JP2004031004A - Organic electroluminescent element and display device - Google Patents

Organic electroluminescent element and display device Download PDF

Info

Publication number
JP2004031004A
JP2004031004A JP2002182682A JP2002182682A JP2004031004A JP 2004031004 A JP2004031004 A JP 2004031004A JP 2002182682 A JP2002182682 A JP 2002182682A JP 2002182682 A JP2002182682 A JP 2002182682A JP 2004031004 A JP2004031004 A JP 2004031004A
Authority
JP
Japan
Prior art keywords
compound
organic
group
general formula
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002182682A
Other languages
Japanese (ja)
Other versions
JP4036041B2 (en
Inventor
Mitsuyoshi Matsuura
松浦 光宜
Taketoshi Yamada
山田 岳俊
Hiroshi Kita
北 弘志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2002182682A priority Critical patent/JP4036041B2/en
Publication of JP2004031004A publication Critical patent/JP2004031004A/en
Application granted granted Critical
Publication of JP4036041B2 publication Critical patent/JP4036041B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL element attaining both improvement in luminous brightness as well as luminous efficiency and durability, and a display device using the organic EL element of a high luminous brightness and excellent durability. <P>SOLUTION: With the organic electroluminescent element equipped with a light emitting layer containing a host compound and a phosphorescent compound, a compound expressed in formula (1) is made contained in either of the layers constituting the element. In the formula, R<SB>11</SB>, R<SB>12</SB>, R<SB>13</SB>and R<SB>14</SB>denote a hydrogen atom or a univalent substituent, and at least one of them denotes a substituent coupling through a carbon atom, oxygen atom, sulfur atom, or silicon atom. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、有機エレクトロルミネッセンス素子(有機EL素子)及び表示装置に関し、詳しくは発光輝度、発光効率及び耐久性に優れた有機エレクトロルミネッセンス素子、及びそれを有する表示装置に関する。
【0002】
【従来の技術】
発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(ELD)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子(無機EL素子)や有機エレクトロルミネッセンス素子が挙げられる。無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。有機エレクトロルミネッセンス素子は、発光する化合物を含有する発光層を、陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・燐光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、更に、自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
【0003】
しかしながら、今後の実用化に向けた有機EL素子には、更なる低消費電力で効率よく高輝度に発光する有機EL素子の開発が望まれている。
【0004】
例えば、特許第3,093,796号では、スチルベン誘導体、ジスチリルアリーレン誘導体又はトリススチリルアリーレン誘導体に、微量の蛍光体をドープし、発光輝度の向上、素子の長寿命化を達成している。
【0005】
又、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これに微量の蛍光体をドープした有機発光層を有する素子(特開昭63−264692号公報)、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これにキナクリドン系色素をドープした有機発光層を有する素子(特開平3−255190号公報)が知られている。以上のように、蛍光量子収率の高い蛍光体をドープすることによって、従来の素子に比べて発光輝度を向上させている。
【0006】
しかし、上記のドープされる微量の蛍光体からの発光は、励起一重項からの発光であり、励起一重項からの発光を用いる場合、一重項励起子と三重項励起子の生成比が1:3であるため発光性励起種の生成確率が25%であることと、光の取り出し効率が約20%であるため、外部取り出し量子効率(ηext)の限界は5%とされている。ところが、プリンストン大から励起三重項からの燐光発光を用いる有機EL素子が報告がされて以来(M.A.Baldo et al.,nature、395巻、151〜154頁(1998年))、室温で燐光を示す材料の研究が活発になってきている(例えば、M.A.Baldo et al.,nature、403巻、17号、750〜753頁(2000年)、US特許6,097,147号など)。励起三重項を使用すると、内部量子効率の上限が100%となるため、励起一重項の場合に比べて原理的に発光効率が最大4倍となり、冷陰極管とほぼ同等の性能が得られ照明用にも応用可能であり注目されている。
【0007】
燐光性化合物をドーパントとして用いる際のホスト化合物は、燐光性化合物の発光極大波長よりも短波な領域に発光極大波長を有することが必要であることはもちろんであるが、その他にも満たすべき条件があることが分かってきた。
【0008】
The 10th International Workshop on Inorganic and Organic Electroluminescence(EL ’00、浜松)では、燐光性化合物についていくつかの報告がなされている。例えば、Ikaiらはホール輸送性の化合物を燐光性化合物のホストとして用いている。又、M.E.Tompsonらは、各種電子輸送性材料を燐光性化合物のホストとして、これらに新規なイリジウム錯体をドープして用いている。更に、Tsutsuiらは、ホールブロック層の導入により高い発光効率を得ている。
【0009】
燐光性化合物のホスト化合物については、例えば、C.Adachi et al.,Appl.Phys.Lett.,77巻、904頁(2000年)等に詳しく記載されているが、高輝度の有機エレクトロルミネッセンス素子を得るためにホスト化合物に必要とされる性質について、より新しい観点からのアプローチが必要である。
【0010】
しかし、何れの報告も、素子の発光輝度の向上及び耐久性を両立しうる構成は得られていない。
【0011】
【発明が解決しようとする課題】
従って、本発明は上記事情に鑑みなされたものであり、その目的は発光輝度、発光効率の向上、及びそれらと耐久性の両立を達成した有機EL素子、及び該有機EL素子を用いた発光輝度の高い、耐久性の良好な表示装置を提供するものである。
【0012】
【課題を解決するための手段】
本発明の目的は以下に示す構成により達成される。
【0013】
1.ホスト化合物及び燐光性化合物を含有する発光層を有する有機エレクトロルミネッセンス素子であって、該素子を構成する何れかの層に上記一般式(1)で表される化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
【0014】
2.一般式(1)のR11、R12、R13及びR14のうち、少なくとも1つが炭化水素芳香族基で表されることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。
【0015】
3.上記一般式(2)で表される化合物を含有することを特徴とする前記1又は2に記載の有機エレクトロルミネッセンス素子。
【0016】
4.一般式(2)のR21、R22及びR23がアルキル基であり、l、m及びnが2〜4であることを特徴とする前記3に記載の有機エレクトロルミネッセンス素子。
【0017】
5.一般式(2)のAr21、Ar22及びAr23の少なくとも1つがチエニル基であることを特徴とする前記3又は4に記載の有機エレクトロルミネッセンス素子。
【0018】
6.一般式(1)で表される化合物が上記一般式(3)で表されることを特徴とする有機エレクトロルミネッセンス素子。
【0019】
7.一般式(1)〜(3)で表される化合物の何れかを電子輸送層に含有することを特徴とする前記1〜6の何れか1項に記載の有機エレクトロルミネッセンス素子
8.一般式(1)〜(3)で表される化合物の何れかをホスト化合物として発光層に含有することを特徴とする前記1〜7の何れか1項に記載の有機エレクトロルミネッセンス素子。
【0020】
9.燐光性化合物がイリジウム化合物、オスミウム化合物又は白金化合物であることを特徴とする前記1〜8の何れか1項に記載の有機エレクトロルミネッセンス素子。
【0021】
10.燐光性化合物がイリジウム化合物であることを特徴とする前記9に記載の有機エレクトロルミネッセンス素子
11.前記1〜10の何れか1項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする表示装置。
【0022】
本発明者等は、燐光発光用の材料について鋭意検討を重ねた結果、分子内に特定構造を有するピリミジン誘導体を有機EL素子を構成する何れかの層に含有させて有機EL素子を形成した場合、該素子の発光輝度、発光効率及び寿命が格段に改善されることを見出し本発明に至ったものである。
【0023】
尚、トリアジン誘導体を有機EL素子材料として用いた例としては、特開平5−263074、同7−157473、同8−199163、同11−292860、特表平11−514143等にて開示されている。しかし、何れの報告も、燐光性化合物を発光層に含有した素子に適用した例はない。又、特開2002−100476では燐光性化合物を含有した素子に適用した例はあるが、本発明で挙げた特定構造のトリアジン誘導体についての記載はなく、特に、ホスト化合物として用いた場合の有用性を示すデータの開示はない。
【0024】
以下に本発明を詳細に説明する。
本発明の有機EL素子は、ホスト化合物及び燐光性化合物を含有する発光層を有し、該有機EL素子を構成する何れかの層に分子内に特定構造を有する、上記一般式(1)で表されるピリミジン誘導体を含有することを特徴とする。
【0025】
本発明において「ホスト化合物」とは、2種以上の化合物で構成される発光層中にて混合比(質量)の最も多い化合物のことを意味し、それ以外の化合物については「ドーパント化合物」という。例えば、発光層を化合物A、化合物Bという2種で構成し、その混合比がA:B=10:90であれば化合物Aがドーパント化合物であり、化合物Bがホスト化合物である。更に、発光層を化合物A、化合物B、化合物Cの3種から構成し、その混合比がA:B:C=5:10:85であれば、化合物A、化合物Bがドーパント化合物であり、化合物Cがホスト化合物である。従って、本発明における燐光性化合物はドーパント化合物の一種である。
【0026】
本発明における「燐光性化合物」とは励起三重項からの発光が観測される化合物であり、燐光量子収率が、25℃において0.001以上の化合物である。燐光量子収率は好ましくは0.01以上、更に好ましくは0.1以上である。
【0027】
上記燐光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中での燐光量子収率は種々の溶媒を用いて測定できるが、本発明に用いられる燐光性化合物は、任意の溶媒の何れかにおいて上記燐光量子収率が達成されれば良い。
【0028】
本発明で用いられる燐光性化合物としては、好ましくは元素の周期律表でVIII属の金属を含有する錯体系化合物であり、更に好ましくは、イリジウム化合物、オスミウム化合物、又は白金化合物(白金錯体系化合物)であり、中でも最も好ましいのはイリジウム化合物である。
【0029】
以下に、本発明で用いられる燐光性化合物の具体例を示すが、これらに限定されるものではない。これらの化合物は、例えば、Inorg.Chem.40巻、1704〜1711に記載の方法等により合成できる。
【0030】
【化4】

Figure 2004031004
【0031】
【化5】
Figure 2004031004
【0032】
【化6】
Figure 2004031004
【0033】
又、別の形態では、ホスト化合物と燐光性化合物の他に、燐光性化合物からの発光の極大波長よりも長波な領域に、蛍光極大波長を有する蛍光性化合物を少なくとも1種含有する場合もある。この場合、ホスト化合物と燐光性化合物からのエネルギー移動で、有機EL素子としての電界発光は蛍光性化合物からの発光が得られる。蛍光性化合物として好ましいのは、溶液状態で蛍光量子収率が高いものである。ここで、蛍光量子収率は10%以上、特に30%以上が好ましい。具体的な蛍光性化合物は、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。
【0034】
ここでの蛍光量子収率も、前記第4版実験化学講座7の分光IIの362頁(1992年版、丸善)に記載の方法により測定することが出来る。
【0035】
前記燐光性化合物は、前記のような燐光量子収率が、25℃において0.001以上である他、前記ホストとなる蛍光性化合物の蛍光極大波長よりも長い燐光発光極大波長を有するものであり、これにより、例えば、ホストとなる蛍光性化合物の発光極大波長より長波の燐光性化合物を用いて燐光性化合物の発光、即ち三重項状態を利用した、ホスト化合物の蛍光極大波長よりも長波において電界発光するEL素子を得ることができる。従って、用いられる燐光性化合物の燐光発光極大波長としては特に制限されるものではなく、原理的には、中心金属、配位子、配位子の置換基等を選択することで得られる発光波長を変化させることができる。
【0036】
例えば、350〜440nmの領域に蛍光極大波長を有する蛍光性化合物をホスト化合物として用い、例えば、緑の領域に燐光を有するイリジウム錯体を用いることで緑領域に電界発光する有機EL素子を得ることが出来る。
【0037】
又、別の形態では、前記のように、ホスト化合物としての蛍光性化合物Aと燐光性化合物の他に、燐光性化合物からの発光の極大波長よりも長波な領域に、蛍光極大波長を有するもう一つの蛍光性化合物Bを少なくとも1種含有する場合もあり、蛍光性化合物Aと燐光性化合物からのエネルギー移動で、有機EL素子としての電界発光は蛍光性化合物Bからの発光を得ることも出来る。
【0038】
本明細書の蛍光性化合物が発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(ミノルタ製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
【0039】
続いて本発明に用いられるホスト化合物について説明する。
本発明におけるホスト化合物としては、特定構造を有するピリミジン誘導体であり、とりわけ一般式(1)で表される化合物であることが要求される。最初に一般式(1)で表される化合物について説明する。
【0040】
式中、R11〜R14は水素原子又は一価の置換基を表し、少なくとも1つは炭素原子、酸素原子、硫黄原子又はケイ素原子を介して結合する置換基を表す。
【0041】
11〜R14で表される一価の置換基としては、アルキル基(メチル基、エチル基、i−プロピル基、ヒドロキシエチル基、メトキシメチル基、トリフルオロメチル基、t−ブチル基、シクロペンチル基、シクロヘキシル基、ベンジル基等)、アリール基(フェニル基、ナフチル基、p−トリル基、p−クロロフェニル基等)、アルケニル基(ビニル基、プロペニル基、スチリル基等)、アルキニル基(エチニル基等)、アルキルオキシ基(メトキシ基、エトキシ基、i−プロポキシ基、ブトキシ基等)、アリールオキシ基(フェノキシ基等)、アルキルチオ基(メチルチオ基、エチルチオ基、i−プロピルキオ基等)、アリールチオ基(フェニルチオ基等)、アミノ基、アルキルアミノ基(ジメチルアミノ基、ジエチルアミノ基、エチルメチルアミノ基等)、アリールアミノ基(アニリノ基、ジフェニルアミノ基等)、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、シアノ基、ニトロ基、複素環基(ピロール基、ピロリジル基、ピラゾリル基、イミダゾリル基、ピリジル基、ベンズイミダゾリル基、ベンゾチアゾリル基、ベンゾオキサゾリル基等)、シリル基(トリメチルシリル基、t−ブチルジメチルシリル基、ジメチルフェニルシリル基、トリフェニルシリル基等)等が挙げられる。
【0042】
それぞれの置換基は更に置換基を有していても良い。又、置換基同士が結合し、環を形成しても良い。
【0043】
一般式(1)において、好ましくはR11、R12、R13及びR14のうち少なくとも1つが炭化水素芳香族基(上記のアリール基)であり、更に好ましくは一般式(2)で表される場合である。
【0044】
一般式(2)においてAr21〜Ar23は芳香族基を表し、R21〜R23は一価の置換基を表す。l、m及びnはそれぞれ0〜4の整数を表す。
【0045】
好ましくはR21〜R23がアルキル基であり、l、m及びnが2〜4の場合であり、更に好ましくはAr21〜Ar23のうち少なくとも1つがチエニル基の時である。尚、l、m、nが2〜4の場合、対応する複数のR21、R22及びR23は同一でも異なっていても良い。
【0046】
又、一般式(1)で表される化合物が一般式(3)で表される特定構造の縮合環であることも好ましい。
【0047】
一般式(3)において、R31は水素原子又は一価の置換基を表し、n3は0〜2を表し、Z3は5員環を形成するのに必要な原子群を表す。
【0048】
Z3で形成される5員環は、更に置換基を有していてもよい。R31で表される一価の置換基としては、R11〜R14と同様のものが挙げられる。n3が2の場合、複数のR31は同一でも異なっていても良い。
【0049】
以下に、具体的化合物例を示すが、本発明におけるホスト化合物がこれらに限定されるものではない。
【0050】
【化7】
Figure 2004031004
【0051】
【化8】
Figure 2004031004
【0052】
【化9】
Figure 2004031004
【0053】
【化10】
Figure 2004031004
【0054】
【化11】
Figure 2004031004
【0055】
【化12】
Figure 2004031004
【0056】
【化13】
Figure 2004031004
【0057】
【化14】
Figure 2004031004
【0058】
【化15】
Figure 2004031004
【0059】
【化16】
Figure 2004031004
【0060】
【化17】
Figure 2004031004
【0061】
【化18】
Figure 2004031004
【0062】
又、ホスト化合物の分子量は600〜2000であることが好ましい。分子量が600〜2000であるとTg(ガラス転移温度)が上昇し、熱安定性が向上し、素子寿命が改善される。より好ましい分子量は800〜2000である。
【0063】
これらの化合物は公知の方法によって製造が可能であるが、例えば特開2001−93670等に記載された方法を用いることができる。
【0064】
以下、有機EL素子について説明する。
有機EL素子における発光層は、広義の意味では、陰極と陽極からなる電極に電流を流した際に発光する層のことを指す。具体的には、陰極と陽極からなる電極に電流を流した際に発光する蛍光性化合物を含有する層のことを指す。通常、EL素子は一対の電極の間に発光層を挟持した構造をとる。
【0065】
本発明の有機EL素子は、必要に応じ発光層の他に、正孔輸送層、電子輸送層、陽極バッファー層及び陰極バッファー層等を有し、陰極と陽極で挟持された構造をとる。具体的には以下に示される構造が挙げられる。
(i)陽極/発光層/陰極
(ii)陽極/正孔輸送層/発光層/陰極
(iii)陽極/発光層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/電子輸送層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/電子輸送層/陰極バッファー層/陰極
上記一般式で表される化合物を用いて発光層を形成する方法としては、例えば蒸着法、スピンコート法、キャスト法、LB法などの公知の方法により薄膜を形成する方法があるが、特に分子堆積膜であることが好ましい。ここで分子堆積膜とは、上記一般式で表される化合物の気相状態から沈着され形成された薄膜や、該化合物の溶融状態又は液相状態から固体化され形成された膜のことである。通常、この分子堆積膜はLB法により形成された薄膜(分子累積膜)と、凝集構造、高次構造の相違やそれに起因する機能的な相違により区別することができる。
【0066】
又、この発光層は、特開昭57−51781号に記載されているように、樹脂などの結着材と共に発光材料として上記一般式で表される化合物を溶剤に溶かして溶液とした後、これをスピンコート法などにより塗布して薄膜形成することにより得ることができる。
【0067】
このようにして形成された発光層の膜厚については特に制限はなく、状況に応じて適宜選択することができるが、通常は5nm〜5μmの範囲である。
【0068】
次に正孔注入層、正孔輸送層、電子注入層、電子輸送層等、発光層と組み合わせてEL素子を構成するその他の層について説明する。
【0069】
正孔注入層、正孔輸送層は、陽極より注入された正孔を発光層に伝達する機能を有し、この正孔注入層、正孔輸送層を陽極と発光層の間に介在させることにより、より低い電界で多くの正孔が発光層に注入され、その上、発光層に陰極、電子注入層又は電子輸送層より注入された電子は、発光層と正孔注入層もしくは正孔輸送層の界面に存在する電子の障壁により、発光層内の界面に累積され発光効率が向上するなど発光性能の優れた素子となる。この正孔注入層、正孔輸送層の材料(以下、正孔注入材料、正孔輸送材料という)については、前記の陽極より注入された正孔を発光層に伝達する機能を有する性質を有するものであれば特に制限はなく、従来、光導伝材料において、正孔の電荷注入輸送材料として慣用されているものやEL素子の正孔注入層、正孔輸送層に使用される公知のものの中から任意のものを選択して用いることができる。
【0070】
上記正孔注入材料、正孔輸送材料は、正孔の注入もしくは輸送、電子の障壁性の何れかを有するものであり、有機物、無機物の何れであってもよい。この正孔注入材料、正孔輸送材料としては、例えばトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、又、導電性高分子オリゴマー、特にチオフェンオリゴマーなどが挙げられる。正孔注入材料、正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物、特に芳香族第三級アミン化合物を用いることが好ましい。
【0071】
上記芳香族第三級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、更に米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)などが挙げられる。
【0072】
更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
【0073】
又、p型−Si、p型−SiCなどの無機化合物も正孔注入材料、正孔輸送材料として使用することができる。この正孔注入層、正孔輸送層は、上記正孔注入材料、正孔輸送材料を、例えば真空蒸着法、スピンコート法、キャスト法、LB法などの公知の方法により、薄膜化することにより形成することができる。正孔注入層、正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度である。この正孔注入層、正孔輸送層は、上記材料の一種又は二種以上からなる一層構造であってもよく、同一組成又は異種組成の複数層からなる積層構造であってもよい。
【0074】
更に、必要に応じて用いられる電子輸送層は、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができる。
【0075】
この電子輸送層に用いられる材料(以下、電子輸送材料という)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレンなどの複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体などが挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。
【0076】
更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
【0077】
又、8−キノリノール誘導体の金属錯体、例えばトリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)など、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基などで置換されているものも、電子輸送材料として好ましく用いることができる。又、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様に、n型−Si、n型−SiCなどの無機半導体も電子輸送材料として用いることができる。
【0078】
この電子輸送層は、上記一般式で表される化合物を、例えば真空蒸着法、スピンコート法、キャスト法、LB法などの公知の薄膜形成法により製膜して形成することができる。電子輸送層の膜厚は特に制限はないが、通常は5nm〜5μmの範囲で選ばれる。この電子輸送層は、これらの電子輸送材料一種又は二種以上からなる一層構造であってもよいし、或いは、同一組成又は異種組成の複数層からなる積層構造であってもよい。
【0079】
又、本発明においては、蛍光性化合物は発光層のみに限定することはなく、発光層に隣接した正孔輸送層、又は電子輸送層に前記燐光性化合物のホスト化合物となる蛍光性化合物と同じ領域に蛍光極大波長を有する蛍光性化合物を少なくとも1種含有させてもよく、それにより更にEL素子の発光効率を高めることができる。これらの正孔輸送層や電子輸送層に含有される蛍光性化合物としては、発光層に含有されるものと同様に蛍光極大波長が350〜440nm、更に好ましくは390〜410nmの範囲にある蛍光性化合物が用いられる。
【0080】
又、本発明においては、発光効率、及び耐久性の点から上記一般式(1)〜(3)で表される化合物を電子輸送層に含有することも好ましい。
【0081】
本発明の有機EL素子に好ましく用いられる基盤は、ガラス、プラスチックなどの種類には特に限定はなく、又、透明のものであれば特に制限はない。本発明の有機EL素子に好ましく用いられる基盤としては例えばガラス、石英、光透過性プラスチックフィルムを挙げることができる。
【0082】
光透過性プラスチックフィルムとしては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等からなるフィルム等が挙げられる。
【0083】
次に、該有機EL素子を作製する好適な例を説明する。例として、前記の陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなるEL素子の作製法について説明する。
【0084】
まず適当な基板上に、所望の電極用物質、例えば陽極用物質からなる薄膜を、1μm以下、好ましくは10〜200nmの範囲の膜厚になるように、蒸着やスパッタリングなどの方法により形成させて陽極を作製する。次に、この上に素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層/電子注入層からなる薄膜を形成させる。
【0085】
更に、陽極と発光層又は正孔注入層の間、及び、陰極と発光層又は電子注入層との間にはバッファー層(電極界面層)を存在させてもよい。
【0086】
バッファー層とは、駆動電圧低下や発光効率向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(第123頁〜第166頁)に詳細に記載されており、陽極バッファー層と陰極バッファー層とがある。
【0087】
陽極バッファー層は、特開平9−45479号、同9−260062号、同8−288069号等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
【0088】
陰極バッファー層は、特開平6−325871号、同9−17574号、同10−74586号等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウム、酸化リチウムに代表される酸化物バッファー層等が挙げられる。
【0089】
上記バッファー層はごく薄い膜であることが望ましく、素材にもよるが、その膜厚は0.1〜100nmの範囲が好ましい。
【0090】
更に上記基本構成層の他に必要に応じてその他の機能を有する層を積層してもよく、例えば特開平11−204258号、同11−204359号、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第237頁等に記載されている正孔阻止(ホールブロック)層などのような機能層を有していても良い。
【0091】
次に有機EL素子の電極について説明する。有機EL素子の電極は、陰極と陽極からなる。
【0092】
この有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAuなどの金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnOなどの導電性透明材料が挙げられる。
【0093】
上記陽極は蒸着やスパッタリングなどの方法によりこれらの電極物質の薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、或いはパターン精度をあまり必要としない場合(100μm以上程度)は、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、又、陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10nm〜1μm、好ましくは10nm〜200nmの範囲で選ばれる。
【0094】
一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属などが挙げられる。これらの中で、電子注入性及び酸化などに対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えばマグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物などが好適である。上記陰極は、これらの電極物質を蒸着やスパッタリングなどの方法で薄膜を形成させることにより作製することができる。又、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜1μm、好ましくは50〜200nmの範囲で選ばれる。尚、発光を透過させるため、有機EL素子の陽極又は陰極の何れか一方が、透明又は半透明であれば発光効率が向上するので好都合である。
【0095】
次に有機EL素子の作製方法について説明する。
薄膜化の方法としては、前記の如くスピンコート法、キャスト法、蒸着法などがあるが、均質な膜が得られやすく、かつピンホールが生成しにくいなどの点から、真空蒸着法が好ましい。薄膜化に真空蒸着法を採用する場合、その蒸着条件は、使用する化合物の種類、分子堆積膜の目的とする結晶構造、会合構造などにより異なるが、一般にボート加熱温度50〜450℃、真空度10−6〜10−3Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚5nm〜5μmの範囲で適宜選ぶことが望ましい。
【0096】
前記の様に、適当な基板上に所望の電極用物質、例えば陽極用物質からなる薄膜を1μm以下、好ましくは10〜200nmの範囲の膜厚になるように、蒸着やスパッタリングなどの方法により形成させて陽極を作製した後、該陽極上に前記の通り正孔注入層、正孔輸送層、発光層、電子輸送層/電子注入層からなる各層薄膜を形成させた後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50〜200nmの範囲の膜厚になるように、例えば蒸着やスパッタリングなどの方法により形成させて陰極を設け、所望の有機EL素子が得られる。この有機EL素子の作製は、一回の真空引きで一貫してこの様に正孔注入層から陰極まで作製するのが好ましいが、作製順序を逆にして、陰極、電子注入層、発光層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた有機EL素子に、直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧5〜40V程度を印加すると、発光が観測できる。又、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に、交流電圧を印加する場合には、陽極が+、陰極が−の状態になった場合のみ発光する。尚、印加する交流の波形は任意でよい。
【0097】
本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用しても良いし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用しても良い。動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでも良い。又、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
【0098】
【実施例】
以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。
【0099】
実施例1
〈有機EL素子の作製〉
有機EL素子OLED1−1〜1−15を以下のように作製した。
【0100】
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を150nm成膜した基板(NHテクノグラス社製NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行なった。
【0101】
この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにα−NPDを200mg入れ、別のモリブデン製抵抗加熱ボートにカルバゾール誘導体(CBP)を200mg入れ、別のモリブデン製抵抗加熱ボートにバソキュプロイン(BCP)を200mg入れ、別のモリブデン製抵抗加熱ボートに燐光性化合物(Ir−1)を100mg入れ、更に別のモリブデン製抵抗加熱ボートにAlqを200mg入れ、真空蒸着装置に取付けた。
【0102】
次いで、真空槽を4×10−4Paまで減圧した後、α−NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで透明支持基板に蒸着し、膜厚45nmの正孔輸送層を設けた。更に、CBPとIr−1の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/sec、0.01nm/secで前記正孔輸送層上に共蒸着して膜厚20nmの発光層を設けた。尚、蒸着時の基板温度は室温であった。更に、BCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで前記発光層の上に蒸着して膜厚10nmの正孔阻止の役割も兼ねた電子輸送層を設けた。その上に、更に、Alqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで前記電子輸送層の上に蒸着して更に膜厚40nmの電子注入層を設けた。尚、蒸着時の基板温度は室温であった。
【0103】
引き続きフッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子OLED1−1を作製した。
【0104】
発光層のCBPを表1に示す化合物に置き換えた以外は全く同じ方法で、有機EL素子OLED1−2〜1−15を作製した。
【0105】
上記で使用した化合物の構造を以下に示す。
【0106】
【化19】
Figure 2004031004
【0107】
〈有機EL素子の評価〉
以下のようにして得られた有機EL素子の評価を行い、結果を表1に示す。
【0108】
1)発光輝度、発光効率
有機EL素子OLED1−1では、初期駆動電圧3Vで電流が流れ始め、発光層のドーパントである燐光性化合物からの緑色の発光を示した。有機EL素子OLED1−1の温度23℃、乾燥窒素ガス雰囲気下で10V直流電圧を印加した時の発光輝度(cd/m)、発光効率(lm/W)を測定した。
【0109】
発光輝度、発光効率は有機EL素子OLED1−1を100とした時の相対値で表した。発光輝度については、CS−1000(ミノルタ製)を用いて測定した。
【0110】
2)耐久性
10mA/cmの一定電流で駆動したときに初期輝度が元の半分に低下するのに要した時間である半減寿命時間を指標として表した。半減寿命時間は有機EL素子OLED1−1を100とした時の相対値で表した。
【0111】
【表1】
Figure 2004031004
【0112】
表1から明らかなように、上記一般式(1)〜(3)で表されるピリミジン誘導体化合物をホスト化合物に用いた有機EL素子は、発光輝度及び発光効率が高く、半減寿命時間が長いことから、有機EL素子として非常に有用であることが判る。特に一般式(2)又は(3)で表されるピリミジン誘導体化合物を添加した有機EL素子OLED1−9〜1−15は本発明の効果が更に顕著であるのが分かる。
【0113】
又、燐光性化合物(Ir−1)をIr−12又はIr−9に変更した以外は有機EL素子OLED1−1〜1−15と同様にして作製した有機EL素子においても同様の効果が得られた。尚、Ir−12を用いた素子からは青色の発光が、Ir−9を用いた素子からは赤色の発光が得られた。
【0114】
実施例2
実施例1の有機EL素子OLED1−1の電子輸送層におけるBCPを表2に示す化合物に置き換えた以外は全く同じ方法で有機EL素子OLED2−1〜2−10を作製した。
【0115】
次いで実施例1と同様の方法で発光輝度、発光効率及び半減寿命時間(耐久性)を測定した。得られた結果を表2に示す。
【0116】
【表2】
Figure 2004031004
【0117】
表2から明らかなように、上記一般式(1)〜(3)で表されるピリミジン誘導体化合物の何れかを電子輸送層に用いた有機EL素子は、発光輝度、発光効率及び耐久性が改善されているのが分かる。特に耐久性においては半減寿命時間が顕著に改善されているのが分かる。又、一般式(2)又は(3)で表されるピリミジン誘導体化合物を添加した有機EL素子OLED2−6〜2−10は本発明の効果が更に顕著であるのが分かる。
【0118】
実施例3
実施例1で作製したそれぞれ赤色、緑色、青色発光有機EL素子を同一基板上に並置し、図1に示すアクティブマトリクス方式フルカラー表示装置を作製した。図1には作製したフルカラー表示装置の表示部Aの模式図のみを示した。即ち同一基板上に、複数の走査線2及びデータ線3を含む配線部と、並置した複数の画素1(発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線2及び複数のデータ線3はそれぞれ導電材料からなり、走査線2とデータ線3は格子状に直交して、直交する位置で画素1に接続している(詳細は図示せず)。前記複数画素1は、それぞれの発光色に対応した有機EL素子、アクティブ素子であるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動されており、走査線2から走査信号が印加されると、データ線3から画像データ信号を受け取り、受け取った画像データに応じて発光する。この様に各赤、緑、青の画素を適宜、並置することによって、フルカラー表示が可能となる。
【0119】
得られたフルカラー表示装置を駆動することにより、輝度が高く耐久性の良好な、鮮明なフルカラー動画表示が得られた。
【0120】
【発明の効果】
本発明によれば発光輝度に優れ、長寿命な有機EL素子及び該有機EL素子を有する表示装置が得られるという顕著に優れた効果を奏する。
【図面の簡単な説明】
【図1】フルカラー表示装置の表示部の模式図。
【符号の説明】
A 表示部
1 画素
2 走査線
3 データ線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic electroluminescence element (organic EL element) and a display device, and more particularly to an organic electroluminescence element excellent in light emission luminance, light emission efficiency and durability, and a display device having the same.
[0002]
[Prior art]
As a light-emitting electronic display device, there is an electroluminescence display (ELD). As a component of ELD, an inorganic electroluminescent element (inorganic EL element) and an organic electroluminescent element are mentioned. Inorganic electroluminescent elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements. An organic electroluminescence element has a structure in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and injects electrons and holes into the light emitting layer to recombine excitons. It is an element that emits light by utilizing the emission of light (fluorescence / phosphorescence) when the exciton is deactivated, and can emit light at a voltage of several V to several tens of V. Therefore, it has a wide viewing angle, high visibility, and since it is a thin-film type complete solid-state device, it is attracting attention from the viewpoints of space saving and portability.
[0003]
However, for organic EL elements for practical use in the future, development of organic EL elements that emit light efficiently and with high brightness with further low power consumption is desired.
[0004]
For example, in Japanese Patent No. 3,093,796, a trace amount of a phosphor is doped into a stilbene derivative, a distyrylarylene derivative or a tristyrylarylene derivative to achieve improvement in light emission luminance and a longer device lifetime.
[0005]
Also, an 8-hydroxyquinoline aluminum complex as a host compound, an element having an organic light emitting layer doped with a trace amount of a phosphor (Japanese Patent Laid-Open No. 63-264692), an 8-hydroxyquinoline aluminum complex as a host compound, An element having an organic light emitting layer doped with a quinacridone dye (Japanese Patent Laid-Open No. 3-255190) is known. As described above, the emission luminance is improved by doping a phosphor having a high fluorescence quantum yield as compared with the conventional device.
[0006]
However, the light emission from the small amount of the phosphor to be doped is light emission from the excited singlet, and when the light emission from the excited singlet is used, the generation ratio of the singlet exciton and the triplet exciton is 1: 3, the generation probability of the luminescent excited species is 25%, and the light extraction efficiency is about 20%. Therefore, the limit of the external extraction quantum efficiency (ηext) is 5%. However, since Princeton University reported an organic EL device using phosphorescence emission from an excited triplet (MA Baldo et al., Nature, 395, 151-154 (1998)), at room temperature. Research on materials exhibiting phosphorescence has been actively conducted (for example, MA Baldo et al., Nature, 403, 17, 750-753 (2000), US Pat. No. 6,097,147). Such). When the excited triplet is used, the upper limit of the internal quantum efficiency is 100%. In principle, the luminous efficiency is up to four times that of the excited singlet, and almost the same performance as a cold cathode tube is obtained. It can be applied to and is attracting attention.
[0007]
The host compound when using the phosphorescent compound as a dopant is required to have an emission maximum wavelength in a region shorter than the emission maximum wavelength of the phosphorescent compound, but there are other conditions to be satisfied. I know that there is.
[0008]
The 10th International Works on Inorganic and Organic Electroluminescence (EL '00, Hamamatsu) reports on several phosphorescent compounds. For example, Ikai et al. Use a hole transporting compound as a host of a phosphorescent compound. In addition, M.M. E. Thompson et al. Use various electron transporting materials as hosts for phosphorescent compounds doped with a novel iridium complex. Furthermore, Tsutsui et al. Have obtained high luminous efficiency by introducing a hole blocking layer.
[0009]
As for the host compound of the phosphorescent compound, for example, C.I. Adachi et al. , Appl. Phys. Lett. , 77, 904 (2000), etc., but a new approach is necessary for the properties required for the host compound in order to obtain a high-brightness organic electroluminescence device. .
[0010]
However, none of the reports has obtained a configuration that can achieve both improvement in light emission luminance and durability of the element.
[0011]
[Problems to be solved by the invention]
Accordingly, the present invention has been made in view of the above circumstances, and the object thereof is an organic EL element that achieves emission luminance, improvement in luminous efficiency, and compatibility with durability, and emission luminance using the organic EL element. A display device with high durability and good durability is provided.
[0012]
[Means for Solving the Problems]
The object of the present invention is achieved by the following configurations.
[0013]
1. An organic electroluminescence device having a light-emitting layer containing a host compound and a phosphorescent compound, wherein any layer constituting the device contains the compound represented by the general formula (1) Organic electroluminescence device.
[0014]
2. R in the general formula (1) 11 , R 12 , R 13 And R 14 2. The organic electroluminescence device according to 1, wherein at least one of them is represented by a hydrocarbon aromatic group.
[0015]
3. 3. The organic electroluminescence device as described in 1 or 2 above, which comprises a compound represented by the general formula (2).
[0016]
4). R in the general formula (2) 21 , R 22 And R 23 Is an alkyl group, and l, m, and n are 2-4, The organic electroluminescent element of said 3 characterized by the above-mentioned.
[0017]
5. Ar in the general formula (2) 21 , Ar 22 And Ar 23 5. The organic electroluminescence device as described in 3 or 4 above, wherein at least one of is a thienyl group.
[0018]
6). The compound represented by General formula (1) is represented by the said General formula (3), The organic electroluminescent element characterized by the above-mentioned.
[0019]
7). Any one of the compounds represented by the general formulas (1) to (3) is contained in the electron transport layer, The organic electroluminescence device as described in any one of 1 to 6 above,
8). Any one of the compounds represented by the general formulas (1) to (3) is contained in the light emitting layer as a host compound, The organic electroluminescence device as described in any one of 1 to 7 above.
[0020]
9. 9. The organic electroluminescence device according to any one of 1 to 8, wherein the phosphorescent compound is an iridium compound, an osmium compound, or a platinum compound.
[0021]
10. 10. The organic electroluminescence device as described in 9 above, wherein the phosphorescent compound is an iridium compound.
11. 11. A display device comprising the organic electroluminescence element according to any one of 1 to 10 above.
[0022]
As a result of intensive studies on materials for phosphorescence emission, the present inventors have formed an organic EL element by containing a pyrimidine derivative having a specific structure in the molecule in any layer constituting the organic EL element. The present inventors have found that the light emission luminance, light emission efficiency, and lifetime of the element are remarkably improved, and have reached the present invention.
[0023]
Examples of using a triazine derivative as an organic EL device material are disclosed in JP-A-5-263074, 7-157473, 8-199163, 11-292860, and 11-514143. . However, none of the reports has been applied to an element containing a phosphorescent compound in a light emitting layer. Japanese Patent Application Laid-Open No. 2002-1000047 discloses an example of application to a device containing a phosphorescent compound, but there is no description of a triazine derivative having a specific structure mentioned in the present invention, and particularly usefulness when used as a host compound. There is no disclosure of data indicating.
[0024]
The present invention is described in detail below.
The organic EL device of the present invention has a light emitting layer containing a host compound and a phosphorescent compound, and has a specific structure in the molecule in any one of the layers constituting the organic EL device. It is characterized by containing a pyrimidine derivative represented.
[0025]
In the present invention, the “host compound” means a compound having the largest mixing ratio (mass) in the light emitting layer composed of two or more compounds, and other compounds are referred to as “dopant compounds”. . For example, if the light emitting layer is composed of two types of compound A and compound B and the mixing ratio is A: B = 10: 90, compound A is a dopant compound and compound B is a host compound. Furthermore, if a light emitting layer is comprised from 3 types of compound A, compound B, and compound C, and the mixing ratio is A: B: C = 5: 10: 85, compound A and compound B are dopant compounds, Compound C is a host compound. Therefore, the phosphorescent compound in the present invention is a kind of dopant compound.
[0026]
The “phosphorescent compound” in the present invention is a compound in which light emission from an excited triplet is observed, and is a compound having a phosphorescence quantum yield of 0.001 or more at 25 ° C. The phosphorescent quantum yield is preferably 0.01 or more, more preferably 0.1 or more.
[0027]
The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 version, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence quantum yield used in the present invention is only required to achieve the above phosphorescence quantum yield in any solvent.
[0028]
The phosphorescent compound used in the present invention is preferably a complex compound containing a group VIII metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex compound). Among them, the most preferable is an iridium compound.
[0029]
Specific examples of the phosphorescent compound used in the present invention are shown below, but are not limited thereto. These compounds are described, for example, in Inorg. Chem. 40, 1704-1711, and the like.
[0030]
[Formula 4]
Figure 2004031004
[0031]
[Chemical formula 5]
Figure 2004031004
[0032]
[Chemical 6]
Figure 2004031004
[0033]
In another embodiment, in addition to the host compound and the phosphorescent compound, there may be a case where at least one fluorescent compound having a fluorescence maximum wavelength is contained in a region longer than the maximum wavelength of light emission from the phosphorescent compound. . In this case, electroluminescence as an organic EL element can be emitted from the fluorescent compound by energy transfer from the host compound and the phosphorescent compound. Preferred as the fluorescent compound is one having a high fluorescence quantum yield in a solution state. Here, the fluorescence quantum yield is preferably 10% or more, particularly preferably 30% or more. Specific fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, Examples include stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
[0034]
The fluorescence quantum yield here can also be measured by the method described in Spectra II, page 362 (1992 version, Maruzen) of the Fourth Edition Experimental Chemistry Course 7.
[0035]
The phosphorescent compound has a phosphorescence maximum wavelength longer than the fluorescence maximum wavelength of the fluorescent compound serving as the host, in addition to the phosphorescence quantum yield of 0.001 or more at 25 ° C. Thus, for example, by using a phosphorescent compound having a wavelength longer than the emission maximum wavelength of the fluorescent compound serving as the host, the emission of the phosphorescent compound, that is, using the triplet state, the electric field at a wavelength longer than the fluorescence maximum wavelength of the host compound An EL element that emits light can be obtained. Therefore, the phosphorescent maximum wavelength of the phosphorescent compound used is not particularly limited, and in principle, the emission wavelength obtained by selecting a central metal, a ligand, a ligand substituent, etc. Can be changed.
[0036]
For example, by using a fluorescent compound having a fluorescence maximum wavelength in the 350 to 440 nm region as a host compound and using, for example, an iridium complex having phosphorescence in the green region, an organic EL element that emits light in the green region can be obtained. I can do it.
[0037]
In another embodiment, as described above, in addition to the fluorescent compound A as a host compound and the phosphorescent compound, the fluorescent compound A has a fluorescence maximum wavelength in a region longer than the maximum wavelength of light emission from the phosphorescent compound. In some cases, at least one kind of fluorescent compound B is contained, and electroluminescence as an organic EL device can obtain light emission from the fluorescent compound B by energy transfer from the fluorescent compound A and the phosphorescent compound. .
[0038]
The color emitted by the fluorescent compound of the present specification is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Society for Color Science, University of Tokyo Press, 1985). It is determined by the color when the result measured by Minolta) is applied to the CIE chromaticity coordinates.
[0039]
Next, the host compound used in the present invention will be described.
The host compound in the present invention is a pyrimidine derivative having a specific structure, and is particularly required to be a compound represented by the general formula (1). First, the compound represented by the general formula (1) will be described.
[0040]
Where R 11 ~ R 14 Represents a hydrogen atom or a monovalent substituent, and at least one represents a substituent bonded via a carbon atom, an oxygen atom, a sulfur atom or a silicon atom.
[0041]
R 11 ~ R 14 As the monovalent substituent represented by the formula (1), an alkyl group (methyl group, ethyl group, i-propyl group, hydroxyethyl group, methoxymethyl group, trifluoromethyl group, t-butyl group, cyclopentyl group, cyclohexyl group, Benzyl group etc.), aryl group (phenyl group, naphthyl group, p-tolyl group, p-chlorophenyl group etc.), alkenyl group (vinyl group, propenyl group, styryl group etc.), alkynyl group (ethynyl group etc.), alkyloxy Group (methoxy group, ethoxy group, i-propoxy group, butoxy group, etc.), aryloxy group (phenoxy group, etc.), alkylthio group (methylthio group, ethylthio group, i-propylchio group, etc.), arylthio group (phenylthio group, etc.) , Amino group, alkylamino group (dimethylamino group, diethylamino group, ethylmethylamino group ), Arylamino group (anilino group, diphenylamino group, etc.), halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), cyano group, nitro group, heterocyclic group (pyrrole group, pyrrolidyl group, pyrazolyl group) Imidazolyl group, pyridyl group, benzimidazolyl group, benzothiazolyl group, benzoxazolyl group, etc.), silyl group (trimethylsilyl group, t-butyldimethylsilyl group, dimethylphenylsilyl group, triphenylsilyl group, etc.) .
[0042]
Each substituent may further have a substituent. Further, substituents may be bonded to form a ring.
[0043]
In general formula (1), preferably R 11 , R 12 , R 13 And R 14 Of these, at least one is a hydrocarbon aromatic group (the above aryl group), more preferably represented by the general formula (2).
[0044]
In the general formula (2), Ar 21 ~ Ar 23 Represents an aromatic group, R 21 ~ R 23 Represents a monovalent substituent. l, m, and n each represent an integer of 0-4.
[0045]
Preferably R 21 ~ R 23 Is an alkyl group and l, m and n are 2 to 4, more preferably Ar. 21 ~ Ar 23 When at least one of them is a thienyl group. In addition, when l, m, and n are 2 to 4, a plurality of corresponding R 21 , R 22 And R 23 May be the same or different.
[0046]
Moreover, it is also preferable that the compound represented by General formula (1) is a condensed ring of the specific structure represented by General formula (3).
[0047]
In the general formula (3), R 31 Represents a hydrogen atom or a monovalent substituent, n3 represents 0 to 2, and Z3 represents an atomic group necessary for forming a 5-membered ring.
[0048]
The 5-membered ring formed by Z3 may further have a substituent. R 31 As a monovalent substituent represented by R, 11 ~ R 14 The same thing is mentioned. When n3 is 2, a plurality of R 31 May be the same or different.
[0049]
Specific examples of the compound are shown below, but the host compound in the present invention is not limited to these.
[0050]
[Chemical 7]
Figure 2004031004
[0051]
[Chemical 8]
Figure 2004031004
[0052]
[Chemical 9]
Figure 2004031004
[0053]
[Chemical Formula 10]
Figure 2004031004
[0054]
Embedded image
Figure 2004031004
[0055]
Embedded image
Figure 2004031004
[0056]
Embedded image
Figure 2004031004
[0057]
Embedded image
Figure 2004031004
[0058]
Embedded image
Figure 2004031004
[0059]
Embedded image
Figure 2004031004
[0060]
Embedded image
Figure 2004031004
[0061]
Embedded image
Figure 2004031004
[0062]
Moreover, it is preferable that the molecular weight of a host compound is 600-2000. When the molecular weight is 600 to 2000, Tg (glass transition temperature) increases, thermal stability is improved, and device lifetime is improved. A more preferred molecular weight is 800-2000.
[0063]
These compounds can be produced by a known method. For example, a method described in JP-A-2001-93670 can be used.
[0064]
Hereinafter, the organic EL element will be described.
In a broad sense, the light emitting layer in an organic EL element refers to a layer that emits light when a current is passed through an electrode composed of a cathode and an anode. Specifically, it refers to a layer containing a fluorescent compound that emits light when an electric current is passed through an electrode composed of a cathode and an anode. Usually, an EL element has a structure in which a light emitting layer is sandwiched between a pair of electrodes.
[0065]
The organic EL device of the present invention has a hole transport layer, an electron transport layer, an anode buffer layer, a cathode buffer layer, and the like in addition to the light emitting layer as required, and has a structure sandwiched between a cathode and an anode. Specific examples include the structures shown below.
(I) Anode / light emitting layer / cathode
(Ii) Anode / hole transport layer / light emitting layer / cathode
(Iii) Anode / light emitting layer / electron transport layer / cathode
(Iv) Anode / hole transport layer / light emitting layer / electron transport layer / cathode
(V) Anode / anode buffer layer / hole transport layer / light emitting layer / electron transport layer / cathode buffer layer / cathode
Examples of a method for forming a light emitting layer using the compound represented by the above general formula include a method of forming a thin film by a known method such as a vapor deposition method, a spin coating method, a casting method, and an LB method. A deposited film is preferred. Here, the molecular deposited film is a thin film formed by deposition from the vapor phase state of the compound represented by the above general formula, or a film formed by solidification from the molten state or liquid phase state of the compound. . Normally, this molecular deposited film can be distinguished from a thin film (molecular accumulated film) formed by the LB method by a difference in aggregated structure and higher order structure and a functional difference resulting therefrom.
[0066]
In addition, as described in JP-A-57-51781, this light-emitting layer is prepared by dissolving a compound represented by the above general formula as a light-emitting material together with a binder such as a resin in a solvent, This can be obtained by applying a thin film by spin coating or the like.
[0067]
There is no restriction | limiting in particular about the film thickness of the light emitting layer formed in this way, Although it can select suitably according to a condition, Usually, it is the range of 5 nm-5 micrometers.
[0068]
Next, other layers constituting the EL element in combination with the light emitting layer, such as a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer, will be described.
[0069]
The hole injection layer and the hole transport layer have a function of transmitting the holes injected from the anode to the light emitting layer, and the hole injection layer and the hole transport layer are interposed between the anode and the light emitting layer. As a result, a large number of holes are injected into the light emitting layer with a lower electric field, and electrons injected into the light emitting layer from the cathode, the electron injection layer, or the electron transport layer Due to the barrier of electrons present at the interface of the layers, the device has excellent light emitting performance such as accumulation at the interface in the light emitting layer to improve the light emission efficiency. The material of the hole injection layer and hole transport layer (hereinafter referred to as hole injection material and hole transport material) has the property of transmitting holes injected from the anode to the light emitting layer. If it is a thing, there will be no restriction | limiting in particular, In the conventionally known thing used for the hole injection layer of an electroluminescent material, and the hole injection layer of a EL element, and a hole transport layer, it is conventionally used as a hole charge injection transport material. Any one can be selected and used.
[0070]
The hole injection material and the hole transport material have any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic. Examples of the hole injection material and hole transport material include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazoles. Derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. As the hole injecting material and the hole transporting material, those described above can be used, and porphyrin compounds, aromatic tertiary amine compounds, and styrylamine compounds, particularly aromatic tertiary amine compounds can be used. preferable.
[0071]
Representative examples of the aromatic tertiary amine compound and styrylamine compound include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N ′. -Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; Bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p- Tolylaminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N′-diphenyl-N, N -Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadri N; N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenyl Amino- (2-diphenylvinyl) benzene; 3-methoxy-4′-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and two more described in US Pat. No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-3086 4,4 ', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 8 are linked in a starburst type ( MTDATA).
[0072]
Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
[0073]
In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material. The hole injection layer and the hole transport layer are formed by thinning the hole injection material and the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. Can be formed. Although there is no restriction | limiting in particular about the film thickness of a positive hole injection layer and a positive hole transport layer, Usually, it is about 5 nm-5 micrometers. The hole injection layer and hole transport layer may have a single layer structure composed of one or more of the above materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
[0074]
Furthermore, the electron transport layer used as necessary only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer, and as the material, an arbitrary material is selected from conventionally known compounds. Can be used.
[0075]
Examples of materials used for the electron transport layer (hereinafter referred to as electron transport materials) include heterocyclic tetracarboxylic acid anhydrides such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, carbodiimides, Examples include fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, and oxadiazole derivatives. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
[0076]
Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
[0077]
Also, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum, Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metals of these metal complexes are In, Mg, Cu Metal complexes replaced with Ca, Sn, Ga, or Pb can also be used as electron transport materials. In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transport material. In addition, the distyrylpyrazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and similarly to the hole injection layer and the hole transport layer, inorganic such as n-type-Si and n-type-SiC. A semiconductor can also be used as an electron transport material.
[0078]
The electron transport layer can be formed by forming a compound represented by the above general formula by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. The thickness of the electron transport layer is not particularly limited, but is usually selected in the range of 5 nm to 5 μm. This electron transport layer may have a single layer structure composed of one or two or more of these electron transport materials, or may have a laminated structure composed of a plurality of layers having the same composition or different compositions.
[0079]
Further, in the present invention, the fluorescent compound is not limited to the light emitting layer, but is the same as the fluorescent compound that becomes the host compound of the phosphorescent compound in the hole transport layer adjacent to the light emitting layer or the electron transport layer. At least one fluorescent compound having a fluorescent maximum wavelength in the region may be contained, whereby the luminous efficiency of the EL element can be further increased. As the fluorescent compound contained in these hole transport layer and electron transport layer, the fluorescent compound having a fluorescence maximum wavelength in the range of 350 to 440 nm, more preferably 390 to 410 nm, as in the light emitting layer. A compound is used.
[0080]
Moreover, in this invention, it is also preferable to contain the compound represented by the said General Formula (1)-(3) in an electron carrying layer from the point of luminous efficiency and durability.
[0081]
The substrate preferably used for the organic EL device of the present invention is not particularly limited in the kind such as glass and plastic, and is not particularly limited as long as it is transparent. Examples of the substrate preferably used in the organic EL device of the present invention include glass, quartz, and a light transmissive plastic film.
[0082]
Examples of the light transmissive plastic film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, and polycarbonate (PC). And a film made of cellulose triacetate (TAC), cellulose acetate propionate (CAP), or the like.
[0083]
Next, a suitable example for producing the organic EL element will be described. As an example, a method for manufacturing an EL element composed of the anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described.
[0084]
First, a thin film made of a desired electrode material, for example, an anode material is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably 10 to 200 nm. An anode is produced. Next, a thin film comprising a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer / electron injection layer, which is a device material, is formed thereon.
[0085]
Further, a buffer layer (electrode interface layer) may be present between the anode and the light emitting layer or hole injection layer and between the cathode and the light emitting layer or electron injection layer.
[0086]
The buffer layer is a layer provided between the electrode and the organic layer in order to lower the driving voltage and improve the luminous efficiency. “The organic EL element and its forefront of industrialization (published by NTS Corporation on November 30, 1998) 2) Chapter 2 “Electrode Materials” (pages 123 to 166) in detail, and includes an anode buffer layer and a cathode buffer layer.
[0087]
The details of the anode buffer layer are described in JP-A-9-45479, 9-260062, and 8-288069. Specific examples thereof include a phthalocyanine buffer layer represented by copper phthalocyanine, and vanadium oxide. And an oxide buffer layer, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
[0088]
The details of the cathode buffer layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, a metal buffer layer represented by strontium, aluminum and the like, Examples thereof include an alkali metal compound buffer layer typified by lithium fluoride, an alkaline earth metal compound buffer layer typified by magnesium fluoride, an oxide buffer layer typified by aluminum oxide and lithium oxide, and the like.
[0089]
The buffer layer is preferably a very thin film, and depending on the material, the film thickness is preferably in the range of 0.1 to 100 nm.
[0090]
Furthermore, in addition to the basic constituent layer, a layer having other functions may be laminated as required. For example, JP-A-11-204258, JP-A-11-204359, and “Organic EL element and its industrialization front line ( It may have a functional layer such as a hole blocking layer described on page 237 of “November 30, 1998, NTS Corporation”.
[0091]
Next, the electrode of the organic EL element will be described. The electrode of the organic EL element consists of a cathode and an anode.
[0092]
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, CuI, indium tin oxide (ITO), SnO. 2 And conductive transparent materials such as ZnO.
[0093]
The anode may be formed by depositing a thin film of these electrode substances by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not required so much (about 100 μm or more) May form a pattern through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material. When light emission is extracted from the anode, the transmittance is desirably greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 nm to 1 μm, preferably 10 nm to 200 nm.
[0094]
On the other hand, as the cathode, those using an electrode substance of a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof are preferably used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this from the viewpoint of durability against electron injecting and oxidation, for example, a magnesium / silver mixture, magnesium / Aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, lithium / aluminum mixtures and the like are preferred. The cathode can be produced by forming a thin film from these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 1 μm, preferably 50 to 200 nm. In order to transmit light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the light emission efficiency is improved, which is convenient.
[0095]
Next, a method for manufacturing the organic EL element will be described.
As the thinning method, there are a spin coating method, a casting method, a vapor deposition method and the like as described above, but a vacuum vapor deposition method is preferable because a homogeneous film can be easily obtained and pinholes are hardly generated. When the vacuum deposition method is adopted for thinning, the deposition conditions vary depending on the type of compound used, the target crystal structure of the molecular deposition film, the association structure, etc., but generally the boat heating temperature is 50 to 450 ° C., the degree of vacuum 10 -6 -10 -3 It is desirable to select appropriately within the ranges of Pa, vapor deposition rate of 0.01 to 50 nm / second, substrate temperature of −50 to 300 ° C., and film thickness of 5 nm to 5 μm.
[0096]
As described above, a thin film made of a desired electrode material, for example, an anode material, is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably 10 to 200 nm. After preparing the anode, after forming each layer thin film consisting of the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer / electron injection layer on the anode as described above, for the cathode A thin film made of a material is formed by a method such as vapor deposition or sputtering so as to have a thickness of 1 μm or less, preferably in the range of 50 to 200 nm, and a desired organic EL element is obtained. The organic EL device is preferably produced from the hole injection layer to the cathode in this manner consistently by a single evacuation. However, the production order is reversed so that the cathode, the electron injection layer, the light emitting layer, It is also possible to produce the hole injection layer and the anode in this order. In the case of applying a DC voltage to the organic EL device thus obtained, light emission can be observed by applying a voltage of about 5 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The alternating current waveform to be applied may be arbitrary.
[0097]
The organic EL element of the present invention may be used as a kind of lamp such as an illumination or exposure light source, or a projection device that projects an image, or a display device that directly recognizes a still image or a moving image. (Display) may be used. When used as a display device for reproducing moving images, the driving method may be either a simple matrix (passive matrix) method or an active matrix method. Moreover, it is possible to produce a full-color display device by using two or more organic EL elements of the present invention having different emission colors.
[0098]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, the aspect of this invention is not limited to this.
[0099]
Example 1
<Production of organic EL element>
Organic EL elements OLED1-1 to 1-15 were produced as follows.
[0100]
After patterning on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) having a film of 150 nm of ITO (indium tin oxide) formed on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode, this ITO transparent electrode was provided. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
[0101]
This transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, while 200 mg of α-NPD is put in a molybdenum resistance heating boat, and 200 mg of carbazole derivative (CBP) is put in another molybdenum resistance heating boat. 200 mg of Bathocuproin (BCP) is placed in a resistance heating boat made of molybdenum, 100 mg of phosphorescent compound (Ir-1) is placed in another resistance heating boat made of molybdenum, and Alq is placed in another resistance heating boat made of molybdenum. 3 200 mg was added and attached to a vacuum deposition apparatus.
[0102]
The vacuum chamber is then 4 × 10 -4 After depressurizing to Pa, the heating boat containing α-NPD was energized and heated, and deposited on a transparent support substrate at a deposition rate of 0.1 nm / sec to provide a 45 nm thick hole transport layer. Further, the heating boat containing CBP and Ir-1 was energized and heated, and co-deposited on the hole transport layer at a deposition rate of 0.1 nm / sec and 0.01 nm / sec, respectively, to a film thickness of 20 nm. A light emitting layer was provided. In addition, the substrate temperature at the time of vapor deposition was room temperature. In addition, an electron transport layer that also serves as a hole blocking function with a film thickness of 10 nm is provided by energizing and heating the heating boat containing BCP and depositing on the light emitting layer at a deposition rate of 0.1 nm / sec. It was. In addition, Alq 3 The heating boat containing was heated by energizing, and was deposited on the electron transport layer at a deposition rate of 0.1 nm / sec to further provide an electron injection layer having a thickness of 40 nm. In addition, the substrate temperature at the time of vapor deposition was room temperature.
[0103]
Then, 0.5 nm of lithium fluoride and 110 nm of aluminum were vapor-deposited, the cathode was formed, and the organic EL element OLED1-1 was produced.
[0104]
Organic EL elements OLED1-2 to 1-15 were produced in exactly the same manner except that the CBP of the light emitting layer was replaced with the compounds shown in Table 1.
[0105]
The structure of the compound used above is shown below.
[0106]
Embedded image
Figure 2004031004
[0107]
<Evaluation of organic EL element>
The organic EL device obtained as described below was evaluated, and the results are shown in Table 1.
[0108]
1) Luminance and luminous efficiency
In the organic EL element OLED1-1, a current started to flow at an initial driving voltage of 3 V, and green light was emitted from the phosphorescent compound that is the dopant of the light emitting layer. Luminous brightness (cd / m) when a 10V DC voltage is applied in a dry nitrogen gas atmosphere at a temperature of 23 ° C. of the organic EL element OLED1-1 2 ) And luminous efficiency (lm / W) were measured.
[0109]
Luminance and luminous efficiency are expressed as relative values when the organic EL element OLED1-1 is 100. The light emission luminance was measured using CS-1000 (Minolta).
[0110]
2) Durability
10 mA / cm 2 The half-life time, which is the time required for the initial luminance to drop to half of the original luminance when driven at a constant current, was expressed as an index. The half-life time was expressed as a relative value when the organic EL element OLED1-1 was set to 100.
[0111]
[Table 1]
Figure 2004031004
[0112]
As is clear from Table 1, the organic EL device using the pyrimidine derivative compound represented by the general formulas (1) to (3) as a host compound has high emission luminance and emission efficiency and a long half-life time. Therefore, it can be seen that it is very useful as an organic EL device. In particular, it can be seen that the effects of the present invention are more remarkable in the organic EL elements OLED1-9 to 1-15 to which the pyrimidine derivative compound represented by the general formula (2) or (3) is added.
[0113]
In addition, the same effect can be obtained in an organic EL element produced in the same manner as the organic EL elements OLED1-1 to 1-15 except that the phosphorescent compound (Ir-1) is changed to Ir-12 or Ir-9. It was. Blue light emission was obtained from the element using Ir-12, and red light emission was obtained from the element using Ir-9.
[0114]
Example 2
Organic EL elements OLED2-1 to 2-10 were produced in exactly the same manner except that BCP in the electron transport layer of the organic EL element OLED1-1 of Example 1 was replaced with the compounds shown in Table 2.
[0115]
Next, the light emission luminance, light emission efficiency, and half-life time (durability) were measured in the same manner as in Example 1. The obtained results are shown in Table 2.
[0116]
[Table 2]
Figure 2004031004
[0117]
As is apparent from Table 2, the organic EL device using any of the pyrimidine derivative compounds represented by the general formulas (1) to (3) in the electron transport layer has improved light emission luminance, light emission efficiency, and durability. You can see that. In particular, it can be seen that the half-life time is significantly improved in terms of durability. Moreover, it turns out that the effect of this invention is still more remarkable in organic EL element OLED2-6 to 2-10 which added the pyrimidine derivative compound represented by General formula (2) or (3).
[0118]
Example 3
The red, green, and blue light-emitting organic EL elements produced in Example 1 were juxtaposed on the same substrate to produce an active matrix type full-color display device shown in FIG. FIG. 1 shows only a schematic diagram of the display portion A of the produced full-color display device. That is, a wiring portion including a plurality of scanning lines 2 and data lines 3 and a plurality of juxtaposed pixels 1 (light emission color is a red region pixel, a green region pixel, a blue region pixel, etc.) on the same substrate. Each of the scanning lines 2 and the plurality of data lines 3 in the wiring portion is made of a conductive material, and the scanning lines 2 and the data lines 3 are orthogonal to each other in a lattice shape and are connected to the pixels 1 at the orthogonal positions (details). Is not shown). The plurality of pixels 1 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is applied from a scanning line 2. Then, an image data signal is received from the data line 3, and light is emitted according to the received image data. In this way, full-color display is possible by appropriately juxtaposing the red, green, and blue pixels.
[0119]
By driving the obtained full-color display device, a clear full-color moving image display having high luminance and good durability was obtained.
[0120]
【The invention's effect】
According to the present invention, it is possible to obtain a remarkably excellent effect that an organic EL element having excellent emission luminance and a long lifetime and a display device having the organic EL element can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a display unit of a full-color display device.
[Explanation of symbols]
A display
1 pixel
2 scanning lines
3 data lines

Claims (11)

ホスト化合物及び燐光性化合物を含有する発光層を有する有機エレクトロルミネッセンス素子であって、該素子を構成する何れかの層に下記一般式(1)で表される化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
Figure 2004031004
式中、R11、R12、R13及びR14は水素原子又は一価の置換基を表し、少なくとも1つは炭素原子、酸素原子、硫黄原子又はケイ素原子を介して結合する置換基を表す。
An organic electroluminescence device having a light-emitting layer containing a host compound and a phosphorescent compound, wherein any one of the layers constituting the device contains a compound represented by the following general formula (1) Organic electroluminescence device.
Figure 2004031004
In the formula, R 11 , R 12 , R 13 and R 14 represent a hydrogen atom or a monovalent substituent, and at least one represents a substituent bonded via a carbon atom, an oxygen atom, a sulfur atom or a silicon atom. .
一般式(1)のR11、R12、R13及びR14のうち、少なくとも1つが炭化水素芳香族基で表されることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。2. The organic electroluminescence device according to claim 1, wherein at least one of R 11 , R 12 , R 13, and R 14 in the general formula (1) is represented by a hydrocarbon aromatic group. 下記一般式(2)で表される化合物を含有することを特徴とする請求項1又は2に記載の有機エレクトロルミネッセンス素子。
Figure 2004031004
式中、Ar21、Ar22及びAr23は芳香族基を表し、R21、R22及びR23は一価の置換基を表す。l、m及びnはそれぞれ0〜4の整数を表す。
The organic electroluminescent element according to claim 1 or 2, comprising a compound represented by the following general formula (2).
Figure 2004031004
In the formula, Ar 21 , Ar 22 and Ar 23 represent an aromatic group, and R 21 , R 22 and R 23 represent a monovalent substituent. l, m, and n each represent an integer of 0-4.
一般式(2)のR21、R22及びR23がアルキル基であり、l、m及びnが2〜4であることを特徴とする請求項3に記載の有機エレクトロルミネッセンス素子。The organic electroluminescence device according to claim 3, wherein R 21 , R 22 and R 23 in the general formula (2) are alkyl groups, and l, m and n are 2 to 4. 一般式(2)のAr21、Ar22及びAr23の少なくとも1つがチエニル基であることを特徴とする請求項3又は4に記載の有機エレクトロルミネッセンス素子。The organic electroluminescent element according to claim 3 or 4, wherein at least one of Ar 21 , Ar 22 and Ar 23 in the general formula (2) is a thienyl group. 一般式(1)で表される化合物が下記一般式(3)で表されることを特徴とする有機エレクトロルミネッセンス素子。
Figure 2004031004
式中、R31は水素原子又は一価の置換基を表し、n3は0〜2を表し、Z3は5員環を形成するのに必要な原子群を表す。
An organic electroluminescence device, wherein the compound represented by the general formula (1) is represented by the following general formula (3).
Figure 2004031004
In the formula, R 31 represents a hydrogen atom or a monovalent substituent, n3 represents 0 to 2, and Z3 represents an atomic group necessary for forming a 5-membered ring.
一般式(1)〜(3)で表される化合物の何れかを電子輸送層に含有することを特徴とする請求項1〜6の何れか1項に記載の有機エレクトロルミネッセンス素子The organic electroluminescence device according to any one of claims 1 to 6, wherein any one of the compounds represented by the general formulas (1) to (3) is contained in the electron transport layer. 一般式(1)〜(3)で表される化合物の何れかをホスト化合物として発光層に含有することを特徴とする請求項1〜7の何れか1項に記載の有機エレクトロルミネッセンス素子。The organic electroluminescent element according to claim 1, wherein any one of the compounds represented by the general formulas (1) to (3) is contained in the light emitting layer as a host compound. 燐光性化合物がイリジウム化合物、オスミウム化合物又は白金化合物であることを特徴とする請求項1〜8の何れか1項に記載の有機エレクトロルミネッセンス素子。The organic electroluminescence device according to any one of claims 1 to 8, wherein the phosphorescent compound is an iridium compound, an osmium compound, or a platinum compound. 燐光性化合物がイリジウム化合物であることを特徴とする請求項9に記載の有機エレクトロルミネッセンス素子The organic electroluminescent device according to claim 9, wherein the phosphorescent compound is an iridium compound. 請求項1〜10の何れか1項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする表示装置。A display device comprising the organic electroluminescence element according to claim 1.
JP2002182682A 2002-06-24 2002-06-24 Organic electroluminescence element and display device Expired - Lifetime JP4036041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002182682A JP4036041B2 (en) 2002-06-24 2002-06-24 Organic electroluminescence element and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002182682A JP4036041B2 (en) 2002-06-24 2002-06-24 Organic electroluminescence element and display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007233744A Division JP4656111B2 (en) 2007-09-10 2007-09-10 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2004031004A true JP2004031004A (en) 2004-01-29
JP4036041B2 JP4036041B2 (en) 2008-01-23

Family

ID=31179112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002182682A Expired - Lifetime JP4036041B2 (en) 2002-06-24 2002-06-24 Organic electroluminescence element and display device

Country Status (1)

Country Link
JP (1) JP4036041B2 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005105950A1 (en) * 2004-04-29 2005-11-10 Ciba Specialty Chemicals Holding Inc. Electroluminescent device
JP2006510732A (en) * 2002-10-30 2006-03-30 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Electroluminescent device
EP1724323A1 (en) * 2004-03-08 2006-11-22 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device utilizing the same
US20070172698A1 (en) * 2004-03-02 2007-07-26 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2008096735A1 (en) * 2007-02-06 2008-08-14 Sumitomo Chemical Company, Limited Composition containing pyrimidine compound and luminescent element employing the composition
WO2009157428A1 (en) * 2008-06-23 2009-12-30 住友化学株式会社 Phosphorescent light-emitting composition and light-emitting element comprising the composition
JP2010031248A (en) * 2008-06-23 2010-02-12 Sumitomo Chemical Co Ltd Composition and light-emitting element using the composition
WO2010024572A2 (en) 2008-08-25 2010-03-04 Cheil Industries Inc. Material for organic photoelectric device and organic photoelectric device including the same
US7745017B2 (en) 2004-06-28 2010-06-29 Fujifilm Corporation Organic electroluminescent device and method for producing the same
JP2010186913A (en) * 2009-02-13 2010-08-26 Yamagata Promotional Organization For Industrial Technology Organic thin-film solar cell
EP2239255A1 (en) * 2007-12-27 2010-10-13 Nippon Steel Chemical Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device using the same
WO2011021689A1 (en) 2009-08-21 2011-02-24 東ソー株式会社 Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component
JP2011063584A (en) * 2009-08-21 2011-03-31 Tosoh Corp Triazine derivative, method for producing the same and organic electroluminescent element comprising the same as constituent component
WO2011005060A3 (en) * 2009-07-10 2011-04-28 제일모직 주식회사 Compound for an organic photoelectric element, and an organic photoelectric element comprising the same
JP2011084553A (en) * 2009-09-15 2011-04-28 Tosoh Corp Pyrimidine derivative, production method therefor, and organic electroluminescent element including the same as constituent
WO2011115071A1 (en) * 2010-03-15 2011-09-22 国立大学法人広島大学 Thienopyridine derivative, method for producing same and organic semiconductor device using same
US20110248257A1 (en) * 2008-12-24 2011-10-13 Nam-Soo Kim Compound for an organic photoelectric device, organic photoelectric device, and display device including the same
EP2383323A2 (en) * 2008-12-30 2011-11-02 Cheil Industries Inc. Novel compounds for an organic photoelectric device, and organic photoelectric device comprising same
JP2012097006A (en) * 2010-10-29 2012-05-24 Mitsubishi Chemicals Corp Pyrimidine compound, material for organic electroluminescent element, composition for organic electroluminescent element, organic electroluminescent element, lighting device and display device
JP2012514639A (en) * 2009-01-08 2012-06-28 ゼネラル・エレクトリック・カンパニイ 2,4,6-tri- (heteroarylphenyl) -pyridine and electron transport material containing the same
WO2012088192A1 (en) * 2010-12-21 2012-06-28 E. I. Du Pont De Nemours And Company Electronic device including a pyrimidine compound
WO2012137958A1 (en) 2011-04-07 2012-10-11 三菱化学株式会社 Organic compound, charge transport material, composition containing said compound, organic electroluminescent element, display device, and lighting device
WO2013027902A1 (en) * 2011-08-19 2013-02-28 제일모직 주식회사 Compound for an organic optoelectric device, organic light emitting element including same, and display device including the organic light emitting element
CN103304487A (en) * 2012-03-15 2013-09-18 海洋王照明科技股份有限公司 Organic semiconductor material containing pyrimidine, preparation method thereof and organic light-emitting device
JP5320739B2 (en) * 2005-03-28 2013-10-23 コニカミノルタ株式会社 Organic electroluminescence element, display device and lighting device
CN103396404A (en) * 2013-07-31 2013-11-20 华南理工大学 Compound using triphenylpyrimidine as core as well as preparation method and application thereof
US8697256B2 (en) 2008-07-29 2014-04-15 Sumitomo Chemical Company, Limited Composition comprising phosphorescent compound and light emitting device using the composition
KR20140144613A (en) * 2013-06-11 2014-12-19 제일모직주식회사 Compound, organic optoelectric device, and display device
WO2015053570A1 (en) * 2013-10-11 2015-04-16 에스에프씨 주식회사 Organic light-emitting compound and organic electroluminescent element comprising same
WO2015053572A1 (en) * 2013-10-11 2015-04-16 에스에프씨 주식회사 Organic light emitting compound and organic light emitting device comprising same
US9093652B2 (en) 2009-12-16 2015-07-28 Cheil Industries, Inc. Compound for an organic photoelectric device, organic photoelectric device including the same, and display device including the organic photoelectric device
US9252368B2 (en) 2011-11-11 2016-02-02 Tosoh Corporation Cyclic azine compound having nitrogen-containing condensed aromatic group, method for producing same, and organic electroluminescent device comprising same as constituent component
US9266851B2 (en) 2009-10-16 2016-02-23 Idemitsu Kosan Co., Ltd. Fluorene-containing aromatic compound, material for organic electroluminescent element, and organic electroluminescent element using same
WO2016195406A3 (en) * 2015-06-03 2017-05-26 주식회사 엘지화학 Heterocyclic compound and organic light emitting device including same
EP3182478A1 (en) 2015-12-18 2017-06-21 Novaled GmbH Electron injection layer for an organic light-emitting diode (oled)
EP3252837A1 (en) 2016-05-30 2017-12-06 Novaled GmbH Organic light emitting diode comprising an organic semiconductor layer
EP3252841A1 (en) 2016-05-30 2017-12-06 Novaled GmbH Organic light emitting diode comprising an organic semiconductor layer
US9893296B2 (en) 2011-11-22 2018-02-13 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
JP2018061046A (en) * 2011-08-25 2018-04-12 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, electronic apparatus, and lighting device
CN110003186A (en) * 2017-05-11 2019-07-12 江苏三月光电科技有限公司 A kind of organic compound and its application based on diazine and benzimidazole
US11289658B2 (en) 2002-10-30 2022-03-29 Udc Ireland Limited Electroluminescent device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077142A (en) * 1989-04-20 1991-12-31 Ricoh Company, Ltd. Electroluminescent devices
JPH0765956A (en) * 1993-08-27 1995-03-10 Sanyo Electric Co Ltd Organic electroluminescence element
JPH0848972A (en) * 1994-07-01 1996-02-20 Hoechst Ag Use of conjugated compound having pyrimidine group as electroluminescent material
JPH08199163A (en) * 1995-01-24 1996-08-06 Sanyo Electric Co Ltd Organic electroluminescence element
JPH11514143A (en) * 1996-07-17 1999-11-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electron conductive layers in organic electroluminescent devices
JP2000063818A (en) * 1998-08-18 2000-02-29 Fuji Photo Film Co Ltd Organic electroluminescent device material and organic electroluminescent device made therefrom
JP2000186066A (en) * 1998-12-22 2000-07-04 Minolta Co Ltd New amino compound, its production and use thereof
JP2001257076A (en) * 2000-03-13 2001-09-21 Tdk Corp Organic el element
JP2002050483A (en) * 2000-05-22 2002-02-15 Showa Denko Kk Organic electro luminescence element and luminescent material
JP2002097465A (en) * 2000-09-25 2002-04-02 Toyo Ink Mfg Co Ltd Organic electroluminescence element material and organic electroluminescence element obtained using the same
JP2002100476A (en) * 2000-07-17 2002-04-05 Fuji Photo Film Co Ltd Light-emitting element and azole compound
JP2002175883A (en) * 2000-09-20 2002-06-21 Konica Corp Organic electroluminescence element, organic electroluminescence element material and display device
JP2002175882A (en) * 2000-12-07 2002-06-21 Fuji Photo Film Co Ltd Luminous element
JP2002203683A (en) * 2000-10-30 2002-07-19 Toyota Central Res & Dev Lab Inc Organic electroluminescent element
JP2003109763A (en) * 2001-09-28 2003-04-11 Canon Inc Organic light emitting element
WO2003080760A1 (en) * 2002-03-22 2003-10-02 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent devices and organic electroluminescent devices made by using the same

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077142A (en) * 1989-04-20 1991-12-31 Ricoh Company, Ltd. Electroluminescent devices
JPH0765956A (en) * 1993-08-27 1995-03-10 Sanyo Electric Co Ltd Organic electroluminescence element
JPH0848972A (en) * 1994-07-01 1996-02-20 Hoechst Ag Use of conjugated compound having pyrimidine group as electroluminescent material
JPH08199163A (en) * 1995-01-24 1996-08-06 Sanyo Electric Co Ltd Organic electroluminescence element
JPH11514143A (en) * 1996-07-17 1999-11-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electron conductive layers in organic electroluminescent devices
JP2000063818A (en) * 1998-08-18 2000-02-29 Fuji Photo Film Co Ltd Organic electroluminescent device material and organic electroluminescent device made therefrom
JP2000186066A (en) * 1998-12-22 2000-07-04 Minolta Co Ltd New amino compound, its production and use thereof
JP2001257076A (en) * 2000-03-13 2001-09-21 Tdk Corp Organic el element
JP2002050483A (en) * 2000-05-22 2002-02-15 Showa Denko Kk Organic electro luminescence element and luminescent material
JP2002100476A (en) * 2000-07-17 2002-04-05 Fuji Photo Film Co Ltd Light-emitting element and azole compound
JP2002175883A (en) * 2000-09-20 2002-06-21 Konica Corp Organic electroluminescence element, organic electroluminescence element material and display device
JP2002097465A (en) * 2000-09-25 2002-04-02 Toyo Ink Mfg Co Ltd Organic electroluminescence element material and organic electroluminescence element obtained using the same
JP2002203683A (en) * 2000-10-30 2002-07-19 Toyota Central Res & Dev Lab Inc Organic electroluminescent element
JP2002175882A (en) * 2000-12-07 2002-06-21 Fuji Photo Film Co Ltd Luminous element
JP2003109763A (en) * 2001-09-28 2003-04-11 Canon Inc Organic light emitting element
WO2003080760A1 (en) * 2002-03-22 2003-10-02 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent devices and organic electroluminescent devices made by using the same

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510732A (en) * 2002-10-30 2006-03-30 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Electroluminescent device
US11968893B2 (en) 2002-10-30 2024-04-23 Udc Ireland Limited Electroluminescent device
US11289658B2 (en) 2002-10-30 2022-03-29 Udc Ireland Limited Electroluminescent device
US20070172698A1 (en) * 2004-03-02 2007-07-26 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
US8895154B2 (en) * 2004-03-02 2014-11-25 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
EP1724323A1 (en) * 2004-03-08 2006-11-22 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device utilizing the same
EP1724323A4 (en) * 2004-03-08 2008-11-05 Idemitsu Kosan Co Material for organic electroluminescence device and organic electroluminescence device utilizing the same
WO2005105950A1 (en) * 2004-04-29 2005-11-10 Ciba Specialty Chemicals Holding Inc. Electroluminescent device
US7745017B2 (en) 2004-06-28 2010-06-29 Fujifilm Corporation Organic electroluminescent device and method for producing the same
JP5320739B2 (en) * 2005-03-28 2013-10-23 コニカミノルタ株式会社 Organic electroluminescence element, display device and lighting device
US8703300B2 (en) 2005-03-28 2014-04-22 Konica Minolta Holdings, Inc. Organic electroluminescent element, display and illuminator
JP2008214615A (en) * 2007-02-06 2008-09-18 Sumitomo Chemical Co Ltd Composition and light-emitting element using the composition
WO2008096735A1 (en) * 2007-02-06 2008-08-14 Sumitomo Chemical Company, Limited Composition containing pyrimidine compound and luminescent element employing the composition
US8815416B2 (en) 2007-12-27 2014-08-26 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent device using a bipyrimidine compound
EP2239255A1 (en) * 2007-12-27 2010-10-13 Nippon Steel Chemical Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device using the same
JP5194031B2 (en) * 2007-12-27 2013-05-08 新日鉄住金化学株式会社 Compound for organic electroluminescent device and organic electroluminescent device using the same
KR101504266B1 (en) 2007-12-27 2015-03-19 신닛테츠 수미킨 가가쿠 가부시키가이샤 Compound for organic electroluminescent device and organic electroluminescent device using the same
EP2239255A4 (en) * 2007-12-27 2011-09-14 Nippon Steel Chemical Co Compound for organic electroluminescent device and organic electroluminescent device using the same
JP2010031249A (en) * 2008-06-23 2010-02-12 Sumitomo Chemical Co Ltd Composition and light-emitting element using the composition
JP2010031248A (en) * 2008-06-23 2010-02-12 Sumitomo Chemical Co Ltd Composition and light-emitting element using the composition
WO2009157428A1 (en) * 2008-06-23 2009-12-30 住友化学株式会社 Phosphorescent light-emitting composition and light-emitting element comprising the composition
US8697256B2 (en) 2008-07-29 2014-04-15 Sumitomo Chemical Company, Limited Composition comprising phosphorescent compound and light emitting device using the composition
JP2012501091A (en) * 2008-08-25 2012-01-12 チェイル インダストリーズ インコーポレイテッド Material for organic photoelectric element and organic photoelectric element including the same
US8470454B2 (en) 2008-08-25 2013-06-25 Cheil Industries, Inc. Material for organic photoelectric device and organic photoelectric device including the same
WO2010024572A2 (en) 2008-08-25 2010-03-04 Cheil Industries Inc. Material for organic photoelectric device and organic photoelectric device including the same
EP2315753A4 (en) * 2008-08-25 2012-09-12 Cheil Ind Inc Material for organic photoelectric device and organic photoelectric device including the same
CN102089288A (en) * 2008-08-25 2011-06-08 第一毛织株式会社 Material for organic photoelectric device and organic photoelectric device including the same
EP2315753A2 (en) * 2008-08-25 2011-05-04 Cheil Industries Inc. Material for organic photoelectric device and organic photoelectric device including the same
US20110248257A1 (en) * 2008-12-24 2011-10-13 Nam-Soo Kim Compound for an organic photoelectric device, organic photoelectric device, and display device including the same
JP2012513987A (en) * 2008-12-24 2012-06-21 チェイル インダストリーズ インコーポレイテッド Novel compound for organic photoelectric device and organic photoelectric device including the same
US9199966B2 (en) * 2008-12-24 2015-12-01 Cheil Industries, Inc. Compound for an organic photoelectric device, organic photoelectric device, and display device including the same
US8435648B2 (en) 2008-12-30 2013-05-07 Cheil Industries, Inc. Pyridinylene ring compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
EP2383323A2 (en) * 2008-12-30 2011-11-02 Cheil Industries Inc. Novel compounds for an organic photoelectric device, and organic photoelectric device comprising same
EP2383323A4 (en) * 2008-12-30 2013-03-27 Cheil Ind Inc Novel compounds for an organic photoelectric device, and organic photoelectric device comprising same
JP2012514639A (en) * 2009-01-08 2012-06-28 ゼネラル・エレクトリック・カンパニイ 2,4,6-tri- (heteroarylphenyl) -pyridine and electron transport material containing the same
JP2010186913A (en) * 2009-02-13 2010-08-26 Yamagata Promotional Organization For Industrial Technology Organic thin-film solar cell
WO2011005060A3 (en) * 2009-07-10 2011-04-28 제일모직 주식회사 Compound for an organic photoelectric element, and an organic photoelectric element comprising the same
CN102471679A (en) * 2009-07-10 2012-05-23 第一毛织株式会社 Compound for an organic photoelectric element, and an organic photoelectric element comprising the same
US9120773B2 (en) 2009-08-21 2015-09-01 Tosoh Corporation Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component
US9624193B2 (en) 2009-08-21 2017-04-18 Tosoh Corporation Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component
JP2011063584A (en) * 2009-08-21 2011-03-31 Tosoh Corp Triazine derivative, method for producing the same and organic electroluminescent element comprising the same as constituent component
WO2011021689A1 (en) 2009-08-21 2011-02-24 東ソー株式会社 Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component
JP2011084553A (en) * 2009-09-15 2011-04-28 Tosoh Corp Pyrimidine derivative, production method therefor, and organic electroluminescent element including the same as constituent
US9266851B2 (en) 2009-10-16 2016-02-23 Idemitsu Kosan Co., Ltd. Fluorene-containing aromatic compound, material for organic electroluminescent element, and organic electroluminescent element using same
US9093652B2 (en) 2009-12-16 2015-07-28 Cheil Industries, Inc. Compound for an organic photoelectric device, organic photoelectric device including the same, and display device including the organic photoelectric device
CN102884068A (en) * 2010-03-15 2013-01-16 国立大学法人广岛大学 Thienopyridine derivative, method for producing same and organic semiconductor device using same
WO2011115071A1 (en) * 2010-03-15 2011-09-22 国立大学法人広島大学 Thienopyridine derivative, method for producing same and organic semiconductor device using same
JP5747352B2 (en) * 2010-03-15 2015-07-15 国立大学法人広島大学 Organic semiconductor devices using thienopyridine derivatives
JP2012097006A (en) * 2010-10-29 2012-05-24 Mitsubishi Chemicals Corp Pyrimidine compound, material for organic electroluminescent element, composition for organic electroluminescent element, organic electroluminescent element, lighting device and display device
JP2014507403A (en) * 2010-12-21 2014-03-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Electronic devices containing pyrimidine compounds
CN103261172A (en) * 2010-12-21 2013-08-21 E.I.内穆尔杜邦公司 Electronic device including a pyrimidine compound
KR101802008B1 (en) * 2010-12-21 2017-11-27 이 아이 듀폰 디 네모아 앤드 캄파니 Electronic device including a pyrimidine compound
WO2012088192A1 (en) * 2010-12-21 2012-06-28 E. I. Du Pont De Nemours And Company Electronic device including a pyrimidine compound
US8945728B2 (en) 2011-04-07 2015-02-03 Mitsubishi Chemical Corporation Organic compound, charge-transporting material, composition containing the compound, organic electroluminescent element, display device, and lighting device
WO2012137958A1 (en) 2011-04-07 2012-10-11 三菱化学株式会社 Organic compound, charge transport material, composition containing said compound, organic electroluminescent element, display device, and lighting device
US9564602B2 (en) 2011-04-07 2017-02-07 Mitsubishi Chemical Corporation Organic compound, charge-transporting material, composition containing the compound, organic electroluminescent element, display device, and lighting device
KR101474800B1 (en) 2011-08-19 2014-12-19 제일모직 주식회사 Compound for organic OPTOELECTRONIC device, ORGANIC LIGHT EMITTING DIODE INCLUDING THE SAME and DISPLAY INCLUDING THE organic LIGHT EMITTING DIODE
WO2013027902A1 (en) * 2011-08-19 2013-02-28 제일모직 주식회사 Compound for an organic optoelectric device, organic light emitting element including same, and display device including the organic light emitting element
JP2018061046A (en) * 2011-08-25 2018-04-12 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, electronic apparatus, and lighting device
JP2019068095A (en) * 2011-08-25 2019-04-25 株式会社半導体エネルギー研究所 Light-emitting device
TWI727297B (en) * 2011-08-25 2021-05-11 日商半導體能源研究所股份有限公司 Light-emitting element, light-emitting device, electronic device, lighting device, and novel organic compound
JP2021184496A (en) * 2011-08-25 2021-12-02 株式会社半導体エネルギー研究所 Light emitting element, light emitting device, electronic device, and lighting device
US11008510B2 (en) 2011-08-25 2021-05-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, lighting device, and novel organic compound
US11773321B2 (en) 2011-08-25 2023-10-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, lighting device, and novel organic compound
JP7256239B2 (en) 2011-08-25 2023-04-11 株式会社半導体エネルギー研究所 Light-emitting elements, light-emitting devices, electronic devices, and lighting devices
US9252368B2 (en) 2011-11-11 2016-02-02 Tosoh Corporation Cyclic azine compound having nitrogen-containing condensed aromatic group, method for producing same, and organic electroluminescent device comprising same as constituent component
US11374176B2 (en) 2011-11-22 2022-06-28 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
US9893296B2 (en) 2011-11-22 2018-02-13 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
US10199580B2 (en) 2011-11-22 2019-02-05 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
US10418563B2 (en) 2011-11-22 2019-09-17 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
CN103304487A (en) * 2012-03-15 2013-09-18 海洋王照明科技股份有限公司 Organic semiconductor material containing pyrimidine, preparation method thereof and organic light-emitting device
KR20140144613A (en) * 2013-06-11 2014-12-19 제일모직주식회사 Compound, organic optoelectric device, and display device
KR101648141B1 (en) * 2013-06-11 2016-08-12 제일모직 주식회사 Compound, organic optoelectric device, and display device
CN103396404A (en) * 2013-07-31 2013-11-20 华南理工大学 Compound using triphenylpyrimidine as core as well as preparation method and application thereof
WO2015053572A1 (en) * 2013-10-11 2015-04-16 에스에프씨 주식회사 Organic light emitting compound and organic light emitting device comprising same
WO2015053570A1 (en) * 2013-10-11 2015-04-16 에스에프씨 주식회사 Organic light-emitting compound and organic electroluminescent element comprising same
US10651397B2 (en) 2013-10-11 2020-05-12 Sfc Co., Ltd. Organic light emitting compound and organic light emitting device comprising the same
US10435390B2 (en) 2015-06-03 2019-10-08 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device including same
JP2018513115A (en) * 2015-06-03 2018-05-24 エルジー・ケム・リミテッド Heterocyclic compound and organic light emitting device including the same
WO2016195406A3 (en) * 2015-06-03 2017-05-26 주식회사 엘지화학 Heterocyclic compound and organic light emitting device including same
EP3182478A1 (en) 2015-12-18 2017-06-21 Novaled GmbH Electron injection layer for an organic light-emitting diode (oled)
EP3252841A1 (en) 2016-05-30 2017-12-06 Novaled GmbH Organic light emitting diode comprising an organic semiconductor layer
EP3252837A1 (en) 2016-05-30 2017-12-06 Novaled GmbH Organic light emitting diode comprising an organic semiconductor layer
CN110003186A (en) * 2017-05-11 2019-07-12 江苏三月光电科技有限公司 A kind of organic compound and its application based on diazine and benzimidazole

Also Published As

Publication number Publication date
JP4036041B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
JP4036041B2 (en) Organic electroluminescence element and display device
JP4106974B2 (en) Organic electroluminescence element and display device
JP4103491B2 (en) Organic electroluminescence element and display device
JP4103492B2 (en) Organic electroluminescence element and display device
JP4810687B2 (en) Organic electroluminescence element and display device
JP4483167B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND DISPLAY DEVICE HAVING ORGANIC ELECTROLUMINESCENT ELEMENT
JP4103493B2 (en) Organic electroluminescence element and display device
JP2004214050A (en) Organic electroluminescent element and display device
JP4048792B2 (en) Organic electroluminescence element and display device
JP4300788B2 (en) Organic electroluminescence element and display device
JP2004014334A (en) Organic electroluminescent element and display device
JP2004146368A (en) Organic electroluminescent element and display device
JP3994799B2 (en) Organic electroluminescence element and display device
JP4103442B2 (en) Organic electroluminescence element and display device
JP4265216B2 (en) Organic electroluminescence element and display device
JP4085776B2 (en) Organic electroluminescence element and display device
JP4265215B2 (en) Organic electroluminescence element and display device
JP4726384B2 (en) Organic electroluminescence element and display device
JP4798128B2 (en) Organic electroluminescence element and display device
JP4656111B2 (en) Organic electroluminescence device
JP3997937B2 (en) Organic electroluminescence element, display device and lighting device
JP5040671B2 (en) Organic electroluminescence element and display device
JP4129599B2 (en) Organic electroluminescence element and display device
JP4183016B2 (en) Organic electroluminescence element and display device
JP3960133B2 (en) Organic electroluminescence element and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

R150 Certificate of patent or registration of utility model

Ref document number: 4036041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term