JP2004026550A - Method and apparatus for producing hydrogen peroxide - Google Patents

Method and apparatus for producing hydrogen peroxide Download PDF

Info

Publication number
JP2004026550A
JP2004026550A JP2002183846A JP2002183846A JP2004026550A JP 2004026550 A JP2004026550 A JP 2004026550A JP 2002183846 A JP2002183846 A JP 2002183846A JP 2002183846 A JP2002183846 A JP 2002183846A JP 2004026550 A JP2004026550 A JP 2004026550A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen peroxide
oxygen
gas
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002183846A
Other languages
Japanese (ja)
Inventor
Naoji Ito
伊藤 直次
Fujio Mizukami
水上 富士夫
Shuichi Niwa
丹羽 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002183846A priority Critical patent/JP2004026550A/en
Publication of JP2004026550A publication Critical patent/JP2004026550A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily produce a hydrogen peroxide gas or its aqueous solution which has no impurities and has high concentration, and is low-cost. <P>SOLUTION: In the method for producing hydrogen peroxide, the high purity hydrogen peroxide is produced as follows; hydrogen gas and oxygen gas are separately supplied across a hydrogen dissociation permeable membrane which dissociates hydrogen molecules and is permeated by the hydrogen molecules and, at the same time, atomic hydrogen permeating from the hydrogen dissociation permeable membrane is reacted with oxygen and the high purity hydrogen peroxide is recovered on the side of supplying oxygen. Therein, the hydrogen gas is reacted with the oxygen gas at a temperature ≥0°C. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高い純度の過酸化水素ガスあるいはその水溶液を容易に製造することを可能にする製造方法および装置を提供するものである。高純度の過酸化水素ガスは、殺菌や化学工業用酸化剤などとして直接使用することができ、安価に製造されれば需要の拡大が期待されている。また高純度の過酸化水素水溶液は、半導体基板の製造工程における基板の洗浄などの目的で用いられており、近年、その需要が増大しつつある。
【0002】
【従来の技術】
過酸化水素は、アルキルアントラキノン法によって工業的に製造されている。しかし、この方法によって得られた過酸化水素水溶液は有機不純物、無機不純物など多く不純物を含んでいる。
【0003】
このため、上記の方法で製造される過酸化水素水溶液は、蒸留塔を用いる不純物の除去方法(特開平5−201707号公報)によって精製することが提案されているが、この方法で精製された過酸化水素水溶液は、50〜300ppmを越える有機不純物および30〜200ppmの無機不純物を含むために、使用範囲が限定される。例えば、高集積度の半導体基板の製造工程で使用することはできない。
【0004】
また、蒸留工程を加えることは、装置設備と運転費など過酸化水素製造コストを高くすることになる。
【0005】
【発明が解決しようとする課題】
高純度の過酸化水素ガスあるいは水溶液を容易に得ることのできる製造方法は知られていない。現在の過酸化水素の製造法には大きく分けて、電気化学的方法と化学的方法がある。電気化学的方法は、電解槽を用いて酸素含有ガスをガス拡散電極、あるいは陰極へ吹き込み、酸素を電解還元してアルカリ性の過酸化水素を製造する方法であるが、生成する過酸化水素水のアルカリ含有率が高く、使用目的に応じてアルカリ金属イオンを低減回収する必要がある。化学的方法は、アルキルアントラキノンを作動媒体として用いる化学的合成法であり、多段階プロセスに加えて精製工程が必要である。また、酸素による水素の直接酸化によって製造する方法(特許公開平11−139812、特許公開平6−305715)も提案されているが、製造効率が悪く実用段階にはない。
しかしながら、酸素による水素の直接酸化によって製造する方法は、使用する物質として余計なものがなく、生成物は過酸化水素のみであり生成濃度さえ制御すれば直接使用することができるなど、依然として最も魅力ある製法であることに変わりない。本発明は、気相反応によって直接合成を実現するものである。ただし、水素と酸素の直接反応は大きな発熱を伴い、しかも水生成の方が熱力学的に有利であり、過酸化水素を選択的に生成させるには特別の反応制御が必要となる。こうした観点から鋭意検討した結果、水素解離透過性隔膜と、酸素濃度制御および局所発熱の防止と除熱を目的として設置する熱伝導性の良好な多孔質焼結体を利用して、水素を酸素側へ流量制御を行いながら供給する気相反応によって過酸化水素を効率的に製造できることを見出した。
本発明は、高純度かつ濃度が高い過酸化水素ガスあるいは水溶液を容易に得ることのできる高純度過酸化水素を製造する方法および装置を提供することを課題とするものである。
【0006】
【課題を解決するための手段】
本発明は、図1に示すように、水素分子を解離させ、透過させる水素解離透過膜を隔てて、水素ガスと酸素ガスを別々に供給しつつ、水素解離透過膜から透過してくる原子状の水素と酸素を反応させて、酸素を供給する側において高純度過酸化水素を回収して高純度過酸化水素を製造する方法である。
さらに本発明においては、図2に示すように、酸素ガスが接している側の水素解離透過膜を多孔質焼結体で覆うことにより、膜面へ到達する酸素流量と濃度さらには発熱量を制御して、効率良く高純度過酸化水素を得ることができる。
【0007】
【発明の実施の形態】
本発明において用いる水素解離透過膜としては、金属系水素透過材料たとえばPd, Ta, Nb, V, Ni, Zr若しくはPd, Ta, Nb, V, ZrとAg,Au,Rh,Ru,Sn,Se,Te,Si,Zn,In,Ir,Ni,Ti,Mo,Yから選ばれる元素の1種若しくは2種以上からなる合金があり、厚さ0.01mm〜0.2mm程度の隔膜状に成型したものを使用することができる。
本発明において、酸素ガスが接している側の水素解離透過膜を覆う多孔質焼結体としては、気体分散性および熱伝導性の良い金属の微粒子を焼結した厚さ0.5mm〜10mm程度で平均孔径0.1〜5μmの多孔質焼結体がよく、とくにステンレス微粒子を焼結したものを好適に用いることが出来る。
本発明の高純度過酸化水素の製造装置は、温度コントロール装置、水素ガス供給装置、酸素ガス供給装置、水素ガス供給側と酸素ガス供給側を隔離する水素解離透過膜、水素解離透過膜から透過してくる原子状の水素と酸素を高温で反応させる反応装置、酸素を供給する側において高純度過酸化水素を回収する回収装置からなる。
本発明で用いる水素ガスは、水素ガスが水素のほか各種の水素を含むガスであればいずれも利用可能であり、例えば各種工程で放出される水素を含む廃ガスや、炭化水素類の水蒸気改質反応や部分酸化反応など水素製造反応によって発生するガス(普通CO2、CO、H2の混合ガスとして得られる)を利用することもできる。好ましくは水素供給側の圧力として常圧から100気圧程度である。
本発明で用いる酸素ガスは、酸素ガスのほか空気を含むものであり、酸素供給側の圧力として0.01気圧から100気圧程度が良い。
反応温度は、0℃以上であり、好ましくは50℃〜200℃に設定される。
【0008】
本発明の実施の形態をまとめると、
(1) 水素分子を解離させ、透過させる水素解離透過膜を隔てて、水素ガスと酸素ガスを別々に供給しつつ、水素解離透過膜から透過してくる原子状の水素と酸素を反応させて、酸素を供給する側において高純度過酸化水素を回収して高純度過酸化水素を製造する方法において、
水素ガス、酸素ガスを0℃以上の温度で反応させることを特徴とする過酸化水素の製造方法。
(2) 酸素ガスが接している側の水素解離透過膜を多孔質焼結体で覆うことを特徴とする上記1に記載した過酸化水素の製造方法。
(3) 水素解離透過膜がPd, Ta, Nb, V, Ni, Zr若しくはPd, Ta, Nb, V, ZrとAg,Au,Rh,Ru,Sn,Se,Te,Si,Zn,In,Ir,Ni,Ti,Mo,Yから選ばれる元素の1種若しくは2種以上からなる合金である請求項1または2に記載した過酸化水素の製造方法。
(4) 反応温度が0から200℃である上記1〜3のいずれかひとつに記載した過酸化水素の製造方法。
(5) 多孔質焼結体が、ステンレス微粒子焼結体である上記2〜4のいずれかひとつに記載した過酸化水素の製造方法。
(6) 水素ガスが水素のほか水素を含む混合ガスであり、酸素ガスが酸素のほか空気を含むものである上記1〜5のいずれかひとつに記載した過酸化水素の製造方法。
(7) 温度コントロール装置、水素ガス供給装置、酸素ガス供給装置、水素ガス供給側と酸素ガス供給側を隔離する水素解離透過膜、水素解離透過膜から透過してくる活性な水素原子と酸素を高温で反応させる反応装置、酸素を供給する側において高純度過酸化水素を回収する回収装置からなる高純度過酸化水素の製造装置。
【0009】
次に、本発明の装置を用いる高純度過酸化水素ガスあるいは水溶液の製造を本発明の高純度過酸化水素製造装置の一実施態様を示す図面(図3)に従って具体的に説明する。
【0010】
水素あるいは水素を含む混合ガスを水素透過性隔膜によって仕切られた過酸化水素製造装置の一方の室へ送入する。ここで、過酸化水素製造装置は任意の温度に制御できるように加熱あるいは冷却装置が付設されている。
送入された水素の多くは隔膜を通って酸素室側へ透過するが、水素を含む混合ガスを用いた場合には残りのガス中の水素は水素回収装置のよって回収され、回収ラインを通って加圧ポンプへと導かれ、所定圧力まで昇圧された後、原料ガスとして再使用される。純水素を用いた場合には回収装置を経ずに直接循環使用される。
水素回収装置出口には、過酸化水素製造装置の水素室と水素回収装置室内の圧力を制御するために圧力制御弁が設けられている。もう一方の室には酸素あるいは空気もしくは酸素を含むガスを送入する。過酸化水素は水素透過性隔膜の内部もしくは表面上で水素と酸素との反応によって生成する。
酸素室の出口にも室内の圧力を制御するために圧力制御弁が設けられている。同時に水も生成するが、反応が100℃以上で行われる限り、凝縮することなく過酸化水素と水蒸気との混合ガスとして、そのまま使用することができる。また、それを冷却すれば過酸化水素水溶液として得ることができる。
【0011】
次に、実施例を挙げて本発明を具体的に説明する。過酸化水素は過マンガン酸カリウム規定液による滴定(JIS K−8230)により分析した。
【0012】
[実施例1]
水素透過隔膜として長さ20cmのパラジウム(77%)−銀(23%)合金製の管を使用した。多孔質焼結体としては、ステンレス製で孔径2μm、厚さ1.5mmのものを使用した。反応温度50℃で、1気圧の酸素5cc/minを隔膜管内へ供給し、1.5気圧の水素を隔膜管外側へ50cc/min供給した。酸素の反応率は75%であり、生成した過酸化水素濃度は1.3容積%(水蒸気中)であった。
【0013】
[実施例2]
実施例1と同じ水素透過隔膜を使用した。反応温度140℃で、1気圧の酸素5cc/minを隔膜管内へ供給し、1.5気圧の水素を隔膜管外側へ50cc/min供給した。酸素の反応率は85%であり、生成した過酸化水素濃度は1.7容積%(水蒸気中)であった。
【0014】
[実施例3]
実施例1と同じ水素透過隔膜を使用した。反応温度160℃で、1気圧の酸素2.5cc/minを隔膜管内へ供給し、1.02気圧の水素を隔膜管外側へ70cc/min供給した。酸素の反応率は90%であり、生成した過酸化水素濃度は0.8容積%(水蒸気中)であった。
【0015】
[実施例4]
実施例1と同じ水素透過隔膜を使用した。反応温度160℃で、1気圧の酸素2.5cc/minを隔膜管内へ供給し、2.0気圧の水素を隔膜管外側へ100cc/min供給した。酸素の反応率は90%であり、生成した過酸化水素濃度は1.2容積%(水蒸気中)であった。
【0016】
[実施例5]
実施例1と同じ水素透過隔膜を使用した。反応温度80℃で、1気圧の空気10cc/minを隔膜管内へ供給し、2.0気圧の水素を隔膜管外側へ80cc/min供給した。酸素の反応率は70%であり、生成した過酸化水素濃度は1.5容積%(水蒸気中)であった。
【0017】
【発明の効果】
本発明の方法と装置を用いて、水素と酸素から気相において直接過酸化水素ガスあるいは水溶液を製造することにより、半導体電子工業分野においても利用できる、高濃度かつ高純度の過酸化水素(すなわち、過酸化水素の濃度が0.5〜5容量%の過酸化水素ガスあるいは水溶液)を容易に得ることができる。こうした直接製造法は、既存の製法に比べて後処理(精製)の必要が皆無であり、製造コストを大幅に縮小することもできるので、工業的に非常に有利な高純度過酸化水素の製造プロセスを提供することができる。
【図面の簡単な説明】
【図1】本発明の高純度過酸化水素生成の原理の説明図
【図2】高純度過酸化水素生成の改良図
【図3】本発明の高純度過酸化水素製造装置
[0001]
TECHNICAL FIELD OF THE INVENTION
SUMMARY OF THE INVENTION The present invention provides a production method and an apparatus capable of easily producing a high-purity hydrogen peroxide gas or an aqueous solution thereof. High-purity hydrogen peroxide gas can be directly used as an oxidizing agent for sterilization or chemical industry, and demand for the hydrogen peroxide gas is expected to increase if manufactured at low cost. In addition, a high-purity aqueous hydrogen peroxide solution is used for the purpose of cleaning a substrate in a semiconductor substrate manufacturing process and the like, and in recent years, its demand is increasing.
[0002]
[Prior art]
Hydrogen peroxide is produced industrially by the alkylanthraquinone method. However, the aqueous solution of hydrogen peroxide obtained by this method contains many impurities such as organic impurities and inorganic impurities.
[0003]
For this reason, it has been proposed to purify the aqueous solution of hydrogen peroxide produced by the above method by a method of removing impurities using a distillation column (Japanese Patent Laid-Open No. 5-201707). Since the aqueous hydrogen peroxide solution contains organic impurities exceeding 50 to 300 ppm and inorganic impurities of 30 to 200 ppm, the range of use is limited. For example, it cannot be used in a manufacturing process of a highly integrated semiconductor substrate.
[0004]
Further, the addition of the distillation step increases the production cost of hydrogen peroxide such as equipment and operation costs.
[0005]
[Problems to be solved by the invention]
A production method capable of easily obtaining a high-purity hydrogen peroxide gas or an aqueous solution is not known. Current methods for producing hydrogen peroxide can be broadly divided into electrochemical methods and chemical methods. In the electrochemical method, an oxygen-containing gas is blown into a gas diffusion electrode or a cathode using an electrolytic cell, and oxygen is electrolytically reduced to produce alkaline hydrogen peroxide. The alkali content is high, and it is necessary to reduce and collect alkali metal ions depending on the purpose of use. The chemical method is a chemical synthesis method using alkylanthraquinone as a working medium, and requires a purification step in addition to a multi-step process. Further, a method of producing hydrogen by direct oxidation of hydrogen with oxygen (Japanese Patent Application Laid-Open Nos. Hei 11-139812 and Hei 6-305715) has been proposed, but the production efficiency is poor and not at a practical stage.
However, the method of producing hydrogen by direct oxidation of hydrogen with oxygen is still the most attractive because there is no extra substance to be used, the product is only hydrogen peroxide, and it can be used directly if only the concentration of production is controlled. It is still a manufacturing method. The present invention realizes direct synthesis by a gas phase reaction. However, the direct reaction between hydrogen and oxygen involves a large amount of heat, and water generation is more thermodynamically advantageous, and special reaction control is required to selectively generate hydrogen peroxide. As a result of intensive studies from this point of view, hydrogen was dissociated using a hydrogen dissociation permeable diaphragm and a porous sintered body with good thermal conductivity installed for the purpose of controlling oxygen concentration and preventing local heat generation and heat removal. It has been found that hydrogen peroxide can be efficiently produced by a gas phase reaction supplied while controlling the flow rate to the side.
An object of the present invention is to provide a method and an apparatus for producing high-purity hydrogen peroxide from which high-purity and high-concentration hydrogen peroxide gas or an aqueous solution can be easily obtained.
[0006]
[Means for Solving the Problems]
The present invention, as shown in FIG. 1, separates hydrogen molecules through a hydrogen dissociation permeable membrane that allows hydrogen molecules to dissociate and permeate, while supplying hydrogen gas and oxygen gas separately. Of hydrogen and oxygen to produce high-purity hydrogen peroxide by recovering high-purity hydrogen peroxide on the side supplying oxygen.
Further, in the present invention, as shown in FIG. 2, by covering the hydrogen dissociation permeable membrane on the side in contact with the oxygen gas with a porous sintered body, the flow rate and concentration of oxygen reaching the membrane surface and further the calorific value can be reduced. By controlling, high-purity hydrogen peroxide can be obtained efficiently.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
As the hydrogen dissociation permeable membrane used in the present invention, metal-based hydrogen permeable materials such as Pd, Ta, Nb, V, Ni, Zr or Pd, Ta, Nb, V, Zr and Ag, Au, Rh, Ru, Sn, Se , Te, Si, Zn, In, Ir, Ni, Ti, Mo, and an alloy composed of two or more elements selected from the group consisting of two or more, and formed into a diaphragm having a thickness of about 0.01 mm to 0.2 mm. Can be used.
In the present invention, as the porous sintered body covering the hydrogen dissociation permeable membrane on the side where oxygen gas is in contact, a thickness of about 0.5 mm to 10 mm obtained by sintering metal fine particles having good gas dispersibility and heat conductivity. In this case, a porous sintered body having an average pore diameter of 0.1 to 5 μm is preferable, and a sintered body of stainless fine particles can be preferably used.
The apparatus for producing high-purity hydrogen peroxide of the present invention includes a temperature control device, a hydrogen gas supply device, an oxygen gas supply device, a hydrogen dissociation permeable membrane that separates the hydrogen gas supply side from the oxygen gas supply side, and a hydrogen dissociation permeable membrane. The reactor consists of a reactor that reacts the generated atomic hydrogen and oxygen at a high temperature, and a recovery device that recovers high-purity hydrogen peroxide on the oxygen supply side.
As the hydrogen gas used in the present invention, any hydrogen gas can be used as long as the hydrogen gas is a gas containing various types of hydrogen in addition to hydrogen. For example, waste gas containing hydrogen released in various processes and steam reforming of hydrocarbons can be used. A gas (usually obtained as a mixed gas of CO 2, CO, and H 2) generated by a hydrogen production reaction such as a hydrogen reaction or a partial oxidation reaction can also be used. Preferably, the pressure on the hydrogen supply side is from normal pressure to about 100 atm.
The oxygen gas used in the present invention contains air in addition to the oxygen gas, and the pressure on the oxygen supply side is preferably about 0.01 to 100 atm.
The reaction temperature is 0 ° C. or higher, and is preferably set at 50 ° C. to 200 ° C.
[0008]
To summarize the embodiments of the present invention,
(1) By supplying hydrogen gas and oxygen gas separately across a hydrogen dissociation permeable membrane that dissociates and permeates hydrogen molecules, atomic hydrogen and oxygen permeating from the hydrogen dissociation permeable membrane react with each other while supplying hydrogen gas and oxygen gas separately. In a method for producing high-purity hydrogen peroxide by recovering high-purity hydrogen peroxide on the side supplying oxygen,
A method for producing hydrogen peroxide, comprising reacting hydrogen gas and oxygen gas at a temperature of 0 ° C. or higher.
(2) The method for producing hydrogen peroxide as described in (1) above, wherein the hydrogen dissociation permeable membrane on the side in contact with the oxygen gas is covered with a porous sintered body.
(3) The hydrogen dissociation permeable membrane is composed of Pd, Ta, Nb, V, Ni, Zr or Pd, Ta, Nb, V, Zr and Ag, Au, Rh, Ru, Sn, Se, Te, Si, Zn, In, 3. The method for producing hydrogen peroxide according to claim 1, wherein the alloy is an alloy composed of one or more elements selected from Ir, Ni, Ti, Mo, and Y.
(4) The method for producing hydrogen peroxide according to any one of the above (1) to (3), wherein the reaction temperature is 0 to 200 ° C.
(5) The method for producing hydrogen peroxide according to any one of the above (2) to (4), wherein the porous sintered body is a stainless fine particle sintered body.
(6) The method for producing hydrogen peroxide according to any one of (1) to (5) above, wherein the hydrogen gas is a mixed gas containing hydrogen in addition to hydrogen, and the oxygen gas contains air in addition to oxygen.
(7) Temperature control device, hydrogen gas supply device, oxygen gas supply device, hydrogen dissociation permeable membrane separating hydrogen gas supply side and oxygen gas supply side, active hydrogen atoms and oxygen permeating from hydrogen dissociation permeable membrane An apparatus for producing high-purity hydrogen peroxide, comprising a reactor for reacting at a high temperature and a recovery apparatus for recovering high-purity hydrogen peroxide on the oxygen supply side.
[0009]
Next, the production of a high-purity hydrogen peroxide gas or an aqueous solution using the apparatus of the present invention will be specifically described with reference to the drawing (FIG. 3) showing one embodiment of the high-purity hydrogen peroxide producing apparatus of the present invention.
[0010]
Hydrogen or a mixed gas containing hydrogen is fed into one chamber of a hydrogen peroxide production device partitioned by a hydrogen permeable diaphragm. Here, the heating or cooling device is attached to the hydrogen peroxide production device so that it can be controlled to an arbitrary temperature.
Most of the sent hydrogen permeates through the diaphragm to the oxygen chamber side, but when a mixed gas containing hydrogen is used, the remaining hydrogen in the gas is recovered by the hydrogen recovery device and passes through the recovery line. After being guided to a pressurizing pump to increase the pressure to a predetermined pressure, it is reused as a source gas. When pure hydrogen is used, it is directly circulated without passing through a recovery device.
At the outlet of the hydrogen recovery device, a pressure control valve for controlling the pressure in the hydrogen chamber of the hydrogen peroxide production device and the pressure in the hydrogen recovery device room is provided. The other chamber is supplied with oxygen or air or a gas containing oxygen. Hydrogen peroxide is produced by the reaction of hydrogen and oxygen inside or on the surface of a hydrogen permeable diaphragm.
A pressure control valve is also provided at the outlet of the oxygen chamber to control the pressure in the chamber. At the same time, water is produced, but as long as the reaction is carried out at 100 ° C. or higher, it can be used as it is as a mixed gas of hydrogen peroxide and steam without condensation. If it is cooled, it can be obtained as an aqueous hydrogen peroxide solution.
[0011]
Next, the present invention will be specifically described with reference to examples. Hydrogen peroxide was analyzed by titration with a potassium permanganate normal solution (JIS K-8230).
[0012]
[Example 1]
A tube made of a palladium (77%)-silver (23%) alloy having a length of 20 cm was used as a hydrogen permeable diaphragm. A porous sintered body made of stainless steel and having a pore diameter of 2 μm and a thickness of 1.5 mm was used. At a reaction temperature of 50 ° C., 1 cc of oxygen at 5 cc / min was supplied into the diaphragm tube, and 1.5 atm of hydrogen was supplied to the outside of the diaphragm tube at 50 cc / min. The reaction rate of oxygen was 75%, and the concentration of generated hydrogen peroxide was 1.3% by volume (in steam).
[0013]
[Example 2]
The same hydrogen permeable diaphragm as in Example 1 was used. At a reaction temperature of 140 ° C., 1 cc of oxygen at 5 cc / min was supplied into the diaphragm tube, and 1.5 atm of hydrogen was supplied to the outside of the diaphragm tube at 50 cc / min. The reaction rate of oxygen was 85%, and the concentration of generated hydrogen peroxide was 1.7% by volume (in steam).
[0014]
[Example 3]
The same hydrogen permeable diaphragm as in Example 1 was used. At a reaction temperature of 160 ° C., 2.5 cc / min of 1 atm of oxygen was supplied into the diaphragm tube, and 70 cc / min of hydrogen at 1.02 atm was supplied to the outside of the diaphragm tube. The reaction rate of oxygen was 90%, and the concentration of generated hydrogen peroxide was 0.8% by volume (in steam).
[0015]
[Example 4]
The same hydrogen permeable diaphragm as in Example 1 was used. At a reaction temperature of 160 ° C., 2.5 cc / min of 1 atm of oxygen was supplied into the diaphragm tube, and 100 cc / min of 2.0 atm of hydrogen was supplied to the outside of the diaphragm tube. The reaction rate of oxygen was 90%, and the concentration of generated hydrogen peroxide was 1.2% by volume (in steam).
[0016]
[Example 5]
The same hydrogen permeable diaphragm as in Example 1 was used. At a reaction temperature of 80 ° C., 10 cc / min of air at 1 atm was supplied into the diaphragm tube, and hydrogen at 2.0 atm was supplied to the outside of the diaphragm tube at 80 cc / min. The reaction rate of oxygen was 70%, and the concentration of generated hydrogen peroxide was 1.5% by volume (in steam).
[0017]
【The invention's effect】
By using the method and apparatus of the present invention to produce hydrogen peroxide gas or aqueous solution directly from hydrogen and oxygen in the gas phase, high-concentration and high-purity hydrogen peroxide that can be used in the semiconductor electronics industry (ie, (A hydrogen peroxide gas or an aqueous solution having a hydrogen peroxide concentration of 0.5 to 5% by volume) can be easily obtained. Such a direct production method does not require any post-treatment (refining) as compared with the existing production method, and can greatly reduce the production cost. Process can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the principle of the production of high-purity hydrogen peroxide according to the present invention. FIG. 2 is an improved view of the production of high-purity hydrogen peroxide. FIG.

Claims (7)

水素分子を解離させ、透過させる水素解離透過膜を隔てて、水素ガスと酸素ガスを別々に供給しつつ、水素解離透過膜から透過してくる活性な水素原子と酸素を反応させて、酸素を供給する側において高純度過酸化水素を回収して高純度過酸化水素を製造する方法において、
水素ガス、酸素ガスを0℃以上の温度で反応させることを特徴とする過酸化水素の製造方法。
Hydrogen gas and oxygen gas are separately supplied through a hydrogen dissociation permeable membrane that dissociates and permeates hydrogen molecules, and active hydrogen atoms that permeate from the hydrogen dissociation permeable membrane react with oxygen to form oxygen. In a method for producing high-purity hydrogen peroxide by recovering high-purity hydrogen peroxide on the supply side,
A method for producing hydrogen peroxide, comprising reacting hydrogen gas and oxygen gas at a temperature of 0 ° C. or higher.
酸素ガスが接している側の水素解離透過膜を多孔質焼結体で覆うことを特徴とする請求項1に記載した過酸化水素の製造方法。The method for producing hydrogen peroxide according to claim 1, wherein the hydrogen dissociation permeable membrane on the side in contact with the oxygen gas is covered with a porous sintered body. 水素解離透過膜がPd,Ta,Nb,V,Ni,Zr若しくはPd,Ta,Nb,V,ZrとAg,Au,Rh,Ru,Sn,Se,Te,Si,Zn,In,Ir,Ni,Ti,Mo,Yから選ばれる元素の1種若しくは2種以上からなる合金である請求項1または2に記載した過酸化水素の製造方法。The hydrogen dissociation permeable membrane is composed of Pd, Ta, Nb, V, Ni, Zr or Pd, Ta, Nb, V, Zr and Ag, Au, Rh, Ru, Sn, Se, Te, Si, Zn, In, Ir, Ni. The method for producing hydrogen peroxide according to claim 1 or 2, wherein the alloy is an alloy comprising one or more elements selected from the group consisting of Ti, Mo, and Y. 反応温度が0から200℃である請求項1〜3のいずれかひとつに記載した過酸化水素の製造方法。The method for producing hydrogen peroxide according to any one of claims 1 to 3, wherein the reaction temperature is 0 to 200 ° C. 多孔質焼結体が、ステンレス微粒子焼結体である請求項2〜4のいずれかひとつに記載した過酸化水素の製造方法。The method for producing hydrogen peroxide according to any one of claims 2 to 4, wherein the porous sintered body is a stainless fine particle sintered body. 水素ガスが水素のほか還元性ガスを含むものであり、酸素ガスが酸素のほか空気を含むものである請求項1〜5のいずれかひとつに記載した過酸化水素の製造方法。The method for producing hydrogen peroxide according to any one of claims 1 to 5, wherein the hydrogen gas contains a reducing gas in addition to hydrogen, and the oxygen gas contains air in addition to oxygen. 温度コントロール装置、水素ガス供給装置、酸素ガス供給装置、水素ガス供給側と酸素ガス供給側を隔離する水素解離透過膜、水素解離透過膜から透過してくる活性な水素原子と酸素を高温で反応させる反応装置、酸素を供給する側において高純度過酸化水素を回収する回収装置からなる高純度過酸化水素の製造装置。Temperature control device, hydrogen gas supply device, oxygen gas supply device, hydrogen dissociation permeable membrane that separates the hydrogen gas supply side and oxygen gas supply side, active hydrogen atoms permeating from the hydrogen dissociation permeable membrane react with oxygen at high temperature An apparatus for producing high-purity hydrogen peroxide, comprising a reaction device for causing the reaction and a recovery device for recovering high-purity hydrogen peroxide on the oxygen supply side.
JP2002183846A 2002-06-25 2002-06-25 Method and apparatus for producing hydrogen peroxide Pending JP2004026550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002183846A JP2004026550A (en) 2002-06-25 2002-06-25 Method and apparatus for producing hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002183846A JP2004026550A (en) 2002-06-25 2002-06-25 Method and apparatus for producing hydrogen peroxide

Publications (1)

Publication Number Publication Date
JP2004026550A true JP2004026550A (en) 2004-01-29

Family

ID=31179882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002183846A Pending JP2004026550A (en) 2002-06-25 2002-06-25 Method and apparatus for producing hydrogen peroxide

Country Status (1)

Country Link
JP (1) JP2004026550A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022402A (en) * 2005-07-19 2007-02-01 Denso Corp Air purification device for vehicle and air purification system for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022402A (en) * 2005-07-19 2007-02-01 Denso Corp Air purification device for vehicle and air purification system for vehicle
JP4665168B2 (en) * 2005-07-19 2011-04-06 株式会社デンソー Vehicle air purification system

Similar Documents

Publication Publication Date Title
JP3404450B2 (en) Reaction purge method for gas separation with solid electrolyte membrane
CA2250527C (en) Electrolytic process for producing chlorine dioxide
US4908114A (en) Mobile atom insertion reaction, mobile atom transmissive membrane for carrying out the reaction, and reactor incorporating the mobile atom transmissive membrane
US8518151B2 (en) Porous hollow fiber supported dense membrane for hydrogen production, separation, or purification
CA1325876C (en) Mobile atom insertion reaction, mobile atom transmissive membrane for carrying out the reaction and reactor incorporating the mobile atom transmissive membrane
Zhang et al. High-purity COx-free H2 generation from NH3 via the ultra permeable and highly selective Pd membranes
JP2000026102A (en) Ceramic membrane type reforming reactor
JP3765354B2 (en) Method for producing hydrogen-containing ultrapure water
WO2007017976A1 (en) Method for producing ozone water and apparatus for producing ozone water
JP2002516755A (en) Water electrolysis fluid management system
JPH10259002A (en) Operation of membrane reactor and membrane reactor used therefor
JP7374120B2 (en) Method for producing a gas mixture containing carbon monoxide and carbon dioxide for use in synthetic reactions
JP5648748B2 (en) Hydrogen purification apparatus and method of using the same
JP2007527467A (en) Production method of high purity germanium hydride
JP2004026550A (en) Method and apparatus for producing hydrogen peroxide
JP3432136B2 (en) Ozone and hydrogen generation method and generator
JP4006107B2 (en) Method and apparatus for producing high purity CO
JPS612548A (en) Composite body having oxygen ion permeability and manufacture of said composite body
JP2003137505A (en) Reactor using membrane
JPH04321502A (en) Production of hydrogen for fuel cell, apparatus and method for feeding
JPH04325402A (en) Method and equipment for producing gaseous hydrogen for fuel cell and supply method therefor
JPH09316675A (en) Production of high-purity oxygen and electrolytic cell
JP5037878B2 (en) Permselective membrane reactor and method for producing hydrogen gas
JP2008273764A (en) Method for producing hydrogen using permselective membrane reactor
JPH02311301A (en) Production of hydrogen for fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060829

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060912

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070123