JP2004034878A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2004034878A
JP2004034878A JP2002196709A JP2002196709A JP2004034878A JP 2004034878 A JP2004034878 A JP 2004034878A JP 2002196709 A JP2002196709 A JP 2002196709A JP 2002196709 A JP2002196709 A JP 2002196709A JP 2004034878 A JP2004034878 A JP 2004034878A
Authority
JP
Japan
Prior art keywords
tire
lateral groove
width
tread
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002196709A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakamura
中村 博司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2002196709A priority Critical patent/JP2004034878A/en
Publication of JP2004034878A publication Critical patent/JP2004034878A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire capable of reducing noise based on tire design standard for reducing noise by making the design standard clear. <P>SOLUTION: This pneumatic tire is provided with a main channel 2 provided in a tire tread 1 and continuous in the peripheral direction of the tire and a horizontal channel 4 communicating the main channels 1 mutually or the main channel 1 with a tire ground contact end 3, and a land part 5 formed by the main channel 1 and the horizontal channel 4 is arranged in the peripheral direction of the tire. A ratio of occupation of the land part 5 for product of ground contact width W and a minute interval Δ of the tire tread is calculated by percentage per rectangular region 7 surrounded by a straight line L connecting both ground contact ends 3 of the tire with both ground contact ends 3 of the tread in parallel with the direction A of rotary axis of the tire continuously across the minute interval Δ in a scope of 0.5 to 2.0 mm in the peripheral direction R of the tire. When a difference between the maximum value and the minimum value of the ratio of the occupation of the land part 5 at whole periphery of the tire is α% and width of the horizontal channel 4 is b mm, (α x b) is 80 or less. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、タイヤ周方向にブロック列を備えた空気入りタイヤの騒音低減技術に関する。
【0002】
【従来の技術】
従来から、空気入りタイヤにおいては、騒音低減が課題であった。特に、タイヤ周方向にブロック列を備えた空気入りタイヤにおいては、ピッチ数と走行速度により決定されるピッチ周波数を成分とするタイヤの振動音が問題となる。ブロック列において周方向ピッチ長を変化させるバリアブルピッチ配列法と呼ばれる方法により、ピッチ周波数を分散させ、騒音の低減を図ってきた。
【0003】
しかし、騒音を効果的に低減するためには、ピッチ長の差を大幅に変化させる必要がある。その反面、ピッチ長の短いブロックは剛性が低下し、接地時の変形はより大きくなる。その結果、ブロックの長短により摩耗量が異なる偏摩耗の発生が容易となる。そのため、騒音の低減と偏摩耗の抑制とを両立させることが困難であった。
【0004】
かかる問題の解決手段として、発明者は、特開2001−138713においては、ブロックの路面に対する打撃のタイミングずらして、打撃による衝撃力を分散させて、タイヤ振動の音圧を低減するためのタイヤ設計基準を提案した。
【0005】
【発明が解決しようとする課題】
ブロックを形成する横溝は、路面に対する打撃に伴うトレッドの打撃部分の振動と、その振動がタイヤサイドウォール部に伝達され、サイドウォール部が振動して空気の振動に変換されるタイヤ振動音(以下、打撃振動音と記す)に大きく関係する。すなわち、横溝で外周面を不連続化されたトレッドが路面に衝突する時、その速度は、タイヤの回転角速度が同じであるから、その速度は角速度と回転中心からの距離の関係から、不連続部の長さを、即ち横溝幅に比例する事になる。また衝撃力は、速度の2乗に比例するので、横溝幅が大きいほど、打撃振動音も大きくなる。
【0006】
一方、同設計基準においては、ブロックにより打撃に伴うタイヤ振動音の大きさに関係する横溝幅が考慮されていなかった。そのため、ブロックの路面打撃のタイミング(位相)をずらして、音圧を分散させても、駆動性能、排水性や耐摩耗性などのタイヤに要求される他の性能を満足するため、横溝幅を広くせざるを得ない場合、結果的に騒音レベルが増加することがあった。したがって、ブロックを形成する横溝幅をも考慮した新たな設計基準が必要となってきたのである。
【0007】
本発明の目的は、騒音低減のためのタイヤ設計基準を明確化し、該設計基準により騒音が低減された空気入りタイヤを提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するため、鋭意検討した結果、本発明は、タイヤトレッドに刻まれたタイヤ周方向に連なる主溝と、前記主溝同士又は前記主溝とタイヤ接地端とを連通する横溝とを備え、前記主溝及び前記横溝により形成された陸部がタイヤ周方向に配列された空気入りタイヤにおいて、
タイヤ両接地端と、タイヤ周方向に0.5〜2.0mmの範囲にある微小間隔を隔てて連続してタイヤ回転軸と平行にトレッドの両接地端を結ぶ直線とで囲まれる矩形領域ごとに、タイヤトレッドの接地幅と前記微小間隔との積に対する陸部の占める割合を百分率で算定し、
タイヤ全周における前記割合の最大値と最小値との差をα[%]、横溝幅をb[mm]としたとき、
α×bが80以下であることを特徴とする空気入りタイヤを採用した。
【0009】
陸部(ブロック)がタイヤ周方向に配列されたタイヤ、すなわち、ブロック列を備えたタイヤにおいては、タイヤの回転に応じて、ブロックが路面を打撃する度に打撃振動音が発生する。各ブロック列のブロックが同時期に路面を打撃すると、大きな打撃振動音が発生する。そのため、ブロックの配置を変化させ、打撃のタイミング(位相)をずらすことにより、打撃振動音の音圧を分散させ、騒音の音圧のピークを低減する手法を採る。
【0010】
打撃のタイミングがすれているか否かは、他のブロック列のブロックの配置との関係により判断される。タイヤの回転による打撃振動音であるから、タイヤ幅方向の陸部の割合の大小に応じて、打撃振動音の音圧強弱が生じると考えられる。したがって、タイヤ全周にわたって、陸部の割合を求め、陸部の割合の差が小さいときは、打撃振動音の音圧が分散されていると見ることができる。
【0011】
ここで、陸部とは、トレッド面から主溝や横溝を含むボイド部を除いた部分であり、ボイド部は、サイプ、スリット、切り込み、ディンプルなども含まれる。
【0012】
具体的に、陸部の割合は、タイヤ回転軸と平行にトレッドの両接地端を結ぶ直線上で見ることができるが、サイプや切り込みなどの局所的な変動をきたすことがある。そこで、0.5〜2.0mmの範囲にある微小区間を隔てたタイヤ回転軸と平行にトレッドの両接地端を結ぶ2本の直線と、接地端とで囲まれる矩形領域の面積に対する陸部の割合を百分率で算定する。そして、タイヤ全周に渡って、陸部の割合を求め、前記割合の最大値と最小値との差をα[%]として求める。
【0013】
ここで、求められたαは、打撃振動音の音圧の強弱の差を表す指標となるので、αを小さくすることにより、ブロックの打撃振動音の音圧が分散されるので、騒音を低減することができる。
【0014】
一方、ブロックの打撃振動音は、横溝で外周面を不連続化されたトレッドが路面に衝突する時、その速度は、タイヤの回転角速度が同じであるから、その速度は角速度と回転中心からの距離の関係から、不連続部の長さを、即ち横溝幅に比例する事になる。また衝撃力は、速度の2乗に比例するので、横溝幅b[mm]が大きいほど、打撃振動音も大きくなる。さらに横溝幅が太くなるとブロックの剛性が下がり、負荷による変形が大きくなるから、その変形に伴うポンピング音も大きくなり、横溝幅の影響は更に大きくなる。そのため、ブロック列の配列を工夫し、αを小さくし、打撃振動音の音圧を分散できても、横溝幅bが広くなれば、音圧レベル全体が高くなるので、結果的に騒音低減が困難となる。
【0015】
発明者は、騒音を低減するためには陸部の割合の差α[%]及び横溝幅b[mm]を小さくすることが必要であることを知見し、さらに種々の実験を行った結果、α[%]×b[mm]を80以下にするという設計基準によれば、騒音を大幅に低減できることを見出したのである。
【0016】
本発明においては、陸部の周方向の配列を異なる周方向ピッチ長を有する陸部の配列とすることもできる。
【0017】
陸部の周方向の配列を異なる周方向ピッチ長を有する、いわゆるバリアブルピッチ配列においては、ブロックの配置がランダムに近い。そのため、陸部の割合の変動を見極めにくいが、本発明の設計基準によれば、変動を的確に捉えられ、当該変動を小さくできる。その結果、打撃振動音の音圧を分散させ、騒音を低減できる。
【0018】
また、陸部の周方向の配列を同じ周方向ピッチ長を有する陸部の配列とすることもできる。
【0019】
陸部の周方向の配列が同じ周方向ピッチ長を有する、いわゆる等ピッチ配列では、陸部の割合の変化は、ピッチ配列と同じ周期性を有するので、1ピッチ配列内で陸部の割合を算出し、陸部の割合の差αを求めればよいことになる。
【0020】
また、横溝幅bが周方向ピッチ長の15%以下とすることもできる。
【0021】
前述したように、横溝幅bは、打撃振動音に大きく関係する。横溝幅bをピッチ長の15%以下にすることにより、騒音の音圧レベルが上げることなく、騒音低減が可能となる。
【0022】
【発明の実施の形態】
以下、本発明に係る空気入りタイヤの一実施形態を、図面を用いて説明する。図1は本発明に係る空気入りタイヤの概略パターン展開図である。図において、タイヤ周方向Rに連なる主溝2と、主溝2同士又は主溝2と接地端3とを連通する横溝4がトレッド1に刻まれ、ブロック5を形成している。そして、ブロック5が周方向Rに配列されて、ブロック列6を形成している。なお、ブロック列6は、ピッチ長Pを有する等ピッチ配列である。
【0023】
タイヤ回転軸方向Aに平行で両接地端3を結ぶ直線Lを、微小区間Δ(デルタ)ごとに間隔をおいて、周方向Rに沿って引く。隣り合う直線Lと両接地端3に囲まれる矩形領域7(図中、斜線部)において、矩形領域7の面積(トレッド接地幅W×微小区間Δ)に対する陸部の割合を、矩形領域7ごとに百分率にて算出する。
【0024】
このようにして求められた陸部の割合は、グラフ8に示すように周方向Rにみると変動している。当該変動は、ブロック打撃振動音の音圧の強弱と見ることができる。したがって、陸部の割合の最大値と最小値の差αを小さくすれば、ブロック打撃振動音の音圧を分散させてそのレベルを小さくできる。
【0025】
しかしながら、陸部の割合の差αを小さくし、音圧を分散しても、横溝4の幅bが広ければ、横溝4による衝撃力による打撃振動音やポンピング音が大きくなり、結果的に、音圧レベルが上昇してしまう。本発明では、横溝4の幅bをも考慮し、α[%]×b[mm]が80以下とすることにより、音圧を分散し、しかも音圧レベルを抑え、騒音低減を可能としたものである。
【0026】
なお、微小区間Δは0.5〜2.0mmが好ましい。0.5mm未満であると、サイプや切り込みなどの局所的な変動が現れるおそれがあり、2.0mmを越えると、陸部の割合の変化が緩やかになりすぎるからである。
【0027】
陸部は、路面に接地する部分であり、トレッド面から主溝や横溝を含むボイド部を除いた部分であり、ボイド部は、サイプ、スリット、切り込み、ディンプルなども含まれる。
【0028】
等ピッチ配列であれば、陸部の割合はピッチ長Pの周期性を有するので、αは1ピッチ内の最大値と最小値の差となる。バリアブルピッチ配列では、一般に、陸部の割合に周期性がないので、タイヤ全周に渡って陸部の割合を求めてから、最大値と最小値の差αを求めることになる。
【0029】
横溝がタイヤ回転軸方向Aに平行であり、幅が一定であれば、当該幅が横溝幅bとなる。しかし、所望のタイヤ性能を得るため、横溝がタイヤ回転軸方向Aに平行でない場合、溝幅が一定でない場合、あるいは、ジグザグ状である場合が多い。かかる場合は、以下のようにして横溝幅bを規定する。
【0030】
図2(a)は、横溝4がタイヤ回転軸方向Aに対して角度をもって刻まれている場合を示す。この場合、横溝4の両開口端のタイヤ周方向Rの中点Bを結ぶ直線と、タイヤ回転軸方向Aとのなす角をθとする。両開口端中点B間の距離をJとする。また、横溝の面積(図中、斜線部分)をSとする。かかる定義をした上で、横溝幅bは、
b=S/(J・cosθ)
で規定される。
【0031】
図2(b)は、横溝4が、ジグザグ状に刻まれている場合を示す。この場合、横溝4の両開口端のタイヤ周方向Rの中点Bを結ぶ直線と、タイヤ回転軸方向Aとのなす角をθとする。また、横溝の面積(図中、斜線部分)をSとする。横溝がジグザグ状なので、両開口端中点B間の距離は求めず、開口端終点Bから他の開口端中点Bまで、横溝4のタイヤ周方向Rの中点の軌跡である折れ線の長さを距離Jとする。すなわち、折れ線の各部の長さの和を距離Jとする。図では、J=J1+J2+J3となる。かかる定義をした上で、横溝幅bは、
b=S/(J・cosθ)
で規定される。
【0032】
なお、トレッドパターンによって、横溝幅が異なることがある場合、その中の最大値をもって横溝幅bとする。また、横溝幅bが打撃振動音の音圧レベルを決定する要因の1つである。したがって、等ピッチ配列の場合、横溝幅bは当該ピッチ長の15%以下とすることが好ましく、バリアブルピッチ配列の場合、横溝幅bは最大ピッチ長の15%とすることが好ましい。
【0033】
【実施例】
実施例として、同じタイヤサイズで、陸部の割合の差α[%]及び横溝幅b[mm]が異なる複数のタイヤを試作し、タイヤ騒音試験を行い、評価をした。試験方法は、JASO C606に規定される台上試験法(ドラム表面はセフティウォーク)により、80km/hにおけるパターン加振周波数に相当する404Hzでの音圧レベルを測定した。
【0034】
なお、タイヤサイズは11R22.5 144/141L、空気圧は850kPa、リムサイズは22.5×7.50、負荷は2725kgとした。トレッドパターンはブロックパターンで、ピッチ数は60の等ピッチ配列とし、溝深さは14mmとした。また、トレッドパターンは各試作タイヤごとに異なるので、図示は省略する。
【0035】
図3は、試作したタイヤについて、横軸をα×b、縦軸をα×b=80のときの音圧レベルを基準としたレベル差をプロットしたグラフである。同図によれば、α×bが小さくなるほど、音圧レベルが低下する。α×bが80までは、レベル低下の程度はさほど大きくないが、α×bが80より小さくなると、急激に低下する。すなわち、α×bを80以下とすることにより、音圧レベルを効果的に低減することが可能となる。
【0036】
【発明の効果】
以上の通り、本発明の空気入りタイヤでは、陸部の割合の差α[%]と横溝幅bに着目し、α[%]×b[mm]を80以下とすることにより、騒音を大幅に低減することができる。
【図面の簡単な説明】
【図1】本発明に係る空気入りタイヤのパターン概略展開図である。
【図2】本発明における横溝幅の定義を説明する図である。
【図3】本発明に係る空気入りタイヤの騒音レベルを示す図である。
【符号の説明】
1     トレッド
2     主溝
3     接地端
4     横溝
5     ブロック
6     ブロック列
7     矩形領域
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a noise reduction technique for a pneumatic tire having a block row in a tire circumferential direction.
[0002]
[Prior art]
Conventionally, noise reduction has been an issue in pneumatic tires. In particular, in the case of a pneumatic tire having a block row in the tire circumferential direction, the vibration sound of the tire having a pitch frequency determined by the pitch number and the traveling speed as a component is a problem. By a method called a variable pitch arrangement method in which a circumferential pitch length is changed in a block row, a pitch frequency is dispersed to reduce noise.
[0003]
However, in order to effectively reduce noise, it is necessary to greatly change the difference in pitch length. On the other hand, a block having a short pitch length has reduced rigidity, and the deformation at the time of contact with the ground becomes larger. As a result, it becomes easy to cause uneven wear in which the wear amount varies depending on the length of the block. Therefore, it has been difficult to achieve both reduction of noise and suppression of uneven wear.
[0004]
As a means for solving such a problem, in Japanese Patent Application Laid-Open No. 2001-138713, the inventor disclosed a tire design for reducing the sound pressure of tire vibration by dispersing the impact force of the impact by shifting the impact timing of the block on the road surface. Criteria proposed.
[0005]
[Problems to be solved by the invention]
The lateral groove forming the block is formed by a tire vibration sound (hereinafter referred to as "vibration of the tread striking portion caused by a striking on the road surface and transmitted to the tire sidewall portion, and the sidewall portion is vibrated and converted into air vibration." , Impact vibration sound). In other words, when the tread, whose outer peripheral surface has been discontinued by the lateral grooves, collides with the road surface, the speed is the same as the rotational angular speed of the tire, and the speed is discontinuous due to the relationship between the angular speed and the distance from the center of rotation. The length of the portion is proportional to the width of the lateral groove. In addition, since the impact force is proportional to the square of the speed, the greater the width of the lateral groove, the greater the impact vibration sound.
[0006]
On the other hand, the design standard did not consider the width of the lateral groove related to the magnitude of the tire vibration noise caused by the impact of the block. Therefore, even if the sound pressure is dispersed by shifting the timing (phase) of block impact on the road surface, the width of the lateral groove must be reduced in order to satisfy other performances required for the tire, such as driving performance, drainage and abrasion resistance. If it had to be wide, the noise level could eventually increase. Therefore, a new design standard which also takes into account the width of the lateral groove forming the block has become necessary.
[0007]
An object of the present invention is to clarify tire design standards for noise reduction and to provide a pneumatic tire with reduced noise according to the design standards.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, as a result of intensive studies, the present invention has a main groove engraved on the tire tread and extending in the tire circumferential direction, and a lateral groove communicating between the main grooves or the main groove and the tire grounding end. In the pneumatic tire, the land portion formed by the main groove and the lateral groove is arranged in the tire circumferential direction,
For each rectangular area surrounded by both tire grounding ends and a straight line connecting both grounding ends of the tread in parallel with the tire rotation axis continuously with a small interval in the range of 0.5 to 2.0 mm in the tire circumferential direction. To calculate the ratio of the land portion to the product of the contact width of the tire tread and the minute interval in percentage,
When the difference between the maximum value and the minimum value of the ratio in the entire circumference of the tire is α [%] and the width of the lateral groove is b [mm],
A pneumatic tire characterized by α × b of 80 or less was employed.
[0009]
In a tire having land portions (blocks) arranged in the tire circumferential direction, that is, a tire having a block row, a striking vibration sound is generated each time the block strikes a road surface in accordance with the rotation of the tire. When the blocks in each block row hit the road surface at the same time, a loud striking vibration sound is generated. Therefore, a method is employed in which the arrangement of the blocks is changed and the timing (phase) of the impact is shifted to disperse the sound pressure of the impact vibration sound and reduce the peak of the sound pressure of the noise.
[0010]
Whether or not the timing of the impact is delayed is determined based on the relationship with the arrangement of the blocks in the other block rows. Since the impact vibration sound is caused by the rotation of the tire, it is considered that the sound pressure of the impact vibration sound is increased or decreased according to the proportion of the land portion in the tire width direction. Therefore, the ratio of the land portion is obtained over the entire circumference of the tire, and when the difference in the ratio of the land portion is small, it can be seen that the sound pressure of the impact vibration sound is dispersed.
[0011]
Here, the land portion is a portion obtained by removing a void portion including a main groove and a lateral groove from a tread surface, and the void portion includes a sipe, a slit, a cut, a dimple, and the like.
[0012]
Specifically, the proportion of the land portion can be seen on a straight line connecting both tread ends of the tread in parallel with the tire rotation axis, but may have local fluctuations such as sipes and cuts. Therefore, the land area relative to the area of the rectangular area surrounded by the two straight lines connecting the two tread ends of the tread in parallel with the tire rotation axis separated by a minute section in the range of 0.5 to 2.0 mm and the tread end Is calculated as a percentage. Then, the ratio of the land portion is determined over the entire circumference of the tire, and the difference between the maximum value and the minimum value of the ratio is determined as α [%].
[0013]
Here, the obtained α is an index indicating the difference in the sound pressure of the striking vibration sound, so by reducing α, the sound pressure of the striking vibration sound of the block is dispersed, thus reducing the noise. can do.
[0014]
On the other hand, when the tread, whose outer peripheral surface is discontinued by the lateral groove, collides with the road surface, the speed of the impact vibration sound of the block is the same as the angular speed of the tire, so that the speed is the angular speed and the speed from the center of rotation. From the relationship of the distance, the length of the discontinuous portion is proportional to the width of the lateral groove. Further, since the impact force is proportional to the square of the speed, the larger the lateral groove width b [mm], the larger the impact vibration sound. Further, when the width of the lateral groove is increased, the rigidity of the block is reduced and the deformation due to the load is increased. Therefore, the pumping noise accompanying the deformation is increased, and the influence of the width of the lateral groove is further increased. Therefore, even if the arrangement of the block rows is devised, α can be reduced, and the sound pressure of the striking vibration sound can be dispersed, if the width b of the lateral groove increases, the overall sound pressure level increases, resulting in noise reduction. It will be difficult.
[0015]
The inventor has found that it is necessary to reduce the difference α [%] in the ratio of land portions and the width of the lateral groove b [mm] in order to reduce noise, and as a result of conducting various experiments, According to the design standard of setting α [%] × b [mm] to 80 or less, it has been found that noise can be significantly reduced.
[0016]
In the present invention, the arrangement of the land portions in the circumferential direction may be an arrangement of land portions having different circumferential pitches.
[0017]
In a so-called variable pitch arrangement having different circumferential pitches in the circumferential arrangement of land portions, the arrangement of blocks is almost random. For this reason, it is difficult to determine the change in the ratio of the land portion. However, according to the design criteria of the present invention, the change can be accurately captured and the change can be reduced. As a result, the sound pressure of the striking vibration sound can be dispersed, and the noise can be reduced.
[0018]
Moreover, the arrangement of the land portions in the circumferential direction may be an arrangement of land portions having the same circumferential pitch length.
[0019]
In a so-called equi-pitch arrangement in which the circumferential arrangement of the land portions has the same circumferential pitch length, since the change in the proportion of the land portions has the same periodicity as the pitch arrangement, the proportion of the land portions in one pitch arrangement is Then, the difference α in the ratio of the land portion may be obtained.
[0020]
Further, the lateral groove width b can be set to 15% or less of the circumferential pitch length.
[0021]
As described above, the width b of the lateral groove is significantly related to the impact vibration sound. By setting the lateral groove width b to 15% or less of the pitch length, noise can be reduced without increasing the sound pressure level of noise.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a pneumatic tire according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic pattern development view of a pneumatic tire according to the present invention. In the figure, a main groove 2 that continues in the tire circumferential direction R, and a lateral groove 4 that connects the main grooves 2 or the main groove 2 and the ground end 3 are cut into the tread 1 to form a block 5. The blocks 5 are arranged in the circumferential direction R to form a block row 6. Note that the block rows 6 are arranged at a constant pitch having a pitch length P.
[0023]
A straight line L that is parallel to the tire rotation axis direction A and that connects the two grounding ends 3 is drawn along the circumferential direction R at intervals of a minute section Δ (delta). In the rectangular region 7 (hatched portion in the figure) surrounded by the adjacent straight line L and both grounding ends 3, the ratio of the land portion to the area of the rectangular region 7 (tread ground width W x minute section Δ) is calculated for each rectangular region 7. Calculate as a percentage.
[0024]
The ratio of the land portion obtained in this manner fluctuates in the circumferential direction R as shown in the graph 8. The fluctuation can be regarded as the strength of the sound pressure of the block impact vibration sound. Therefore, if the difference α between the maximum value and the minimum value of the ratio of the land portion is reduced, the sound pressure of the block impact vibration sound can be dispersed and the level can be reduced.
[0025]
However, even if the difference α in the ratio of the land portion is reduced and the sound pressure is dispersed, if the width b of the lateral groove 4 is large, the impact vibration sound and the pumping sound due to the impact force by the lateral groove 4 increase, and as a result, The sound pressure level rises. In the present invention, by taking the width b of the lateral groove 4 into consideration and setting α [%] × b [mm] to 80 or less, the sound pressure is dispersed, the sound pressure level is suppressed, and the noise can be reduced. Things.
[0026]
The minute section Δ is preferably 0.5 to 2.0 mm. If it is less than 0.5 mm, local variations such as sipes and cuts may occur, and if it is more than 2.0 mm, the change in the ratio of land portions becomes too slow.
[0027]
The land portion is a portion that comes into contact with the road surface, and is a portion obtained by removing a void portion including a main groove and a lateral groove from a tread surface. The void portion includes a sipe, a slit, a cut, a dimple, and the like.
[0028]
In the case of an equal pitch arrangement, the ratio of the land portions has a periodicity of the pitch length P, so α is the difference between the maximum value and the minimum value within one pitch. In the variable pitch arrangement, in general, the ratio of the land portion has no periodicity, so that the difference α between the maximum value and the minimum value is calculated after calculating the ratio of the land portion over the entire circumference of the tire.
[0029]
If the lateral groove is parallel to the tire rotation axis direction A and the width is constant, the width becomes the lateral groove width b. However, in order to obtain desired tire performance, in many cases, the lateral groove is not parallel to the tire rotation axis direction A, the groove width is not constant, or the shape is zigzag. In such a case, the lateral groove width b is defined as follows.
[0030]
FIG. 2A shows a case where the lateral groove 4 is cut at an angle with respect to the tire rotation axis direction A. In this case, an angle between a straight line connecting the midpoint B of the tire circumferential direction R at both open ends of the lateral groove 4 and the tire rotation axis direction A is defined as θ. Let J be the distance between the midpoints B of both open ends. Further, the area of the lateral groove (the hatched portion in the figure) is represented by S. With this definition, the lateral groove width b is
b = S / (J · cos θ)
Is defined by
[0031]
FIG. 2B shows a case where the lateral groove 4 is cut in a zigzag shape. In this case, an angle between a straight line connecting the midpoint B of the tire circumferential direction R at both open ends of the lateral groove 4 and the tire rotation axis direction A is defined as θ. Further, the area of the lateral groove (the hatched portion in the figure) is represented by S. Since the lateral groove has a zigzag shape, the distance between the middle points B of the two open ends is not determined. Is the distance J. That is, the sum of the lengths of the respective portions of the polygonal line is defined as the distance J. In the figure, J = J1 + J2 + J3. With this definition, the lateral groove width b is
b = S / (J · cos θ)
Is defined by
[0032]
When the width of the lateral groove is different depending on the tread pattern, the maximum value among them is defined as the lateral groove width b. The lateral groove width b is one of the factors that determine the sound pressure level of the impact vibration sound. Therefore, in the case of an equal pitch arrangement, the lateral groove width b is preferably 15% or less of the pitch length, and in the case of a variable pitch arrangement, the lateral groove width b is preferably 15% of the maximum pitch length.
[0033]
【Example】
As an example, a plurality of tires having the same tire size but different in land portion ratio α [%] and lateral groove width b [mm] were prototyped, subjected to a tire noise test, and evaluated. As a test method, a sound pressure level at 404 Hz corresponding to a pattern excitation frequency at 80 km / h was measured by a bench test method (the drum surface was a safety walk) specified in JASO C606.
[0034]
The tire size was 11R22.5 144 / 141L, the air pressure was 850 kPa, the rim size was 22.5 × 7.50, and the load was 2725 kg. The tread pattern was a block pattern, the pitch number was 60 and the pitch was equal, and the groove depth was 14 mm. Since the tread pattern is different for each prototype tire, it is not shown.
[0035]
FIG. 3 is a graph plotting the level difference based on the sound pressure level when the horizontal axis is α × b and the vertical axis is α × b = 80 for the prototype tire. According to the figure, the sound pressure level decreases as α × b decreases. The level of the level decrease is not so large until α × b is 80, but when α × b is smaller than 80, the level sharply decreases. That is, by setting α × b to 80 or less, the sound pressure level can be effectively reduced.
[0036]
【The invention's effect】
As described above, the pneumatic tire of the present invention focuses on the difference α [%] in the ratio of land portions and the width b of the lateral groove, and greatly reduces noise by setting α [%] × b [mm] to 80 or less. Can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic development view of a pattern of a pneumatic tire according to the present invention.
FIG. 2 is a diagram illustrating a definition of a lateral groove width in the present invention.
FIG. 3 is a diagram showing a noise level of the pneumatic tire according to the present invention.
[Explanation of symbols]
Reference Signs List 1 tread 2 main groove 3 ground end 4 lateral groove 5 block 6 block row 7 rectangular area

Claims (4)

タイヤトレッドに刻まれたタイヤ周方向に連なる主溝と、前記主溝同士又は前記主溝とタイヤ接地端とを連通する横溝とを備え、前記主溝及び前記横溝により形成された陸部がタイヤ周方向に配列された空気入りタイヤにおいて、
タイヤ両接地端と、タイヤ周方向に0.5〜2.0mmの範囲にある微小間隔を隔てて連続してタイヤ回転軸と平行にトレッドの両接地端を結ぶ直線とで囲まれる矩形領域ごとに、タイヤトレッドの接地幅と前記微小間隔との積に対する陸部の占める割合を百分率で算定し、
タイヤ全周における前記割合の最大値と最小値との差をα[%]、横溝幅をb[mm]としたとき、
α×bが80以下であることを特徴とする空気入りタイヤ。
A main groove engraved on the tire tread, which includes a main groove continuous in the tire circumferential direction, and a lateral groove communicating between the main grooves or the main groove and the tire grounding end, and a land portion formed by the main groove and the lateral groove is a tire. In pneumatic tires arranged in the circumferential direction,
For each rectangular area surrounded by both tire grounding ends and a straight line connecting both grounding ends of the tread in parallel with the tire rotation axis continuously with a small interval in the range of 0.5 to 2.0 mm in the tire circumferential direction. To calculate the ratio of the land portion to the product of the contact width of the tire tread and the minute interval in percentage,
When the difference between the maximum value and the minimum value of the ratio in the entire circumference of the tire is α [%] and the width of the lateral groove is b [mm],
α × b is 80 or less.
前記陸部の周方向の配列が、異なる周方向ピッチ長を有する陸部の配列である請求項1に記載の空気入りタイヤ。The pneumatic tire according to claim 1, wherein the circumferential arrangement of the land portions is an arrangement of land portions having different circumferential pitches. 前記陸部の周方向の配列が、同じ周方向ピッチ長を有する陸部の配列である請求項1に記載の空気入りタイヤ。The pneumatic tire according to claim 1, wherein the circumferential arrangement of the land portions is an arrangement of land portions having the same circumferential pitch length. 横溝幅bが周方向ピッチ長の15%以下である請求項1乃至3のいずれかに記載の空気入りタイヤ。The pneumatic tire according to any one of claims 1 to 3, wherein the lateral groove width (b) is 15% or less of the circumferential pitch length.
JP2002196709A 2002-07-05 2002-07-05 Pneumatic tire Pending JP2004034878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196709A JP2004034878A (en) 2002-07-05 2002-07-05 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196709A JP2004034878A (en) 2002-07-05 2002-07-05 Pneumatic tire

Publications (1)

Publication Number Publication Date
JP2004034878A true JP2004034878A (en) 2004-02-05

Family

ID=31704670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196709A Pending JP2004034878A (en) 2002-07-05 2002-07-05 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2004034878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055659A1 (en) * 2008-11-14 2010-05-20 株式会社ブリヂストン Pneumatic tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055659A1 (en) * 2008-11-14 2010-05-20 株式会社ブリヂストン Pneumatic tire

Similar Documents

Publication Publication Date Title
EP1568515B1 (en) Pneumatic tire
JP2002211210A (en) Pneumatic tire
JP2003182314A (en) Pneumatic tire
JP3104029B2 (en) Pneumatic tire
JP4675736B2 (en) Pneumatic tire
JP4935507B2 (en) Pneumatic tire
JPH0811508A (en) Pneumatic tire
JP2008221977A (en) Pneumatic tire
JP4281863B2 (en) Pneumatic tire
JPH0310912A (en) Low noise tire
JP2003054221A (en) Pneumatic tire
JP4935508B2 (en) Pneumatic tire
JP2008247336A (en) Pneumatic tire
JP2007090944A (en) Pneumatic tire
JP2004034878A (en) Pneumatic tire
JPH11208219A (en) Pneumatic tire
JPH03136909A (en) Pneumatic tire with reduced noise characteristic
JP2003154815A (en) Pneumatic tire
JP5066980B2 (en) Pneumatic tire
JP3487807B2 (en) Low noise pneumatic tire
JP2003002011A (en) Pneumatic tire
JPH03136908A (en) Pneumatic tire with reduced noise characteristics
JPH05131813A (en) Pneumatic tire
EP3459765B1 (en) A tread for a tire
JP3930134B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080321