JP2004034623A - Manufacturing method for metal sheet laminate, manufacturing method for laminated molded body using metal sheet laminate, and manufacturing method for part using laminated molded object - Google Patents

Manufacturing method for metal sheet laminate, manufacturing method for laminated molded body using metal sheet laminate, and manufacturing method for part using laminated molded object Download PDF

Info

Publication number
JP2004034623A
JP2004034623A JP2002197900A JP2002197900A JP2004034623A JP 2004034623 A JP2004034623 A JP 2004034623A JP 2002197900 A JP2002197900 A JP 2002197900A JP 2002197900 A JP2002197900 A JP 2002197900A JP 2004034623 A JP2004034623 A JP 2004034623A
Authority
JP
Japan
Prior art keywords
metal plate
manufacturing
intermetallic compound
laminate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002197900A
Other languages
Japanese (ja)
Inventor
Kinji Saijo
西條 謹二
Kazuo Yoshida
吉田 一雄
Shinji Osawa
大澤 真司
Koji Nanbu
南部 光司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2002197900A priority Critical patent/JP2004034623A/en
Publication of JP2004034623A publication Critical patent/JP2004034623A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform lamination without exerting adverse effect on the bonded part of a metal sheet laminate and to enhance processability at the time of processing into a required shape. <P>SOLUTION: A plurality of compounded metal sheets 26 and 28 capable of forming an intermetallic compound are laminated and, after the surfaces of the respective metal plates to be bonded are subjected to activation treatment, the metal plates are superposed one upon another in a contact state so that the activated treated surfaces are mutually opposed and lamination bonding is applied to both metal plates to manufacture a metal sheet laminate 20. Next, molding processing is applied to the metal sheet laminate to manufacture a laminated molded object 30 and this molded object is heat-treated to form the intermetallic compound in the vicinity of the bonded surface and, if necessary, the intermetallic compound is formed over the whole to produce a part 34. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、金属板を複数枚積層してなる金属板積層体の少なくとも1つの接合面が金属間化合物を形成可能な組み合わせの金属板からなる金属板積層体の製造方法、および金属板積層体を成形してなる積層成形体の製造方法、および積層成形体の少なくとも1つの接合面付近に金属間化合物を形成してなる部品の製造方法に関する。
【0002】
【従来の技術】
近年、一般の合金にはない特性を持つ高機能材料として金属間化合物が注目されてきている。例えば、Fe−Al系金属間化合物は高温耐食性に優れていることが知られており、下地材料表面に被覆することなどで耐食機能を付加した高機能材料などを実現することができる。従来の金属間化合物の形成方法としては、拡散接合法、クラッド圧延法、プラズマ溶射法などがあるが、金属間化合物は加工性が乏しいため金属間化合物形成後の成形加工などはクラックの発生などの問題があった。またプラズマ溶射法では、任意の形状の材料に被覆形成できるという利点がある反面、溶射を行う際に組成が変化してしまい、目的とする機能が充分には付加できないという問題があった。
【0003】
そこで金属間化合物を形成する前に加工を施す方法として、特開2002−69545号には、熱間圧延圧着法により板材を積層し、冷間圧延して熱処理を施すことにより、板状の金属間化合物を形成する方法が開示されている。すなわち金属間化合物を形成する前に加工し、しかる後金属間化合物を形成せさようとするものである。しかしながら有形物には適用することができないという問題が残る。本発明はこのような点に鑑みて、金属間化合物を形成する前の積層材を成形加工した後、熱処理を施して金属間化合物を形成させようとするものである。なお特開平1−224184号には、接合界面における合金層の形成を抑制しうる接合法が開示されている。
【0004】
【発明が解決しようとする課題】
本発明は、金属板を複数枚積層してなる金属板積層体の少なくとも1つの接合面が金属間化合物を形成可能な組み合わせの金属板からなる金属板積層体の製造方法、および金属板積層体を成形してなる積層成形体の製造方法、および積層成形体の少なくとも1つの接合面付近に金属間化合物を形成してなる部品の製造方法を提供することを課題とする。
【0005】
【課題を解決するための手段】
前記課題に対する第1の解決手段として本発明の金属板積層体の製造方法は、金属板を複数枚積層してなる金属板積層体の製造方法であって、金属板積層体の少なくとも1つの接合面が、金属間化合物を形成しうる組み合わせの金属板からなり、金属板積層体の少なくとも1つの接合面が、接合されるそれぞれの金属板面を活性化処理した後、活性化処理面同士が対向するように当接して重ね合わせて積層接合する方法とした。また好ましくは、活性化処理が、不活性ガス雰囲気中でグロー放電を行わせて、接合されるそれぞれの金属板面をスパッタエッチング処理する方法とした。
【0006】
前記課題に対する第2の解決手段として本発明の積層成形体の製造方法は、金属間化合物を形成しうる組み合わせの金属板からなる接合面を少なくとも1つ有する金属板積層体を成形する方法とした。
【0007】
前記課題に対する第3の解決手段として本発明の部品の製造方法は、金属間化合物を形成しうる組み合わせの金属板からなる接合面を少なくとも1つ有する金属板積層体を成形してなる積層成形体の少なくとも1つの接合面付近に金属間化合物を形成する方法とした。さらに好ましくは、金属間化合物を部品全体に形成する方法とした。
【0008】
【発明の実施の形態】
以下に、本発明の製造方法を説明する。図1は、本発明の製造方法を用いた金属板積層体20の一実施形態を示す概略断面図であり、金属板26と金属板28を積層接合した2層の例を示している。図2は、本発明の製造方法を用いた金属板積層体22の一実施形態を示す概略断面図であり、金属板26と金属板28と金属板24を積層接合した3層の例を示している。図3は、3層の金属板積層体を成形してなる積層成形体30の一実施形態を示す概略断面図である。図4は、3層の積層成形体の接合面付近に金属間化合物を形成してなる部品32の一実施形態を示す概略断面図である。
【0009】
金属板24、26、28の材質としては、金属板積層体を製造可能な素材で、金属間化合物を形成可能なものであれば特にその種類、組み合わせは限定されず、金属板積層体の用途により適宜選択して用いることができる。例えば、常温で固体である金属(例えば、Al、Fe、Ni、Cu、Ti、Nb、Ag、Pt、Auなど)や、これらの金属のうち少なくとも1種類を含む合金(例えば、JISに規定の合金など)、あるいはこれらの金属や合金を少なくとも1層有する積層体(例えば、クラッド材、メッキ材、蒸着膜材など)などが適用できる。金属板積層体の用途が、例えば耐食部材などを目的とするのであれば、金属板としては、耐食性が期待されるFe−Al系金属間化合物となりうる組み合わせとして、軟鋼板と1050アルミニウム板などの組み合わせを用いることができる。
【0010】
JISに規定の合金としては、合金鋼やステンレス鋼の他にも、例えば、Cu系合金では、無酸素銅、タフピッチ銅、りん脱酸銅、丹銅、黄銅、快削黄銅、すず入り黄銅、アドミラルティ黄銅、ネーバル黄銅、アルミニウム青銅、白銅など、Al系合金では、1000系、2000系、3000系、5000系、6000系、7000系など、Ni系合金では、常炭素ニッケル、低炭素ニッケル、ニッケル−銅合金、ニッケル−銅−アルミニウム−チタン合金、ニッケル−モリブデン合金、ニッケル−モリブデン−クロム合金、ニッケル−クロム−鉄−モリブデン−銅合金、ニッケル−クロム−モリブデン−鉄合金などが適用できる。
【0011】
金属間化合物には、高温耐食材料、軽量耐熱材料、複合材料、超電導材料、形状記憶材料、水素貯蔵材料など様々な機能を有するものが知られており、例えば、Fe−Al系、Ti−Al系、Ti−Ni系、Ni−Al系、Nb−Al系、Al−Li系などがある。また金属間化合物には種々の組成もあり、目的の機能に適する組み合わせの材料や温度、圧力などの製造条件を適宜選択することで製造することが可能である。例えば、Fe−Al系では、FeAl、FeAlなど、Ti−Al系では、TiAl、TiAl、TiAlなど、Ni−Al系では、NiAl、NiAlなど、Nb−Al系ではNbAlなどである。
【0012】
また金属板24、26、28の厚みは、金属板積層体を製造可能であれば特に限定はされず、金属板積層体の用途により適宜選定して用いることができる。例えば、1〜1000μmであることが好ましい。1μm未満では、金属板自体の製造が難しく、また1000μmを超えると金属板積層体としての製造が難しくなる。より好ましくは、3〜20μmである。なお金属板は、圧延板などの単板材であってもよいし、積層材であってもよい。
【0013】
図1に示す金属板積層体20の活性化接合法による製造方法について説明する。まず図6に示すように、真空槽52内において、巻き戻しリール62、64にそれぞれ装填された金属板26、28を活性化処理装置70、80でそれぞれの接合予定面側を活性化処理する。次に活性化処理された金属板26、28を圧接ユニット60で冷間圧接し積層接合して巻き取りロール66で巻き取り金属板積層体20を製造することができる。以下にその詳細を述べる。
【0014】
活性化処理は以下のようにして実施する。すなわち、真空槽52内に設置された巻き戻しリール62、64に装填された金属板26、28を巻き戻し、活性化処理装置70、80でそれぞれアース接地された一方の電極Aと接触させ、絶縁支持された他の電極Bとの間に、10〜1×10−3Paの極低圧不活性ガス雰囲気中で、1〜50MHzの交流を印加してグロー放電を行わせ、グロー放電によって生じたプラズマ中に露出される電極Aと接触した金属板26、28のそれぞれの面積が、実効的に電極Bの面積の1/3以下となるようにスパッタエッチング処理する。不活性ガスとしては、アルゴン、ネオン、キセノン、クリプトンなどや、これらを少なくとも1種類含む混合体を適用することができる。好ましくはアルゴンガスである。なお不活性ガス圧力が1×10−3Pa未満では安定したグロー放電が行いにくく高速エッチングが困難であり、10Paを超えると活性化処理効率が低下する。印加する交流は、1MHz未満では安定したグロー放電を維持するのが難しく連続エッチングが困難であり、50MHzを超えると発振し易く電力の供給系が複雑となり好ましくない。また、効率よくエッチングするためには電極Aと接触した金属板26、28のそれぞれの面積を電極Bの面積より小さくする必要があり、実効的に1/3以下とすることにより充分な効率でエッチング可能となる。このようにして活性化処理を施すことができる。
【0015】
次に積層接合を以下のようにして行う。上記の活性化処理された金属板26、28を圧接ユニットに搬送して積層接合を施す。積層接合は、金属板26、28のそれぞれ活性化処理された面が対向するようにして両者を当接して重ね合わせ圧接ユニット60で冷間圧接を施すことによって達成することができる。この際の積層接合は低温度で可能であり、金属板26、28ならびに接合部に組織変化や合金層の形成などといった悪影響を軽減または排除することが可能である。Tを金属板の温度(℃)とするとき、0℃<T≦300℃で良好な圧接状態が得られる。0℃以下では特別な冷却装置が必要となり、300℃を超えると組織変化などの悪影響が生じてくるため好ましくない。また圧延率R(%)は、0.01%≦R≦30%であることが好ましい。0.01%未満では充分な接合強度が得られず、30%を超えると変形が大きくなり加工精度上好ましくない。より好ましくは、0.1%≦R≦3%である。
【0016】
以上のようにして、所要の層厚みを有する2層構造の金属板積層体20を形成することができ、巻き取りロール66に巻き取られる。さらに必要により所定の大きさに切り出して、図1に示す金属板積層体20を製造することができる。またこのようにして製造された金属板積層体20に、必要により接合部に悪影響を及ぼさない程度に残留応力の除去または低減などのために熱処理を施してもよい。このような金属板積層体では、接合部に合金層の形成などの悪影響を抑制することができ、接合強度や金属板が元来有する加工性などの特性を著しく低下させることがないため、機械加工などにも充分に適用することが可能である。
【0017】
また本発明の製造方法を用いた金属板積層体では、2層を超える積層体も可能である。図2に示すように、3層構造の金属板積層体は、上記説明において金属板26の代わりに2層構造の金属板積層体20を用い、金属板28の代わりに金属板24を用いることにより製造することができ、4層以上の多層の金属板積層体も可能である。4層以上の金属板積層体では、上述のように金属板26の代わりに3層以上の多層構造の金属板積層体を用い、金属板28の代わりに他の金属板を用いることにより製造することも可能であり、金属板26、28の代わりに2層以上の金属板積層体を用いて製造することも可能である。すなわち2層の金属板積層体同士を積層接合して4層の金属板積層体を製造し、さらに4層の金属板積層体同士を積層接合して8層の金属板積層体を製造していき、同様にして16層、32層、64層、128層と次々と多層化を図っていくことが可能である。例えば100層であれば、64層、32層、4層の各金属板積層体を積層接合すればよい。なお金属板積層体の層数に制限はなく、製造装置の許容しうる厚みまで積層することが可能である。またこのようにして製造された金属板積層体にメッキなどの表面処理を施してもよい。
【0018】
なお金属間化合物を形成しうる組み合わせの金属板からなる接合面が、金属板積層体中に繰り返し存在している場合とは、金属間化合物を形成しうる組み合わせの2種の金属板が交互に積層されている場合や、金属間化合物を形成しうる組み合わせの3種以上の金属板が同一パターンでまたは反転パターンで一部分もしくは全体が繰り返されている場合や、金属間化合物を形成しない物質を介在して金属間化合物を形成しうる組み合わせパターンが繰り返される場合などであり、同じパターンが2つ以上存在する場合である。例えば、金属間化合物を形成しうる組み合わせが金属板M、Sであり、金属間化合物を形成しない物質がLである場合、金属間化合物を形成しない物質を介在しない場合はM−S−MやS−M−Sなどであり、金属間化合物を形成しない物質を介在している場合はM−S−L−M−SやM−S−L−S−Mなどである。
【0019】
さらに金属板積層体の製造には、バッチ処理を用いることもできる。すなわち、真空槽内に予め所定の大きさに切り出された金属板を複数枚装填して、活性化処理装置に搬送して垂直または水平などの適切な位置に処理すべき面を対向または並置した状態などで設置または把持して固定して活性化処理を行い、さらに金属板を保持する装置が圧接装置を兼ねる場合には活性化処理後に設置または把持したまま圧接し、金属板を保持する装置が圧接装置を兼ねない場合にはプレス装置などの圧接装置に搬送して圧接を行うことにより製造することができる。
【0020】
本発明の製造方法を用いた積層成形体は、金属板を複数枚積層してなる金属板積層体の少なくとも1つの接合面に金属間化合物を形成可能な組み合わせの金属板を用いた金属板積層体に機械加工を施して成形してなるものである。例えば、図3に示す積層成形体30は、図2に示すような3層の金属板積層体をプレス加工などにより成形加工したものである。金属間化合物を未形成の金属板積層体は、金属板が元来有する加工性を著しく劣化させることなく接合しているため、種々の加工性を充分に保持しており、多種多様な加工にも対応することが可能である。例えば、バルジ加工やCIP(冷間等方圧プレス)加工などである。
【0021】
本発明の製造方法を用いた部品は、積層成形体の少なくとも1つの接合面付近に金属間化合物を形成してなるものである。このため本発明の製造方法を用いた部品は、金属間化合物からなる構造を有しており、用いる材料の組み合わせや積層数を適宜選定することによって、耐食性の求められるタンク内壁部材、耐熱性の求められるタービンブレードやエンジン部材、軽量化の求められる航空機用部材など多方面にわたり適用可能である。なお接合面付近とは、接合面の一方または双方の所定の厚みの領域を指しており、熱処理時間等の条件により適宜調整することが可能であり、部品全体に金属間化合物を形成することや部品の一部に金属間化合物を形成させることが可能である。部品全体に金属間化合物を形成させようとする際は、より薄い金属板をより多く積層するほうがほぼ均一な構造とすることが容易になる。さらに金属間化合物を形成する際に圧力をかける必要のあるときは、HIP(熱間等方圧プレス)加工やホットプレス加工などを用いてもよい。
【0022】
【実施例】
以下に、実施例を図面に基づいて説明する。
<実施例1> 金属板24、26として厚み0.2mmのニッケル板を用い、金属板28として厚み10μmのアルミニウム板を用いた。まずニッケル板、アルミニウム板を金属板積層体製造装置50にセットし、真空槽52内の活性化処理ユニットでスパッタエッチング法によりそれぞれ活性化処理した。次に圧接ユニット60を用いて、これら活性化処理されたニッケル板、アルミニウム板を、活性化処理面同士を重ね合わせて冷間圧接して積層接合し、図1に示すような2層の金属板積層体20を製造した。さらに金属板積層体20とニッケル板を同様にして積層接合し図2に示すような3層の金属板積層体22を製造した。次にこの金属板積層体22をプレス成形によりカップ状に成形加工して図3に示すような積層成形体30を製造した。さらに窒素雰囲気中で550℃×5時間の熱処理を行い、ニッケル板とアルミニウム板の接合面付近にNi−Al系金属間化合物40、42を形成させて図4に示すような部品32を製造した。
【0023】
<実施例2> 金属板26として厚み10μmの軟鋼板を用い、金属板28として厚み10μmのアルミニウム板を用いた。まず軟鋼板、アルミニウム板を金属板積層体製造装置50にセットし、真空槽52内の活性化処理ユニットでスパッタエッチング法によりそれぞれ活性化処理した。次に圧接ユニット60を用いて、これら活性化処理された軟鋼板、アルミニウム板を、活性化処理面同士を重ね合わせて冷間圧接して積層接合し、図1に示すような2層の金属板積層体20を製造した。次に2層の金属板積層体20同士を金属板積層体製造装置50で同様にして積層接合して4層の金属板積層体を製造した。さらに積層接合を繰り返して64層の金属板積層体を製造した。次に窒素雰囲気中で560℃×6時間の熱処理を行い、64層の金属板積層体の全体に渡ってほぼ均一なFe−Al系金属間化合物を形成させて、図5に示すような部品34を製造した。
【0024】
【発明の効果】
以上説明したように、本発明の金属板積層体の製造方法は金属板を複数枚積層する方法であり、本発明の積層成形体の製造方法は金属板積層体を加工する方法であり、本発明の部品の製造方法は金属間化合物を形成する方法である。このため金属板積層体の接合部に悪影響を与えることなく積層できるため、加工性に優れており所要の形状に加工することが可能であり、有形機能性材料などへの適用も好適である。
【図面の簡単な説明】
【図1】本発明の製造方法を用いた金属板積層体の一実施形態を示す概略断面図である。
【図2】本発明の製造方法を用いた金属板積層体の他の一実施形態を示す概略断面図である。
【図3】本発明の製造方法を用いた積層形成体の一実施形態を示す概略断面図である。
【図4】本発明の製造方法を用いた部品の一実施形態を示す概略断面図である。
【図5】本発明の製造方法を用いた部品の他の一実施形態を示す概略断面図である。
【図6】金属板積層体の製造に用いる装置の一実施形態を示す概略断面図である。
【符号の説明】
20  金属板積層体
22  金属板積層体
24  金属板
26  金属板
28  金属板
30  積層成形体
32  部品
34  部品
40  金属間化合物層
42  金属間化合物層
44  金属板残部
46  金属板残部
48  金属板残部
50  金属板積層体製造装置
52  真空槽
60  圧接ユニット
62  巻き戻しリール
64  巻き戻しリール
66  巻き取りロール
70  活性化処理装置
72  電極ロール
74  電極
80  活性化処理装置
82  電極ロール
84  電極
A   電極A
B   電極B
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a metal plate laminate in which at least one joint surface of a metal plate laminate formed by laminating a plurality of metal plates is formed of a combination of metal plates capable of forming an intermetallic compound, and a metal plate laminate. The present invention relates to a method for producing a laminated molded article obtained by molding a composite material, and a method for producing a component formed by forming an intermetallic compound near at least one joint surface of the laminated molded article.
[0002]
[Prior art]
In recent years, intermetallic compounds have attracted attention as high-performance materials having characteristics not found in general alloys. For example, Fe-Al intermetallic compounds are known to be excellent in high-temperature corrosion resistance, and it is possible to realize a high-functional material having a corrosion-resistant function by coating the surface of a base material. Conventional methods for forming an intermetallic compound include a diffusion bonding method, a clad rolling method, and a plasma spraying method. However, since an intermetallic compound is poor in workability, cracking occurs in the forming process after forming the intermetallic compound. There was a problem. In addition, the plasma spraying method has an advantage that a coating can be formed on a material having an arbitrary shape, but there is a problem that the composition changes during spraying, and a desired function cannot be sufficiently added.
[0003]
Therefore, as a method of performing processing before forming an intermetallic compound, Japanese Patent Application Laid-Open No. 2002-69545 discloses a method in which plate materials are laminated by a hot-rolling compression bonding method, cold-rolled, and heat-treated to form a plate-like metal. Methods for forming intermetallic compounds are disclosed. That is, processing is performed before forming an intermetallic compound, and then an attempt is made to form an intermetallic compound. However, there remains a problem that it cannot be applied to tangible objects. In view of such a point, the present invention is to form a laminated material before forming an intermetallic compound and then to perform a heat treatment to form an intermetallic compound. JP-A-1-224184 discloses a joining method capable of suppressing formation of an alloy layer at a joining interface.
[0004]
[Problems to be solved by the invention]
The present invention relates to a method for manufacturing a metal plate laminate in which at least one joint surface of a metal plate laminate formed by laminating a plurality of metal plates is formed of a combination of metal plates capable of forming an intermetallic compound, and a metal plate laminate. It is an object of the present invention to provide a method for producing a laminated molded article obtained by molding a compound, and a method for producing a component formed by forming an intermetallic compound near at least one bonding surface of the laminated molded article.
[0005]
[Means for Solving the Problems]
As a first solution to the above-mentioned problem, a method for manufacturing a metal plate laminate according to the present invention is a method for manufacturing a metal plate laminate obtained by laminating a plurality of metal plates, wherein at least one joining of the metal plate laminate is performed. The surfaces are made of a combination of metal plates capable of forming an intermetallic compound, and at least one joint surface of the metal plate laminate is activated after each of the metal plate surfaces to be joined. A method was adopted in which the members were brought into contact with each other so as to be opposed to each other, and were overlapped and laminated. Also preferably, the activation treatment is a method in which glow discharge is performed in an inert gas atmosphere to sputter-etch each metal plate surface to be joined.
[0006]
As a second solution to the above-mentioned problem, a method of manufacturing a laminated molded article of the present invention is a method of molding a metal sheet laminated body having at least one joining surface made of a combination of metal sheets capable of forming an intermetallic compound. .
[0007]
According to a third aspect of the present invention, there is provided a method of manufacturing a component, comprising: forming a metal plate laminate having at least one joint surface made of a combination of metal plates capable of forming an intermetallic compound; A method of forming an intermetallic compound in the vicinity of at least one bonding surface. More preferably, an intermetallic compound is formed on the entire part.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the production method of the present invention will be described. FIG. 1 is a schematic cross-sectional view showing one embodiment of a metal plate laminate 20 using the manufacturing method of the present invention, and shows an example of two layers in which a metal plate 26 and a metal plate 28 are laminated and joined. FIG. 2 is a schematic cross-sectional view showing one embodiment of a metal plate laminate 22 using the manufacturing method of the present invention, and shows an example of three layers in which a metal plate 26, a metal plate 28, and a metal plate 24 are laminated and joined. ing. FIG. 3 is a schematic cross-sectional view showing one embodiment of a laminated molded body 30 formed by molding a three-layer metal plate laminated body. FIG. 4 is a schematic cross-sectional view showing one embodiment of a component 32 formed by forming an intermetallic compound near a joint surface of a three-layer laminated body.
[0009]
The material of the metal plates 24, 26, and 28 is not particularly limited in type and combination as long as it is a material that can produce a metal plate laminate and can form an intermetallic compound. Can be appropriately selected and used. For example, metals that are solid at room temperature (for example, Al, Fe, Ni, Cu, Ti, Nb, Ag, Pt, Au, etc.) and alloys containing at least one of these metals (for example, as defined in JIS) Alloy, etc.), or a laminate having at least one layer of these metals or alloys (eg, a clad material, a plating material, a deposited film material, and the like) can be applied. If the use of the metal plate laminate is intended for, for example, a corrosion-resistant member, the metal plate may be a combination of a Fe-Al-based intermetallic compound expected to have corrosion resistance, such as a mild steel plate and a 1050 aluminum plate. Combinations can be used.
[0010]
As alloys specified in JIS, in addition to alloy steel and stainless steel, for example, in the case of Cu-based alloys, oxygen-free copper, tough pitch copper, phosphorous deoxidized copper, copper, brass, free-cutting brass, tin-containing brass, Admiralty brass, Naval brass, aluminum bronze, white bronze, and other Al-based alloys, such as 1000-based, 2000-based, 3000-based, 5000-based, 6000-based, and 7000-based, and Ni-based alloys include ordinary carbon nickel, low-carbon nickel, A nickel-copper alloy, a nickel-copper-aluminum-titanium alloy, a nickel-molybdenum alloy, a nickel-molybdenum-chromium alloy, a nickel-chromium-iron-molybdenum-copper alloy, a nickel-chromium-molybdenum-iron alloy, or the like can be used.
[0011]
As intermetallic compounds, those having various functions such as a high-temperature corrosion-resistant material, a lightweight heat-resistant material, a composite material, a superconducting material, a shape memory material, and a hydrogen storage material are known. System, Ti-Ni system, Ni-Al system, Nb-Al system, Al-Li system and the like. The intermetallic compound also has various compositions, and can be produced by appropriately selecting a combination of materials suitable for the intended function and production conditions such as temperature and pressure. For example, in the FeAl system, FeAl, etc. Fe 3 Al, the TiAl-based, TiAl, etc. TiAl 3, Ti 3 Al, the NiAl base, NiAl, such as Ni 3 Al, Nb in Nb-Al-based 3 Al or the like.
[0012]
The thickness of the metal plates 24, 26, and 28 is not particularly limited as long as the metal plate laminate can be manufactured, and can be appropriately selected and used depending on the use of the metal plate laminate. For example, the thickness is preferably 1 to 1000 μm. If it is less than 1 μm, it is difficult to produce the metal plate itself, and if it exceeds 1000 μm, it becomes difficult to produce a metal plate laminate. More preferably, it is 3 to 20 μm. The metal plate may be a single plate material such as a rolled plate or a laminated material.
[0013]
A method of manufacturing the metal plate laminate 20 shown in FIG. 1 by the activation bonding method will be described. First, as shown in FIG. 6, in the vacuum chamber 52, the metal plates 26 and 28 loaded on the rewind reels 62 and 64, respectively, are activated by the activation processing devices 70 and 80 on the respective surfaces to be joined. . Next, the activated metal plates 26 and 28 are cold-pressed by the pressing unit 60 and laminated and bonded, and the roll-up roll 66 can manufacture the rolled metal plate laminate 20. The details are described below.
[0014]
The activation process is performed as follows. That is, the metal plates 26 and 28 loaded on the rewind reels 62 and 64 installed in the vacuum chamber 52 are rewound and brought into contact with one of the electrodes A grounded by the activation processing devices 70 and 80, respectively. A glow discharge is generated by applying an alternating current of 1 to 50 MHz in an extremely low-pressure inert gas atmosphere of 10 to 1 × 10 −3 Pa between the insulated and supported other electrode B to generate glow discharge. The sputter etching process is performed so that the area of each of the metal plates 26 and 28 that is in contact with the electrode A exposed to the plasma is effectively 1 / or less of the area of the electrode B. As the inert gas, argon, neon, xenon, krypton, or the like, or a mixture containing at least one of these can be used. Preferably, it is argon gas. If the inert gas pressure is less than 1 × 10 −3 Pa, stable glow discharge is difficult to perform, and high-speed etching is difficult. If the inert gas pressure exceeds 10 Pa, the activation treatment efficiency decreases. If the applied alternating current is less than 1 MHz, it is difficult to maintain a stable glow discharge, and it is difficult to perform continuous etching. If the applied alternating current exceeds 50 MHz, oscillation tends to occur and the power supply system becomes complicated, which is not preferable. In addition, in order to perform the etching efficiently, it is necessary to make each area of the metal plates 26 and 28 in contact with the electrode A smaller than the area of the electrode B. Etching becomes possible. Thus, the activation process can be performed.
[0015]
Next, lamination bonding is performed as follows. The activated metal plates 26 and 28 are conveyed to the pressure welding unit to perform lamination joining. Lamination bonding can be achieved by cold-welding with the overlap-welding unit 60, with the activated surfaces of the metal plates 26 and 28 facing each other and abutting the two. In this case, the lamination bonding can be performed at a low temperature, and adverse effects such as a structural change and formation of an alloy layer at the metal plates 26 and 28 and the bonding portion can be reduced or eliminated. When T is the temperature (° C.) of the metal plate, a good pressure contact state is obtained at 0 ° C. <T ≦ 300 ° C. If the temperature is lower than 0 ° C., a special cooling device is required. If the temperature is higher than 300 ° C., adverse effects such as a change in structure are caused, which is not preferable. Further, the rolling reduction R (%) is preferably 0.01% ≦ R ≦ 30%. If it is less than 0.01%, sufficient bonding strength cannot be obtained, and if it exceeds 30%, deformation becomes large, which is not preferable in terms of processing accuracy. More preferably, 0.1% ≦ R ≦ 3%.
[0016]
As described above, the metal plate laminate 20 having a two-layer structure having a required layer thickness can be formed, and is wound around the winding roll 66. Further, if necessary, the metal sheet laminate 20 shown in FIG. 1 can be manufactured by cutting out to a predetermined size. Further, the metal plate laminate 20 manufactured in this manner may be subjected to a heat treatment as necessary to remove or reduce residual stress to such an extent that the joint is not adversely affected. In such a metal plate laminate, adverse effects such as the formation of an alloy layer at the joint can be suppressed, and characteristics such as joint strength and workability inherent to the metal plate are not significantly reduced. It can be sufficiently applied to processing and the like.
[0017]
In the metal plate laminate using the production method of the present invention, a laminate having more than two layers is also possible. As shown in FIG. 2, the metal plate laminate of the three-layer structure uses the metal plate laminate 20 of the two-layer structure in place of the metal plate 26 and the metal plate 24 in place of the metal plate 28 in the above description. And a multi-layer metal plate laminate of four or more layers is also possible. The metal plate laminate of four or more layers is manufactured by using a metal plate laminate having a multilayer structure of three or more layers instead of the metal plate 26 as described above, and using another metal plate instead of the metal plate 28. It is also possible to manufacture by using a metal plate laminate of two or more layers instead of the metal plates 26 and 28. That is, a two-layer metal plate laminate is laminated and joined to produce a four-layer metal plate laminate, and a four-layer metal plate laminate is laminated and joined to produce an eight-layer metal plate laminate. Similarly, it is possible to sequentially increase the number of layers to 16 layers, 32 layers, 64 layers, and 128 layers. For example, in the case of 100 layers, the metal plate laminates of 64 layers, 32 layers, and 4 layers may be laminated and joined. It should be noted that the number of layers of the metal plate laminate is not limited, and it is possible to laminate the metal plate to a thickness acceptable by the manufacturing apparatus. The metal plate laminate thus manufactured may be subjected to a surface treatment such as plating.
[0018]
In addition, the case where the joining surface made of the combination of the metal plates capable of forming the intermetallic compound is repeatedly present in the metal plate laminate means that the two types of metal plates of the combination capable of forming the intermetallic compound are alternately formed. When laminated, when three or more metal plates of a combination that can form an intermetallic compound are partially or wholly repeated in the same pattern or in an inverted pattern, or a substance that does not form an intermetallic compound is interposed. And a combination pattern that can form an intermetallic compound is repeated, and two or more same patterns are present. For example, when the combination that can form an intermetallic compound is a metal plate M or S, and the substance that does not form an intermetallic compound is L, and when a substance that does not form an intermetallic compound is intervened, MSM or SMS, etc., and in the case where a substance that does not form an intermetallic compound is interposed, MSLMS, MSLMSM, and the like.
[0019]
Furthermore, batch processing can also be used for the production of the metal plate laminate. That is, a plurality of metal plates cut into a predetermined size in advance in a vacuum chamber were loaded, and conveyed to an activation treatment device, and the surfaces to be processed at appropriate positions such as vertical or horizontal were opposed or juxtaposed. If the device for holding or holding the metal plate is also used as a pressure contact device, it is placed or gripped and fixed in the state, etc., and if the device also serves as a pressure welding device, it is a device that holds the metal plate while being placed or held after the activation process. Can be manufactured by transferring to a pressing device such as a press device and performing pressing.
[0020]
The laminated molded product using the production method of the present invention is a metal plate laminate using a combination of metal plates capable of forming an intermetallic compound on at least one joint surface of a metal plate laminate obtained by laminating a plurality of metal plates. It is formed by applying mechanical processing to a body. For example, the laminated molded body 30 shown in FIG. 3 is obtained by molding a three-layer metal plate laminated body as shown in FIG. 2 by press working or the like. Since the metal plate laminate without the intermetallic compound is joined without significantly deteriorating the workability that the metal plate originally has, various workability is sufficiently maintained, and it is suitable for a wide variety of processing. Can also be handled. For example, there are bulge processing and CIP (cold isostatic pressing) processing.
[0021]
A component using the manufacturing method of the present invention is obtained by forming an intermetallic compound near at least one joint surface of a laminated molded body. For this reason, parts using the manufacturing method of the present invention have a structure made of an intermetallic compound, and by appropriately selecting a combination of materials to be used and the number of layers, a tank inner wall member required for corrosion resistance, heat resistance It can be applied to various fields such as required turbine blades and engine members, and aircraft members required to be reduced in weight. The vicinity of the bonding surface refers to a region having a predetermined thickness on one or both of the bonding surfaces, and can be appropriately adjusted depending on conditions such as a heat treatment time. It is possible to form an intermetallic compound on a part of the part. When an intermetallic compound is to be formed on the entire part, it is easier to form a substantially uniform structure by laminating more thin metal plates. Further, when it is necessary to apply pressure when forming an intermetallic compound, HIP (Hot Isostatic Pressing) or hot pressing may be used.
[0022]
【Example】
Hereinafter, embodiments will be described with reference to the drawings.
<Example 1> A nickel plate having a thickness of 0.2 mm was used as the metal plates 24 and 26, and an aluminum plate having a thickness of 10 µm was used as the metal plate 28. First, a nickel plate and an aluminum plate were set in the metal plate laminate manufacturing apparatus 50, and activated by a sputter etching method in an activation processing unit in a vacuum chamber 52. Next, by using a pressure welding unit 60, the activated nickel plate and aluminum plate are laminated and bonded by cold pressing and lapping the activated surfaces thereof together with each other, and as shown in FIG. The plate laminate 20 was manufactured. Further, the metal plate laminate 20 and the nickel plate were similarly laminated and joined to produce a three-layer metal plate laminate 22 as shown in FIG. Next, the metal plate laminate 22 was formed into a cup shape by press molding to produce a laminate 30 as shown in FIG. Further, a heat treatment was performed at 550 ° C. × 5 hours in a nitrogen atmosphere to form Ni-Al intermetallic compounds 40 and 42 near the joint surface between the nickel plate and the aluminum plate, thereby producing a component 32 as shown in FIG. .
[0023]
<Example 2> A mild steel plate having a thickness of 10 µm was used as the metal plate 26, and an aluminum plate having a thickness of 10 µm was used as the metal plate 28. First, a mild steel plate and an aluminum plate were set in the metal plate laminate manufacturing apparatus 50, and activated by a sputter etching method in an activation processing unit in the vacuum chamber 52. Next, using the pressure welding unit 60, the activated mild steel sheet and the aluminum sheet are laminated and joined by superimposing the activation-treated surfaces and cold-welding them to form a two-layer metal as shown in FIG. The plate laminate 20 was manufactured. Next, the two-layered metal plate laminates 20 were laminated and joined in the same manner by the metal plate laminate manufacturing apparatus 50 to produce a four-layered metal plate laminate. Further, the laminate joining was repeated to produce a metal plate laminate of 64 layers. Next, a heat treatment of 560 ° C. × 6 hours is performed in a nitrogen atmosphere to form a substantially uniform Fe—Al-based intermetallic compound over the entirety of the 64-layer metal plate laminate, and a component as shown in FIG. 34 were produced.
[0024]
【The invention's effect】
As described above, the method for producing a metal sheet laminate of the present invention is a method for laminating a plurality of metal plates, and the method for producing a laminated molded article according to the present invention is a method for processing a metal sheet laminate. The method for manufacturing a part according to the invention is a method for forming an intermetallic compound. For this reason, the metal plate laminate can be laminated without adversely affecting the joint portion, so that it is excellent in workability and can be processed into a required shape, and is suitably applied to a tangible functional material or the like.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing one embodiment of a metal plate laminate using a manufacturing method of the present invention.
FIG. 2 is a schematic sectional view showing another embodiment of the metal plate laminate using the manufacturing method of the present invention.
FIG. 3 is a schematic cross-sectional view showing one embodiment of a laminated body using the manufacturing method of the present invention.
FIG. 4 is a schematic sectional view showing an embodiment of a component using the manufacturing method of the present invention.
FIG. 5 is a schematic sectional view showing another embodiment of a component using the manufacturing method of the present invention.
FIG. 6 is a schematic sectional view showing an embodiment of an apparatus used for manufacturing a metal plate laminate.
[Explanation of symbols]
REFERENCE SIGNS LIST 20 metal plate laminate 22 metal plate laminate 24 metal plate 26 metal plate 28 metal plate 30 laminated molded product 32 part 34 part 40 intermetallic compound layer 42 intermetallic compound layer 44 remaining metal plate 46 remaining metal plate 48 remaining metal plate 50 Metal sheet laminate manufacturing apparatus 52 Vacuum tank 60 Pressure contact unit 62 Rewind reel 64 Rewind reel 66 Take-up roll 70 Activation device 72 Electrode roll 74 Electrode 80 Activation device 82 Electrode roll 84 Electrode A Electrode A
B electrode B

Claims (5)

金属板を複数枚積層してなる金属板積層体の製造方法であって、金属板積層体の少なくとも1つの接合面が、金属間化合物を形成しうる組み合わせの金属板からなり、金属板積層体の少なくとも1つの接合面が、接合されるそれぞれの金属板面を活性化処理した後、活性化処理面同士が対向するように当接して重ね合わせて積層接合することを特徴とする金属板積層体の製造方法。A method for manufacturing a metal plate laminate obtained by laminating a plurality of metal plates, wherein at least one joining surface of the metal plate laminate is formed of a combination of metal plates capable of forming an intermetallic compound, The metal plate lamination characterized in that, after activating each of the metal plate surfaces to be bonded, at least one bonding surface of the above is abutted so that the activation processing surfaces face each other and overlapped by lamination. How to make the body. 前記活性化処理が、不活性ガス雰囲気中でグロー放電を行わせて、接合されるそれぞれの金属板面をスパッタエッチング処理することを特徴とする請求項1に記載の金属板積層体の製造方法。The method for manufacturing a metal plate laminate according to claim 1, wherein in the activation treatment, glow discharge is performed in an inert gas atmosphere to sputter-etch each metal plate surface to be joined. . 金属間化合物を形成しうる組み合わせの金属板からなる接合面を少なくとも1つ有する金属板積層体を成形することを特徴とする積層成形体の製造方法。A method of manufacturing a laminated molded product, comprising: molding a metal plate laminate having at least one joint surface made of a combination of metal plates capable of forming an intermetallic compound. 金属間化合物を形成しうる組み合わせの金属板からなる接合面を少なくとも1つ有する金属板積層体を成形してなる積層成形体の少なくとも1つの接合面付近に金属間化合物を形成することを特徴とする部品の製造方法。Forming an intermetallic compound in the vicinity of at least one bonding surface of a laminate formed by molding a metal plate laminate having at least one bonding surface made of a combination of metal plates capable of forming an intermetallic compound. Manufacturing method of parts to be used. 金属間化合物を部品全体に形成することを特徴とする請求項4に記載の部品の製造方法。The method for manufacturing a component according to claim 4, wherein the intermetallic compound is formed on the entire component.
JP2002197900A 2002-07-05 2002-07-05 Manufacturing method for metal sheet laminate, manufacturing method for laminated molded body using metal sheet laminate, and manufacturing method for part using laminated molded object Pending JP2004034623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002197900A JP2004034623A (en) 2002-07-05 2002-07-05 Manufacturing method for metal sheet laminate, manufacturing method for laminated molded body using metal sheet laminate, and manufacturing method for part using laminated molded object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002197900A JP2004034623A (en) 2002-07-05 2002-07-05 Manufacturing method for metal sheet laminate, manufacturing method for laminated molded body using metal sheet laminate, and manufacturing method for part using laminated molded object

Publications (1)

Publication Number Publication Date
JP2004034623A true JP2004034623A (en) 2004-02-05

Family

ID=31705542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002197900A Pending JP2004034623A (en) 2002-07-05 2002-07-05 Manufacturing method for metal sheet laminate, manufacturing method for laminated molded body using metal sheet laminate, and manufacturing method for part using laminated molded object

Country Status (1)

Country Link
JP (1) JP2004034623A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105827072A (en) * 2014-11-17 2016-08-03 金勒+施皮斯有限公司 Method for producing lamination stacks and facility for performing the method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166891A (en) * 1987-12-21 1989-06-30 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of intermetallic compound material
JPH01224184A (en) * 1988-03-02 1989-09-07 Toyo Kohan Co Ltd Method and device for manufacturing clad metal plate
JPH02133550A (en) * 1988-11-15 1990-05-22 Nippon Steel Corp Manufacture of intermetallic compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166891A (en) * 1987-12-21 1989-06-30 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of intermetallic compound material
JPH01224184A (en) * 1988-03-02 1989-09-07 Toyo Kohan Co Ltd Method and device for manufacturing clad metal plate
JPH02133550A (en) * 1988-11-15 1990-05-22 Nippon Steel Corp Manufacture of intermetallic compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105827072A (en) * 2014-11-17 2016-08-03 金勒+施皮斯有限公司 Method for producing lamination stacks and facility for performing the method
US11101721B2 (en) 2014-11-17 2021-08-24 Kienle + Spiess Gmbh Method for producing lamination stacks and facility for performing the method

Similar Documents

Publication Publication Date Title
KR100537322B1 (en) Multilayered metal laminate and process for producing the same
EP1332867A1 (en) Film with multilayered metal and process for producing the same
KR20120038410A (en) Metal laminated substrate for use as an oxide superconducting wire material, and manufacturing method therefor
EP1711304A1 (en) Strips or foils for brazing having a titanium based alloy core and the manufacturing method.
KR102573723B1 (en) Roll joint and its manufacturing method
JP4275978B2 (en) Hard / soft laminates and parts using hard / soft laminates
JP6637200B2 (en) Rolled joint and manufacturing method thereof
JP3799391B2 (en) Method for manufacturing bonded body of beryllium and copper or copper alloy, and bonded body
JP2004034127A (en) Metal sheet joint body manufacturing method, method for manufacturing laminate body using the metal sheet joint body, and method for manufacturing component using the laminate body
JP2004306098A (en) Method of producing hard-soft layered material and method of producing part obtained by using the hard soft layered material
JPH11285859A (en) Manufacture of hip joined body between beryllium and copper alloy and hip joined body
JP2004034125A (en) Metal sheet joint body, laminate body using the metal sheet joint body, and component using the laminate body
JP2004034623A (en) Manufacturing method for metal sheet laminate, manufacturing method for laminated molded body using metal sheet laminate, and manufacturing method for part using laminated molded object
JP2004034619A (en) Metal sheet laminate, laminated molded object using the same, and part using laminated molded object
JP2019181514A (en) Rolled bonded body, and method for production thereof
JP4100498B2 (en) Method for producing plate laminate, method for producing hollow laminate using plate laminate, and method for producing plate heat pipe
JP2005074913A (en) Manufacturing method of light/heavy laminated material and manufacturing method of part using light/heavy laminated material
JPH1099976A (en) Manufacture of ti-coated clad plate
WO2019176937A1 (en) Roll-bonded body and production method for same
JP2003291240A (en) Plate laminate, hollow laminate using the plate laminate, and part using the hollow laminate
JP2005074912A (en) Light/heavy laminated material and part using it
JP2004330533A (en) Safety device, part equipped with it and container equipped with it
JP7331447B2 (en) Ni--Nb laminated plate material and manufacturing method thereof, Ni--Nb alloy plate material and manufacturing method thereof
JP2004017480A (en) Metallic laminate and part using the metallic laminate
JP2004017095A (en) Method for manufacturing metal jointed body and method for manufacturing component using the metal jointed component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080807