JP4066632B2 - Synthetic quartz glass optical body and manufacturing method thereof - Google Patents

Synthetic quartz glass optical body and manufacturing method thereof Download PDF

Info

Publication number
JP4066632B2
JP4066632B2 JP2001309953A JP2001309953A JP4066632B2 JP 4066632 B2 JP4066632 B2 JP 4066632B2 JP 2001309953 A JP2001309953 A JP 2001309953A JP 2001309953 A JP2001309953 A JP 2001309953A JP 4066632 B2 JP4066632 B2 JP 4066632B2
Authority
JP
Japan
Prior art keywords
quartz glass
hydrogen
glass body
synthetic quartz
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001309953A
Other languages
Japanese (ja)
Other versions
JP2003112933A (en
JP2003112933A5 (en
Inventor
康臣 岩橋
順亮 生田
信也 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001309953A priority Critical patent/JP4066632B2/en
Publication of JP2003112933A publication Critical patent/JP2003112933A/en
Publication of JP2003112933A5 publication Critical patent/JP2003112933A5/ja
Application granted granted Critical
Publication of JP4066632B2 publication Critical patent/JP4066632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • C03B2201/04Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a synthetic quartz glass excellent in UV transmittance and uniformity in refractive index. SOLUTION: The synthetic quartz glass has <10 ppm concentration of OH groups, <=10 ppm concentration of chlorine, <=10 ppm concentration of fluorine and a refractive index variation (&Delta;n) of <=1&times;10<-6> in a plane perpendicular to incident light and does not substantially contain an oxygen deficiency type defect.

Description

【0001】
【発明の属する技術分野】
本発明は、合成石英ガラス光学体およびその製造方法に関し、特に紫外域から真空紫外域までの光を照射して用いるレンズやプリズム、窓材などの光学部材として用いられる合成石英ガラス光学体およびその製造方法に関する。
【0002】
【従来の技術】
従来から、光リソグラフィ技術においては、ウエハ上に微細な回路パターンを転写して集積回路を製造するための露光装置が広く利用されている。集積回路の高集積化および高機能化に伴い、集積回路の微細化が進み、露光装置には深い焦点深度で高解像度の回路パターンをウエハ面上に結像させることが求められ、露光光源の短波長化が進められている。露光光源は、従来のg線(波長436nm)やi線(波長365nm)から進んで、KrFエキシマレーザ(波長248nm)やArFエキシマレーザ(波長193nm)が用いられようとしている。またさらに回路パターンの線幅が100nm以下となる次世代の集積回路に対応するため、露光光源としてFレーザ(波長157nm)を用いることが検討され始めている。
【0003】
こうした光源を用いた光学装置に使用される光学部材には露光光源の波長域における透過率が高いこと(以下、「紫外線透過性が高い」という)、光使用領域における屈折率変動幅(Δn)が小さいこと(以下、「均質性が高い」という)、紫外線照射による、透過率低下、蛍光発光強度および屈折率変動(コンパクション)が少ないこと(以下、これらを併せて「耐紫外線性が高い」という)が要求される。
【0004】
従来の合成石英ガラスでは、例えばKrFエキシマレーザ、ArFエキシマレーザやFレーザなどの光源から発せられる高エネルギー光を照射すると、紫外域に新たな吸収帯を生じ、紫外線を光源とした光学系を構築する際の光学部材としては問題があった。すなわち、紫外線が長時間照射されると、いわゆるE’センタ(≡Si・)とよばれるほぼ波長214nmを中心とする吸収帯とNBOHC(非架橋酸素ラジカル:≡Si−O・)と呼ばれるほぼ波長260nmを中心とする吸収帯が生起する。
【0005】
これらの吸収帯が生成する原因は大きく二つに分類でき、一つは合成石英ガラス中の構造欠陥、すなわち≡Si−Si≡や≡Si−Hなどの還元型欠陥あるいは≡Si−O−O−Si≡などの酸化型欠陥によるもの、別の一つは合成石英ガラス中の不安定な構造、すなわち三員環構造や四員環構造によるものである。これら欠陥が、次式(1)〜(4)にしめすように、紫外線照射により切断され、常磁性欠陥(E’センターおよびNBOHC)が生成し、常磁性欠陥があると透過率の低下、屈折率の絶対値の上昇、屈折率分布の変動や蛍光が生じると考えられている。
【0006】
【数1】

Figure 0004066632
【0007】
耐紫外線性を確保する方法としては、特公平6−53593号公報に、10ppm以上のOH基を含有する合成石英ガラス中に、水素分子を添加する方法が提案されており、ここで、水素分子は、紫外線照射によって生成する前述の常磁性欠陥を修復する作用があるとされている。
【0008】
しかし、合成石英ガラス中のOH基からは紫外線照射により、次式(5)に示すような反応により、NBOHCが生成し、波長260nmの吸収帯および波長650nmの蛍光が生じる問題があった。
【0009】
【数2】
Figure 0004066632
【0010】
これを解決するために、合成石英ガラス中に水素分子を含有させても式(5)の反応を完全に防ぐことはできず、特にOH基含有量が多い場合には、波長260nmの吸収帯および波長650nmの蛍光が強くなる傾向があった。
【0011】
さらに、OH基は屈折率に影響を与えるため、高濃度に含有すると光使用領域においてOH濃度にばらつきが生じ易くなり、光学部材に要求される均質性を必ずしも満足できなかった。
【0012】
加えて、合成石英ガラス中のOH基含有量が多いと、波長150〜180nmにおける透過率が低下するため、フッ素レーザなど真空紫外域の光を光源とする装置への使用には特に問題であった。
【0013】
一方、OH基濃度を低減させる方法として、多孔質石英ガラス体を、塩素、四フッ化ケイ素、六フッ化イオウなどで処理する方法が提案されている。これら方法で得られる合成石英ガラスは、それぞれ塩素、フッ素、イオウを含有するが、いずれの場合も屈折率に影響を与えるため、高濃度に含有すると、光使用領域において塩素、フッ素、イオウ濃度にばらつきが生じ易くなり、光学部材に要求される均質性を必ずしも満足できなかった。さらに、OH基濃度を低減すると、前述の酸素欠乏型欠陥(≡Si−Si≡)が増える傾向にあり、耐紫外線性が低下するおそれがあった。
【0014】
【発明が解決しようとする課題】
本発明は、従来から用いられた塩素、四フッ化珪素、六フッ化イオウを用いずに含有するOH濃度を10ppm以下に低減させ、均質性に優れ、かつ、耐紫外線性に優れた合成石英ガラス光学体およびその製造方法の提供を目的とする。
【0015】
【課題を解決するための手段】
本発明の第一は波長400nm以下の紫外光域にて使用される合成石英ガラス光学体において、OH基濃度が10ppm未満、塩素濃度が10ppm以下、フッ素濃度が10ppm以下、入射光に直行する平面内における屈折率変動幅(Δn)が1×10−6以下であり、かつ実質的に酸素欠乏型欠陥を含有しないことを特徴とする合成石英ガラス光学体である。OH基濃度は5ppm以下とすることが好ましい。
【0016】
本発明の第二は、合成石英ガラス光学体の製造方法であって、
(a)ガラス形成原料を火炎加水分解して得られる石英ガラス微粒子を基材に堆積、成長して多孔質石英ガラス体を形成する工程と、
(b)多孔質石英ガラス体を水素含有雰囲気下におき、含有するOH基濃度を低減した多孔質石英ガラス体を形成する工程と、
(c)含有するOH基濃度を低減した多孔質石英ガラス体を、不活性ガスを主成分とする実質的に水素を含まない雰囲気下におき、含有する水素を低減した多孔質石英ガラス体を形成する工程と、
(d)含有する水素を低減した多孔質石英ガラス体を酸素含有雰囲気下におき、酸素欠乏型欠陥を実質的に含まない多孔質石英ガラス体を形成する工程と、
(e)酸素欠乏型欠陥を実質的に含まない多孔質石英ガラス体を透明ガラス化温度まで昇温して透明ガラス化する工程と、
を含む合成石英ガラス光学体の製造方法である。
本発明の第三は、本発明の第二の合成石英ガラス光学体の製造方法において、工程(c)を実質的に水素を含まない減圧雰囲気下で行う合成石英ガラス光学体の製造方法である。
【0017】
【発明の実施の形態】
合成石英ガラス中の、OH基濃度は10ppm未満、塩素濃度およびフッ素濃度はそれぞれ10ppm以下であれば、各濃度のばらつきが抑制され、良好な均質性が得られるが、OH基濃度、塩素濃度およびフッ素濃度は少なければ少ないほど好ましい。更に、OH基濃度は5ppm未満であれば、特に真空紫外域において高い透過率が得られる。また、イオウ濃度は10ppm以下であることが好ましく、少なければ少ないほど好ましい。
【0018】
また合成石英ガラス中のアルカリ金属、アルカリ土類金属、遷移金属等の金属不純物は、紫外域から真空紫外域における透過率を低下させるだけでなく、耐紫外線性を低下させる原因にもなるため、その含有量は極力少ない方が好ましく、具体的にはそれぞれ合量で10ppb以下が好ましい。
【0019】
また、合成石英ガラス中の酸素欠乏型欠陥(≡Si−Si≡)は、波長200nm以下の真空紫外域における光透過性に大きな影響を及ぼし、この酸素欠乏型欠陥は、波長163nmを中心とする吸収対を有する。波長163nmにおける内部透過率T163(%/cm)は、合成石英ガラス中のOH基含有量COH(ppm)により次式のように推測される。
【0020】
【数3】
Figure 0004066632
【0021】
しかし酸素欠乏型欠陥があると、163nmを中心とした吸収帯があるため、実際の波長163nmにおける内部透過率(T163)は、式(1)の右辺の値よりも小さくなる。従って、酸素欠乏型欠陥を実質的に含有しないことが、優れた真空紫外線透過性を得るために重要であり、酸素欠乏型欠陥を実質的に含有しないことは、波長163nmにおける内部透過率に関する式(i)を満足することを意味する。
【0022】
本発明において必須ではないが、本発明により得られる合成石英ガラスに、水素分子を添加すると耐紫外線性がさらに向上する。前述のように、水素分子には、紫外線照射により生成した常磁性欠陥を修復する作用があるため、その含有量は多ければ多いほど好ましいが、1×1017分子/cm以上あることが好ましい。
【0023】
本発明の合成石英ガラスを製造する方法としては、直接法、スート法(VAD法、OVD法)やプラズマ法を挙げることができるが、製造時の温度が低く、塩素および金属などの不純物の混入を避けることができることから、スート法が特に好ましい。
【0024】
スート法による合成石英ガラスの製造方法を具体的に説明する。
工程(a):ガラス形成原料を火炎加水分解させて得られる石英ガラス微粒子を基材に堆積、成長させて多孔質石英ガラス体を形成させる。石英ガラス形成原料としては、ガス化可能な原料であれば特に限定されないが、SiCl、SiHCl、SiHCl、SiHClなどの塩化物、SiF、SiHF、SiHなどのフッ化物、SiBr、SiHBrなどの臭化物、SiIなどのヨウ化物といったハロゲン化ケイ素化合物、またRSi(OR)4−n(ここにRは炭素数1〜4のアルキル基、nは0〜3の整数)で示されるアルコキシシランが挙げられる。また前記基材としては石英ガラス製の種棒(例えば特公昭63−24973号公報記載の種棒)を使用できる。また棒状に限らず板状の基材を使用してもよい。
【0025】
工程(b):多孔質石英ガラス体を水素含有雰囲気下におき、含有するOH基濃度を低減した多孔質石英ガラス体を得る。
【0026】
水素含有雰囲気としては、水素ガスを0.1〜100体積%含有する不活性ガス雰囲気が好ましい。
これらの雰囲気下、500〜1200℃の温度にて、圧力1〜15気圧で数十時間熱処理することが好ましい。なお、本明細書において、圧力値は、ゲージ圧ではなく、絶対圧を意味する。
【0027】
工程(b)では、多孔質石英ガラス体を、水素含有の還元雰囲気下にて処理することにより、式(6)および式(7)に示す反応によって、多孔質石英ガラス体の脱水反応が進行する。
【0028】
【数4】
Figure 0004066632
【0029】
さらに工程(b)では、式(7)により生成された≡Si−Si≡から、式(8)に示す反応により≡Si−Hが生成される。
【0030】
【数5】
Figure 0004066632
【0031】
式(7)および式(8)により生成される還元型欠陥≡Si−Si≡および≡Si−Hは、合成石英ガラスの耐紫外線性を劣化させる傾向があるため、続いて工程(c)〜(d)を実施することにより、これら還元型欠陥を修復させる。
【0032】
工程(b)を前記条件範囲未満の温度および圧力で実施すると、脱水反応が十分に進行しないため、最終的に得られる合成石英ガラス中のOH基濃度は10ppm未満にならないおそれがある。また、工程(b)を前記条件範囲を超える温度、圧力および時間で実施すると、多孔質石英ガラス体中に含有する還元型欠陥≡Si−Si≡および≡Si−H濃度が増大し、次の工程(c)〜(d)を実施しても、完全に修復できないおそれがでてくる。
【0033】
工程(c):含有するOH基濃度を低減した多孔質石英ガラス体を、実質的に水素を含まない雰囲気下におき、含有する水素を排出した多孔質石英ガラス体を得る。
実質的に水素を含まない雰囲気としては、工程(c)による処理開始時において、水素ガスが0.1体積%以下であれば特に限定されず、不活性ガスを主成分とする雰囲気であることが好ましい。圧力については、常圧でも可能であるが、長時間を要するため、減圧で行うことが好ましい。さらに減圧の場合は、100Torr(13300Pa)以下が特に好ましい。これらの雰囲気下、500〜1400℃で数十時間熱処理することが好ましい。
【0034】
工程(c)は、工程(b)により得られる、含有するOH基濃度を低減させた多孔質石英ガラス体中に含まれる水素を排出する工程であり、式(9)に示す反応が進行する。
【0035】
【数6】
Figure 0004066632
【0036】
工程(c)を前記条件範囲外で実施すると、水素の排出が十分に行われず、多孔質石英ガラス体中に還元型欠陥≡Si−Hが残存するおそれがある。残存する≡Si−Hは、次の工程(d)により、合成石英ガラス体中に含有するOH基濃度を増大させる。そして結果的には、得られる合成石英ガラス中のOH基濃度は10ppm未満にならないおそれがでてくる。
【0037】
工程(d):含有する水素を低減した多孔質石英ガラス体を酸素含有雰囲気下におき、酸素欠乏型欠陥を実質的に含まない多孔質石英ガラス体を得る。
酸素含有雰囲気としては、酸素ガスを0.1〜100体積%含有する不活性ガス雰囲気が好ましい。
これらの雰囲気下、500〜1400℃の温度にて、圧力1〜15気圧で数十時間熱処理することが好ましい。
【0038】
工程(d)は、式(7)および式(9)に示す反応により生成される酸素欠乏型欠陥を修復する工程であり、式(10)に示す反応が進行する。
【0039】
【数7】
Figure 0004066632
【0040】
工程(d)を前記条件範囲外で実施すると、酸素欠乏型欠陥の修復が充分に行われず、多孔質石英ガラス体中に≡Si−Si≡が残存するおそれがある。
【0041】
工程(e):酸素欠乏型欠陥を実質的に含まない多孔質石英ガラス体を透明ガラス化温度まで昇温して透明ガラス化し、合成石英ガラスを得る。透明ガラス化温度は、通常は1300〜1600℃であり、特に1350〜1500℃であることが好ましい。雰囲気としては、ヘリウムなどの不活性ガス100%の雰囲気、またはヘリウムなどの不活性ガスを主成分とする雰囲気であることが好ましい。圧力については、減圧または常圧であればよい。特に常圧の場合はヘリウムガスを用いることができる。また、減圧の場合は100Torr(13300Pa)以下が好ましい。
【0042】
前記の方法により得られる合成石英ガラスは、ステッパレンズその他の光学部材として用いるために、光学部材として必要な光学特性を与えるための工程(f)〜(h)を行うことが好ましい。
(f)合成石英ガラス体を軟化点以上の温度に加熱して所望の形状に成形し、成形石英ガラス体を得る工程、
(g)成形石英ガラス体を除冷する工程、および
(h)成形石英ガラス体を水素を含んだ雰囲気下におき、成形石英ガラス体に水素をドープする工程。
【0043】
工程(f)〜(h)を具体的に説明する。
工程(f):工程(e)で得られた合成石英ガラス体を軟化点以上の温度に加熱して所望の形状に成形し、成形石英ガラス体を得る。成形加工の温度としては、1650〜1800℃が好ましい。1650℃以下では、石英ガラスの粘度が高いため、実質的に自重変形が行われず、またSiOの結晶相であるクリストバライトの成長が起こり、いわゆる失透が生じる。1800℃以上では、SiOの昇華が無視できなくなる。
【0044】
工程(g):工程(f)で得られた石英成形ガラス体を除冷点近傍の温度域を所定の冷却速度以下の冷却速度で除冷し、均質性の高い石英成形ガラス体を得る。冷却速度は、石英成形ガラス体の大きさにもよるが、40℃/hr以下が好ましい。40℃/hr以上では、石英成形ガラス体外周部における屈折率の変動幅が大きくなり、結果として、本発明の目的とする均質性1×10−6以下となる領域が石英成形ガラス体中央部に限られ、光学部材用合成石英ガラスの製品歩留まりが低下するおそれがでてくる。石英ガラスの除冷点はおおむね1100℃であるので、冷却速度40℃/hr以下とする温度域は、1300〜1000℃が適切である。
【0045】
工程(h):工程(h)で得られた石英成形ガラス体を水素を含んだ雰囲気下におき、水素をドープし、光学用合成石英ガラスを得る。温度は600℃以下で熱処理することが好ましく、低温で水素処理を行うことにより、≡Si−Si≡や≡Si−Hなどの還元型欠陥の生成を防止することができる。圧力は1〜30気圧である。水素を含んだ雰囲気としては、水素ガスを0.1〜100体積%含有する不活性ガス雰囲気が好ましい。
【0046】
本発明において得られる合成石英ガラスは、高純度であり、典型的には、含有されるアルカリ金属(Li、Na、K等)濃度は合量で10ppb以下、アルカリ土類金属(Ca、Mg等)濃度は合量で10ppb以下、遷移金属(Cr、Fe、Ni、Mo、W、Cu、Ti等)濃度は合量で10ppb以下である。
【0047】
また、OH基の低減処理時に、フッ素、塩素、またはイオウを使用しないので、これらの含有率を10ppm以下と低くすることができる。
さらに、多孔質体の状態でOH基を低減し、酸素欠乏欠陥の低減処理も行うので、大口径(例えば300mmφ以上)の合成石英ガラス光学体が得られる。
【0048】
【実施例】
以下、本発明の実施例および比較例によって、本発明をより具体的に説明するが、本発明はこれらの例に限定されるものではない。なお、以下の例で製造した合成石英ガラスの評価は、下記の方法にしたがって、行った。
【0049】
(評価1:OH基濃度)
赤外分光光度計による測定を行い、波長2.7μmでの吸収ピークからOH基濃度を求めた(J.P.Wiiliams et.al.,Ceramic Bulletin,55(5),524,1976)。本法による検出限界は0.1ppmである。
【0050】
(評価2:水素分子濃度)
ラマン分光測定を行い、レーザラマンスペクトルの4135cm−1の散乱ピーク強度I4135と、ケイ素と酸素との間の基本振動である800cm−1の散乱ピーク強度I800との強度比(=I4135/I800)より、水素分子濃度[分子/cm]を求めた(V.S.Khotimchenko et.al.,Zhurnal Prikladnoi Spektroskopii,Vol.46,No.6,987〜997,1986)。なお本法による検出限界は5×1016分子/cmである。
【0051】
(評価3:フッ素濃度)
合成石英ガラスを無水炭酸ナトリウムにより加熱融解し、得られた融液に蒸留水および塩酸を融液に対する体積比でそれぞれ1ずつ加えて試料液を調整した。試料液の起電力をフッ素イオン選択性電極および比較電極としてラジオメータトレーディング社製No.945−220およびNo.945−468をそれぞれ用いてラジオメータにより測定し、フッ素イオン標準溶液を用いてあらかじめ作成した検量線に基づいて、フッ素含有量を求めた(日本化学会誌、1972(2),350)。なお本法による検出限界は10ppmである。
【0052】
(評価4:塩素濃度)
Crのkα線を用いた蛍光X線分析を行い、塩素の特性X線強度を測定することにより、合成石英ガラス中の塩素濃度を求めた。なお本法による検出限界は2ppmである。
【0053】
(評価5:酸素欠乏型欠陥)
試料の温度を25℃に保持した状態で真空紫外分光光度計(分光計器社製「UV201M」、以下同じ)を用いて、厚み3mmおよび厚み10mmの2種類の試料について、波長163nmでの光透過率を測定した。波長163nm光透過率T、Tより、波長163nmにおける内部光透過率T163を式(ii)に従って求め、式(i)の条件が満足するかどうかを調べた。式(i)の条件を満たさない場合、すなわち式(i)の左辺の値が右辺の値より小さい場合は、酸素欠乏型欠陥が存在することを意味する。
【0054】
【数8】
Figure 0004066632
【0055】
(評価6:均質性)
フィゾー干渉計(ZygoIV)にて、オイルオンプレート法で、合成石英ガラス試料の300mmφの面にヘリウムネオンレーザ光を垂直にあて、300mmφ面内での屈折率分布を測定した。
【0056】
(評価7:耐紫外線性)
ArFエキシマレーザ(ラムダフィジーク社製LPX120i)からの光をエネルギ密度100mJ/cm/pulse、周波数200Hzの条件にて試料に照射した。ArFエキシマレーザ光を5×10ショット照射した直後の波長214nmでの透過率を紫外可視分光光度計により測定し、ArFエキシマレーザ照射により生じる常磁性欠陥E’センターによる波長214nm吸収強度を、照射前後での吸収係数変化量Δk214[cm−1]により、評価した。Δk214の値が小さいほどE’センターが低減されていることを示し、良好な結果である。
【0057】
(評価8:蛍光発光の評価)
KrFエキシマレーザ(ラムダフィジーク社製LPX120i)からの光をエネルギ密度100mJ/cm/pulse、周波数200Hzの条件にて試料に照射した。KrFエキシマレーザ光を1×10ショット照射した場合の波長650nmの蛍光強度L650および波長248nmの散乱光強度S248をファイバ導光タイプの分光光度計を用いてそれぞれ測定し、248nmの散乱光強度S248に対する波長650nmの蛍光強度の比L650/S248を求めることにより、波長650nmの蛍光強度を評価した。L650/S248の値が小さい方が蛍光発光が抑制されていることを示し、良好な結果である。
【0058】
(評価9:波長157nmの内部透過率)
試料の温度を25℃に保持した状態で真空紫外分光光度計(分光計器社製「UV201M」、以下同じ)を用いて、厚み3mmおよび厚み10mmの2種類の試料について、波長157nmでの光透過率を測定した。波長157nm光透過率T、Tより、波長157nmにおける内部光透過率T157を式(iii)に従って求めた。
【0059】
【数9】
Figure 0004066632
【0060】
(例1〜例9)
公知のスート法により、SiClを酸水素火炎中で加水分解し、形成されたSiO微粒子を基材上に堆積させて400mmφ×長さ800mmの多孔質石英ガラス体を作製した(工程(a))。多孔質石英ガラス体を水素ガス100%の雰囲気下、表1に示す条件で熱処理を行い、多孔質石英ガラス体の脱水を行った(工程(b))。続いて、圧力10Torr(1330Pa)以下の減圧に保持した状態で、表1に示す条件で熱処理を行い、多孔質石英ガラス体中の水素の除去処理を行った(工程(c))。
【0061】
さらに、酸素ガス100%の雰囲気下、表1に示す条件で熱処理を行い、多孔質石英ガラス体中の酸素欠乏型欠陥≡Si−Si≡の修復処理を行った(工程(d))。続いて、圧力10Torr(1330Pa)以下の減圧に保持した状態で1450℃まで昇温し、この温度にて2時間保持し透明石英ガラス体(160mmφ×長さ450mm)を作製した(工程(e))。
【0062】
さらに、得られた透明石英ガラス体を、カーボン製発熱体を有する電気炉内で、軟化点以上の1750℃に加熱して自重変形を行わせ石英成形ガラス体(340mmφ×長さ100mm)を得た(工程(f))。得られた石英成形ガラス体を340mmφ×厚さ40mmに切断し、これを電気炉内に設置し、除冷点近傍である1250℃に加熱し、以後0.5℃/hrの冷却速度で除冷を行い、炉内温度が950℃になったとき給電を中止し炉内放冷した(工程(g))。続いて、水素含有雰囲気下、表1に示す条件で500℃にて450時間保持して石英ガラス中に水素ドープを行い(工程(h))、表2に示す例1〜9の合成石英ガラスを得た。
【0063】
上記の製法において、石英ガラス中のOH基濃度の制御は、工程(b)における処理圧力および温度、工程(c)における処理温度を調整することにより制御した。また石英ガラス中の≡Si−Si≡の有無は、工程(d)における処理温度および時間を調整することにより制御した。さらに、石英ガラス中の水素分子濃度は、工程(h)における雰囲気中の水素濃度および全圧を調整することにより制御した。
【0064】
【表1】
Figure 0004066632
【0065】
例1〜9で得られた合成石英ガラスを評価した。各評価の結果を表2に示す。NDは検出限界以下であることを示す。なお例1〜5、9は実施例、例6〜8は比較例に相当する。例1〜9のうち、例6、7は含有するOH濃度が高いため、例8は酸素欠乏型欠陥があるため、他のものより特性が劣っている。なお、例1〜9では、いずれも、フッ素は検出されず、塩素は10ppm以下であった。
【0066】
【表2】
Figure 0004066632
【0067】
(例10)
公知のスート法により、SiClを酸水素火炎中で加水分解させ、形成されたSiO微粒子を基材上に堆積させて400mmφ×長さ800mmの多孔質石英ガラス体を作製した(工程(a))。多孔質石英ガラス体を電気炉に設置し、10Torr以下の減圧状態からSiF/He=5/95(vol%)の混合ガスを常圧になるまで導入した。この雰囲気下、500℃で10hr保持することにより、多孔質ガラス体の脱水を行うと同時にフッ素の添加を行った(工程(b’)。続いて、圧力10Torr以下の減圧に保持した状態で1450℃まで昇温し、この温度にて2時間保持し透明石英ガラス体(160mmφ×長さ450mm)を作製した(工程(e))。
【0068】
さらに、得られた透明石英ガラス体を、カーボン製発熱体を有する電気炉内で、軟化点以上の1750℃に加熱して自重変形を行わせ石英成形ガラス体(340mmφ×長さ100mm)を得た(工程(f))。得られた石英成形ガラス体を340mmφ×厚さ40mmに切断し、これを電気炉内に設置し、除冷点近傍である1250℃に加熱し、以後0.5℃/hrの冷却速度で除冷を行い、炉内温度が950℃になったとき給電を中止し炉内放冷した(工程(g))。続いて、水素ガス100%、10気圧、500℃の雰囲気下で450時間保持して石英ガラス中に水素ドープを行い(工程(h))、合成石英ガラスを得た。
【0069】
(例11)
例10の工程(b’)において、多孔質石英ガラス体を電気炉に設置し、10Torr以下の減圧状態からCl/He=2/98(vol%)の混合ガスを常圧になるまで導入した。この雰囲気下、1000℃で10hr保持することにより、多孔質ガラス体の脱水を行うと同時に塩素の添加を行った(工程(b”))。これ以外は例10と全く同様の方法により合成石英ガラスを作製した。
【0070】
例10および11と上記例1で得られた合成石英ガラスを評価した。各評価の結果を表3および4に示す。なお例10および11は比較例である。例10は含有するフッ素濃度が高く、またその濃度のばらつきが大きいため、例11は含有する塩素濃度が高く、またその濃度のばらつきが大きいため、例1より特性が劣っている。
【0071】
【表3】
Figure 0004066632
【0072】
【表4】
Figure 0004066632
【0073】
【発明の効果】
本発明によれば、均質性および真空紫外線透過性に優れた合成石英ガラスを得ることができる。また、本発明によれば、耐紫外線性にも優れた合成石英ガラスを得ることができる。したがって、紫外域から真空紫外域までの光に使用される光学系を構成する部材の素材としてきわめて好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a synthetic quartz glass optical body and a method for producing the same, and in particular, a synthetic quartz glass optical body used as an optical member such as a lens, a prism, or a window material used by irradiating light from an ultraviolet region to a vacuum ultraviolet region It relates to a manufacturing method.
[0002]
[Prior art]
Conventionally, in an optical lithography technique, an exposure apparatus for manufacturing an integrated circuit by transferring a fine circuit pattern onto a wafer has been widely used. As integrated circuits become highly integrated and highly functional, miniaturization of integrated circuits advances, and the exposure apparatus is required to form a high-resolution circuit pattern on the wafer surface with a deep focal depth. Short wavelength is being promoted. The exposure light source is advanced from the conventional g-line (wavelength 436 nm) and i-line (wavelength 365 nm), and KrF excimer laser (wavelength 248 nm) and ArF excimer laser (wavelength 193 nm) are about to be used. Further, in order to cope with next-generation integrated circuits in which the line width of the circuit pattern is 100 nm or less, use of an F 2 laser (wavelength 157 nm) as an exposure light source has begun to be studied.
[0003]
An optical member used in an optical apparatus using such a light source has a high transmittance in the wavelength range of the exposure light source (hereinafter referred to as “high ultraviolet transmittance”), and a refractive index fluctuation range (Δn) in the light use region. Is low (hereinafter referred to as “high homogeneity”), low in transmittance due to ultraviolet irradiation, and less in fluorescence emission intensity and refractive index fluctuation (compaction) (hereinafter referred to as “high UV resistance”) Is required).
[0004]
In conventional synthetic quartz glass, for example, when high energy light emitted from a light source such as a KrF excimer laser, ArF excimer laser or F 2 laser is irradiated, a new absorption band is generated in the ultraviolet region, and an optical system using ultraviolet light as a light source is formed. There was a problem as an optical member for construction. That is, when ultraviolet rays are irradiated for a long time, an absorption band centered at a wavelength of about 214 nm called an E ′ center (≡Si ·) and an almost wavelength called NBOHC (non-bridging oxygen radical: ≡Si—O ·) An absorption band centered at 260 nm occurs.
[0005]
The causes of the generation of these absorption bands can be broadly classified into two. One is a structural defect in synthetic quartz glass, that is, a reduced defect such as ≡Si—Si≡ or ≡Si—H or ≡Si—O—O. The other is due to an oxidation type defect such as —Si≡, and the other is due to an unstable structure in the synthetic quartz glass, that is, a three-membered ring structure or a four-membered ring structure. These defects are cut by irradiation with ultraviolet rays as shown in the following formulas (1) to (4), and paramagnetic defects (E ′ center and NBOHC) are generated. It is considered that the absolute value of the refractive index increases, the refractive index distribution fluctuates, and fluorescence occurs.
[0006]
[Expression 1]
Figure 0004066632
[0007]
As a method for ensuring ultraviolet resistance, Japanese Patent Publication No. 6-53593 proposes a method of adding hydrogen molecules into synthetic quartz glass containing 10 ppm or more of OH groups. Here, hydrogen molecules Is said to have an action of repairing the above-mentioned paramagnetic defects generated by ultraviolet irradiation.
[0008]
However, there has been a problem that NBOHC is generated from the OH group in the synthetic quartz glass by the reaction shown in the following formula (5) by ultraviolet irradiation, and an absorption band of wavelength 260 nm and fluorescence of wavelength 650 nm are generated.
[0009]
[Expression 2]
Figure 0004066632
[0010]
In order to solve this, even if hydrogen molecules are contained in the synthetic quartz glass, the reaction of the formula (5) cannot be completely prevented, and particularly when the OH group content is high, an absorption band having a wavelength of 260 nm is obtained. And there was a tendency for fluorescence at a wavelength of 650 nm to become strong.
[0011]
Furthermore, since the OH group affects the refractive index, if it is contained at a high concentration, the OH concentration tends to vary in the light use region, and the homogeneity required for the optical member cannot always be satisfied.
[0012]
In addition, when the OH group content in the synthetic quartz glass is large, the transmittance at a wavelength of 150 to 180 nm is lowered, which is particularly problematic for use in a device using light in the vacuum ultraviolet region such as a fluorine laser. It was.
[0013]
On the other hand, as a method of reducing the OH group concentration, a method of treating a porous quartz glass body with chlorine, silicon tetrafluoride, sulfur hexafluoride or the like has been proposed. The synthetic quartz glass obtained by these methods contains chlorine, fluorine, and sulfur, respectively. However, in any case, the refractive index is affected. Variations were likely to occur, and the homogeneity required for optical members could not always be satisfied. Further, when the OH group concentration is reduced, the aforementioned oxygen-deficient defects (≡Si—Si≡) tend to increase, and there is a possibility that the ultraviolet resistance is lowered.
[0014]
[Problems to be solved by the invention]
The present invention reduces the OH concentration contained without using chlorine, silicon tetrafluoride or sulfur hexafluoride used conventionally to 10 ppm or less, and is excellent in homogeneity and synthetic quartz excellent in ultraviolet resistance. An object is to provide a glass optical body and a method for producing the same.
[0015]
[Means for Solving the Problems]
The first aspect of the present invention is a synthetic quartz glass optical body used in an ultraviolet light region having a wavelength of 400 nm or less, an OH group concentration of less than 10 ppm, a chlorine concentration of 10 ppm or less, a fluorine concentration of 10 ppm or less, and a plane perpendicular to incident light. A synthetic quartz glass optical body characterized by having a refractive index fluctuation range (Δn) of 1 × 10 −6 or less and substantially free of oxygen-deficient defects. The OH group concentration is preferably 5 ppm or less.
[0016]
The second of the present invention is a method for producing a synthetic quartz glass optical body,
(A) depositing and growing quartz glass fine particles obtained by flame hydrolysis of a glass-forming raw material on a substrate to form a porous quartz glass body;
(B) placing the porous quartz glass body in a hydrogen-containing atmosphere and forming a porous quartz glass body containing a reduced concentration of OH groups;
(C) A porous quartz glass body with a reduced content of OH groups is placed in an atmosphere containing essentially an inert gas and containing substantially no hydrogen, and a porous quartz glass body with a reduced content of hydrogen is obtained. Forming, and
(D) placing the porous quartz glass body containing reduced hydrogen in an oxygen-containing atmosphere to form a porous quartz glass body substantially free of oxygen-deficient defects;
(E) a step of raising the temperature of the porous quartz glass body substantially free of oxygen-deficient defects to a transparent vitrification temperature to form a transparent glass;
Is a method for producing a synthetic quartz glass optical body.
3rd of this invention is a manufacturing method of the synthetic quartz glass optical body which performs a process (c) in the reduced pressure atmosphere which does not contain hydrogen substantially in the manufacturing method of the 2nd synthetic quartz glass optical body of this invention. .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
If the OH group concentration in the synthetic quartz glass is less than 10 ppm, and the chlorine concentration and the fluorine concentration are each 10 ppm or less, variation in each concentration is suppressed and good homogeneity is obtained, but the OH group concentration, chlorine concentration and The smaller the fluorine concentration, the better. Furthermore, if the OH group concentration is less than 5 ppm, high transmittance can be obtained particularly in the vacuum ultraviolet region. Moreover, it is preferable that sulfur concentration is 10 ppm or less, and it is so preferable that there are few.
[0018]
In addition, metal impurities such as alkali metals, alkaline earth metals, and transition metals in synthetic quartz glass not only reduce the transmittance from the ultraviolet region to the vacuum ultraviolet region, but also cause a decrease in ultraviolet resistance, The content is preferably as small as possible. Specifically, the total amount is preferably 10 ppb or less.
[0019]
In addition, oxygen-deficient defects (≡Si—Si≡) in synthetic quartz glass have a significant effect on light transmittance in the vacuum ultraviolet region with a wavelength of 200 nm or less, and these oxygen-deficient defects center around a wavelength of 163 nm. Has an absorption pair. The internal transmittance T 163 (% / cm) at a wavelength of 163 nm is estimated by the following formula based on the OH group content C OH (ppm) in the synthetic quartz glass.
[0020]
[Equation 3]
Figure 0004066632
[0021]
However, when there is an oxygen-deficient defect, since there is an absorption band centered at 163 nm, the internal transmittance (T 163 ) at an actual wavelength of 163 nm is smaller than the value on the right side of Equation (1). Therefore, it is important to obtain substantially no oxygen deficiency type defects in order to obtain excellent vacuum ultraviolet transmittance, and the fact that no oxygen deficiency type defects are substantially contained is an expression relating to internal transmittance at a wavelength of 163 nm. It means satisfying (i).
[0022]
Although not essential in the present invention, the addition of hydrogen molecules to the synthetic quartz glass obtained by the present invention further improves the UV resistance. As described above, since hydrogen molecules have a function of repairing paramagnetic defects generated by ultraviolet irradiation, the content of hydrogen molecules is preferably as large as possible, but is preferably 1 × 10 17 molecules / cm or more.
[0023]
Examples of the method for producing the synthetic quartz glass of the present invention include a direct method, a soot method (VAD method, OVD method) and a plasma method, but the temperature during production is low and impurities such as chlorine and metal are mixed. The soot method is particularly preferable.
[0024]
A method for producing synthetic quartz glass by the soot method will be specifically described.
Step (a): Quartz glass fine particles obtained by flame hydrolysis of a glass forming raw material are deposited and grown on a substrate to form a porous quartz glass body. The quartz glass forming raw material is not particularly limited as long as it is a gasifiable raw material, but chlorides such as SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , SiH 3 Cl, SiF 4 , SiHF 3 , SiH 2 F 2 and the like. fluoride, SiBr 4, SiHBr bromides such as 3, halogenated silicon compounds such as iodide such as SiI 4, R n Si (OR) 4- n ( wherein R is an alkyl group having 1 to 4 carbon atoms, n Is an integer of 0 to 3). Further, as the base material, a seed rod made of quartz glass (for example, a seed rod described in Japanese Patent Publication No. 63-24973) can be used. Moreover, you may use not only rod shape but a plate-shaped base material.
[0025]
Step (b): The porous quartz glass body is placed in a hydrogen-containing atmosphere to obtain a porous quartz glass body having a reduced OH group concentration.
[0026]
As the hydrogen-containing atmosphere, an inert gas atmosphere containing 0.1 to 100% by volume of hydrogen gas is preferable.
In these atmospheres, heat treatment is preferably performed at a temperature of 500 to 1200 ° C. and a pressure of 1 to 15 atmospheres for several tens of hours. In the present specification, the pressure value means an absolute pressure, not a gauge pressure.
[0027]
In the step (b), the porous quartz glass body is treated under a hydrogen-containing reducing atmosphere, so that the dehydration reaction of the porous quartz glass body proceeds by the reactions shown in the formulas (6) and (7). To do.
[0028]
[Expression 4]
Figure 0004066632
[0029]
Further, in step (b), ≡Si—H is produced from the ≡Si—Si≡ produced by the formula (7) by the reaction shown in the formula (8).
[0030]
[Equation 5]
Figure 0004066632
[0031]
Since the reduced defects ≡Si—Si≡ and ≡Si—H generated by the formulas (7) and (8) tend to deteriorate the ultraviolet resistance of the synthetic quartz glass, the steps (c) to By carrying out (d), these reduced defects are repaired.
[0032]
If step (b) is carried out at a temperature and pressure less than the above-mentioned condition ranges, the dehydration reaction does not proceed sufficiently, so that the OH group concentration in the finally obtained synthetic quartz glass may not be less than 10 ppm. Moreover, when the step (b) is carried out at a temperature, pressure and time exceeding the above condition range, the concentration of reduced defects ≡Si—Si≡ and ≡Si—H contained in the porous quartz glass body increases, Even if the steps (c) to (d) are performed, there is a possibility that they cannot be completely repaired.
[0033]
Step (c): A porous quartz glass body having a reduced OH group concentration is placed in an atmosphere substantially free of hydrogen to obtain a porous quartz glass body from which the contained hydrogen has been discharged.
The atmosphere that does not substantially contain hydrogen is not particularly limited as long as hydrogen gas is 0.1% by volume or less at the start of the treatment in step (c), and is an atmosphere mainly containing an inert gas. Is preferred. Regarding the pressure, normal pressure is also possible, but since it takes a long time, it is preferably performed under reduced pressure. Further, in the case of reduced pressure, 100 Torr (13300 Pa) or less is particularly preferable. Heat treatment is preferably performed at 500 to 1400 ° C. for several tens of hours under these atmospheres.
[0034]
Step (c) is a step of discharging hydrogen contained in the porous quartz glass body obtained by step (b) and having a reduced OH group concentration, and the reaction shown in formula (9) proceeds. .
[0035]
[Formula 6]
Figure 0004066632
[0036]
If the step (c) is carried out outside the above condition range, hydrogen is not sufficiently discharged, and there is a possibility that reduced defects ≡Si—H remain in the porous quartz glass body. The remaining ≡Si—H increases the concentration of OH groups contained in the synthetic quartz glass body in the next step (d). As a result, the OH group concentration in the resultant synthetic quartz glass may not be less than 10 ppm.
[0037]
Step (d): A porous quartz glass body with reduced hydrogen content is placed in an oxygen-containing atmosphere to obtain a porous quartz glass body substantially free of oxygen-deficient defects.
As the oxygen-containing atmosphere, an inert gas atmosphere containing 0.1 to 100% by volume of oxygen gas is preferable.
In these atmospheres, heat treatment is preferably performed at a temperature of 500 to 1400 ° C. and a pressure of 1 to 15 atmospheres for several tens of hours.
[0038]
Step (d) is a step of repairing oxygen-deficient defects generated by the reactions shown in equations (7) and (9), and the reaction shown in equation (10) proceeds.
[0039]
[Expression 7]
Figure 0004066632
[0040]
If step (d) is carried out outside the above range, oxygen deficient defects are not sufficiently repaired, and ≡Si—Si≡ may remain in the porous quartz glass body.
[0041]
Step (e): A porous quartz glass body substantially free of oxygen-deficient defects is heated to a transparent vitrification temperature to become transparent vitrified to obtain a synthetic quartz glass. The transparent vitrification temperature is usually 1300 to 1600 ° C, and particularly preferably 1350 to 1500 ° C. The atmosphere is preferably an atmosphere of 100% inert gas such as helium or an atmosphere mainly composed of an inert gas such as helium. The pressure may be reduced pressure or normal pressure. In particular, helium gas can be used at normal pressure. In the case of reduced pressure, 100 Torr (13300 Pa) or less is preferable.
[0042]
Since the synthetic quartz glass obtained by the above method is used as a stepper lens or other optical member, it is preferable to perform steps (f) to (h) for providing optical characteristics necessary for the optical member.
(F) a step of heating the synthetic quartz glass body to a temperature equal to or higher than the softening point to form a desired shape to obtain a molded quartz glass body;
(G) A step of cooling the shaped quartz glass body, and (h) a step of placing the shaped quartz glass body in an atmosphere containing hydrogen and doping the shaped quartz glass body with hydrogen.
[0043]
Steps (f) to (h) will be specifically described.
Step (f): The synthetic quartz glass body obtained in the step (e) is heated to a temperature equal to or higher than the softening point and shaped into a desired shape to obtain a shaped quartz glass body. The molding process temperature is preferably 1650 to 1800 ° C. Below 1650 ° C., the viscosity of quartz glass is high, so that its own weight deformation is not substantially carried out, and cristobalite, which is a crystal phase of SiO 2 , grows, and so-called devitrification occurs. Above 1800 ° C., SiO 2 sublimation cannot be ignored.
[0044]
Step (g): The quartz molded glass body obtained in the step (f) is cooled at a cooling rate equal to or lower than a predetermined cooling rate in the temperature range near the cooling point to obtain a quartz molded glass body with high homogeneity. The cooling rate is preferably 40 ° C./hr or less, although it depends on the size of the quartz molded glass body. When the temperature is 40 ° C./hr or more, the fluctuation range of the refractive index in the outer peripheral portion of the quartz molded glass body becomes large, and as a result, the region where the homogeneity of 1 × 10 −6 or less as the object of the present invention is obtained However, the product yield of synthetic quartz glass for optical members may be reduced. Since the cooling point of quartz glass is approximately 1100 ° C., a temperature range of 1300 to 1000 ° C. is appropriate for a cooling rate of 40 ° C./hr or less.
[0045]
Step (h): The quartz molded glass body obtained in step (h) is placed in an atmosphere containing hydrogen and doped with hydrogen to obtain optical synthetic quartz glass. Heat treatment is preferably performed at a temperature of 600 ° C. or less, and by performing hydrogen treatment at a low temperature, generation of reduced defects such as ≡Si—Si≡ and ≡Si—H can be prevented. The pressure is 1 to 30 atmospheres. As the atmosphere containing hydrogen, an inert gas atmosphere containing 0.1 to 100% by volume of hydrogen gas is preferable.
[0046]
The synthetic quartz glass obtained in the present invention has high purity. Typically, the concentration of contained alkali metals (Li, Na, K, etc.) is 10 ppb or less in total, and alkaline earth metals (Ca, Mg, etc.). ) Concentration is 10 ppb or less in total, and transition metal (Cr, Fe, Ni, Mo, W, Cu, Ti, etc.) concentration is 10 ppb or less in total.
[0047]
Moreover, since fluorine, chlorine, or sulfur is not used during the OH group reduction treatment, the content of these can be reduced to 10 ppm or less.
Furthermore, since the OH group is reduced in the state of the porous body and the oxygen deficiency defect reduction treatment is also performed, a synthetic quartz glass optical body having a large diameter (for example, 300 mmφ or more) can be obtained.
[0048]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples of the present invention, but the present invention is not limited to these examples. The synthetic quartz glass produced in the following examples was evaluated according to the following method.
[0049]
(Evaluation 1: OH group concentration)
Measurement with an infrared spectrophotometer was performed, and the OH group concentration was determined from the absorption peak at a wavelength of 2.7 μm (JP Wiilliams et. Al., Ceramic Bulletin, 55 (5), 524, 1976). The detection limit by this method is 0.1 ppm.
[0050]
(Evaluation 2: Hydrogen molecule concentration)
The Raman spectroscopic measurement is performed, and the intensity ratio (= I 4135 / I) of the scattering peak intensity I 4135 of 4135 cm −1 in the laser Raman spectrum and the scattering peak intensity I 800 of 800 cm −1 which is the fundamental vibration between silicon and oxygen. 800 ), the hydrogen molecule concentration [molecules / cm 3 ] was determined (VS Khotimchenko et. Al., Zhurnal Prikladno Specktroskii, Vol. 46, No. 6, 987-997, 1986). The detection limit by this method is 5 × 10 16 molecules / cm 3 .
[0051]
(Evaluation 3: Fluorine concentration)
Synthetic quartz glass was heated and melted with anhydrous sodium carbonate, and distilled water and hydrochloric acid were added to the obtained melt one by one in a volume ratio to the melt to prepare a sample solution. The electromotive force of the sample solution was used as a fluorine ion selective electrode and a reference electrode. 945-220 and no. Each of 945-468 was measured with a radiometer, and the fluorine content was determined based on a calibration curve prepared in advance using a fluorine ion standard solution (The Chemical Society of Japan, 1972 (2), 350). The detection limit by this method is 10 ppm.
[0052]
(Evaluation 4: Chlorine concentration)
Fluorescence X-ray analysis using Cr kα rays was performed, and the chlorine concentration in the synthetic quartz glass was determined by measuring the characteristic X-ray intensity of chlorine. The detection limit by this method is 2 ppm.
[0053]
(Evaluation 5: Oxygen-deficient defect)
Using a vacuum ultraviolet spectrophotometer (“UV201M” manufactured by Spectrometer Co., Ltd., the same shall apply hereinafter) with the temperature of the sample held at 25 ° C., light transmission at a wavelength of 163 nm for two types of samples having a thickness of 3 mm and a thickness of 10 mm The rate was measured. From the light transmittances T 1 and T 2 at a wavelength of 163 nm, an internal light transmittance T 163 at a wavelength of 163 nm was determined according to the equation (ii), and it was examined whether the condition of the equation (i) was satisfied. When the condition of the formula (i) is not satisfied, that is, when the value on the left side of the formula (i) is smaller than the value on the right side, it means that an oxygen deficient defect exists.
[0054]
[Equation 8]
Figure 0004066632
[0055]
(Evaluation 6: Homogeneity)
With a Fizeau interferometer (Zygo IV), helium neon laser light was perpendicularly applied to the 300 mmφ surface of the synthetic quartz glass sample by an oil-on-plate method, and the refractive index distribution in the 300 mmφ surface was measured.
[0056]
(Evaluation 7: UV resistance)
The sample was irradiated with light from an ArF excimer laser (LPX120i manufactured by Lambda Fijk) under the conditions of an energy density of 100 mJ / cm 2 / pulse and a frequency of 200 Hz. The transmittance at a wavelength of 214 nm immediately after irradiation with 5 × 10 6 shots of ArF excimer laser light was measured with an ultraviolet-visible spectrophotometer, and the absorption intensity at a wavelength of 214 nm by a paramagnetic defect E ′ center caused by ArF excimer laser irradiation was irradiated. Evaluation was made based on the change Δk 214 [cm −1 ] in the absorption coefficient before and after. A smaller value of Δk 214 indicates that the E ′ center is reduced, which is a good result.
[0057]
(Evaluation 8: Evaluation of fluorescence emission)
The sample was irradiated with light from a KrF excimer laser (LPX120i manufactured by Lambda Fijk) under the conditions of an energy density of 100 mJ / cm 2 / pulse and a frequency of 200 Hz. A fluorescence intensity L 650 having a wavelength of 650 nm and a scattered light intensity S 248 having a wavelength of 248 nm when KrF excimer laser light is irradiated by 1 × 10 6 shots are respectively measured using a fiber light guide type spectrophotometer. The fluorescence intensity at a wavelength of 650 nm was evaluated by obtaining a ratio L 650 / S 248 of the fluorescence intensity at a wavelength of 650 nm with respect to the intensity S 248 . A smaller value of L 650 / S 248 indicates that fluorescence emission is suppressed, which is a good result.
[0058]
(Evaluation 9: Internal transmittance at a wavelength of 157 nm)
Using a vacuum ultraviolet spectrophotometer (“UV201M” manufactured by Spectrometer Co., Ltd., the same shall apply hereinafter) while keeping the temperature of the sample at 25 ° C., light transmission at a wavelength of 157 nm was performed for two types of samples having a thickness of 3 mm and a thickness of 10 mm. The rate was measured. From the light transmittances T 1 and T 2 at a wavelength of 157 nm, the internal light transmittance T 157 at a wavelength of 157 nm was determined according to the formula (iii).
[0059]
[Equation 9]
Figure 0004066632
[0060]
(Example 1 to Example 9)
By a known soot method, SiCl 4 was hydrolyzed in an oxyhydrogen flame, and the formed SiO 2 fine particles were deposited on a substrate to produce a porous quartz glass body having a diameter of 400 mmφ × length of 800 mm (step (a )). The porous quartz glass body was heat-treated under the conditions shown in Table 1 under an atmosphere of 100% hydrogen gas to dehydrate the porous quartz glass body (step (b)). Then, in the state hold | maintained at the pressure of 10 Torr (1330 Pa) or less, it heat-processed on the conditions shown in Table 1, and the removal process of the hydrogen in a porous quartz glass body was performed (process (c)).
[0061]
Further, heat treatment was performed under the conditions shown in Table 1 in an atmosphere of 100% oxygen gas to repair oxygen deficient defects ≡Si-Si≡ in the porous quartz glass body (step (d)). Subsequently, the temperature was raised to 1450 ° C. while maintaining a reduced pressure of 10 Torr (1330 Pa) or less, and this temperature was maintained for 2 hours to produce a transparent quartz glass body (160 mmφ × length 450 mm) (step (e)) ).
[0062]
Further, the obtained transparent quartz glass body is heated to 1750 ° C. above the softening point in an electric furnace having a carbon heating element to perform its own weight deformation to obtain a quartz molded glass body (340 mmφ × length 100 mm). (Step (f)). The obtained quartz molded glass body was cut into 340 mmφ × thickness 40 mm, placed in an electric furnace, heated to 1250 ° C. near the cooling point, and then removed at a cooling rate of 0.5 ° C./hr. Cooling was performed, and when the furnace temperature reached 950 ° C., power feeding was stopped and the furnace was allowed to cool (step (g)). Subsequently, the quartz glass was doped with hydrogen in a hydrogen-containing atmosphere at 500 ° C. for 450 hours under the conditions shown in Table 1 (step (h)), and the synthetic quartz glass of Examples 1 to 9 shown in Table 2 Got.
[0063]
In the above production method, the OH group concentration in the quartz glass was controlled by adjusting the treatment pressure and temperature in the step (b) and the treatment temperature in the step (c). The presence or absence of ≡Si—Si≡ in the quartz glass was controlled by adjusting the treatment temperature and time in the step (d). Furthermore, the hydrogen molecule concentration in the quartz glass was controlled by adjusting the hydrogen concentration and total pressure in the atmosphere in the step (h).
[0064]
[Table 1]
Figure 0004066632
[0065]
The synthetic quartz glass obtained in Examples 1-9 was evaluated. The results of each evaluation are shown in Table 2. ND indicates that it is below the detection limit. Examples 1 to 5 and 9 correspond to examples, and examples 6 to 8 correspond to comparative examples. Among Examples 1 to 9, Examples 6 and 7 have a high OH concentration, and thus Example 8 has inferior characteristics compared to the others because of an oxygen-deficient defect. In Examples 1 to 9, fluorine was not detected and chlorine was 10 ppm or less.
[0066]
[Table 2]
Figure 0004066632
[0067]
(Example 10)
By a known soot method, SiCl 4 is hydrolyzed in an oxyhydrogen flame, and the formed SiO 2 fine particles are deposited on a substrate to produce a porous quartz glass body having a diameter of 400 mmφ × length of 800 mm (step (a )). The porous quartz glass body was placed in an electric furnace, and a mixed gas of SiF 4 / He = 5/95 (vol%) was introduced from a reduced pressure state of 10 Torr or less until a normal pressure was reached. Under this atmosphere, the porous glass body was dehydrated by holding at 500 ° C. for 10 hours, and at the same time, fluorine was added (step (b ′). Subsequently, 1450 in a state where the pressure was maintained at 10 Torr or less. The temperature was raised to 0 ° C. and kept at this temperature for 2 hours to produce a transparent quartz glass body (160 mmφ × 450 mm in length) (step (e)).
[0068]
Further, the obtained transparent quartz glass body is heated to 1750 ° C. above the softening point in an electric furnace having a carbon heating element to perform its own weight deformation to obtain a quartz molded glass body (340 mmφ × length 100 mm). (Step (f)). The obtained quartz molded glass body was cut into 340 mmφ × thickness 40 mm, placed in an electric furnace, heated to 1250 ° C. near the cooling point, and then removed at a cooling rate of 0.5 ° C./hr. Cooling was performed, and when the furnace temperature reached 950 ° C., power feeding was stopped and the furnace was allowed to cool (step (g)). Subsequently, the quartz glass was doped with hydrogen by holding it in an atmosphere of 100% hydrogen gas, 10 atm, and 500 ° C. for 450 hours (step (h)) to obtain a synthetic quartz glass.
[0069]
(Example 11)
In the step (b ′) of Example 10, the porous quartz glass body is placed in an electric furnace, and a mixed gas of Cl 2 / He = 2/98 (vol%) is introduced from a reduced pressure state of 10 Torr or less until a normal pressure is reached. did. Under this atmosphere, the porous glass body was dehydrated by holding at 1000 ° C. for 10 hours, and chlorine was added at the same time (step (b ″)). Except this, synthetic quartz was synthesized in the same manner as in Example 10. Glass was produced.
[0070]
The synthetic quartz glass obtained in Examples 10 and 11 and Example 1 was evaluated. The results of each evaluation are shown in Tables 3 and 4. Examples 10 and 11 are comparative examples. Since Example 10 has a high fluorine concentration and a large variation in the concentration, Example 11 has a high concentration of chlorine and a large variation in the concentration. Therefore, the characteristics are inferior to those in Example 1.
[0071]
[Table 3]
Figure 0004066632
[0072]
[Table 4]
Figure 0004066632
[0073]
【The invention's effect】
According to the present invention, a synthetic quartz glass excellent in homogeneity and vacuum ultraviolet ray permeability can be obtained. Moreover, according to the present invention, a synthetic quartz glass excellent in ultraviolet resistance can be obtained. Therefore, it is extremely suitable as a material for members constituting an optical system used for light from the ultraviolet region to the vacuum ultraviolet region.

Claims (7)

合成石英ガラス光学体の製造方法であって、
(a)ガラス形成原料を火炎加水分解して得られる石英ガラス微粒子を基材に堆積、成長して多孔質石英ガラス体を形成する工程と、
(b)多孔質石英ガラス体を水素含有雰囲気下におき、含有するOH基濃度を低減した多孔質石英ガラス体を形成する工程と、
(c)含有するOH基濃度を低減した多孔質石英ガラス体を、不活性ガスを主成分とする実質的に水素を含まない雰囲気下におき、含有する水素を低減した多孔質石英ガラス体を形成する工程と、
(d)含有する水素を低減した多孔質石英ガラス体を酸素含有雰囲気下におき、酸素欠乏型欠陥を実質的に含まない多孔質石英ガラス体を形成する工程と、
(e)酸素欠乏型欠陥を実質的に含まない多孔質石英ガラス体を透明ガラス化温度まで昇温して透明ガラス化する工程と、
を含む合成石英ガラス光学体の製造方法。
A method for producing a synthetic quartz glass optical body, comprising:
(A) depositing and growing quartz glass fine particles obtained by flame hydrolysis of a glass-forming raw material on a substrate to form a porous quartz glass body;
(B) placing the porous quartz glass body in a hydrogen-containing atmosphere and forming a porous quartz glass body containing a reduced concentration of OH groups;
(C) A porous quartz glass body with a reduced content of OH groups is placed in an atmosphere containing essentially an inert gas and containing substantially no hydrogen, and a porous quartz glass body with a reduced content of hydrogen is obtained. Forming, and
(D) placing the porous quartz glass body containing reduced hydrogen in an oxygen-containing atmosphere to form a porous quartz glass body substantially free of oxygen-deficient defects;
(E) a step of raising the temperature of the porous quartz glass body substantially free of oxygen-deficient defects to a transparent vitrification temperature to form a transparent glass;
A method for producing a synthetic quartz glass optical body comprising:
工程(c)を実質的に水素を含まない減圧雰囲気下で行う請求項1記載の合成石英ガラス光学体の製造方法。The method for producing a synthetic quartz glass optical body according to claim 1, wherein the step (c) is performed under a reduced-pressure atmosphere substantially free of hydrogen. 工程(d)を圧力1〜15気圧雰囲気下で行う請求項1または2記載の合成石英ガラス光学体の製造方法。The method for producing a synthetic quartz glass optical body according to claim 1 or 2, wherein the step (d) is performed under an atmosphere of 1 to 15 atm. 工程(b)を1気圧から15気圧までの範囲の圧力、かつ500℃から1200℃までの範囲の温度で行う請求項1、2または3記載の合成石英ガラス光学体の製造方法。The process according to claim 1, 2 or 3 synthetic quartz glass optical member according step of (b) carried out at a temperature in the range from 1 atm to a pressure in the range of up to 15 atmospheres, and 1200 ° C. from 500 ° C.. 工程(c)を500℃から1400℃までの範囲の温度で行う請求項1、2、3または記載の合成石英ガラス光学体の製造方法。The method for producing a synthetic quartz glass optical body according to claim 1, 2, 3 or 4, wherein the step (c) is carried out at a temperature in the range of 500 ° C to 1400 ° C. 工程(d)を1気圧から15気圧までの範囲の圧力、かつ500℃から1400℃までの範囲の温度で行う請求項1〜5記載の合成石英ガラス光学体の製造方法。Method for producing a synthetic quartz glass optical body of claims 1 to 5, wherein the step of (d) is carried out at a temperature in the range from 1 atmosphere to 1400 ° C. The pressure and from 500 ° C. in the range of up to 15 atmospheres. 工程(e)の後に、
(f)透明石英ガラス体を軟化点以上の温度に加熱して所望の形状に成形し、成形石英ガラス体を得る工程と
(g)成形石英ガラス体を徐冷する工程と
(h)成形石英ガラス体を、水素を含んだ雰囲気下におき、成形石英ガラス体に水素をドープする工程と、
をさらに含む請求項1〜6記載の合成石英ガラス光学体の製造方法。
After step (e)
(F) a step of heating the transparent quartz glass body to a temperature equal to or higher than the softening point to form a desired shape, obtaining a shaped quartz glass body, (g) a step of slowly cooling the shaped quartz glass body, and (h) shaped quartz. Placing the glass body in an atmosphere containing hydrogen and doping the molded quartz glass body with hydrogen;
Method of manufacturing a synthetic quartz glass optical body of claims 1 to 6, further comprising a.
JP2001309953A 2001-10-05 2001-10-05 Synthetic quartz glass optical body and manufacturing method thereof Expired - Fee Related JP4066632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001309953A JP4066632B2 (en) 2001-10-05 2001-10-05 Synthetic quartz glass optical body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001309953A JP4066632B2 (en) 2001-10-05 2001-10-05 Synthetic quartz glass optical body and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2003112933A JP2003112933A (en) 2003-04-18
JP2003112933A5 JP2003112933A5 (en) 2005-06-02
JP4066632B2 true JP4066632B2 (en) 2008-03-26

Family

ID=19129016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001309953A Expired - Fee Related JP4066632B2 (en) 2001-10-05 2001-10-05 Synthetic quartz glass optical body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4066632B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5106090B2 (en) * 2007-12-26 2012-12-26 信越石英株式会社 Silica glass for photocatalyst and method for producing the same
US8268740B2 (en) * 2008-02-07 2012-09-18 Corning Incorporated Halide free glasses having low OH, OD concentrations
US9067814B2 (en) * 2009-01-19 2015-06-30 Shin-Etsu Chemical Co., Ltd. Method of producing synthetic quartz glass for excimer laser
JP5609050B2 (en) * 2009-09-18 2014-10-22 住友電気工業株式会社 Method for producing synthetic quartz glass base material and synthetic quartz glass base material
KR20120092580A (en) 2009-10-30 2012-08-21 아사히 가라스 가부시키가이샤 Optical member for deep ultraviolet and process for producing same
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
TWI813534B (en) 2015-12-18 2023-09-01 德商何瑞斯廓格拉斯公司 Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
TWI720090B (en) 2015-12-18 2021-03-01 德商何瑞斯廓格拉斯公司 Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
CN108698885A (en) 2015-12-18 2018-10-23 贺利氏石英玻璃有限两合公司 The promotion of silicone content in prepared by quartz glass
EP3390304B1 (en) 2015-12-18 2023-09-13 Heraeus Quarzglas GmbH & Co. KG Spray granulation of silicon dioxide in the production of quartz glass
JP7048053B2 (en) 2015-12-18 2022-04-05 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Preparation of quartz glass in a multi-chamber furnace
KR20180095622A (en) 2015-12-18 2018-08-27 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 Manufacture of Silica Glass Products from Molten Crucibles Made of Refractory Metals
CN109314165B (en) * 2016-06-01 2022-01-07 信越石英株式会社 Quartz glass member for hermetic sealing of ultraviolet SMD type LED element and method for producing quartz glass member for ultraviolet LED
JP6789011B2 (en) * 2016-07-01 2020-11-25 信越石英株式会社 Manufacturing method of quartz glass member for ultraviolet LED
JP2017216389A (en) * 2016-06-01 2017-12-07 信越石英株式会社 Silica glass member for hermetic seal of ultraviolet smd type led element

Also Published As

Publication number Publication date
JP2003112933A (en) 2003-04-18

Similar Documents

Publication Publication Date Title
KR100359947B1 (en) Excimer laser and silica glass optical material for the same and its manufacturing method
US6499317B1 (en) Synthetic quartz glass and method for production thereof
JP4470479B2 (en) Synthetic quartz glass for optical members and method for producing the same
JP3893816B2 (en) Synthetic quartz glass and manufacturing method thereof
JP4066632B2 (en) Synthetic quartz glass optical body and manufacturing method thereof
US8541326B2 (en) Optical member for deep ultraviolet and process for producing same
EP1103528B1 (en) Silica glass product for an optical element and method for its production
US20060246363A1 (en) Photomask substrate made of synthetic quartz glass and photomask
WO1993000307A1 (en) Synthetic quartz glass optical member for excimer laser and production thereof
US6689705B2 (en) Synthetic quartz glass optical material and optical member
JP2005336047A (en) Optical member made of synthetic quartz glass and process for its production
US7312170B2 (en) Optical synthetic quartz glass and method for producing the same
US7784307B2 (en) Optical member made of synthetic quartz glass, and process for its production
JP2005298330A (en) Synthetic quartz glass and its manufacturing method
JP4946960B2 (en) Synthetic quartz glass and manufacturing method thereof
JP3472234B2 (en) Silica glass optical material for excimer laser and excimer lamp
JP4085633B2 (en) Synthetic quartz glass for optical components
JPH0616449A (en) Synthetic quartz glass optical member for excimer laser and its production
JP4240709B2 (en) Synthetic quartz glass and manufacturing method thereof
JP2003201126A (en) Synthetic quartz glass for optical member and method of manufacturing the same
JP2003183034A (en) Synthetic quartz glass for optical member and its manufacturing method
JP2003201125A (en) Synthetic quartz glass and its manufacturing method
JP4177078B2 (en) Synthetic quartz glass material for optical components

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees