JP2004035272A - Method of manufacturing synthetic quartz glass optical component, and method of manufacturing gas-enclosing tube - Google Patents

Method of manufacturing synthetic quartz glass optical component, and method of manufacturing gas-enclosing tube Download PDF

Info

Publication number
JP2004035272A
JP2004035272A JP2002190088A JP2002190088A JP2004035272A JP 2004035272 A JP2004035272 A JP 2004035272A JP 2002190088 A JP2002190088 A JP 2002190088A JP 2002190088 A JP2002190088 A JP 2002190088A JP 2004035272 A JP2004035272 A JP 2004035272A
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
optical component
manufacturing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002190088A
Other languages
Japanese (ja)
Inventor
Yorisuke Ikuta
生田 順亮
Toshisuke Minematsu
峯松 敏資
Yoshiyuki Nishihara
西原 芳幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002190088A priority Critical patent/JP2004035272A/en
Publication of JP2004035272A publication Critical patent/JP2004035272A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method for efficiently manufacturing a synthetic quartz glass optical component stably exhibiting excellent durability to ultraviolet rays or to vacuum ultraviolet rays having wavelengths of 155-400 nm. <P>SOLUTION: A synthetic quartz glass block is softened at a temperature of ≥1,300°C and formed into a nearly final shape by heating. Thereafter, the glass block is heat treated at 700-1,200°C for 10-300 h. It is preferable that the synthetic quartz glass block containing each element of alkaline metals (Na, K), alkaline earth metals (Mg, Ca) and transition metals (Fe, Ni, Cr, Al) in an amount of ≤10 ppb is used. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、波長155〜400nmの紫外光または真空紫外光を光源とする光学装置に使用される合成石英ガラス光学部品の製造方法に関し、詳しくはKrFエキシマレーザ(波長248nm)、ArFエキシマレーザ(波長193nm)、Fレーザ(波長157nm)、水銀ランプ(波長365nm,254nm,185nm)、エキシマランプ(Xe:波長172nm)などの真空紫外光または紫外光用のレンズ、プリズム、回折格子、チューブなどの光学部品として用いられる合成石英ガラス光学部品の製造方法に関する。
【0002】
【従来の技術】
近年、LSIの高集積化に伴い、ウエハ上に集積回路パターンを描画する光リソグラフィ技術において、より線幅の狭い微細な描画技術が要求されており、これに対応するために露光光源の短波長化が進められている。すなわち、半導体リソグラフィ露光装置の光源は、従来のg線(波長436nm)、i線(波長365nm)から進んで、KrFエキシマレーザ(波長248nm)、ArFエキシマレーザ(波長193nm)、Fレーザ(波長157nm)が用いられようとしている。
【0003】
合成石英ガラスは、近赤外から真空紫外域にわたる広範囲の波長域にわたって透明な材料であること、熱膨張係数が極めて小さく寸法安定性に優れていること、また、金属不純物をほとんど含有せず高純度であることなどの特徴を有し、半導体リソグラフィ露光装置内に使用されているレンズ、プリズムや回折格子などの光学部品には合成石英ガラスが主に使用されてきた。
【0004】
また、水銀ランプやエキシマランプは、光CVDなどの成膜装置、シリコンウェハや液晶表示素子(LCD)用ガラス基板などの洗浄装置やオゾン発生装置などに用いられており、水銀ランプやエキシマランプに用いられるランプのガス封入管にも、前記の特徴を活かして合成石英ガラスを使用されてきた。
【0005】
光学部品として用いられる合成石英ガラスには、使用される波長域の高透過率性、紫外光あるいは真空紫外光に対する高耐光性(透過率や屈折率などの変化が少ないこと)が要求される。
【0006】
このような合成石英ガラスを用いた光学部品の製造は、例えば凸レンズや凹レンズなどの場合、珪素化合物を火炎加水分解して円柱状の合成石英ガラスインゴットを合成し、次いで合成石英ガラスインゴットを1300℃以上に加熱して加圧もしくは自重変形することにより所定の形状に成形した後、スライス、研削、研磨などの機械加工を行うことにより、最終形状の光学部品を通常製造している。しかしながら、前記方法では、例えば円柱形状の石英ガラスブロックから凸レンズや凹レンズ形状に研削するため、材料の利用効率が悪く、低生産性、高生産コストといった問題があった。そこでこれらの問題点を解決すべく、金型などを用いて最終形状に近い形状に高温加圧成形することが特開2001−64024号などにより提案されている。
【0007】
一方、ガス封入管などチューブ形状の場合は、作製した合成石英ガラスインゴットを円柱状に成形し、円筒研削・穴あけ加工した後、1300℃以上の温度にて管引きしたりすることにより、合成石英ガラスチューブを製造する方法が通常知られている。
【0008】
しかし、このような熱加工により最終製品の形状、あるいは最終製品に近い形状に成形した合成石英ガラス光学部品の場合、耐光性が必ずしも良くなかった。
【0009】
【発明が解決しようとする課題】
本発明は、波長155〜400nmの紫外光または真空紫外光を光源とする光学装置に用いられる、波長155〜400nmの紫外光あるいは真空紫外光に対する耐性に安定して優れた合成石英ガラス光学部品を効率よく製造する方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、熱加工により得られた合成石英ガラス光学部品の組成、構造と耐光性について詳細に検討した結果、熱加工により作製された合成石英ガラス光学部品は、三員環構造や四員環構造などの歪んだ構造の含有量が通常の機械加工により作製された合成石英ガラス光学部品に比べて多く、これら歪んだ構造が耐光性悪化の原因であることをつきとめた。すなわち、合成石英ガラスは通常六員環構造や七員環構造をしたSi−O−Siネットワーク構造から構成されているが、これら構造とは異なる三員環構造や四員環構造が多少含まれている。合成石英ガラスの熱加工には、粘度を十分低いレベルに低減し流動性を持たせるために、非常に高い温度を要するため、この熱加工の際に三員環構造や四員環構造などの歪んだ結合が生成する。これらの歪んだ構造は、紫外光または真空紫外光を照射した場合に、E’センター(≡Si・)とNBOHC(≡SiO・)などの欠陥となり、これら欠陥は、それぞれ、波長220nm、180nmおよび260nmを中心とした波長域に吸収帯を有するため、同波長域における光透過性を損なう。したがって、合成石英ガラス中の歪んだ構造は極力低減すべきである。
【0011】
本発明は、波長155〜400nmの紫外光または真空紫外光を光源とする光学装置に使用される合成石英ガラス光学部品の製造方法において、合成石英ガラスブロックを1300℃以上の温度にて軟化させることにより最終形状に近い形状に加熱成形した後、700〜1200℃の温度にて10〜300時間熱処理することを特徴とする合成石英ガラス光学部品の製造方法を提供するものである。
【0012】
また本発明は、波長155〜200nmの真空紫外光を発するエキシマランプ用または水銀ランプ用のガス封入管の製造方法において、合成石英ガラスブロックを1300℃以上の温度にて軟化させて管引きした後、700〜1200℃の温度にて10〜200時間熱処理することを特徴とするガス封入管の製造方法を提供するものである。
【0013】
合成石英ガラスを最終製品形状あるいは最終製品に近い形状に加熱成形する際の温度は、1300℃以上とされるが、粘度が10〜10poiseと十分に小さくなる1700〜2200℃が好ましい。1700℃より低いと合成石英ガラスの粘度が十分に下がらず寸法精度が劣る可能性があり、また2200℃より高いとアルカリ金属やアルカリ土類金属、遷移金属などの不純物する混入する可能性が高まる。加熱成形時の雰囲気はアルゴンやネオンなどの不活性ガスが好ましく、窒素、水素または酸素などの合成石英ガラスと反応する可能性のあるガスは好ましくない。加熱成形時の雰囲気圧力は、合成石英ガラスの揮発を防ぐため常圧もしくは加圧が好ましい。
【0014】
また加熱成形処理を行う合成石英ガラス中のアルカリ金属(Na,K)、アルカリ土類金属(Mg,Ca)、遷移金属(Fe,Ni,Cr,Al)の各元素の含有量がそれぞれ10ppb以下であることが好ましい。不純物の含有量が10ppbを超えた合成石英ガラスブロックを高温で加熱軟化させ成形すると、理由は定かではないが、熱加工中に≡Si−Si≡などの酸素欠乏型欠陥が生成し、得られた合成石英ガラス光学部品の初期光透過性や耐光性が低下するおそれがある。なお、本明細書では、ppm、ppbなどの単位は質量基準の表示として用いる。
【0015】
図1は、合成石英ガラスブロックを加圧成型する成型炉の一例の概念的断面図であり、金型3に装填された合成石英ガラスブロック2を成型炉5内のヒータ4で加熱した後、加圧シリンダ1で加圧、成型するものである。また、図2は、合成石英ガラスチューブ6を管引きする成形炉の一例の概念的断面図であり、ヒータ4で加熱されて軟化した肉厚の合成石英ガラス管を引き出しローラ7で薄肉化して、合成石英ガラスチューブ6を得るものである。
【0016】
合成石英ガラスブロックを加熱して任意形状に成形した後、得られた合成石英ガラスブロックを適切な条件にて熱アニール処理することにより、合成石英ガラス光学部品中の歪んだ構造を十分に低減することができ、優れた耐光性を有する合成石英ガラスを効率よく製造することができる。この熱アニールの温度は700〜1200℃の範囲が好ましい。700℃より低いと、歪んだ構造を低減するために非常に長時間のアニールを要するため、生産性が低下するおそれがある。また1200℃以上では、歪んだ構造を十分に低減できず、また最終製品の形状または最終製品に近い形状に成形された合成石英ガラスの形状が変化する可能性がある。
【0017】
熱アニール時の雰囲気については、窒素、ヘリウム、アルゴンなどの不活性雰囲気が好ましい。酸素などの酸化性雰囲気あるいは水素などの還元性雰囲気で熱アニールを実施すると、≡Si−O−O−Si≡などの酸素過剰型欠陥あるいは≡Si−Hや≡Si−Si≡などの酸素欠乏型欠陥が生成する可能性があり、これらの欠陥は耐光性を低下させるおそれがある。
【0018】
また熱アニールに要する時間は、合成石英ガラスの大きさにもよるが、厚みもしくは直径が5mm以下の小さな光学素材の場合は、10〜200時間が好ましく、特に50〜100時間が好ましい。また厚みもしくは直径が5mm以上の大きな光学素材の場合は、10〜300時間が好ましく、特に100〜200時間が好ましい。
【0019】
また加熱加工時および熱アニール時に合成石英ガラス光学部品へアルカリ金属(Na,Kなど)、アルカリ土類金属(Mg,Caなど)、遷移金属(Fe,Ni,Cr,Alなど)などの不純物の混入は、耐光性や初期光透過性に悪影響を与えるため、極力避けることが好ましい。具体的には最終の光学部品におけるアルカリ金属、アルカリ土類金属、遷移金属各元素の含有量は50ppb以下であることが好ましい。
【0020】
熱アニールに使用する炉は、図3に示すような、石英ガラス製炉芯管8を使用して、ヒータ4で加熱する外熱式電気炉を使用することが好ましい。
【0021】
また加熱加工あるいは熱アニールの実施に先立って、合成石英ガラス光学部品は5%以下のHF溶液や硫酸・過酸化水素水溶液などの酸に浸漬し、表面に付着した不純物を除去、洗浄することが好ましい。これらの不純物は光学部品表面付近に高濃度に存在しているが、通常機械加工により表面を研削、最終形状に加工する際に、表面付近の高濃度に不純物が存在している部分は除去されるため重要ではなかった。しかしながら熱加工により最終製品に近い形状に仕上げる本発明の場合は、機械加工による表面研削量が少なくなるため、特に不純物の汚染を防ぐよう留意する必要がある。
【0022】
本発明の合成石英ガラス光学部品は、直接法、スート法、ゾルゲル法など公知の各種方法で得ればよい。OH基の含有量が少ない方が好ましい用途では、スート法が好ましい。
【0023】
また本発明の方法により作製された合成石英ガラス光学部品は、その仮想温度が1200℃以下であることが好ましい。石英ガラスの仮想温度は文献(A.Agarwal,K.M.Dabis and M.Tomozawa,“A simple IR spectroscopic method for determining fictive temperature of silica glass”,J.Non−Cryst.Solids.,185,191−198 (1995))に従って、赤外分光光度計を用いて波数2260cm−1付近の吸収ピークの位置により求めることができ、この仮想温度は石英ガラス中の歪んだ構造の含有量を反映するパラメータであり、仮想温度が低いほど石英ガラス中の歪んだ構造の濃度は低い。この仮想温度が1200℃以下であれば、石英ガラス中の歪んだ構造の濃度は十分に低く優れた耐光性を得ることができる。
【0024】
また本発明の方法により作製された合成石英ガラス光学部品は、特に波長180nm以下の光を光源とする光学装置に使用される場合、合成石英ガラス中のOH基濃度100ppm以下が好ましい。合成石英ガラス中のOH基は波長180nm以下の真空紫外域に光吸収帯を有しており、同波長域における光透過性を悪化させるおそれがあるためである。
【0025】
【実施例】
(例1〜8)
四塩化珪素を火炎加水分解させて得られた多孔質石英ガラス体を、Heガス100%の雰囲気下、表1に示す圧力にて1450℃まで昇温して透明ガラス化し、OH基含有量の異なる3種類の合成石英ガラスインゴット(サイズ:直径250mm×長さ600mm)を作製した。各インゴットから直径100mm、長さ600mmの円柱形状のものを切出し、中心に直径80mmの穴あけ加工を施した。次いで5%HF水溶液に10時間浸漬し不純物が高濃度に存在する表面近傍の合成石英ガラスを除去した後、イオン交換水でリンス、乾燥させ、続いて図2に示す装置にて温度2000℃で直径25mm、肉厚2mmの透明チューブに管引きした。
【0026】
(例9)
四塩化珪素を火炎加水分解させて得られた多孔質石英ガラス体を、Heガス100%雰囲気下、表1に示す圧力にて1450℃まで昇温して透明ガラス化し、合成石英ガラスインゴット(サイズ:直径250mm×長さ600mm)を作製した。各インゴットから直径100mm、長さ600mmの円柱形状のものを切出し、中心に直径80mmの穴あけ加工を施した。洗浄せずに続いて図2に示す装置にて温度2000℃で直径25mm、肉厚2mmの透明チューブに管引きした。
得られたチューブを表1に示す条件にて熱アニールを行い、以下に行う評価を実施した。
【0027】
(評価1:OH基濃度)
赤外分光光度計による吸光度測定を行い、波長2.7μmでの吸収ピークからOH基濃度を求めた(Cer.Bull.,55(5),524,(1976))。
【0028】
(評価2:不純物)
ICP質量分析法(セイコーインスツルメンツ製SPQ9000)により不純物(Na,K,Mg,Ca,Fe,Ni,Cr,Al)の含有量を分析した。10ppbを超えた元素のみ表2に記載し、全ての不純物が10ppb以下であった場合は、表2の該当欄に「<10ppb」とだけ記載した。
【0029】
(評価3:仮想温度)
フーリエ変換型赤外分光光度計(ニコレ社製)を用いて、2200〜2300cm−1における吸光度を測定し、波数2260cm−1付近の吸収ピークの位置により仮想温度を求めた(A.Agarwal,K.M.Dabis andM.Tomozawa,“A simple IR spectroscopic method for determining fictive temperature of silica glass”,J.Non−Cryst.Solids.,185,191−198 (1995))。
【0030】
(評価4:耐紫外線性)
酸素濃度100ppm以下の窒素雰囲気中にて、ArFエキシマレーザ光(中心波長193nm,パルスエネルギー5mJ/cm/pulse)を1×10パルス照射し、照射前後における波長193nmの透過率変化(透過率の差)を紫外分光光度計(日立製作所製U4000)により評価した。
(評価5:耐紫外線性)
酸素濃度10ppm以下の窒素雰囲気中にて、Xeエキシマランプ光(中心波長172nm,照度10mW/cm)を計500時間照射し、照射前後における波長172nmの透過率変化(透過率の差)を真空紫外分光光度計(アクトンリサーチ社製VTMS502)により評価した。
【0031】
評価結果を表2に示す。例3〜9は実施例、その他は比較例である。
【0032】
【表1】

Figure 2004035272
【0033】
【表2】
Figure 2004035272
【0034】
【表3】
Figure 2004035272
【0035】
【発明の効果】
本発明によれば、波長155〜400nmの紫外光または真空紫外光を光源とする光学装置に用いられる、波長155〜400nmの紫外光あるいは真空紫外光に対する耐性に安定して優れた合成石英ガラス光学部品を効率よく製造する方法が得られる。
【図面の簡単な説明】
【図1】本発明に用いる成型炉の一例の概念的断面図
【図2】本発明に用いる成型炉の一例の概念的断面図
【図3】本発明に用いるアニール炉の一例の概念的断面図
【符号の説明】
1:加圧シリンダ
2:合成石英ガラスブロック
3:金型
4:ヒータ
5:成型炉
6:合成石英ガラスチューブ
7:引き出しローラ
8:石英ガラス製炉芯管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a synthetic quartz glass optical component used in an optical device using ultraviolet light or vacuum ultraviolet light having a wavelength of 155 to 400 nm as a light source, and more specifically, KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm), F 2 laser (wavelength 157 nm), mercury lamp (wavelength 365 nm, 254 nm, 185 nm), excimer lamp (Xe 2 : wavelength 172 nm), etc., lenses for ultraviolet light or ultraviolet light, prisms, diffraction gratings, tubes, etc. The present invention relates to a method for manufacturing a synthetic quartz glass optical component used as an optical component.
[0002]
[Prior art]
In recent years, with the high integration of LSIs, there has been a demand for fine drawing technology with a narrower line width in the optical lithography technology for drawing an integrated circuit pattern on a wafer. Is being promoted. That is, the light source of the semiconductor lithography exposure apparatus proceeds from the conventional g-line (wavelength 436 nm) and i-line (wavelength 365 nm), KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm), F 2 laser (wavelength) 157 nm) is about to be used.
[0003]
Synthetic quartz glass is a transparent material over a wide wavelength range from the near infrared to the vacuum ultraviolet, has a very low coefficient of thermal expansion and excellent dimensional stability, and contains almost no metal impurities. Synthetic quartz glass has mainly been used for optical parts such as lenses, prisms, and diffraction gratings, which have characteristics such as purity, and are used in semiconductor lithography exposure apparatuses.
[0004]
In addition, mercury lamps and excimer lamps are used in film-forming devices such as photo-CVD, cleaning devices such as silicon wafers and glass substrates for liquid crystal display elements (LCD), and ozone generators. Synthetic quartz glass has been used for the gas-sealed tube of the lamp used, taking advantage of the above-mentioned characteristics.
[0005]
Synthetic quartz glass used as an optical component is required to have high transmittance in the wavelength range to be used and high light resistance to ultraviolet light or vacuum ultraviolet light (the change in transmittance and refractive index is small).
[0006]
For example, in the case of an optical component using a synthetic quartz glass, in the case of a convex lens or a concave lens, a silicon compound is flame-hydrolyzed to synthesize a cylindrical synthetic quartz glass ingot, and then the synthetic quartz glass ingot is heated to 1300 ° C. After forming into a predetermined shape by heating and pressurizing or deforming by its own weight as described above, a final-shaped optical component is usually manufactured by performing machining such as slicing, grinding, and polishing. However, in the above-described method, for example, the cylindrical quartz glass block is ground into a convex lens or a concave lens shape, so that there are problems of low material utilization efficiency, low productivity, and high production cost. In order to solve these problems, Japanese Patent Application Laid-Open No. 2001-64024 proposes high-temperature press molding to a shape close to the final shape using a mold or the like.
[0007]
On the other hand, in the case of a tube shape such as a gas-filled tube, the synthetic quartz glass ingot thus formed is formed into a cylindrical shape, and after cylindrical grinding and drilling, the tube is drawn at a temperature of 1300 ° C. or higher, thereby producing synthetic quartz. Methods for producing glass tubes are generally known.
[0008]
However, in the case of a synthetic quartz glass optical component molded into the shape of the final product or a shape close to the final product by such heat processing, the light resistance is not always good.
[0009]
[Problems to be solved by the invention]
The present invention provides a synthetic quartz glass optical component that is stable and excellent in resistance to ultraviolet light having a wavelength of 155 to 400 nm or vacuum ultraviolet light, which is used in an optical device having ultraviolet light or vacuum ultraviolet light having a wavelength of 155 to 400 nm as a light source. It aims at providing the method of manufacturing efficiently.
[0010]
[Means for Solving the Problems]
As a result of detailed studies on the composition, structure, and light resistance of a synthetic quartz glass optical component obtained by thermal processing, the present inventors have found that a synthetic quartz glass optical component produced by thermal processing has a three-membered ring structure or a four-component structure. It has been found that the content of distorted structures such as ring structures is higher than that of synthetic quartz glass optical parts produced by ordinary machining, and that these distorted structures cause deterioration in light resistance. In other words, synthetic quartz glass is usually composed of a Si-O-Si network structure having a six-membered ring structure or a seven-membered ring structure, but some three-membered ring structures or four-membered ring structures different from these structures are included. ing. The thermal processing of synthetic quartz glass requires a very high temperature in order to reduce the viscosity to a sufficiently low level and to have fluidity, so in this thermal processing such as three-membered ring structure or four-membered ring structure A distorted bond is generated. These distorted structures become defects such as E ′ center (≡Si ·) and NBOHC (≡SiO ·) when irradiated with ultraviolet light or vacuum ultraviolet light, and these defects have wavelengths of 220 nm, 180 nm and 180 nm, respectively. Since it has an absorption band in a wavelength region centered on 260 nm, the light transmittance in the same wavelength region is impaired. Therefore, the distorted structure in the synthetic quartz glass should be reduced as much as possible.
[0011]
The present invention relates to a method for producing a synthetic quartz glass optical component used in an optical device using ultraviolet light having a wavelength of 155 to 400 nm or vacuum ultraviolet light as a light source, and softening the synthetic quartz glass block at a temperature of 1300 ° C. or higher. Thus, a method for producing a synthetic quartz glass optical component is provided, which is heat-molded into a shape close to the final shape and then heat-treated at a temperature of 700 to 1200 ° C. for 10 to 300 hours.
[0012]
The present invention also relates to a method for manufacturing a gas sealed tube for excimer lamp or mercury lamp that emits vacuum ultraviolet light having a wavelength of 155 to 200 nm, after the synthetic quartz glass block is softened at a temperature of 1300 ° C. or higher and drawn. The manufacturing method of the gas enclosure pipe | tube characterized by heat-processing for 10 to 200 hours at the temperature of 700-1200 degreeC.
[0013]
The temperature at which the synthetic quartz glass is thermoformed into a final product shape or a shape close to the final product is 1300 ° C. or higher, but a viscosity of 1700 to 2200 ° C., which is sufficiently low as 10 5 to 10 7 poise, is preferable. If it is lower than 1700 ° C., the viscosity of the synthetic quartz glass may not be sufficiently lowered and the dimensional accuracy may be inferior. If it is higher than 2200 ° C., the possibility of contamination with alkali metals, alkaline earth metals, transition metals, etc. increases. . The atmosphere at the time of thermoforming is preferably an inert gas such as argon or neon, and a gas that may react with synthetic quartz glass such as nitrogen, hydrogen or oxygen is not preferred. The atmospheric pressure at the time of thermoforming is preferably normal pressure or pressurization in order to prevent volatilization of the synthetic quartz glass.
[0014]
In addition, the content of each element of alkali metal (Na, K), alkaline earth metal (Mg, Ca), and transition metal (Fe, Ni, Cr, Al) in the synthetic quartz glass to be heat-molded is 10 ppb or less, respectively. It is preferable that When a synthetic quartz glass block with an impurity content exceeding 10 ppb is softened by heating at a high temperature and molded, oxygen-deficient defects such as ≡Si-Si≡ are generated during thermal processing, but the reason is not clear. In addition, the initial light transmittance and light resistance of the synthetic quartz glass optical component may be reduced. In the present specification, units such as ppm and ppb are used as mass-based displays.
[0015]
FIG. 1 is a conceptual cross-sectional view of an example of a molding furnace for pressure-molding a synthetic quartz glass block. After the synthetic quartz glass block 2 loaded in the mold 3 is heated by the heater 4 in the molding furnace 5, FIG. Pressurizing and molding is performed by the pressurizing cylinder 1. FIG. 2 is a conceptual cross-sectional view of an example of a molding furnace for drawing the synthetic quartz glass tube 6. A thick synthetic quartz glass tube heated by the heater 4 and softened is thinned by a drawing roller 7. The synthetic quartz glass tube 6 is obtained.
[0016]
After the synthetic quartz glass block is heated and formed into an arbitrary shape, the resulting synthetic quartz glass block is thermally annealed under appropriate conditions to sufficiently reduce the distorted structure in the synthetic quartz glass optical component. And synthetic quartz glass having excellent light resistance can be produced efficiently. The temperature of this thermal annealing is preferably in the range of 700 to 1200 ° C. When the temperature is lower than 700 ° C., an extremely long annealing time is required to reduce the distorted structure, so that productivity may be lowered. At 1200 ° C. or higher, the distorted structure cannot be sufficiently reduced, and the shape of the synthetic quartz glass formed into a shape of the final product or a shape close to the final product may change.
[0017]
As an atmosphere during the thermal annealing, an inert atmosphere such as nitrogen, helium, or argon is preferable. When thermal annealing is performed in an oxidizing atmosphere such as oxygen or a reducing atmosphere such as hydrogen, oxygen-rich defects such as ≡Si-O-O-Si≡ or oxygen deficiencies such as ≡Si-H and ≡Si-Si≡ Mold defects may be generated, and these defects may reduce light resistance.
[0018]
The time required for the thermal annealing depends on the size of the synthetic quartz glass, but in the case of a small optical material having a thickness or diameter of 5 mm or less, 10 to 200 hours are preferable, and 50 to 100 hours are particularly preferable. In the case of a large optical material having a thickness or diameter of 5 mm or more, 10 to 300 hours are preferable, and 100 to 200 hours are particularly preferable.
[0019]
Also, during heat processing and thermal annealing, impurities such as alkali metals (Na, K, etc.), alkaline earth metals (Mg, Ca, etc.), transition metals (Fe, Ni, Cr, Al, etc.) Mixing adversely affects light resistance and initial light transmission, so it is preferable to avoid contamination as much as possible. Specifically, the content of each element of alkali metal, alkaline earth metal, and transition metal in the final optical component is preferably 50 ppb or less.
[0020]
As the furnace used for the thermal annealing, it is preferable to use an external heating electric furnace heated by the heater 4 using a quartz glass furnace core tube 8 as shown in FIG.
[0021]
Prior to heat processing or thermal annealing, the synthetic quartz glass optical component can be immersed in an acid such as 5% or less of HF solution or sulfuric acid / hydrogen peroxide solution to remove and clean impurities adhering to the surface. preferable. These impurities are present in high concentration near the surface of the optical component, but when the surface is usually ground by machining and processed into the final shape, the portion with high concentration of impurity near the surface is removed. So it was not important. However, in the case of the present invention in which the shape is finished close to the final product by thermal processing, the amount of surface grinding by machining is reduced, so that care must be taken particularly to prevent contamination of impurities.
[0022]
The synthetic quartz glass optical component of the present invention may be obtained by various known methods such as a direct method, a soot method, and a sol-gel method. For applications where a lower OH group content is preferred, the soot method is preferred.
[0023]
Further, the synthetic quartz glass optical component produced by the method of the present invention preferably has a fictive temperature of 1200 ° C. or lower. The fictive temperature of quartz glass is described in the literature (A. Agarwal, KM Dabis and M. Tomzawa, “A simple IR spectroscopic method for determining fictive temperature of silica, 5, 19st. 198 (1995)) using an infrared spectrophotometer, it can be obtained from the position of the absorption peak near a wave number of 2260 cm −1 , and this fictive temperature is a parameter reflecting the content of the distorted structure in the quartz glass. Yes, the lower the fictive temperature, the lower the concentration of distorted structure in the quartz glass. When the fictive temperature is 1200 ° C. or lower, the concentration of the distorted structure in the quartz glass is sufficiently low, and excellent light resistance can be obtained.
[0024]
In addition, the synthetic quartz glass optical component produced by the method of the present invention preferably has an OH group concentration of 100 ppm or less in the synthetic quartz glass, particularly when used in an optical device using light having a wavelength of 180 nm or less as a light source. This is because the OH group in the synthetic quartz glass has a light absorption band in a vacuum ultraviolet region having a wavelength of 180 nm or less, which may deteriorate the light transmittance in the same wavelength region.
[0025]
【Example】
(Examples 1-8)
A porous quartz glass body obtained by flame hydrolysis of silicon tetrachloride was heated to 1450 ° C. and heated to 1450 ° C. under an atmosphere of He gas at a pressure shown in Table 1 to obtain an OH group content. Three different types of synthetic quartz glass ingots (size: diameter 250 mm × length 600 mm) were produced. A cylindrical shape with a diameter of 100 mm and a length of 600 mm was cut out from each ingot, and drilling with a diameter of 80 mm was performed at the center. Next, after immersing in 5% HF aqueous solution for 10 hours to remove the synthetic quartz glass in the vicinity of the surface where impurities are present at a high concentration, it is rinsed and dried with ion-exchanged water, and then at a temperature of 2000 ° C. with the apparatus shown in FIG. The tube was drawn into a transparent tube having a diameter of 25 mm and a wall thickness of 2 mm.
[0026]
(Example 9)
A porous quartz glass body obtained by flame hydrolysis of silicon tetrachloride was heated to 1450 ° C. at a pressure shown in Table 1 in a He gas 100% atmosphere to form a transparent glass, and a synthetic quartz glass ingot (size : Diameter 250 mm x length 600 mm). A cylindrical shape with a diameter of 100 mm and a length of 600 mm was cut out from each ingot, and drilling with a diameter of 80 mm was performed at the center. Without washing, the tube was drawn into a transparent tube having a diameter of 25 mm and a wall thickness of 2 mm at a temperature of 2000 ° C. using the apparatus shown in FIG.
The obtained tube was subjected to thermal annealing under the conditions shown in Table 1, and the following evaluation was performed.
[0027]
(Evaluation 1: OH group concentration)
Absorbance was measured with an infrared spectrophotometer, and the OH group concentration was determined from the absorption peak at a wavelength of 2.7 μm (Cer. Bull., 55 (5), 524, (1976)).
[0028]
(Evaluation 2: Impurity)
The content of impurities (Na, K, Mg, Ca, Fe, Ni, Cr, Al) was analyzed by ICP mass spectrometry (SPQ9000 manufactured by Seiko Instruments Inc.). Only elements exceeding 10 ppb are listed in Table 2, and when all impurities were 10 ppb or less, only “<10 ppb” was described in the corresponding column of Table 2.
[0029]
(Evaluation 3: Virtual temperature)
Using Fourier transform infrared spectrophotometer (Nicolet Co.), and measuring absorbance at 2200~2300Cm -1, it was determined fictive temperature by the position of the absorption peak near the wave number 2260cm -1 (A.Agarwal, K M. Dabis and M. Tomzawa, “A simple IR spectroscopic method for determining fictive temperature of silica glass”, J. Non-Cryst. Solids., 195, 191-198.
[0030]
(Evaluation 4: UV resistance)
In a nitrogen atmosphere with an oxygen concentration of 100 ppm or less, ArF excimer laser light (central wavelength 193 nm, pulse energy 5 mJ / cm 2 / pulse) was irradiated with 1 × 10 7 pulses, and the transmittance change (transmittance) at a wavelength of 193 nm before and after irradiation. The difference was evaluated with an ultraviolet spectrophotometer (U4000 manufactured by Hitachi, Ltd.).
(Evaluation 5: UV resistance)
In a nitrogen atmosphere with an oxygen concentration of 10 ppm or less, Xe 2 excimer lamp light (center wavelength: 172 nm, illuminance: 10 mW / cm 2 ) is irradiated for a total of 500 hours, and the transmittance change (difference in transmittance) at a wavelength of 172 nm before and after irradiation. Evaluation was performed with a vacuum ultraviolet spectrophotometer (VTMS502 manufactured by Acton Research).
[0031]
The evaluation results are shown in Table 2. Examples 3 to 9 are examples, and others are comparative examples.
[0032]
[Table 1]
Figure 2004035272
[0033]
[Table 2]
Figure 2004035272
[0034]
[Table 3]
Figure 2004035272
[0035]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the synthetic quartz glass optics stably used which was excellent in the tolerance with respect to the ultraviolet light of wavelength 155-400 nm or vacuum ultraviolet light used for the optical apparatus which uses ultraviolet light of wavelength 155-400 nm or vacuum ultraviolet light as a light source. A method for efficiently producing parts is obtained.
[Brief description of the drawings]
1 is a conceptual sectional view of an example of a molding furnace used in the present invention. FIG. 2 is a conceptual sectional view of an example of a molding furnace used in the present invention. FIG. 3 is a conceptual sectional view of an example of an annealing furnace used in the present invention. Figure [Explanation of symbols]
1: Pressurizing cylinder 2: Synthetic quartz glass block 3: Mold 4: Heater 5: Molding furnace 6: Synthetic quartz glass tube 7: Drawer roller 8: Quartz glass furnace core tube

Claims (8)

波長155〜400nmの紫外光または真空紫外光を光源とする光学装置に使用される合成石英ガラス光学部品の製造方法において、合成石英ガラスブロックを1300℃以上の温度にて軟化させることにより最終形状に近い形状に加熱成形した後、700〜1200℃の温度にて10〜300時間熱処理することを特徴とする合成石英ガラス光学部品の製造方法。In a method for producing a synthetic quartz glass optical component used in an optical device using ultraviolet light having a wavelength of 155 to 400 nm or vacuum ultraviolet light as a light source, the synthetic quartz glass block is softened at a temperature of 1300 ° C. or higher to obtain a final shape. A method for producing a synthetic quartz glass optical component, which is heat-molded to a near shape and then heat-treated at a temperature of 700 to 1200 ° C. for 10 to 300 hours. アルカリ金属(Na,K)、アルカリ土類金属(Mg,Ca),遷移金属(Fe,Ni,Cr,Al)の各元素の含有量がそれぞれ10ppb以下である合成石英ガラスブロックを用いる請求項1記載の合成石英ガラス光学部品の製造方法。2. A synthetic quartz glass block in which the content of each element of alkali metal (Na, K), alkaline earth metal (Mg, Ca), and transition metal (Fe, Ni, Cr, Al) is 10 ppb or less is used. The manufacturing method of the synthetic quartz glass optical component of description. 波長155〜200nmの真空紫外光を発するエキシマランプ用または水銀ランプ用のガス封入管の製造方法において、合成石英ガラスブロックを1300℃以上の温度にて軟化させて管引きした後、700〜1200℃の温度にて10〜200時間熱処理することを特徴とするガス封入管の製造方法。In a method for manufacturing a gas sealed tube for excimer lamp or mercury lamp for emitting vacuum ultraviolet light having a wavelength of 155 to 200 nm, a synthetic quartz glass block is softened at a temperature of 1300 ° C. or higher, and then drawn to 700 to 1200 ° C. A method for producing a gas-sealed tube, wherein the heat treatment is performed at a temperature of 10 to 200 hours. アルカリ金属(Na,K)、アルカリ土類金属(Mg,Ca)、遷移金属(Fe,Ni,Cr,Al)の各元素の含有量がそれぞれ10ppb以下である合成石英ガラスブロックを用いる請求項3記載のガス封入管の製造方法。4. A synthetic quartz glass block in which the content of each element of alkali metal (Na, K), alkaline earth metal (Mg, Ca), and transition metal (Fe, Ni, Cr, Al) is 10 ppb or less is used. The manufacturing method of the gas enclosure pipe of description. 製造された合成石英ガラス光学部品を形成する合成石英ガラスの、仮想温度が1200℃以下である請求項1または2記載の合成石英ガラス光学部品の製造方法。The method for producing a synthetic quartz glass optical component according to claim 1 or 2, wherein a fictive temperature of the synthetic quartz glass forming the produced synthetic quartz glass optical component is 1200 ° C or lower. 製造された合成石英ガラス光学部品を形成する合成石英ガラスの、OH基濃度が100ppm以下であること請求項1、2または5記載の合成石英ガラス光学部品の製造方法。The method for producing a synthetic quartz glass optical component according to claim 1, 2 or 5, wherein the synthetic quartz glass forming the produced synthetic quartz glass optical component has an OH group concentration of 100 ppm or less. 製造されたガス封入管を形成する合成石英ガラスの、仮想温度が1200℃以下である請求項3または4記載のガス封入管の製造方法。The method for manufacturing a gas sealed tube according to claim 3 or 4, wherein the fictive temperature of the synthetic quartz glass forming the manufactured gas sealed tube is 1200 ° C or lower. 製造されたガス封入管を形成する合成石英ガラスの、OH基濃度が100ppm以下であること請求項3、4または7記載のガス封入管の製造方法。The method for manufacturing a gas sealed tube according to claim 3, 4 or 7, wherein the synthetic quartz glass forming the manufactured gas sealed tube has an OH group concentration of 100 ppm or less.
JP2002190088A 2002-06-28 2002-06-28 Method of manufacturing synthetic quartz glass optical component, and method of manufacturing gas-enclosing tube Withdrawn JP2004035272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190088A JP2004035272A (en) 2002-06-28 2002-06-28 Method of manufacturing synthetic quartz glass optical component, and method of manufacturing gas-enclosing tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002190088A JP2004035272A (en) 2002-06-28 2002-06-28 Method of manufacturing synthetic quartz glass optical component, and method of manufacturing gas-enclosing tube

Publications (1)

Publication Number Publication Date
JP2004035272A true JP2004035272A (en) 2004-02-05

Family

ID=31700103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190088A Withdrawn JP2004035272A (en) 2002-06-28 2002-06-28 Method of manufacturing synthetic quartz glass optical component, and method of manufacturing gas-enclosing tube

Country Status (1)

Country Link
JP (1) JP2004035272A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335577A (en) * 2005-05-31 2006-12-14 Shinetsu Quartz Prod Co Ltd Synthetic quartz glass tube for high transmission excimer uv lamp and its producing method
WO2009025077A1 (en) * 2007-08-23 2009-02-26 Shin-Etsu Quartz Products Co., Ltd. Chemical-resistant silica glass and method for producing chemical-resistant silica glass
JP2009046328A (en) * 2007-08-15 2009-03-05 Shinetsu Quartz Prod Co Ltd Silica glass for photocatalyst and its production method
JP2009154090A (en) * 2007-12-26 2009-07-16 Shinetsu Quartz Prod Co Ltd Silica glass for photocatalyst, and method of preparing the same
CN110272204A (en) * 2019-06-28 2019-09-24 京东方科技集团股份有限公司 Composite decking glass, total reflection display device, selwnite English glass and preparation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07215731A (en) * 1994-01-28 1995-08-15 Shinetsu Quartz Prod Co Ltd High purity quartz glass for ultraviolet lamp and its production
JP2001316123A (en) * 2000-03-01 2001-11-13 Asahi Glass Co Ltd Synthetic quarts glass
JP2002087840A (en) * 2001-07-10 2002-03-27 Shinetsu Quartz Prod Co Ltd Silica glass optical material for projection lens and projection lens used in vacuum ultraviolet ray lithography
JP2002160936A (en) * 2000-11-20 2002-06-04 Sumitomo Metal Ind Ltd Synthetic quartz glass for light transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07215731A (en) * 1994-01-28 1995-08-15 Shinetsu Quartz Prod Co Ltd High purity quartz glass for ultraviolet lamp and its production
JP2001316123A (en) * 2000-03-01 2001-11-13 Asahi Glass Co Ltd Synthetic quarts glass
JP2002160936A (en) * 2000-11-20 2002-06-04 Sumitomo Metal Ind Ltd Synthetic quartz glass for light transmission
JP2002087840A (en) * 2001-07-10 2002-03-27 Shinetsu Quartz Prod Co Ltd Silica glass optical material for projection lens and projection lens used in vacuum ultraviolet ray lithography

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335577A (en) * 2005-05-31 2006-12-14 Shinetsu Quartz Prod Co Ltd Synthetic quartz glass tube for high transmission excimer uv lamp and its producing method
JP2009046328A (en) * 2007-08-15 2009-03-05 Shinetsu Quartz Prod Co Ltd Silica glass for photocatalyst and its production method
WO2009025077A1 (en) * 2007-08-23 2009-02-26 Shin-Etsu Quartz Products Co., Ltd. Chemical-resistant silica glass and method for producing chemical-resistant silica glass
JP2009051677A (en) * 2007-08-23 2009-03-12 Shinetsu Quartz Prod Co Ltd Chemically resistant silica glass and its production method
JP2009154090A (en) * 2007-12-26 2009-07-16 Shinetsu Quartz Prod Co Ltd Silica glass for photocatalyst, and method of preparing the same
CN110272204A (en) * 2019-06-28 2019-09-24 京东方科技集团股份有限公司 Composite decking glass, total reflection display device, selwnite English glass and preparation method
CN110272204B (en) * 2019-06-28 2022-05-10 京东方科技集团股份有限公司 Composite cover plate glass, total reflection display device, chromium-aluminum quartz glass and preparation method

Similar Documents

Publication Publication Date Title
KR100359947B1 (en) Excimer laser and silica glass optical material for the same and its manufacturing method
EP1125897B1 (en) Synthetic quartz glass and method for preparing the same
EP1103528B1 (en) Silica glass product for an optical element and method for its production
JP2002536705A (en) Silicon oxyfluoride glass for vacuum ultraviolet light transmission lithography
JP3188624B2 (en) High purity synthetic silica glass for far ultraviolet rays and method for producing the same
JP3674793B2 (en) Method for producing quartz glass optical member for ultraviolet laser
JP3403317B2 (en) High power synthetic silica glass optical material for vacuum ultraviolet light and method for producing the same
JP3228676B2 (en) High purity silica glass for far ultraviolet rays and method for producing the same
JP4066632B2 (en) Synthetic quartz glass optical body and manufacturing method thereof
JP2003081654A (en) Synthetic quartz glass, and production method therefor
KR20010052399A (en) Synthetic quartz glass for optical member, process for producing the same, and method of using the same
KR101740067B1 (en) OPTICAL MEMBER COMPRISING SILICA GLASS CONTAINING TiO
JP2004035272A (en) Method of manufacturing synthetic quartz glass optical component, and method of manufacturing gas-enclosing tube
JP3277719B2 (en) Synthetic quartz glass for transmitting ultraviolet light and method for producing the same
JP2000264650A (en) Production of optical quartz glass for excimer laser and vertical type heating furnace
JP4011217B2 (en) Manufacturing method of optical quartz glass for excimer laser
JP4111940B2 (en) Method for producing synthetic silica glass large plate for high output vacuum ultraviolet light
JP3531870B2 (en) Synthetic quartz glass
JP3336761B2 (en) Method for producing synthetic quartz glass for light transmission
JPH06166528A (en) Production of ultraviolet-laser resistant optical member
JP4151109B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP4085490B2 (en) Synthetic quartz glass for optical members and manufacturing method thereof
JP2001247318A (en) Synthesized silica glass optical member ahd method for producing the same
JP2002087840A (en) Silica glass optical material for projection lens and projection lens used in vacuum ultraviolet ray lithography
JPH11335140A (en) Production of optical synthetic quartz glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080617