light to form a film. It becomes.
[0006]
Here, as a method of uniformly mixing each component with the transparent synthetic resin, heating and kneading may be performed with a kneader or the like, or after all components are dissolved and mixed using an organic solvent, the organic solvent is dried and removed. May be.
[0007]
The metal oxide semiconductor has an infrared absorbing effect, and specific compounds include tin-doped indium oxide (ITO) and antimony-doped tin oxide, and tin-doped indium oxide is particularly preferable because of its transparency in the visible region. The near-infrared absorbing agent has a near-infrared absorbing effect, and specific compounds include polymethine dyes, aminium dyes, and iminium dyes. The ultraviolet absorber has an ultraviolet absorbing effect, and specific compounds include benzophenone-based, benzotriazole-based, and coumarin-based absorbers. Examples of the synthetic resin transparent to visible light include polyacrylate, polyester, polyurethane, polyvinyl alcohol, polycarbonate, polyethylene terephthalate, vinyl chloride, fluororesin, and rubber.
[0008]
These metal oxide semiconductors, near-infrared absorbers, and ultraviolet absorbers are uniformly mixed with a synthetic resin transparent to visible light and molded into a film. As the base material of the film, the metal oxide semiconductor absorbs infrared rays including far infrared rays, the near infrared ray absorber absorbs near infrared rays, and the ultraviolet ray absorbent absorbs ultraviolet rays. (About 400 nm to about 800 nm), and infrared rays and ultraviolet rays are almost blocked. Therefore, by sticking this film to a building or a window glass of a car, it is possible to shut out both ultraviolet rays harmful to the skin and near-infrared rays that generate heat, thereby obtaining a sunburn preventing effect and an energy saving effect of a cooling device. Also, it is considered that even in winter, the heat of the heating is hardly released to the outside, so that it also has a heat retaining effect.
[0009]
In this manner, an ultraviolet / infrared shield that can effectively and easily shield ultraviolet rays, near infrared rays and far infrared rays of about 800 nm to about 1200 nm, without substantially lowering the visible light transmittance.
[0010]
The ultraviolet / infrared shield according to the invention of claim 2 is a method of uniformly mixing a metal oxide semiconductor, a near-infrared absorber, an ultraviolet absorber, and a synthetic resin transparent to visible light with an organic solvent to form a substrate. The organic solvent is applied and dried to remove the organic solvent.
[0011]
The difference from the invention of claim 1 is that each component including a synthetic resin is dissolved in an organic solvent to form a paint, which is applied to a window glass or the like by a casting method or applied by a brush, and then the organic solvent is applied. The point is that it is dried to form an ultraviolet / infrared shield as a coating film. This method eliminates the trouble of forming each film into a film, cutting it further, and attaching it to a window glass or the like, and the ultraviolet / infrared shield can be formed in one step from the solution. Cost reduction becomes possible. Since the components are the same as those in the first aspect of the present invention, both ultraviolet rays harmful to the skin and near infrared rays that generate heat can be shut out, and a sunburn preventing effect and an energy saving effect of the cooling device can be obtained. Also, it is considered that even in winter, the heat of the heating is hardly released to the outside, so that it also has a heat retaining effect.
[0012]
In this manner, an ultraviolet / infrared shield that can effectively and easily shield ultraviolet rays, near infrared rays and far infrared rays of about 800 nm to about 1200 nm, without substantially lowering the visible light transmittance.
[0013]
According to a third aspect of the present invention, in the ultraviolet / infrared shield according to the first or second aspect, 0.1 to 150 parts of the metal oxide semiconductor and 100 parts of the synthetic resin are used for the near-infrared absorber. In an amount of 0.01 to 50 parts and an ultraviolet absorber in an amount of 0.1 to 30 parts.
[0014]
Thus, by limiting the ratio of each component to the synthetic resin within a certain range, the infrared absorbing agent / ultraviolet absorbing agent is too small to obtain a sufficient infrared / ultraviolet shielding effect, or conversely, the infrared absorbing agent -It is possible to prevent a problem that the transmittance of visible light is reduced due to too much ultraviolet absorber or the cost is increased.
[0015]
In this manner, an ultraviolet / infrared shield that can effectively and easily shield ultraviolet rays, near infrared rays and far infrared rays of about 800 nm to about 1200 nm, without substantially lowering the visible light transmittance.
[0016]
According to a fourth aspect of the present invention, there is provided the ultraviolet / infrared shield according to the first or second aspect, wherein 10 to 70 parts of the metal oxide semiconductor and 0 to the near-infrared absorber are added to 100 parts of the synthetic resin. 0.05 to 3 parts and an ultraviolet absorber in a range of 1 to 15 parts.
[0017]
Thereby, the ratio of each component to the synthetic resin is further narrowed to an appropriate range and limited. Therefore, a sufficient infrared / ultraviolet ray shielding effect can be obtained more reliably.
[0018]
According to a fifth aspect of the present invention, there is provided the ultraviolet / infrared shielding body according to the second aspect, wherein 10 parts by weight of a xylene solution mixed with 10 parts by weight of dibutyltin dilaurate for curing the resin is added to 100 parts of the silicone-modified acrylic resin as the synthetic resin. About 48 parts of tin-doped indium oxide as an oxide semiconductor, about 11 parts in total of a benzotriazole-based ultraviolet absorber and a coumarin-based ultraviolet absorber as an ultraviolet absorber, and about 1.42 parts of an iminium-based dye as a near infrared absorber, The resin is dissolved in isopropyl alcohol and mixed xylene as an organic solvent, mixed uniformly, applied to a glass as a substrate transparent to visible light by a casting method, and dried.
[0019]
According to the experiments by the inventors, the best effect as the ultraviolet / infrared shield was obtained when the specific compound of each component and the mixing ratio were used. In particular, the shielding rate of near-infrared light of 800 nm to 1200 nm was extremely excellent. Also, as a method of forming the ultraviolet / infrared shield, a uniform film thickness can be easily obtained by a casting method of dissolving in an organic solvent and flowing over glass, and particularly in the case of a large window glass, etc., the workability is good. .
[0020]
In this manner, an ultraviolet / infrared shield that can effectively and easily shield ultraviolet rays, near infrared rays and far infrared rays of about 800 nm to about 1200 nm, without substantially lowering the visible light transmittance.
[0021]
The ultraviolet / infrared ray shield according to the invention of claim 6 is the composition of claim 2, wherein 10 parts by weight of a xylene solution mixed with 10 parts by weight of dibutyltin dilaurate for curing the resin is added to 100 parts of the silicone-modified acrylic resin as the synthetic resin. About 38 parts of tin-doped indium oxide as an oxide semiconductor, about 11 parts in total of a benzotriazole-based ultraviolet absorber and a coumarin-based ultraviolet absorber as an ultraviolet absorber, and about 1.19 parts of an iminium-based dye as a near infrared absorber, The resin is dissolved in isopropyl alcohol and mixed xylene as an organic solvent, mixed uniformly, applied to a glass as a substrate transparent to visible light by a casting method, and dried.
[0022]
According to the experiments by the inventors, the case where the mixing ratio with the specific compound of each component is 800 nm to 1200 nm as compared with the ultraviolet / infrared shield according to claim 5. Although the rate was only slightly inferior, the transmittance of visible light was increased and the transparency was more excellent.
[0023]
In this manner, an ultraviolet / infrared shield that can effectively and easily shield ultraviolet rays, near infrared rays and far infrared rays of about 800 nm to about 1200 nm, without substantially lowering the visible light transmittance.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0025]
Embodiment 1
First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing the transmittance of the ultraviolet / infrared shield according to the embodiment of the present invention from ultraviolet to infrared in comparison with Embodiment 2, Comparative Example 1, and Comparative Example 2. FIG. 2 is a schematic diagram showing a configuration of a test apparatus for testing the heat blocking effect of the ultraviolet / infrared shield according to the first embodiment of the present invention. FIG. 3 is a diagram showing the heat blocking effect of the ultraviolet / infrared ray shield according to the first embodiment of the present invention in comparison with Comparative Example 2. FIG. 4 shows an infrared ray blocking effect of the ultraviolet / infrared ray shielding body according to the first embodiment of the present invention in comparison with Comparative Example 1. FIG. 5 is a front view showing the configuration of the test apparatus for testing the heat retaining effect of the ultraviolet / infrared shield according to the first embodiment of the present invention.
[0026]
First, a method for forming the ultraviolet / infrared shield according to the first embodiment will be described. 21 g of a silicone-modified acrylic resin as a synthetic resin transparent to visible light, 2 g of a xylene solution mixed with 10% by weight of dibutyltin dilaurate as a resin curing agent, 10 g of tin-doped indium oxide as a metal oxide semiconductor, and benzo as an ultraviolet absorber 2.2 g of a triazole-based UV absorber, 0.03 g of a coumarin-based UV absorber, and approximately 0.3 g of an iminium-based dye as a near-infrared absorber are dissolved in 22 g of isopropyl alcohol as an organic solvent and 32.47 g of mixed xylene. By mixing uniformly, an organic mixed solution was prepared. This organic mixed solution was applied to a glass plate (45 cm × 35 cm, thickness 4 mm) as a substrate by a casting method. The applied film thickness was 15 μm on average. This was dried at room temperature for one week, and the transmittance of light having a wavelength of 200 to 2100 nm was measured.
[0027]
At this time, the transmittances of the samples of Comparative Examples 1 and 2 were also measured for comparison. Comparative Example 2 is a glass plate (45 cm × 35 cm, thickness 4 mm) on which nothing is applied.
[0028]
A method for preparing the sample of Comparative Example 1 will be described. 21 g of a silicone-modified acrylic resin as a synthetic resin transparent to visible light, 2 g of a xylene solution mixed with 10% by weight of dibutyltin dilaurate as a resin curing agent, 5 g of tin-doped indium oxide as a metal oxide semiconductor, and isopropyl as an organic solvent An organic mixed solution was prepared by dissolving in 11 g of alcohol and 51 g of mixed xylene and uniformly mixing.
[0029]
The difference from the first embodiment is that the tin-doped indium oxide is reduced by half to 5 g, the iminium dye as a near-infrared absorbing agent and the ultraviolet absorbing agent are not contained, and the ratio of the organic solvent is different. It is that you are. This organic mixed solution was applied to a glass plate (45 cm × 35 cm, thickness 4 mm) as a substrate by a casting method. The applied film thickness was 15 μm on average. This was dried at room temperature for one week, and the transmittance of light having a wavelength of 200 to 2100 nm was measured.
[0030]
FIG. 1 shows the transmittance data of the three samples. As shown in FIG. 1, the transmittance of Comparative Example 1 was 10% or less at a wavelength higher than about 1200 nm, whereas the transmittance of the first embodiment was 10% at a wavelength higher than about 900 nm. %It has become. Further, the transmittance at a wavelength of 800 nm is about 80% in Comparative Example 1, whereas it is about 30% in Embodiment 1, which is less than half. In short, the transmittance of near-infrared light (wavelength 800 nm to 1200 nm) is significantly different between the first embodiment and the comparative example 1, and the near-infrared light is hardly transmitted in the first embodiment, whereas the near-infrared light is compared in the first comparative example. At a significant rate.
[0031]
In addition, since the comparative example 1 does not contain an ultraviolet absorber, it naturally transmits ultraviolet light similarly to the glass plate (comparative example 2). On the other hand, in the first embodiment, ultraviolet rays of about 300 nm to about 400 nm are not transmitted at all.
[0032]
Most of the conventional infrared shields exhibited characteristics as in Comparative Example 1. On the other hand, in the ultraviolet / infrared shield of the first embodiment, the transmittance of near-infrared rays can be significantly reduced by adding a small amount of an iminium-based dye as a near-infrared ray absorber.
[0033]
In this manner, the ultraviolet / infrared shield of the first embodiment can effectively and easily shield ultraviolet light, near-infrared light and far-infrared light of about 800 nm to about 1200 nm without substantially reducing visible light transmittance. It becomes an ultraviolet / infrared shield that can be used.
[0034]
Next, the heat blocking effect of the ultraviolet / infrared shield according to the first embodiment will be described with reference to FIGS. The test of the heat blocking effect was performed using a test device as shown in FIG. Digital so that the measuring part is about 5 cm from the bottom at the center of the plastic box 2 in a plastic box 2 which is slightly smaller in length and width than the sample substrate (glass plate 45 cm x 35 cm) 1 and about 25 cm deep. A thermometer 3 was attached. Then, the periphery of the plastic box 2 was covered with cardboard, and the sample was placed so as to cover the plastic box 2, and irradiated with a 300 W incandescent lamp 4 from a position 30 cm directly above the plastic box 2. Using two sets of such test devices, the ultraviolet / infrared shield of Embodiment 1 and the glass plate of Comparative Example 2 were placed on each as a sample, and the change in the internal temperature indicated by the digital thermometer 3 was measured. did.
[0035]
The results are shown in FIG. As shown in FIG. 3, the temperature of the glass plate of Comparative Example 2 sharply rises, whereas the temperature of the glass plate of Embodiment 1 gradually rises. This is considered to be able to greatly reduce the invasion of heat by shielding near-infrared light having a maximum heating effect of 800 nm to 1200 nm. As a result, as shown in FIG. 3, the temperature after irradiating the incandescent lamp 4 for 60 minutes is about 53 ° C. in the comparative example 2 and about 40 ° C. and 13 ° C. in the case of the first embodiment. It is lower. Thus, it was proved that the ultraviolet / infrared shield of the first embodiment had an excellent heat shielding effect.
[0036]
Furthermore, when the ultraviolet / infrared shield of the first embodiment was applied to glass and the heat transmission coefficient was measured, the value was 3.14 to 3.17, which was a value close to that of the double-glazed glass.
[0037]
Further, as shown in FIG. 4, the infrared ray (heat ray) blocking effect of the ultraviolet / infrared ray shield according to the first embodiment was obtained by calculation, and compared with Comparative Example 1, which was also calculated. The ultraviolet ray / infrared ray shield of the first embodiment cuts off the heat rays by 88%, which is extremely superior to the 67% cut of the comparative example. In particular, it was found that near-infrared rays in the range of 800 nm to 1200 nm were almost completely cut, confirming the above test results.
[0038]
As described above, it can be seen that the heat ray blocking effect of the ultraviolet / infrared shield of the first embodiment can save energy for cooling in summer, but the heat ray blocking effect also saves energy for heating in winter. Can be planned. The experiment was performed by assembling the experimental apparatus 5 as shown in FIG. First, an open box 6 is assembled with an aluminum plate, and a partition 7 of an aluminum plate having a thickness of 1.5 mm is placed in the center. The inner surface of the box 6 is covered with a heat insulating material having a thickness of about 1 cm, and a halogen lamp 8 is set in each of the left and right partitioned spaces. A glass plate (30 cm × 27.5 cm, thickness 4 mm) on which the coating of the first embodiment was applied as the measurement sample 1 was provided on the front surface of the box 6 on the left side of the partition 7, and nothing as Comparative Example 2 A glass plate of the same dimensions, which had not been coated, was fitted to the right side of the partition 7, and a digital thermometer 3 was inserted at a position about 5 cm from the front end to measure the temperature of the floor surface.
[0039]
As a result, the temperature one hour after the start of the measurement was about 100 ° C. on the left where the glass plate coated with the coating film of the first embodiment was fitted, and about 75 ° C. on the right where the glass plate of Comparative Example 2 was fitted. At 25 ° C. there was a temperature difference of 25 ° C. As described above, since the coating film (ultraviolet ray / infrared ray shield) of the first embodiment blocks near-infrared rays and does not go outside, a heat retaining effect can be expected.
[0040]
Embodiment 2
Next, an ultraviolet / infrared shield according to a second embodiment of the present invention will be described with reference to FIG. The ultraviolet / infrared shield according to the second embodiment includes 21 g of a silicone-modified acrylic resin as a synthetic resin transparent to visible light, 2 g of a xylene solution mixed with 10% by weight of dibutyltin dilaurate as a resin curing agent, and a metal oxide semiconductor. 8 g of tin-doped indium oxide, 2.2 g of a benzotriazole-based ultraviolet absorber as an ultraviolet absorber, 0.03 g of a coumarin-based ultraviolet absorber, and approximately 0.25 g of an iminium-based dye as a near-infrared absorber as an organic solvent The resulting mixture was dissolved in 20 g of isopropyl alcohol and 46.52 g of mixed xylene and uniformly mixed to prepare an organic mixed solution.
[0041]
The difference from the first embodiment is that the amount of the tin-doped indium oxide and the iminium-based dye is reduced, and the ratio of the organic solvent is changed. This organic mixed solution was applied to a glass plate (45 cm × 35 cm, thickness 4 mm) as a substrate by a casting method. The applied film thickness was 15 μm on average. This was dried at room temperature for one week, and the transmittance of light having a wavelength of 200 to 2100 nm was measured.
[0042]
As a result, as shown in FIG. 1, the transmittance from 900 nm to 1300 nm slightly increases as compared with the first embodiment, but the transmittance in the visible region from 400 nm to 800 nm increases instead. I have. This results in a more transparent ultraviolet / infrared shield.
[0043]
In each of the above embodiments, an example was described in which each component was uniformly dissolved in an organic solvent, applied to a glass plate by a casting method, and dried to form an ultraviolet / infrared shield as a coating film. The components can be uniformly kneaded with a kneader or the like, and an ultraviolet / infrared shield can be formed as a film by calendering or the like. The ultraviolet / infrared shield as a film also exhibits the same excellent properties as the above-mentioned ultraviolet / infrared shield as a coating film.
[0044]
Further, in each of the above embodiments, a glass plate is used as a base material transparent to visible light, but various other transparent bodies such as an acrylic plate, a vinyl chloride resin and the like can be used.
[0045]
Furthermore, in each of the above embodiments, a silicone-modified acrylic resin is used as a synthetic resin transparent to visible light. However, the present invention is not limited to this and can be mixed with various transparent synthetic resins. It can be applied in a wide range.
[0046]
The configuration, shape, quantity, material, size, connection relationship, and the like of other portions of the ultraviolet / infrared shield are not limited to the above embodiments.
[0047]
【The invention's effect】
As described above, the ultraviolet / infrared shield according to the first aspect of the present invention is obtained by uniformly mixing a metal oxide semiconductor, a near-infrared absorber, and an ultraviolet absorber in a synthetic resin transparent to visible light. It is formed into a film.
[0048]
Here, as a method of uniformly mixing each component with the transparent synthetic resin, heating and kneading may be performed with a kneader or the like, or after all components are dissolved and mixed using an organic solvent, the organic solvent is dried and removed. May be.
[0049]
The metal oxide semiconductor has an infrared absorbing effect, and specific compounds include tin-doped indium oxide (ITO) and antimony-doped tin oxide, and tin-doped indium oxide is particularly preferable because of its transparency in the visible region. The near-infrared absorbing agent has a near-infrared absorbing effect, and specific compounds include polymethine dyes, aminium dyes, and iminium dyes. The ultraviolet absorber has an ultraviolet absorbing effect, and specific compounds include benzophenone, benzotriazole, coumarin and the like. Examples of the synthetic resin transparent to visible light include polyacrylate, polyester, polyurethane, polyvinyl alcohol, polycarbonate, polyethylene terephthalate, vinyl chloride, fluororesin, and rubber.
[0050]
These metal oxide semiconductors, near-infrared absorbers, and ultraviolet absorbers are uniformly mixed with a synthetic resin transparent to visible light and molded into a film. As the base material of the film, the metal oxide semiconductor absorbs infrared rays including far infrared rays, the near infrared ray absorber absorbs near infrared rays, and the ultraviolet ray absorbent absorbs ultraviolet rays. (About 400 nm to about 800 nm), and infrared rays and ultraviolet rays are almost blocked. Therefore, by sticking this film to a building or a window glass of a car, it is possible to shut out both ultraviolet rays harmful to the skin and near-infrared rays that generate heat, thereby obtaining a sunburn preventing effect and an energy saving effect of a cooling device.
[0051]
In this manner, an ultraviolet / infrared shield that can effectively and easily shield ultraviolet rays, near infrared rays and far infrared rays of about 800 nm to about 1200 nm, without substantially lowering the visible light transmittance.
[0052]
The ultraviolet / infrared shield according to the invention of claim 2 is a method of uniformly mixing a metal oxide semiconductor, a near-infrared absorber, an ultraviolet absorber, and a synthetic resin transparent to visible light with an organic solvent to form a substrate. The organic solvent is applied and dried to remove the organic solvent.
[0053]
The difference from the invention of claim 1 is that each component including a synthetic resin is dissolved in an organic solvent to form a paint, which is applied to a window glass or the like by a casting method or applied by a brush, and then the organic solvent is applied. The point is that an ultraviolet / infrared shielding film is formed by drying. With this method, it is not necessary to form the film one by one and then sticking it to a window glass etc., and the ultraviolet / infrared shield can be formed in one step from the solution, shortening the construction period and reducing cost. Becomes possible. Since the components are the same as those in the first aspect of the present invention, both ultraviolet rays harmful to the skin and near infrared rays that generate heat can be shut out, and a sunburn preventing effect and an energy saving effect of the cooling device can be obtained.
[0054]
In this manner, an ultraviolet / infrared shield that can effectively and easily shield ultraviolet rays, near infrared rays and far infrared rays of about 800 nm to about 1200 nm, without substantially lowering the visible light transmittance.
[0055]
According to a third aspect of the present invention, in the ultraviolet / infrared shield according to the first or second aspect, 0.1 to 150 parts of the metal oxide semiconductor and 100 parts of the synthetic resin are used for the near-infrared absorber. In an amount of 0.01 to 50 parts and an ultraviolet absorber in an amount of 0.1 to 30 parts.
[0056]
Thus, by limiting the ratio of each component to the synthetic resin within a certain range, the infrared absorbing agent / ultraviolet absorbing agent is too small to obtain a sufficient infrared / ultraviolet shielding effect, or conversely, the infrared absorbing agent -It is possible to prevent a problem that the transmittance of visible light is reduced due to too much ultraviolet absorber or the cost is increased.
[0057]
In this manner, an ultraviolet / infrared shield that can effectively and easily shield ultraviolet rays, near infrared rays and far infrared rays of about 800 nm to about 1200 nm, without substantially lowering the visible light transmittance.
[0058]
According to a fourth aspect of the present invention, there is provided the ultraviolet / infrared shield according to the first or second aspect, wherein 10 to 70 parts of the metal oxide semiconductor and 0 to the near-infrared absorber are added to 100 parts of the synthetic resin. 0.05 to 3 parts and an ultraviolet absorber in a range of 1 to 15 parts.
[0059]
Thereby, the ratio of each component to the synthetic resin is further narrowed to an appropriate range and limited. Therefore, a sufficient infrared / ultraviolet ray shielding effect can be obtained more reliably.
[0060]
According to a fifth aspect of the present invention, there is provided the ultraviolet / infrared shielding body according to the second aspect, wherein 10 parts by weight of a xylene solution mixed with 10 parts by weight of dibutyltin dilaurate for curing the resin is added to 100 parts of the silicone-modified acrylic resin as the synthetic resin. About 48 parts of tin-doped indium oxide as an oxide semiconductor, about 11 parts in total of a benzotriazole-based ultraviolet absorber and a coumarin-based ultraviolet absorber as an ultraviolet absorber, and about 1.42 parts of an iminium-based dye as a near infrared absorber, The resin is dissolved in isopropyl alcohol and mixed xylene as an organic solvent, mixed uniformly, applied to a glass as a substrate transparent to visible light by a casting method, and dried.
[0061]
According to the experiments by the inventors, the best effect as the ultraviolet / infrared shield was obtained when the specific compound of each component and the mixing ratio were used. In particular, the shielding rate of near-infrared light of 800 nm to 1200 nm was extremely excellent. Also, as a method of forming the ultraviolet / infrared shield, a uniform film thickness can be easily obtained by a casting method of dissolving in an organic solvent and flowing over glass, and particularly in the case of a large window glass, etc., the workability is good. .
[0062]
In this manner, an ultraviolet / infrared shield that can effectively and easily shield ultraviolet rays, near infrared rays and far infrared rays of about 800 nm to about 1200 nm, without substantially lowering the visible light transmittance.
[0063]
The ultraviolet / infrared ray shield according to the invention of claim 6 is the composition of claim 2, wherein 10 parts by weight of a xylene solution mixed with 10 parts by weight of dibutyltin dilaurate for curing the resin is added to 100 parts of the silicone-modified acrylic resin as the synthetic resin. About 38 parts of tin-doped indium oxide as an oxide semiconductor, about 11 parts in total of a benzotriazole-based ultraviolet absorber and a coumarin-based ultraviolet absorber as an ultraviolet absorber, and about 1.19 parts of an iminium-based dye as a near infrared absorber, The resin is dissolved in isopropyl alcohol and mixed xylene as an organic solvent, mixed uniformly, applied to a glass as a substrate transparent to visible light by a casting method, and dried.
[0064]
According to the experiments by the inventors, the case where the mixing ratio with the specific compound of each component is 800 nm to 1200 nm as compared with the ultraviolet / infrared shield according to claim 5. Although the rate was only slightly inferior, the transmittance of visible light was increased and the transparency was more excellent.
[0065]
In this manner, an ultraviolet / infrared shield that can effectively and easily shield ultraviolet rays, near infrared rays and far infrared rays of about 800 nm to about 1200 nm, without substantially lowering the visible light transmittance.
[Brief description of the drawings]
FIG. 1 is a diagram showing the transmittance of the ultraviolet / infrared shield according to Embodiments 1 and 2 of the present invention from ultraviolet to infrared in comparison with Comparative Examples 1 and 2.
FIG. 2 is a schematic diagram illustrating a configuration of a test apparatus for testing a heat blocking effect of the ultraviolet / infrared shield according to the first embodiment of the present invention.
FIG. 3 is a diagram showing a heat blocking effect of the ultraviolet / infrared ray shield according to the first embodiment of the present invention in comparison with Comparative Example 2.
FIG. 4 is a graph showing the infrared ray blocking effect of the ultraviolet / infrared ray shielding body according to the first embodiment of the present invention in comparison with Comparative Example 1.
FIG. 5 is a front view showing a configuration of a test apparatus for testing a heat retaining effect of the ultraviolet / infrared shield according to the first embodiment of the present invention.

Claims (6)

金属酸化物半導体と近赤外線吸収剤と紫外線吸収剤とを可視光に対して透明な合成樹脂に均一に混合してフィルム状に成形してなる紫外線・赤外線遮蔽体。An ultraviolet / infrared shield formed by uniformly mixing a metal oxide semiconductor, a near-infrared absorber, and an ultraviolet absorber in a synthetic resin transparent to visible light and forming a film. 金属酸化物半導体と近赤外線吸収剤と紫外線吸収剤と可視光に対して透明な合成樹脂とを有機溶剤に均一に混合して可視光に対して透明な基材に塗布して前記有機溶剤を乾燥除去してなる紫外線・赤外線遮蔽体。A metal oxide semiconductor, a near-infrared absorber, an ultraviolet absorber, and a synthetic resin transparent to visible light are uniformly mixed with an organic solvent, and the organic solvent is applied to a substrate transparent to visible light. An ultraviolet / infrared shield removed by drying. 前記合成樹脂100部に対して、金属酸化物半導体を0.1〜150部、近赤外線吸収剤を0.01〜50部、紫外線吸収剤を0.1〜30部の範囲で混合したことを特徴とする請求項1または請求項2に記載の紫外線・赤外線遮蔽体。For 100 parts of the synthetic resin, 0.1 to 150 parts of the metal oxide semiconductor, 0.01 to 50 parts of the near-infrared absorber, and 0.1 to 30 parts of the ultraviolet absorber are mixed. The ultraviolet / infrared shield according to claim 1 or 2, wherein: 前記合成樹脂100部に対して、金属酸化物半導体を10〜70部、近赤外線吸収剤を0.05〜3部、紫外線吸収剤を1〜15部の範囲で混合したことを特徴とする請求項1または請求項2に記載の紫外線・赤外線遮蔽体。10 to 70 parts of a metal oxide semiconductor, 0.05 to 3 parts of a near-infrared absorber, and 1 to 15 parts of an ultraviolet absorber with respect to 100 parts of the synthetic resin. The ultraviolet / infrared shield according to claim 1 or 2. 前記合成樹脂としてシリコーン変性アクリル樹脂100部に対して樹脂硬化用のジブチル錫ジラウレート10重量混合キシレン溶液10部、金属酸化物半導体として錫ドープ酸化インジウム略48部、紫外線吸収剤としてベンゾトリアゾール系紫外線吸収剤とクマリン系紫外線吸収剤を合わせて略11部、近赤外線吸収剤としてイミニウム系色素略1.42部を、有機溶剤としてイソプロピルアルコール及び混合キシレンに溶解させて均一に混合し、可視光に対して透明な基材としてのガラスに流延法で塗布して乾燥したことを特徴とする請求項2に記載の紫外線・赤外線遮蔽体。10 parts of a xylene solution mixed with 10 parts by weight of dibutyltin dilaurate for curing the resin with respect to 100 parts of the silicone-modified acrylic resin as the synthetic resin, approximately 48 parts of tin-doped indium oxide as the metal oxide semiconductor, and benzotriazole-based ultraviolet absorber as the ultraviolet absorber Approximately 11 parts of the coumarin-based ultraviolet absorber and the coumarin-based ultraviolet absorber together, and approximately 1.42 parts of an iminium-based dye as a near-infrared absorber are dissolved in isopropyl alcohol and mixed xylene as an organic solvent and uniformly mixed. 3. The ultraviolet / infrared shield according to claim 2, wherein the ultraviolet / infrared shield is applied to a glass as a transparent substrate by a casting method and dried. 前記合成樹脂としてシリコーン変性アクリル樹脂100部に対して樹脂硬化用のジブチル錫ジラウレート10重量混合キシレン溶液10部、金属酸化物半導体として錫ドープ酸化インジウム略38部、紫外線吸収剤としてベンゾトリアゾール系紫外線吸収剤とクマリン系紫外線吸収剤を合わせて略11部、近赤外線吸収剤としてイミニウム系色素略1.19部を、有機溶剤としてイソプロピルアルコール及び混合キシレンに溶解させて均一に混合し、可視光に対して透明な基材としてのガラスに流延法で塗布して乾燥したことを特徴とする請求項2に記載の紫外線・赤外線遮蔽体。10 parts by weight of a xylene solution mixed with 10 parts by weight of dibutyltin dilaurate for curing the resin with 100 parts of the silicone-modified acrylic resin as the synthetic resin, approximately 38 parts of tin-doped indium oxide as the metal oxide semiconductor, and benzotriazole-based ultraviolet absorber as the ultraviolet absorber About 11 parts in total of the agent and the coumarin-based ultraviolet absorber, and about 1.19 parts of the iminium-based dye as the near-infrared absorber are dissolved in isopropyl alcohol and mixed xylene as the organic solvent, and uniformly mixed. 3. The ultraviolet / infrared shield according to claim 2, wherein the ultraviolet / infrared shield is applied to a glass as a transparent substrate by a casting method and dried.
JP2002193809A 2002-07-02 2002-07-02 UV / IR shield Expired - Fee Related JP4016385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002193809A JP4016385B2 (en) 2002-07-02 2002-07-02 UV / IR shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002193809A JP4016385B2 (en) 2002-07-02 2002-07-02 UV / IR shield

Publications (2)

Publication Number Publication Date
JP2004037768A true JP2004037768A (en) 2004-02-05
JP4016385B2 JP4016385B2 (en) 2007-12-05

Family

ID=31702685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002193809A Expired - Fee Related JP4016385B2 (en) 2002-07-02 2002-07-02 UV / IR shield

Country Status (1)

Country Link
JP (1) JP4016385B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045307A (en) * 2004-08-03 2006-02-16 Konica Minolta Opto Inc Optical film, and polarizing plate obtained using the same
JP2007106826A (en) * 2005-10-12 2007-04-26 Hiromitsu Furuichi Ultraviolet or infrared shielding coating
JP2008020525A (en) * 2006-07-11 2008-01-31 Japan Carlit Co Ltd:The Heat-ray shielding film
JP2008075016A (en) * 2006-09-22 2008-04-03 Fujifilm Corp Near infrared absorbing material and near infrared absorption filter
JP2008075002A (en) * 2006-09-22 2008-04-03 Fujifilm Corp Near infrared absorbing material and near infrared absorption filter
WO2008090913A1 (en) * 2007-01-24 2008-07-31 Toyota Jidosha Kabushiki Kaisha Glass and laminated glass
JP2010084238A (en) * 2008-09-29 2010-04-15 Mitsubishi Materials Corp Polyester fiber for shielding heat ray
WO2013080859A1 (en) 2011-12-02 2013-06-06 住友金属鉱山株式会社 Heat-ray-shielding film, combined heat ray shielding and transparent substrate, vehicle equipped with heat-ray-shielding transparent laminated substrate as window material, and building using heat-ray-shielding transparent laminated substrate as window material
JP2013151675A (en) * 2011-12-27 2013-08-08 Fujifilm Corp Infrared absorptive composition, infrared cut filter using the composition and method for manufacturing the same, and camera module and method for manufacturing the same
WO2014163119A1 (en) 2013-04-03 2014-10-09 住友金属鉱山株式会社 Heat-ray-shielding film, heat-ray-shielding transparent substrate, heat-ray-shielding resin sheet material, vehicle, and building
JP2015124360A (en) * 2013-12-27 2015-07-06 大日本塗料株式会社 Far infrared reflective coating material, formation method of coating film, and coated article
JP2021050334A (en) * 2019-09-18 2021-04-01 日本パーミル株式会社 Composition for base material scattering prevention coating, base material scattering prevention coating, scattering preventive base material, method for forming scattering preventive base material and kit for forming base material scattering prevention coating

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5768089B2 (en) * 2013-06-13 2015-08-26 ダイキン工業株式会社 Fluororesin composition, coating film, and article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132003A (en) * 1984-07-24 1986-02-14 Fuji Photo Film Co Ltd Optical filter material
JPH09208840A (en) * 1996-01-30 1997-08-12 Kureha Chem Ind Co Ltd Invisible light absorber
JPH11237506A (en) * 1998-02-20 1999-08-31 Nippon Shokubai Co Ltd Light-selective transmissible film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132003A (en) * 1984-07-24 1986-02-14 Fuji Photo Film Co Ltd Optical filter material
JPH09208840A (en) * 1996-01-30 1997-08-12 Kureha Chem Ind Co Ltd Invisible light absorber
JPH11237506A (en) * 1998-02-20 1999-08-31 Nippon Shokubai Co Ltd Light-selective transmissible film

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045307A (en) * 2004-08-03 2006-02-16 Konica Minolta Opto Inc Optical film, and polarizing plate obtained using the same
JP2007106826A (en) * 2005-10-12 2007-04-26 Hiromitsu Furuichi Ultraviolet or infrared shielding coating
JP2008020525A (en) * 2006-07-11 2008-01-31 Japan Carlit Co Ltd:The Heat-ray shielding film
JP2008075016A (en) * 2006-09-22 2008-04-03 Fujifilm Corp Near infrared absorbing material and near infrared absorption filter
JP2008075002A (en) * 2006-09-22 2008-04-03 Fujifilm Corp Near infrared absorbing material and near infrared absorption filter
WO2008090913A1 (en) * 2007-01-24 2008-07-31 Toyota Jidosha Kabushiki Kaisha Glass and laminated glass
JP2010084238A (en) * 2008-09-29 2010-04-15 Mitsubishi Materials Corp Polyester fiber for shielding heat ray
US11215742B2 (en) 2011-12-02 2022-01-04 Sumitomo Metal Mining Co., Ltd. Heat-ray shielding film, heat-ray shielding transparent laminated base material, and automobile mounted with the heat-ray shielding transparent laminated base material as window material, and building using the heat-ray shielding transparent laminated base material as window material
WO2013080859A1 (en) 2011-12-02 2013-06-06 住友金属鉱山株式会社 Heat-ray-shielding film, combined heat ray shielding and transparent substrate, vehicle equipped with heat-ray-shielding transparent laminated substrate as window material, and building using heat-ray-shielding transparent laminated substrate as window material
KR20140098240A (en) 2011-12-02 2014-08-07 스미토모 긴조쿠 고잔 가부시키가이샤 Heat-ray-shielding film, combined heat ray shielding and transparent substrate, vehicle equipped with heat-ray-shielding transparent laminated substrate as window material, and building using heat-ray-shielding transparent laminated substrate as window material
JP2013151675A (en) * 2011-12-27 2013-08-08 Fujifilm Corp Infrared absorptive composition, infrared cut filter using the composition and method for manufacturing the same, and camera module and method for manufacturing the same
KR20150138347A (en) 2013-04-03 2015-12-09 스미토모 긴조쿠 고잔 가부시키가이샤 Heat-ray-shielding film, heat-ray-shielding transparent substrate, heat-ray-shielding resin sheet material, vehicle, and building
EP3034294A1 (en) 2013-04-03 2016-06-22 Sumitomo Metal Mining Co., Ltd. Heat-ray-shielding film, heat-ray-shielding transparent substrate, heat-ray-shielding resin sheet material, vehicle, and building
US9868665B2 (en) 2013-04-03 2018-01-16 Sumitomo Metal Mining Co., Ltd. Heat ray-shielding film, heat ray-shielding laminated transparent base material, heat ray-shielding resin sheet material, automobile and building
WO2014163119A1 (en) 2013-04-03 2014-10-09 住友金属鉱山株式会社 Heat-ray-shielding film, heat-ray-shielding transparent substrate, heat-ray-shielding resin sheet material, vehicle, and building
JP2015124360A (en) * 2013-12-27 2015-07-06 大日本塗料株式会社 Far infrared reflective coating material, formation method of coating film, and coated article
JP2021050334A (en) * 2019-09-18 2021-04-01 日本パーミル株式会社 Composition for base material scattering prevention coating, base material scattering prevention coating, scattering preventive base material, method for forming scattering preventive base material and kit for forming base material scattering prevention coating
JP7253831B2 (en) 2019-09-18 2023-04-07 日本パーミル株式会社 Composition for base material anti-scattering coating film, base material anti-scattering coating film, anti-scattering base material, method for forming anti-scattering base material, and kit for forming base material anti-scattering coating film

Also Published As

Publication number Publication date
JP4016385B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
JP2004037768A (en) Ultraviolet ray and infrared ray shielding body
US3382183A (en) Plastic optical filter
JP2021036323A (en) Optical filter including variable transmittance layer
RU2486554C2 (en) Light-regulation membrane
CN1329444C (en) Mother material containing thermal radiation screerning component and thermal radiation screening transparent resin formed material and thermal radiction screening thansparent laminated material
JP5424560B2 (en) Dark flat member with low thermal conductivity, low density and low solar absorption
BRPI0810694B1 (en) method of manufacturing a composition, composition for manufacturing a polyvinyl chloride film, and polyvinyl chloride film for heat radiation shielding
KR20050019046A (en) Near infrared absorptive adhesive composition and optical film
CN104693646A (en) Transparent plasticized PVC (Polyvinyl Chloride) functional film and preparation method
JP2007106826A (en) Ultraviolet or infrared shielding coating
JP2008163139A (en) Film or sheet, its manufacturing method and exterior material, glass, and exterior construction method
KR101261204B1 (en) Glass coating composition and its manufacturing method
JP4311869B2 (en) UV absorbing paint
JP5113302B1 (en) Ultraviolet / infrared shielding coating agent and ultraviolet / infrared shielding coating film
JP5749807B2 (en) Infrared reflective film for solar cell module and infrared reflector
JP2004361525A (en) Optical filter and display using the same
JP2010241857A (en) Heat ray absorptive dimming sheet
JP6797511B2 (en) Aqueous infrared / ultraviolet shielding coating agent and infrared / ultraviolet shielding treatment method using this
KR102151089B1 (en) Thermotropic Organic-Inorganic Hybrid Coating Composition
JPH10157023A (en) Laminate sheet
KR20200027224A (en) Film for glass coating and preperation method thereof
KR101108224B1 (en) Photocatalyst paint for protecting infrared ray
KR101297990B1 (en) Ultraviolet and infrared absorbable film included glass bubble
TW201925324A (en) Smart window structure and manufacturing method thereof
JP3029908U (en) Light control shield for helmet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050518

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070522

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees