JP2004024204A - Method for improving environment in water or on beach and environment improving material - Google Patents

Method for improving environment in water or on beach and environment improving material Download PDF

Info

Publication number
JP2004024204A
JP2004024204A JP2002189850A JP2002189850A JP2004024204A JP 2004024204 A JP2004024204 A JP 2004024204A JP 2002189850 A JP2002189850 A JP 2002189850A JP 2002189850 A JP2002189850 A JP 2002189850A JP 2004024204 A JP2004024204 A JP 2004024204A
Authority
JP
Japan
Prior art keywords
slag
water
blast furnace
laying
granulated blast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002189850A
Other languages
Japanese (ja)
Other versions
JP2004024204A5 (en
JP3729160B2 (en
Inventor
Tetsushi Numata
沼田 哲始
Yasuto Miyata
宮田 康人
Kazuya Yabuta
藪田 和哉
Tatsuto Takahashi
高橋 達人
Keisei Toyoda
豊田 惠聖
Yoshio Sato
佐藤 義夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002189850A priority Critical patent/JP3729160B2/en
Publication of JP2004024204A publication Critical patent/JP2004024204A/en
Publication of JP2004024204A5 publication Critical patent/JP2004024204A5/ja
Application granted granted Critical
Publication of JP3729160B2 publication Critical patent/JP3729160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Artificial Fish Reefs (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for improving the environment especially in water, shallow water/tidal flat, etc., to form an environment suitable as a habitat of organisms by using a laying material available in large quantities at a low cost. <P>SOLUTION: Granulated blast furnace slag containing ≥90 mass% slag particles having a particle diameter of ≥0.5 mm and preferably ≥70 mass% slag particles having a particle diameter of ≥1.0 mm is laid on sea bottom or on a beach. Granulated blast furnace slag has the nature/appearance close to those of natural sand, exhibits chemical action to clean the bottom and water and functions as a silicate ion releasing source and, accordingly, it is suitable as a laying material. Furthermore, the slag has a controlled particle size distribution, it can form a sea bottom suitable as a habitat of bottom organisms. A safe beach is formed owing to extremely small content of needle-like particles. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、水中又は水浜の環境改善技術に関するもので、特に、覆砂、養浜、浅場や干潟の造成等において生物の棲息に好ましい環境を提供するのに好適な環境改善方法及びこれに用いられる資材に関する。
【0002】
【従来の技術】
近年、港湾その他の沿岸海域において、底質のヘドロ化による底質・水質の汚染、海砂の採取・流失による浅場や砂浜の消失等が問題となっている。なかでも、底質・水質の汚染等により直接又は間接に引き起こされる青潮や赤潮の発生、海藻や水中生物の生育・棲息環境の衰退、消失等の防止対策が大きな課題となっており、これを解決できる海洋環境改善技術の開発が望まれている。
【0003】
従来、ヘドロ化した底質を改善するために海底を天然砂(海砂、山砂)を用いて覆砂する等の対策が採られることがあり、水底にヘドロが堆積している場合は同時にヘドロの浚渫が行われることもある。
また、天然砂で覆砂する場合には、同時に砂質水底に棲息する魚介類等の棲息場の造成も兼ねて行うことがあり、また築磯効果を期待して天然砂に代えて天然石を用いる場合もある。
【0004】
しかし、覆砂材として天然砂や天然石を用いることは、その採取によって新たな環境破壊が引き起こされるおそれがある。また、天然砂や天然石は特に化学的な底質・水質浄化作用、すなわち底質から溶出する燐等の富栄養成分の除去作用や硫化水素の発生抑制・除去作用等を有していないため、これらでヘドロ化した水底を覆砂しても底質・水質の浄化効果はあまり期待できない。このため沿岸海域における赤潮や青潮の発生、生物や海藻の棲息・生育環境の減衰・消失等の問題を効果的に改善することができない。
【0005】
また、近年、海岸の浸食等によって消失した砂浜の回復を目的とし、或いは海洋レクリエーションの場である人工ビーチの造成を目的として、海浜に大量の砂を投入する、所謂養浜が行われている。さらに、最近では干潟や浅場の優れた水質浄化機能が認識されつつあり、失われた干潟や浅場を人工的に復元したり、新たに造成する試みがなされているが、この場合にも覆砂や造成のために大量の砂等が投入される。しかし、このような養浜や干潟・浅場等の造成に用いる敷設材を天然砂や天然石に求めた場合、その採取により新たな環境破壊が引き起こされるおそれがある。
【0006】
【発明が解決しようとする課題】
したがって本発明の目的は、このような従来技術の課題を解決し、天然砂や天然石以外で安価に且つ大量に入手できる敷設材を用い、水底や水浜における好ましい環境、特に覆砂、養浜、浅場や干潟の造成等において砂地に棲息する生物に好適な環境を形成することができる環境改善方法を提供することにある。また、本発明の他の目的は、赤潮や青潮の発生防止、磯焼けなどによる海藻成育環境の衰退・消失の防止等にも有効な環境改善方法を提供することにある。さらに、本発明の他の目的は、そのような環境改善方法に好適な敷設用資材を提供することにある。
【0007】
【課題を解決するための手段】
上述したような従来技術の問題に対し、本発明者らは、特に覆砂や養浜、或いは干潟、浅場の造成に好適な敷設材料について検討を行い、その結果、鉄鋼製造プロセスで発生する高炉水砕スラグが、▲1▼性状、外観ともに天然砂に近いこと、▲2▼天然砂とは異なり、水中に敷設した場合に化学的な底質・水質浄化作用を有していること、▲3▼ケイ酸を多量に含み且つケイ酸塩イオンの溶出性が高いため、珪藻類、海藻類の生育や赤潮等の発生防止に有効なケイ酸塩イオンの放出源として有効に機能すること、▲4▼安価で且つ大量に入手することができるため広い水域や海浜に大量に投入することができること、等の点で上述した敷設材料として非常に好適なものであることを見い出した。
【0008】
さらに、本発明者らは、覆砂や養浜、或いは干潟、浅場の造成に敷設材料として適用する際の高炉水砕スラグの最適条件について検討を行い、その結果、高炉水砕スラグ特有の性状及び粒子形態からして、特定の粒度構成を有する高炉水砕スラグを用いることが特に有効であることを見い出した。
本発明は以上のような知見に基づきなされたもので、その特徴は以下の通りである。
【0009】
(1) 粒径0.5mm以上のスラグ粒子の割合が90mass%以上である高炉水砕スラグを水底又は水浜に敷設することを特徴とする水中又は水浜の環境改善方法。
(2) 粒径1.0mm以上のスラグ粒子の割合が70mass%以上である高炉水砕スラグを水底又は水浜に敷設することを特徴とする水中又は水浜の環境改善方法。
(3) 上記(1)又は(2)の環境改善方法において、高炉水砕スラグを、覆砂材、養浜材、浅場造成材、干潟造成材、藻場造成材、磯焼け防止材、赤潮防止材又は青潮防止材として、水底又は水浜に敷設することを特徴とする水中又は水浜の環境改善方法。
【0010】
(4) 上記(1)〜(3)のいずれかの環境改善方法において、水底又は水浜に敷設された高炉水砕スラグがケイ酸塩イオン放出源となることを特徴とする水中又は水浜の環境改善方法。
(5) 水底又は水浜に覆砂材、養浜材、浅場造成材、干潟造成材、藻場造成材、磯焼け防止材、赤潮防止材又は青潮防止材として敷設される資材であって、粒径0.5mm以上のスラグ粒子の割合が90mass%以上である高炉水砕スラグからなることを特徴とする水中又は水浜の環境改善用資材。
(6) 水底又は水浜に覆砂材、養浜材、浅場造成材、干潟造成材、藻場造成材、磯焼け防止材、赤潮防止材又は青潮防止材として敷設される資材であって、粒径1.0mm以上のスラグ粒子の割合が70mass%以上である高炉水砕スラグからなることを特徴とする水中又は水浜の環境改善用資材。
【0011】
【発明の実施の形態】
本発明の水中又は水浜の環境改善方法では、所定の粒度構成を有する高炉水砕スラグを水底又は水浜に敷設するものであるが、高炉水砕スラグが水底や水浜への敷設材料として非常に好適なものである理由は以下の通りである。
▲1▼ 高炉水砕スラグは粒状で且つ白色であり、天然砂に近い性状及び外観を有しているため、砂地に棲息する生物に適した環境を提供できる。
▲2▼ 高炉水砕スラグは天然砂とは異なり、水底や水浜に敷設した場合に化学的な底質・水質浄化作用を有している。
【0012】
▲3▼ 高炉水砕スラグはケイ酸を多量に含み、且つケイ酸塩イオンの溶出性が高いため、海藻類の生育、磯焼けや赤潮の発生防止に有効なケイ酸塩イオンの放出源として有効に機能する。
▲4▼ 高炉水砕スラグは鉄鋼製造プロセスにおいて副生成物として大量に生産され、しかも非常に安価な材料であるため水中や水浜への大量投入が可能であり、例えば、1つの海域や海浜に百万トンオーダーで投入することが可能である。
なお、上記▲2▼、▲3▼の作用については、後に詳述する。
【0013】
本発明法は、特に砂地に棲息する生物(例えば、貝類やゴカイ類の底棲生物)に好適な水底又は水浜環境を提供することができる環境改善方法であり、したがって、覆砂、養浜、浅場造成、干潟造成等に特に好適に適用できる。これらの場合には、高炉水砕スラグを覆砂材、養浜材、浅場造成材又は干潟造成材等として水底又は水浜に敷設する。
また、本発明法は藻場造成、磯焼け防止、赤潮防止、青潮防止にも有効であり、これらの場合には、高炉水砕スラグを藻場造成材、磯焼け防止材、赤潮防止材又は青潮防止材として水底又は水浜に敷設する。
【0014】
高炉水砕スラグとしては、鉄鋼製造プロセスにおいて副生成物として得られたままのスラグ、或いはスラグを地鉄(鉄分)除去したもの、破砕処理したもの、地鉄除去の前又は後に破砕処理したものなどを用いることができるが、本発明法ではこれらのスラグを篩い分けなどで粒度調整し、所定の粒度構成とした高炉水砕スラグを用いる。
【0015】
海底、海浜、干潟等の砂地に棲息する貝類やゴカイ類等の底棲生物の棲息量は、砂地を構成する砂の大きさと大きく関係し、比較的粗めの砂の方が棲息量が多い。これは、砂地に棲息する生物の多くは砂の中に潜り込んで棲息するため、砂が或る程度粗く、砂粒子間の隙間が大きい方がそれら生物が棲息しやすい環境となるからである。しかし、隙間が大き過ぎると、小さな生物にとっては逆に棲息しにくい環境となるため、隙間の大きさも適度なものである必要がある。
【0016】
高炉水砕スラグは、元々(すなわち、生成ままの状態で)粒径5mm以下のスラグ粒子の割合が90mass%以上で、D50が1mm〜1.5mm程度の粒状のものである。図1に、生成ままの高炉水砕スラグの代表的な精度構成(篩い通過重量)を示す。また、この高炉水砕スラグは、その製法上の理由から針状物が多く含まれており、この針状物は人や生物が触れると、刺さって傷を負わせるような鋭いものである。
【0017】
本発明者らは、ヘドロの堆積した浅場の海底に種々の粒度構成を有する高炉水砕スラグを敷設し、一定期間経過後における底棲生物(貝類やゴカイ類)の棲息量を確認する実験を行った。その結果、高炉水砕スラグを敷設した浅場の海底は、その粒度構成に拘りなくヘドロの堆積した海底に較べて底棲生物の棲息量の増加が認められたが、特に粒径0.5mm以上のスラグ粒子の割合が90mass%以上の粒度構成、とりわけ粒径1.0mm以上のスラグ粒子の割合が70mass%以上の粒度構成を有する高炉水砕スラグを敷設した場合に、底棲生物の棲息量の顕著な増加が認められた。
【0018】
また、高炉水砕スラグを篩目が0.49mmと1.18mmの篩でふるって、粒径0.5mm以上のスラグ粒子の割合及び粒径1.0mm以上のスラグ粒子の割合と針状物の含有量との関係を調査した。その結果を表1に示す。これによれば、粒径0.5mm以上のスラグ粒子の割合が増えると針状物の割合が減少し、特に粒径0.5mm以上のスラグ粒子の割合が90mass%以上の粒度構成になると、針状物の含有量は当初(篩い分け前)の1/10程度になっている。また、粒径1.0mm以上のスラグ粒子の割合が70mass%以上では、針状物の含有量は当初(篩い分け前)の1/100程度になっている。したがって、高炉水砕スラグの粒度構成を、粒径0.5mm以上のスラグ粒子の割合が90mass%以上、好ましくは粒径1.0mm以上のスラグ粒子の割合が70mass%以上とすることにより、針状物の含有量が少ない安全性の高い敷設材とすることができる。
【0019】
【表1】

Figure 2004024204
【0020】
また、細粒分を多く含んだ高炉水砕スラグを水中や水浜に敷設すると、敷設層中で細粒部分が次第に偏在し、この偏在した細粒部分が固結してしまうことがあるが、上述したような比較的粗い粒度構成とすることにより、そのような細粒部分の固結も生じることはない。
以上の理由から、本発明法では、粒径0.5mm以上のスラグ粒子の割合が90mass%以上、好ましくは粒径1.0mm以上のスラグ粒子の割合が70mass%以上である高炉水砕スラグを水底又は水浜に敷設するものである。また、表1の結果等からして、高炉水砕スラグのより好ましい粒度構成は粒径1.0mm以上のスラグ粒子の割合が80mass%以上である。
このような粒度構成の高炉水砕スラグを得るために、通常、高炉水砕スラグの篩い分けを行う。篩い分け法は、乾式篩い、湿式篩い、気流分離などのいずれでもよい。
【0021】
以下、本発明法の基本的な実施形態について説明する。
(A)青潮発生防止等を目的とする高炉水砕スラグの敷設(覆砂)
内湾等において水底で海水の停滞が生じると硫化水素が発生し、所謂青潮の発生原因となる。
硫化水素の主要な発生源は、水が停滞しやすく且つ有機物が堆積し、酸素消費量が多いヘドロ状の水底部であり、特に土砂採取等によって水底が部分的に掘られ、比較的深さのある凹部が形成された水底部において硫化水素が発生しやすい。すなわち、このような凹部内では水が停滞する結果、特に夏期において著しい無酸素状態となり、有機物の腐敗やバクテリア(硫酸還元菌)の作用によって大量の硫化水素が発生し、硫化水素を含んだ大量の無酸素水塊が生じる。このように凹部内で硫化水素が大量発生すると、凹部内やその周囲の棲息生物が減少するだけでなく、硫化水素を含んだ上記水塊が周辺水域に流出し、所謂青潮の発生に至る。また、凹部以外の水底部であっても、水が停滞しやすく且つ有機物が堆積して酸素消費量が多いヘドロ状の水底部では、同様に硫化水素が発生して硫化水素を含んだ無酸素水塊が生じ、底棲生物のへい死を招いたり、無酸素水塊が周辺水域に流出して青潮を発生させたりする。
【0022】
従来、このような問題に対しては、水底(特に水底の凹部)に石灰を散布したり、水底を天然砂(海砂、山砂)を用いて覆砂する、などの対策が採られているが、先に述べたように天然砂や天然石は特に化学的な底質・水質浄化作用を有していないため、これらを水底に敷設した場合、例えば、夏期の海水停滞期や生物の活動が活発な時期になると、ヘドロが堆積していない状態でも間隙水中において硫酸還元菌の作用により数ppm程度の硫化水素が生成してしまう。
【0023】
一方、水底に石灰を散布する方法には、▲1▼多大なコストかかる、▲2▼pHの制御が困難で水質が高アルカリになる場合がある、▲3▼石灰が水底で板状に固まってしまうため、その下部の泥質中の水が入れ替らず、このため硫化水素がより多量に発生し、ある時期に板状に固った石灰層が崩壊すると高濃度の硫化水素を含む水が周囲に流れ出てしまう、等の問題がある。また、石灰を散布するとしても石灰によって凹部を埋めてしまうことは困難であるため、結果的に凹部はそのまま残ることになり、したがって、凹部内の水が夏期の海水停滞期に無酸素化し、硫化水素が大量発生するという現象を根本的に解消することはできない。
【0024】
このような問題に対し、本発明法により所定の粒度構成を有する高炉水砕スラグを硫化水素の発生源となる水底に敷設することによって、硫化水素の発生(さらには、海水の富栄養化)とこれにより引き起こされる青潮の発生を効果的に抑制することができる。また、水底に敷設された高炉水砕スラグは、先に述べた理由により底棲生物に対して良好な棲息環境を提供し、それらの棲息量の顕著な増大をもたらす。
【0025】
本発明法により硫化水素の発生源となる水底(例えば、水底に形成された凹部)に高炉水砕スラグを敷設することにより、以下のような作用が得られる。
(1) 高炉水砕スラグは化学的な底質・水質浄化作用を有している。すなわち、高炉水砕スラグ中に含まれるCaOが水中に溶出することによって水中のpHが適度に高められ、この結果、硫化水素を発生させる硫酸還元菌の活動が抑制される。また、高炉水砕スラグに含まれるCaO、Feによって水中の硫化水素を固定化することにより、水中の硫化水素の低減化が図られる。さらに、高炉水砕スラグ中に含まれるCaOによって水中の燐が吸着・固定され、青潮発生等の要因の一つである水の富栄養化が抑制される。このため高炉水砕スラグを水底の凹部等のような硫化水素の発生源に敷設した場合、その領域で底泥からの硫化水素の発生が抑制されるとともに、敷設材上部層の間隙水中での硫化水素の発生も抑制され、さらに、スラグ粒子への硫化水素や燐の固定化作用による水質浄化作用も得られる。また、敷設材の上部層は硫化水素が少なく溶存酸素の多い状態となるため着生する生物にとって棲息しやすい環境となり、生物の着生基盤としても高い機能を有することになる。
【0026】
(2) 高炉水砕スラグは高温の溶融状態にある高炉スラグ(溶融スラグ)を噴流水で急冷して得られるものであるため、その形態や組織において他のガラス質材料には無い以下のような特質がある。すなわち、一般のガラス質材料は組織が緻密であるのに対し、高炉水砕スラグの場合には、溶融状態にあるスラグを噴流水で急冷する過程でスラグ中に溶け込んでいる窒素や水分などによってスラグが発泡するため、得られるスラグ粒子は無数の内部気孔を有する多孔質組織のガラス質材料となり、しかも比較的細かい粒子となる。また、同様の理由から高炉水砕スラグの粒子は角張った形状(表面に多数の尖った部分を有する形状)を有している。このような形態上の特徴から、高炉水砕スラグの集合物は一般のガラス質材料からなる粒状物の集合物に較べて充填間隙が大きく、加えて本発明で使用する高炉水砕スラグは比較的粗い粒度構成を有しているため、通水性が非常に優れている。このためスラグ粒子間の間隙の水が入れ替りやすく、この間隙での溶存酸素濃度が十分に確保されるため、底棲生物に良好な環境を提供することができる。
【0027】
(3) 高炉水砕スラグを水底に敷設した場合、スラグからのCa分の微量溶解によって間隙水中のpHが8.5程度に維持されることで、硫酸還元菌の活性が弱められ、硫酸還元菌による硫化水素の発生が効果的に抑制されるが、特に高炉水砕スラグは上述したようにガラス質であることから、他のスラグに較べて含有成分の溶出や水中又は底泥中の成分との反応が非常にゆっくりと進行する。このため水中のpHを急激に上昇させたり、底質・水質の改善効果が短期間で消失することがない。
【0028】
(4) 天然砂や天然石を硫化水素の発生源である水底の凹部に敷設した場合、凹部の内壁に敷設材による大きな圧力が作用し、敷設後ある程度の期間が過ぎると敷設材が凹部の内壁を押し広げて水平方向に広がってしまい、その結果、敷設当初は周囲の水底面と略同レベルであった敷設材の上面レベル(水底面)が大きく沈下し、これより水の停滞を生じるような凹部が再び形成されてしまうという問題がある。
これに対して高炉水砕スラグは天然砂や天然石に較べて内部摩擦角がかなり大きく、このため高炉水砕スラグを水底の凹部に敷設した場合、敷設材から凹部の内壁に作用する圧力が比較的小さい。このため天然砂や天然石を用いた場合のように敷設材が凹部の内壁を押し広げて水平方向に広がってしまう現象が生じにくく、敷設材の上面レベル(水底面)の沈下も生じにくい。特に、高炉水砕スラグは他のスラグに較べても内部摩擦角が大きく、このため凹部内壁に対する圧力が小さく、また他のスラグに較べて嵩密度も小さいため、自重による沈下も起こりにくい。したがって、敷設材の上面レベル(水底面)の沈下も最小限に抑えることができる。
【0029】
これを図2及び図3に基づいて説明する。図2は敷設材として天然砂や天然石を用いた従来法、図3は敷設材として高炉水砕スラグを用いた本発明法を示している。まず、従来法のように天然砂や天然石を水底の凹部1に敷設した場合(図2(a))、凹部1の内壁に敷設材2による大きな圧力Fが作用し、敷設後ある程度の期間が過ぎると、図2(b)に示すように敷設材2が凹部1の内壁を押し広げて水平方向に広がってしまう。その結果、敷設当初は周囲の水底面Yと略同レベルであった敷設材の水底面Xが沈下し、これより再び凹部1′が形成されてしまう。これに対して高炉水砕スラグを水底の凹部1に敷設した場合(図3(a))、高炉水砕スラグは天然砂や天然石に較べて内部摩擦角がかなり大きいため、敷設材2から凹部1の内壁に作用する圧力Fが小さい。このため図3(b)に示すように敷設材2が凹部1の内壁を押し広げて水平方向に広がってしまう現象が生じにくく、敷設材2の水底面Xの沈下も生じにくい。
【0030】
(5) 敷設材を水底に敷設する場合、敷設材を船で敷設場所に運搬し、これを船上から直接又はシュート等を介して硫化水素の発生源となる水底に投入することになるが、この際、水底を構成する泥質や堆積したヘドロが水中に巻き上げられて大量の浮泥が発生し、この浮泥により周辺水域の水質や水底が汚染されてしまうという問題がある。ここで、高炉水砕スラグは比較的多量の未反応Caを含んでおり、このため個々のスラグ粒子の表面にも未反応Caが存在している。このため敷設材として高炉水砕スラグを船上から水底に投入した場合、水底を構成する泥質や堆積したヘドロが水中に巻き上げられて大量の浮泥が発生するが、浮泥は水底に降下する途中のスラグの表面に存在するCa基により凝集・捕捉され、スラグとともに水底に沈降する。特に、スラグは天然砂や天然石等に較べて真比重が大きいので、浮泥を凝集・捕捉したスラグは水底に速やかに沈降する。この結果、敷設材の水底への投入に伴う浮泥の発生と、この浮泥による周辺水域の水質や水底の汚染が適切に防止できる。
【0031】
本実施形態において高炉水砕スラグを敷設する対象となる水底とは、硫化水素の発生源である又は発生源となるおそれのある水底であり、具体的には、(1)水底に形成された凹部、(2)底層水中で硫化水素が検出された水域又は底層水中の溶存酸素濃度が所定値以下の水域の水底、(3)底層水の流速が所定値以下の水域の水底、(4)水中に水温又は/及び塩分濃度による密度躍層が形成された水域の水底、のいずれかが対象となる。また、適用される水域としては、港湾を含む海、河川、河口、湖沼等のいずれでもよい。
【0032】
本実施形態において高炉水砕スラグを敷設する対象となる水底の凹部とは、通常は土砂採取や浚渫等によって水底に人為的に形成された穴状または溝状の凹部であるが、これに限定されるものではなく、例えば、自然に形成された水底の凹部や、土砂採取や元々の地形により傾斜面や浅い凹部が形成されている水底にケーソン等を設置することで人工的に形成された凹部等も対象となる。一般に凹部が形成される水底は泥質又は砂質である。このような水底に形成された凹部は、水が停滞しやすく、またヘドロも溜まりやすいため、硫化水素の発生源となりやすい。
なお、凹部の定義としては、水の停滞等を考慮した場合、一般には周囲の水底面よりも2m以上深くなっている水底部を凹部としてよい。また、場合によっては、周囲の水底面よりも1m以上深くなっている水底部、或いは0.5m以上深くなっている水底部を凹部としてよい。
【0033】
ここで、適用される凹部の種類や規模には特別な制約はないが、典型的な形態として以下のようものがある。
(a) 自然に存在する水底の凹部:このような水底の凹部は比較的面積が大きい。一般にこの種のもので本発明法の対象となる凹部は、平面的でみて最も幅が狭い部分の幅が50m以上、深さが2m以上あるような規模の凹部である。
(b) 土砂採取や浚渫等によって水底に人為的に形成された凹部:このような水底の凹部は比較的面積が小さい。一般にこの種のもので本発明法の対象となる凹部は、平面的でみて最も幅が狭い部分の幅が10m以上、深さが5m以上あるような規模の凹部である。
(c) 水底にケーソン等の構造物を設置した場所において、この構造物と水底(例えば、自然に存在する水底の凹部や、土砂採取や元々の地形により傾斜面や浅い凹部が形成されている水底)とにより結果的に形成された凹部:このような水底の凹部も比較的面積が小さい。一般にこの種のもので本発明法の対象となる凹部は、平面的でみて最も幅が狭い部分の幅が10m以上、深さが2m以上あるような規模の凹部である。
【0034】
凹部内へ敷設材(高炉水砕スラグ)の敷設形態に特に制限はないが、凹部内に敷設された敷設材上面により形成される水底面は、その周囲の水底面と略同等かそれ以上の高さを有することが好ましい。また、少なくとも、敷設された敷設材により形成される水底面Aの平均水深dと凹部周囲(凹部近傍の周囲)の水底面Bの平均水深dとの差[d−d]が2m以下、好ましくは1m以下、より好ましくは0.5m以下、特に好ましくは0.3m以下(但し、いずれも[d−d]がマイナス値の場合を含む)となるようにすることが特に望ましい。この差[d−d]が2m以下、好ましくは1m以下、より好ましくは0.5m以下、特に好ましくは0.3m以下であれば、凹部が十分に浅くなるため凹部内外での水の流出入が円滑に行われるようになり(すなわち、凹部内での水の停滞がなくなる)、夏期等に凹部内の水が無酸素状態になるような現象が適切に防止できる。
【0035】
ここで、敷設材上面により形成される水底面Aの平均水深dとは、敷設材により形成される水底面Aに起伏や凹凸があるために水深にバラツキがある場合に、その水底面を平らに均した際の水深であり、また、凹部周囲(凹部近傍の周囲)の水底面Bの平均水深dとは、凹部周囲の水底面Bに起伏や凹凸があるために水深にバラツキがある場合に、その水底面を平らに均した際の水深である。
【0036】
また、上述のように水底の形態(凹部)に基づいて敷設材の敷設場所を選定する以外に、底層水中の硫化水素又は溶存酸素濃度を測定し、底層水中で硫化水素が検出された水域又は底層水中の溶存酸素濃度が所定値以下の水域の水底に、敷設材(高炉水砕スラグ)を敷設するようにしてもよい。
ここで、底層水とは水底の近くに存在する水のことであり、一般には水の深さ方向で水底から2m以内、好ましくは1m以内の水であればよく、このような底層水で硫化水素が検出され、或いは測定された溶存酸素濃度が所定値以下である水域の水底に敷設材を敷設する。硫化水素の場合は、それが底層水から検出されれば、その水域の水底に敷設材を敷設する。また、溶存酸素濃度の場合は、一般に底層水の溶存酸素濃度が飽和溶存酸素濃度の10%以下であると硫酸還元菌の作用によって硫化水素が発生するおそれがあるため、溶存酸素濃度が飽和溶存酸素濃度の10%以下の水域の水底に敷設材を敷設することが好ましい。また、一般に底層水の溶存酸素濃度が飽和溶存酸素濃度の60%以下であると底棲生物の棲息に問題を生じるため、溶存酸素濃度が飽和溶存酸素濃度の60%以下の水域の水底に敷設材を敷設するようにしてもよい。
【0037】
また、底層水の流速を測定し、その流速が所定値以下である水域の水底に、敷設材(高炉水砕スラグ)を敷設するようにしてもよい。底層水の流速が小さく、水の停滞が生じやすい水底が硫化水素の発生源となりやすいからである。なお、底層水とは先に述べた通り水底の近くに存在する水のことであり、一般には水の深さ方向で水底から2m以内、好ましくは1m以内の水であればよい。
一般に底層水の流速が20cm/秒以下の水域は底層水の溶存酸素濃度や硫化水素濃度が水底の影響を強く受けるため、そのような流速の水域の水底に敷設材を敷設することが好ましい。
【0038】
さらに、水中に水温や塩分濃度による密度躍層が形成された水域の水底に、敷設材(高炉水砕スラグ)を敷設するようにしてもよい。水中に密度躍層が形成されると、大気から水中に供給される酸素が底層水まで拡散しにくくなり、硫化水素が発生しやすくなる。
密度躍層が形成されたことは水中の塩分濃度及び/又は水温等を測定することにより判定することができ、密度躍層が形成されたと判定されたときは、その水域の水底に敷設材を敷設する。
以上のように、(a)底層水中で硫化水素が検出された水域又は底層水中の溶存酸素濃度が所定値以下の水域の水底、(b)底層水の流速が所定値以下の水域の水底、(c)水中に水温又は/及び塩分濃度による密度躍層が形成された水域の水底、のいずれかを敷設材の敷設場所とする場合は、例えば、閉鎖性の高い港や湾(例えば、リアス式海岸等にある湾)等が対象とすることができる。
【0039】
上述したような高炉水砕スラグの作用からして、敷設材としては高炉水砕スラグ100%が最も好ましいと言えるが、高炉水砕スラグとそれ以外の素材、例えば製鋼スラグ等の高炉水砕スラグ以外のスラグやスラグ以外の素材を併用してもよい。高炉水砕スラグ以外の鉄鋼製造プロセスで発生するスラグとしては、高炉で発生する高炉徐冷スラグ、予備処理、転炉、鋳造等の工程で発生する脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、鋳造スラグ等の製鋼スラグ、鉱石還元スラグ、電気炉スラグ等を挙げることができるが、これらに限定されるものではなく、また2種以上のスラグを混合して用いることもできる。また、これらのスラグは、水和処理、炭酸化処理、エージング、水和硬化、炭酸化硬化等を経たものを用いてもよい。また、スラグ以外の素材としては、資源のリサイクルという観点からは都市ゴミスラグ、廃コンクリート、モルタルや耐火物の廃材等が好ましいが、それ以外に例えば建設発生残土、フライアッシュ、天然砂、天然石等を用いてもよい。
また、都市ゴミスラグや廃コンクリート等は、水和処理、炭酸化処理、エージング、水和硬化、炭酸化硬化等を経たものを用いてもよい。
【0040】
敷設材として高炉水砕スラグとそれ以外の素材とからなるものを用いる場合、上述したような高炉水砕スラグによる作用を適切に得るために、凹部に敷設された敷設材の50mass%以上、好ましくは80mass%以上が高炉水砕スラグで構成されることが望ましい。また、その場合には高炉水砕スラグとそれ以外の素材が混合されるか、又は高炉水砕スラグが上層側、それ以外の素材が下層側になるようにして凹部内に敷設されることが好ましい。
【0041】
また、上層を高炉水砕スラグを含む敷設材で構成し、下層をそれ以外の素材からなる敷設材で構成する場合、上述したような高炉水砕スラグによる作用を適切に得るために、上層中の高炉水砕スラグの含有率は60mass%以上、好ましくは80mass%以上とすることが望ましい。
また、このように凹部内の敷設材の上層を高炉水砕スラグ又は高炉水砕スラグを60mass%以上(好ましくは80mass%以上)含む敷設材で構成する場合、この上層の厚みは0.1m以上、好ましくは0.5m以上とすることが望ましい。この上層の厚みが0.1m未満では、その下方の硫化水素を含んだ水が簡単に通過してしまい、上述したような作用が十分に得られなくなる恐れがある。また、厚みが0.1m未満では施工の際の厚み管理自体も難しくなる。また、特にこの上層の厚みが1m以上あれば、当該上層部は底泥と混合しなくなるため、スラグが固結するようなことがなく、このため生物の棲息環境として好適な砂質水底を提供できる。
【0042】
なお、高炉水砕スラグとともに他のスラグを使用する場合において、脱珪スラグ、脱炭スラグ等の製鋼スラグを用いた場合、これらのスラグは酸化鉄の含有量が高いため高炉水砕スラグ等に較べて硫化水素や燐を固定化する作用が大きいという特徴がある。このため、例えば凹部内の敷設材の下層を製鋼スラグ又は製鋼スラグを含む敷設材で構成することにより、底泥中の硫化水素や燐を効果的に固定することができる。下層を製鋼スラグを含む敷設材で構成する場合、下層中の製鋼スラグの含有率は60mass%以上、好ましくは80mass%以上とすることが望ましい。下層中の製鋼スラグの含有率が60mass%未満では、上述した製鋼スラグに特有の作用が十分に得られない。
【0043】
また、このように凹部内の敷設材の下層を製鋼スラグ又は製鋼スラグを60mass%以上(好ましくは80mass%以上)含む敷設材で構成する場合、この下層の厚みは0.1m以上、好ましくは0.3m以上とすることが望ましい。この下層の厚みが0.1m未満では、製鋼スラグによる泥質中の硫化水素や燐の固定が十分に行われる前に、硫化水素や燐を含んだ水がこの下層を通過してしまい、硫化水素や燐の固定化作用が十分に得られなくなるおそれがある。また、厚みが0.1m未満では、施工の際の厚み管理自体も難しくなる。
【0044】
以上述べたような各スラグの特性からして、凹部内への敷設材の敷設形態としては、例えば、以下のようなものが考えられる。
▲1▼ 敷設材の全部:高炉水砕スラグ
▲2▼ 敷設材の上層:高炉水砕スラグ、敷設材の下層:高炉水砕スラグ以外のスラグ及び/又はスラグ以外の素材
▲3▼ 敷設材の上層:高炉水砕スラグ、敷設材の下層:製鋼スラグ
▲4▼ 敷設材の上層:高炉水砕スラグ、敷設材の中層:スラグ以外の素材又はスラグとスラグ以外の素材との混合物、敷設材の下層:製鋼スラグ
【0045】
図4(a)〜(d)は、それぞれ水底の凹部1に敷設材2(高炉水砕スラグ又は高炉水砕スラグを含む敷設材)を敷設した状態を示しており、図4(a)に示すように、敷設材2はこれにより形成される水底面Aの平均水深dと凹部周囲の水底面Bの平均水深dとの差[d−d]が2m以下、好ましくは1m以下となるように(特に好ましくは、敷設材2により形成される水底面Aが凹部周囲の水底面Bと略同等かそれ以上の高さとなるように)敷設される。
【0046】
図4(a)は、高炉水砕スラグ100%の敷設材2又は高炉水砕スラグとそれ以外の素材(例えば、廃コンクリート)とを混合した敷設材2を凹部1内に敷設した実施形態を示している。また、図4(b)は、敷設材2として高炉水砕スラグとそれ以外の素材を用いたもので、高炉水砕スラグ以外の素材21(例えば、廃コンクリート)を下層側に、高炉水砕スラグ20を上層側にそれぞれ敷設した実施形態を示している。また、図4(c)は、敷設材2として高炉水砕スラグ20aとその他のスラグ20b(例えば、製鋼スラグ)を用いたもので、高炉水砕スラグ20aを上層側に、それ以外のスラグ20bを下層側にそれぞれ敷設した実施形態を示している。さらに、図4(d)は、浅い凹部が形成されている水底にケーソン3を設置することで人工的に形成された凹部1内に敷設材2(例えば、上記(a)〜(c)のような形態の敷設材)を敷設した実施形態を示している。
【0047】
また、凹部以外の水底に敷設材を敷設する場合も、敷設材中の高炉水砕スラグの含有率は60mass%以上、好ましくは80mass%以上とすることが望ましく、特に高炉水砕スラグのみからなる敷設材が最も好ましい。高炉水砕スラグ以外の敷設材としては、上述した各種スラグや都市ゴミスラグ、廃コンクリート等を用いることができる。また、敷設材の厚みは、上述したと同様の理由から0.1m以上、好ましくは0.5m以上とすることが望ましい。
【0048】
以上述べた青潮発生防止等を目的とする高炉水砕スラグの敷設(覆砂)に関する好ましい実施形態を整理すると、以下のようになる。
(1) 硫化水素発生源である水底に、粒径0.5mm以上のスラグ粒子の割合が90mass%以上、好ましくは粒径1.0mm以上のスラグ粒子の割合が70mass%以上の高炉水砕スラグを敷設する水中の環境改善方法。
(2) 水底に形成された凹部内に、全部又は一部が、粒径0.5mm以上のスラグ粒子の割合が90mass%以上、好ましくは粒径1.0mm以上のスラグ粒子の割合が70mass%以上の高炉水砕スラグからなる敷設材を敷設する水中の環境改善法。
(3) 底層水中で硫化水素が検出された水域又は底層水中の溶存酸素濃度が所定値以下の水域の水底に、全部又は一部が、粒径0.5mm以上のスラグ粒子の割合が90mass%以上、好ましくは粒径1.0mm以上のスラグ粒子の割合が70mass%以上の高炉水砕スラグからなる敷設材を敷設する水中の環境改善法。
【0049】
(4) 底層水の流速が所定値以下の水域の水底に、全部又は一部が、粒径0.5mm以上のスラグ粒子の割合が90mass%以上、好ましくは粒径1.0mm以上のスラグ粒子の割合が70mass%以上の高炉水砕スラグからなる敷設材を敷設する水中の環境改善法。
(5) 水中に水温又は/及び塩分濃度による密度躍層が形成された水域の水底に、全部又は一部が、粒径0.5mm以上のスラグ粒子の割合が90mass%以上、好ましくは粒径1.0mm以上のスラグ粒子の割合が70mass%以上の高炉水砕スラグからなる敷設材を敷設する水中の環境改善方法。
【0050】
(6) 水底に形成された凹部内に、全部又は一部が、粒径0.5mm以上のスラグ粒子の割合が90mass%以上、好ましくは粒径1.0mm以上のスラグ粒子の割合が70mass%以上の高炉水砕スラグからなる敷設材を敷設し、該敷設材により形成される水底面の平均水深dと凹部周囲の水底面の平均水深dとの差[d−d]を2m以下(但し、[d−d]がマイナス値の場合を含む)とする水中の環境改善方法。
(7) 上記(1)〜(6)の環境改善方法において、敷設材が高炉水砕スラグとそれ以外の素材とからなり、該敷設材は、高炉水砕スラグとそれ以外の素材が混合された状態であるか、又は高炉水砕スラグが上層側、それ以外の素材が下層側になるようにして水底に敷設される水中の環境改善方法。
【0051】
(8) 上記(1)〜(7)の環境改善方法において、水底に敷設された敷設材の50mass%以上が高炉水砕スラグからなる水中の環境改善方法。
(9) 上記(8)の環境改善方法において、水底に敷設された敷設材の最上部層が、高炉水砕スラグを60mass%以上含む水中の環境改善方法。
(10) 硫化水素の発生源となる水底に敷設される青潮防止材であって、粒径0.5mm以上のスラグ粒子の割合が90mass%以上、好ましくは粒径1.0mm以上のスラグ粒子の割合が70mass%以上の高炉水砕スラグからなることを特徴とする水中の環境改善用資材。
【0052】
(B)養浜、浅場造成又は干潟造成等を目的とする高炉水砕スラグの敷設
養浜とは、海岸の浸食等により砂浜が消失した海岸や人工ビーチを造成する海岸に外部から砂を供給することを指す。
また、干潟とは、満潮時には水没するが干潮時には干上がり、表面に砂泥が堆積している平坦な場所を指し、一般に干潟は河口域や内湾の奥に発達している。また、浅場とは文字通り水深が数m以下の浅い海域を指す。海岸から沖合に向かって伸びる海底では、おおよそ水深数mほどのところで所謂灘落ちと呼ばれるやや急な斜面に移行する地形がしばしば認められるが、一般に、浅場とはこの灘落ち点よりも浅い側の海域を指す。
【0053】
砂浜や干潟、浅場は貝類やゴカイ類等の底棲生物の主要な棲息環境であるが、本発明法により所定の粒度構成を有する高炉水砕スラグを養浜材或いは干潟・浅場造成材として敷設することによって、先に述べたように底棲生物にとって棲息しやすい環境を提供することができ、底棲生物の棲息量を顕著に増大させることができる。
【0054】
また、本発明法に敷設される高炉水砕スラグは、白色で且つ元々の高炉水砕スラグに含まれる針状物の割合が非常に少ないため、天然の砂地同様の外観で、しかも人や生物が針状物で傷付いたりすることがない安全な砂地(砂浜、干潟、浅場)を形成することができる。
また、養浜材、干潟や浅場の造成材として敷設された高炉水砕スラグは、先に(A)で述べたような底質・水質の浄化機能を有し、また後述するようなケイ酸塩イオンの放出源としての機能も有することから、底質・水質浄化作用やスラグから溶出したケイ酸塩イオンによる海藻類等の生育促進作用も得られる。
本実施形態が適用される水浜又は水域としては、港湾を含む海、河川、河口、湖沼等のいずれでもよい。
【0055】
以上述べた養浜、干潟・浅場造成等を目的とする高炉水砕スラグの敷設に関する好ましい実施形態を整理すると以下のようになる。
(1) 水浜に、養浜材として粒径0.5mm以上のスラグ粒子の割合が90mass%以上、好ましくは粒径1.0mm以上のスラグ粒子の割合が70mass%以上の高炉水砕スラグを敷設することにより、養浜を行う水中又は水浜の環境改善方法。
(2) 干潟を造成(修復を含む)すべき場所に、干潟造成材として粒径0.5mm以上のスラグ粒子の割合が90mass%以上、好ましくは粒径1.0mm以上のスラグ粒子の割合が70mass%以上の高炉水砕スラグを敷設することにより、干潟造成を行う水中又は水浜の環境改善方法。
(3) 浅場を造成(修復を含む)すべき海底部に、浅場造成材として粒径0.5mm以上のスラグ粒子の割合が90mass%以上、好ましくは粒径1.0mm以上のスラグ粒子の割合が70mass%以上の高炉水砕スラグを敷設することにより、浅場造成を行う水中又は水浜の環境改善方法。
【0056】
(C)磯焼け防止等を目的とする高炉水砕スラグの敷設
本実施形態が適用される磯焼けが生じている海底部とは、岩礁や人工魚礁などの海藻着生基盤の表面が石灰藻に覆われることにより、コンブ、ワカメ、アラメなどの有用海藻が消失し又は消失しつつある海底部を指す。
岩礁や人工魚礁などの海藻着生基盤の表面が石灰藻に覆われる所謂“磯焼け”状態となった海域は、魚介類の餌となる有用海藻(例えば、コンブ、ワカメ、アラメなど)が繁殖せず、その海域の漁業生産量が著しく低下するという問題がある。
【0057】
従来、磯焼けが生じた海域に対しては鋼製の藻礁を設置するなどの対策が試みられてきたが、鋼製藻礁を設置すると2年間程度は石灰藻以外の海藻が藻礁に繁殖して藻礁部分は磯焼け状態が解消されるものの、3年程度経過すると鋼製藻礁も石灰藻に覆われてしまい、その効果が無くなってしまう。このため再度鋼製藻礁を設置するなどの対策が必要となり、磯焼け防止の抜本的な解決策とはなり得ていない。また最近では、磯焼けが生じた海域のウニを駆除することによって藻場を復活させた例もあるが、ウニの駆除は人力で行う必要があるため効率が悪く、コストも多くかかる上、一度に適用できる海域が狭いなど、磯焼け解消の切り札とはなり得ていない。
【0058】
一方、海水中のケイ酸塩濃度を高めることにより珪藻類が増殖し、その結果として石灰藻の増殖が抑制されることが知られており、このようなメカニズムを利用した磯焼けの改善方法として、コンクリート製などの藻礁の表面に成分の溶解度を調整したガラスプレートを張り付け、これを磯焼け海域に沈設する方法が提案されている。また、特開平6−335330号公報には、構成成分の海水中への溶出により海藻類を増殖させることを目的として、ケイ素、ナトリウム及び/又はカリウム、鉄を含有するガラス質材料からなる藻場増殖材を海中に沈設する方法が提案されている。
【0059】
しかし、このような従来技術において海水中のケイ酸塩濃度を高めるために用いられるガラス質材料は人工物であるため高価であり、これを磯焼けが発生したり、何らかの原因で海藻成育環境が衰退・消失した広い海域に大量に設置するとなると膨大な費用がかかる。また、本発明者らが検討したところによれば、従来技術で用いられる人工のガラス質材料は海水などへのケイ素の溶出性が必ずしも十分ではなく、また沈設量も限られるため、ケイ素の供給はその設置場所近傍に限られてしまい、有効な磯焼け改善効果や海藻成育環境の改善効果が得られないことが判った。
【0060】
このような問題に対して、本発明法により所定の粒度構成を有する高炉水砕スラグを磯焼けが生じている又は生じる恐れのある海域或いは海藻成育環境が衰退・消失している海域の水底に敷設することにより、高炉水砕スラグが海藻類の生育に有効なケイ酸塩イオンの放出源となり、磯焼けの改善又は予防や海藻類の生育促進を図ることができる。また、水底に敷設された高炉水砕スラグは、先に述べた理由により底棲生物に対して良好な棲息環境を提供し、それらの棲息量の顕著な増大をもたらす。
また、高炉水砕スラグを水底に敷設する際には、他の材料(例えば、製鋼スラグ、フライアッシュ、けい砂、山砂、海砂、粘土など)と混合した状態で用いることができるが、この場合でも所望のケイ酸塩溶出量を確保するために必要とされる量の高炉水砕スラグを用いる必要がある。
【0061】
高炉水砕スラグはSiO成分とCaO成分とを多量に含むガラス質材料(一般に、SiO:30mass%以上、CaO:35mass%以上)であり、このため水底に敷設された高炉水砕スラグは、これに含まれるCaOの溶解により生じたCaイオンのケイ酸塩網目構造へのアタックによりケイ酸塩網目構造が分断され、この結果、水中にケイ酸塩イオンを溶出させる。すなわち、高炉水砕スラグの場合には、水分子によるケイ酸塩網目構造の切断により徐々にケイ酸塩イオンが水中に溶解する作用に加えて、スラグから溶解したCaイオンによるケイ酸塩網目構造の分断によりケイ酸塩イオンが水中に溶解する作用が得られ、したがって、このような高炉水砕スラグのケイ酸塩イオンの溶出機構は、先に従来技術として挙げた人工のガラス質材料と同様の水分子によるケイ酸塩イオンの溶出作用と、Caイオンのアタックによるケイ酸塩イオンの溶出作用とが組み合わされたものとなり、人工のガラスよりもはるかにケイ酸塩が溶出しやすい。
【0062】
さらに、高炉水砕スラグは高温の溶融状態にある高炉スラグ(溶融スラグ)を噴流水で急冷して得られるものであるため、その形態や組織において人工のガラス質材料には無い以下のような特質がある。
すなわち、一般に人工のガラス質材料は組織が緻密であるのに対し、高炉水砕スラグは、先に述べたように無数の内部気孔を有する多孔質組織のガラス質材料となり、しかも比較的細かい粒子となる。また、同様の理由から高炉水砕スラグの粒子は角張った形状(表面に多数の尖った部分を有する形状)を有している。したがって、このような形態及び組織面での特質から、高炉水砕スラグは人工のガラス質材料を破砕装置で破砕して得られたような粒状物に較べて比表面積が格段に大きく、その分ケイ酸塩イオンが溶出しやすいという特徴がある。さらに、高炉水砕スラグ粒子表面に多数存在する尖った部分は微細な形態であるため、微細な粉体が成分の溶解性が高いのと同様に、ケイ酸塩の溶解に非常に適している。
【0063】
また、上記のような形態上の特徴から、高炉水砕スラグの積層物は人工のガラス質材料を破砕装置で破砕して得られたような粒状物の積層物に較べて充填間隙が大きく、しかも本発明で使用する高炉水砕スラグは比較的粗い粒度構成を有しているため、通水性が非常に優れている。このため高炉水砕スラグの積層物から溶出するケイ酸塩イオンは、人工のガラス質材料のそれに較べて積層物の外部に拡散し易いという特徴がある。
【0064】
また、高炉水砕スラグはCaイオンを溶出するため、水中に設置された場合に先に述べたような硫化水素の発生抑制効果を有し、このため高炉水砕スラグの積層物内では硫酸還元が起こりにくく、天然の砂やガラスの積層物内に較べて硫化水素が少なく溶存酸素の多い状態となる。この状態は着生する生物にとって棲息しやすい状態であると言え、したがって、海中に設置された高炉水砕スラグはケイ酸塩イオンの供給源であるとともに、生物の着生基盤としても機能し、この点からも磯焼けの改善に有効である。
【0065】
ところで、鉄鋼製造プロセスにおいて副生成物として得られるスラグとしては、高炉水砕スラグ以外にも高炉徐冷スラグや製鋼スラグ(例えば、脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、電気炉製鋼スラグなど)などがあるが、これらのスラグ粒子は組織が緻密で高炉水砕スラグのような多孔質組織ではなく、しかも、スラグ粒子の粒径も高炉水砕スラグに較べて格段に大きく、またこれを粉砕処理した場合でも個々のスラグ粒子の形状は高炉水砕スラグのような角張った形状(表面に多数の尖った部分を有する形状)にはならない。このため比表面積は高炉水砕スラグに較べて格段に小さい。また、高炉徐冷スラグは、硫化物の溶出量が大きいため、海水のCODを高めたり、スラグ積層物の充填間隙中で硫化水素の濃度が高くなるという問題がある。また、製鋼スラグの多くはSiOの含有量が少なくCaOの含有量が多いため、この面からもケイ酸塩の溶解量が少ない。したがって、これらのスラグからは水中へのケイ酸塩イオンの供給が十分にできず、いずれも磯焼け防止材には適さない。
【0066】
なお、高炉水砕スラグの塩基度は四成分塩基度(CaO+Al+MgO)/SiOで1.6〜2.5、望ましくは1.6〜2.0であることが好ましい。高炉水砕スラグの上記塩基度が1.6未満ではスラグ中でのSiOの安定度が高まるためケイ酸塩イオンの海水中への溶出性が低下する傾向がある。一方、上記塩基度が2.0を超え、特に2.5を超えるとスラグ中の結晶質の量が増加し、ケイ酸塩の溶出と同時にCaの溶出も増加するため、ケイ酸塩がCaと沈殿物を生成してケイ酸塩の水中への供給量が低下する場合がある。
【0067】
珪藻類の増殖に必要な水中のケイ酸塩イオンの濃度は10μmol/L以上とされているが、このようなケイ酸塩イオン濃度は高炉水砕スラグの敷設によって容易に達成される。これにより海底の海藻着生基盤表面に珪藻類が安定的に繁殖し、この結果、石灰藻の増殖が抑えられるとともに、昆布やアラメなどの大型の海藻類が繁殖する。また、海藻着生基盤表面に繁殖した珪藻類は、石灰藻とは異なり魚介類の餌となるため、珪藻類が繁殖すれば磯焼け海域において水産資源が増加する。また、高炉水砕スラグからのケイ酸塩イオンの溶出は長期間継続するため、珪藻類の増殖及びこれに伴う磯焼け防止効果も長期間に亘って継続することになる。
【0068】
次に、磯焼け海域の藻場造成法について特に好ましい実施形態について説明する。
この藻場造成法では、磯焼けが生じている海底部において海藻着生基盤の周囲又は近傍に高炉水砕スラグを設置するのが好ましい。これにより高炉水砕スラグから溶出したケイ酸塩イオンにより海藻着生基盤周囲の海水が高ケイ酸塩濃度化し、海藻着生基盤に珪藻類を効果的に繁殖させることができる。
海藻着生基盤は天然又は人工のいずれでもよく、前者の場合は岩礁などであり、後者の場合には鋼製ブロック、コンクリートブロック、天然石、スラグ塊などである。また、この後者の場合には、高炉水砕スラグを敷設した後に海藻着生基盤を設置してもよい。人工の海藻着生基盤を設置する海底は、岩礁帯、砂地などを問わない。
【0069】
また、高炉水砕スラグは、現に磯焼けを生じている海域だけでなく、磯焼けが生じる恐れのある海底部に設置することができ、これにより当該海域での磯焼けを予防する。この場合も高炉水砕スラグは、先に述べたものと同様の形態で設置される。
なお、上述したように本実施形態である磯焼け海域の藻場造成法や磯焼け防止法が適用される主たる海域(磯焼けを現に生じ又は生じる恐れのある海域)は主として外海に面した海域であり、したがって所謂赤潮が生じるような河川流入栄養塩などにより富栄養化した海域とは対照をなすような海域である。
【0070】
以上述べた磯焼け防止等を目的とする高炉水砕スラグの敷設に関する本発明法の好ましい実施形態を整理すると以下のようになる。
(1) 磯焼けが生じている海底部に、磯焼け防止材として粒径0.5mm以上のスラグ粒子の割合が90mass%以上、好ましくは粒径1.0mm以上のスラグ粒子の割合が70mass%以上の高炉水砕スラグを敷設することにより、磯焼け海域での藻場造成を行う水中の環境改善方法。
(2) 上記(1)の環境改善方法において、天然又は人工の海藻着生基盤の周囲又は近傍に高炉水砕スラグを敷設することにより、磯焼け海域での藻場造成を行う水中の環境改善方法。
(3) 上記(2)の環境改善方法において、高炉水砕スラグを敷設した後、人工の海藻着生基盤を設置することにより、磯焼け海域での藻場造成を行う水中の環境改善方法。
【0071】
(4) 磯焼けが生じるおそれがある海底部に、磯焼け防止材として粒径0.5mm以上のスラグ粒子の割合が90mass%以上、好ましくは粒径1.0mm以上のスラグ粒子の割合が70mass%以上の高炉水砕スラグを敷設することにより、磯焼けを防止する水中の環境改善方法。
(5) 上記(4)の環境改善方法において、天然又は人工の海藻着生基盤の周囲又は近傍に高炉水砕スラグを敷設することにより、磯焼けを防止する水中の環境改善方法。
(6) 上記(5)の環境改善方法において、高炉水砕スラグを敷設した後、人工の海藻着生基盤を設置することにより、磯焼けを防止する水中の環境改善方法。
(7) 磯焼けが発生している海底部又は磯焼けの発生を予防すべき海底部に敷設される磯焼け防止材であって、粒径0.5mm以上のスラグ粒子の割合が90mass%以上、好ましくは粒径1.0mm以上のスラグ粒子の割合が70mass%以上の高炉水砕スラグからなる水中の環境改善用資材。
【0072】
(D)赤潮発生防止を目的とする高炉水砕スラグの敷設
赤潮とは水中の微生物、とりわけ植物プランクトンが異常増殖して海水が着色する現象であり、近年、養殖魚類(例えば、ハマチやタイなど)を大量斃死させるなど、特に養殖漁業に大きな被害を及ぼしていることから、その防止対策が切望されている。
赤潮を起こす生物の種類は多岐にわたると考えられるが、その中でもシャットネラなどの特定の鞭毛藻類の大増殖が養殖魚類の大量斃死を招く赤潮の主要な原因であると考えられている。赤潮は富栄養化の進行した海域において発生することから、赤潮の防止には覆砂や浚渫、下水道整備による河川流入栄養塩の低減化が有効であるとされている。
【0073】
しかしながら、覆砂や浚渫は工事完了後に新たに堆積する有機物によってその効果が失われてしまい、また、工事可能な海域が比較的浅い海域に限られるため、赤潮の大発生が問題となる瀬戸内海中心部などへの適用は困難である。また、これらの工事には多大な費用がかかり、このことも適用範囲が限られる要因となる。また、下水道整備による河川流入栄養塩の低減化は、海域全体の栄養塩量を減らすには有効であるが、これも瀬戸内海中心部のような海岸から離れた場所では、夏期の海水停滞期に表層海水の貧栄養化の原因となり、この貧栄養化によって表層海水中の珪藻類が減少することが、赤潮の原因となるシャットネラなどの鞭毛藻類の増殖要因の一つとなる。
【0074】
最近、赤潮防止対策の一つとして可溶性のケイ素(ケイ酸塩イオン)の海水中への付与により珪藻類を繁殖させ、赤潮の原因となるシャットネラなどの鞭毛藻類の増殖を抑制する方法が検討され、この方法に関して、可溶性のケイ素を含有した人工のガラス質材料を浮体に装着して海中に設置する赤潮予防方法が特開平10−94341号公報に提案されている。
可溶性のケイ素の海水中への付与は貧栄養状態となった表層海水中の珪藻類を繁殖させることが知られており、珪藻類は赤潮の原因となるシャットネラなどの鞭毛藻類の競合種であり、しかも鞭毛藻類よりも増殖力が高いため、珪藻類が表層海水中に安定に存在するとシャットネラなどの鞭毛藻類の異常増殖が抑制され、その結果、赤潮の発生が防止されることになる。
【0075】
しかし、上記のような従来技術において海水中のケイ酸塩濃度を高めるために用いられるガラス質材料は人工物であるため高価であり、これを赤潮が発生した広い海域に大量に設置するとなると膨大な費用がかかる。また、先に述べたように、本発明者らが検討したところによれば、従来技術で用いられる人工のガラス質材料は海水などへのケイ素の溶出性が必ずしも十分ではなく、また沈設量も限られるため、ケイ素の供給はその設置場所近傍に限られてしまい、有効な赤潮防止効果が得られないことが判った。
このような問題に対して、本発明法により所定の粒度構成を有する高炉水砕スラグを赤潮防止材として水底に敷設することにより、高炉水砕スラグがケイ酸塩イオンの放出源となり、赤潮の発生が効果的に抑えられる。また、水底に敷設された高炉水砕スラグは、先に述べた理由により底棲生物に対して良好な棲息環境を提供し、それらの棲息量の顕著な増大をもたらす。
【0076】
高炉水砕スラグを水底に敷設する際には、他の材料(例えば、製鋼スラグ、フライアッシュ、けい砂、山砂、海砂、粘土など)と混合した状態で用いることができるが、この場合でも所望のケイ素(ケイ酸塩イオン)溶出量を確保するために必要とされる量の高炉水砕スラグを用いる必要がある。
高炉水砕スラグがケイ酸塩イオンの放出源として優れた特性を有することは先に(C)で述べた通りであり、したがって、この実施形態の環境改善法においても、使用される高炉水砕スラグの組成や性状、高炉水砕スラグの敷設形態、高炉水砕スラグからのケイ酸塩イオンの溶出機構、その他の高炉水砕スラグの機能などは、先に(C)に関して述べたものと同様である。
【0077】
また、本実施形態による赤潮防止法において、高炉水砕スラグは水深15m以内(以浅)、好ましくは10m以内(但し、いずれも干潮時の水深)に設置するのが望ましい。これは、高炉水砕スラグの設置深度があまり大きいと溶出したケイ酸塩イオンが表層海水に到達しにくくなり、表層海水のケイ酸塩濃度を高める上で効率が悪いからである。
また、赤潮発生海域が沿岸に近い場合(例えば、沿岸から数km以内の場合)には、水深15m以内、好ましくは10m以内の海底を覆うように高炉水砕スラグを敷設すればよく、この高炉水砕スラグから溶出したケイ酸塩イオンにより沿岸海域の海水が高ケイ酸塩濃度化し、この海水が海流によって沖合に流されるため、その海域一帯の表層海水のケイ酸塩濃度が高まり、珪藻類を効果的に増殖させることができる。
【0078】
珪藻類の増殖に必要な海水中でのケイ酸塩イオンの濃度は10μmol/L以上とされているが、このようなケイ酸塩イオン濃度は本発明法により高炉水砕スラグを海中に設置すること、好ましくは水深15m以内(より好ましくは水深10m以内)の海中に設置することによって容易に達成される。これにより表層海水中に珪藻類(シャットネラなどの鞭毛藻類の競合種)が安定的に繁殖し、赤潮の原因となるシャットネラなどの鞭毛藻類の異常増殖が防止される。また、珪藻類の安定的な繁殖は、これを食料とする魚介類の増殖にも効果があり、水産資源の増加にも効果がある。また、高炉水砕スラグからのケイ酸塩イオンの溶出は長期間継続するため、珪藻類の増殖及びこれに伴う赤潮防止効果も長期間に亘って継続することになる。
【0079】
本実施形態による赤潮防止法が適用される主たる海域(旧来の赤潮多発海域)は主として内海や湾などにおいて河川流入栄養塩などにより富栄養化した海域であり、したがって所謂“磯焼け”が生じるような海域とは対照をなすような海域である。
また、以上の実施形態では本発明を海水域に適用する場合について説明したが、赤潮は汽水域や淡水域でも発生するものであり、したがって、本実施形態による赤潮防止方法はこれらの水域に対しても適用することができる。
【0080】
以上述べた赤潮発生防止を目的とする高炉水砕スラグの敷設に関する好ましい実施形態を整理すると以下のようになる。
(1) 海水域、汽水域又淡水域において、水中に赤潮防止材として粒径0.5mm以上のスラグ粒子の割合が90mass%以上、好ましくは粒径1.0mm以上のスラグ粒子の割合が70mass%以上の高炉水砕スラグを設置することにより赤潮発生を防止する水中の環境改善方法。
(2) 上記(1)の環境改善法において、水深15m以内の水中に高炉水砕スラグを設置することにより赤潮発生を防止する水中の環境改善方法。
(3) 赤潮が発生している海域又は赤潮の発生を予防すべき海域に設置される赤潮防止材であって、粒径0.5mm以上のスラグ粒子の割合が90mass%以上、好ましくは粒径1.0mm以上のスラグ粒子の割合が70mass%以上の高炉水砕スラグからなる水中の環境改善用資材。
【0081】
本発明の水中の環境改善方法の具体的な実施形態としては、以上説明した形態、すなわち青潮防止法(覆砂)、養浜又は干潟・浅場の造成法、磯焼け海域の藻場造成法、磯焼け防止法、赤潮防止法以外にも、例えば、磯焼け以外の原因で海藻成育環境が衰退・消失した海域の環境改善法(修復)等などがある。
このような環境改善法においても、使用される高炉水砕スラグの組成や性状、高炉水砕スラグの敷設形態、高炉水砕スラグからのケイ酸塩イオンの溶出機構、その他の高炉水砕スラグの機能などは、先に磯焼け海域の藻場造成法や磯焼け防止法に関して述べたものと同様である。
【0082】
以上述べた本発明の(A)、(C)、(D)の各実施形態は、海岸に面した所謂浅場の造成又は修復を兼ねて行ってもよい。すなわち、主に海岸に面した海域において海藻類や魚介類の成育・棲息に適した所謂浅場が海砂の流失や浚渫などにより衰退・消失する場合があり、このような海底部を本来の浅場としての環境に造成又は修復することを兼ねて、その海底部に覆砂材等として高炉水砕スラグを敷設することができる。
またこの場合、海流等による高炉水砕スラグの流失を防止するため、敷設された高炉水砕スラグの周囲に潜堤を設置することが好ましい。また、高炉水砕スラグの敷設領域には人工の海藻着生基盤や漁礁を設置し、海藻類や魚介類の成育・棲息環境を整えることが好ましい。
【0083】
高炉水砕スラグの流失を防止するための潜堤は任意の材料で構成することができるが、塊状スラグ(鉄鋼製造プロセスで発生した塊状スラグ)を積み上げて潜堤を構築することにより、例えばコンクリート製品を用いたり、コンクリート構造物を構築したりすることなく、簡易且つ安価に潜堤を形成することができる。高炉水砕スラグが元々粒状の形態であるのに対して、製鋼スラグ等は塊状のものが得られやすく且つ比重も大きいため、これを所定の高さに積み上げることにより堅牢な潜堤を構築することができ、しかもスラグが塊状であるため海流等により消失する恐れもない。また、製鋼スラグには底質や水質を浄化する作用もあるため、水中の環境改善にも寄与できるという利点がある。
【0084】
使用する塊状スラグとしては、高炉で発生する高炉徐冷スラグ(但し、この高炉徐冷スラグは水中でSが溶出しないようにするため、十分にエージング処理したものが好ましい)、予備処理、転炉、鋳造等の工程で発生する脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、鋳造スラグ等の製鋼スラグ、鉱石還元スラグ、電気炉スラグ等が挙げられ、これらの2種以上を用いてもよい。またこれらのスラグなかでも、高比重であるという点では脱炭スラグ、鋳造スラグが特に好ましい。またスラグの大きさとしては、一般に塊径が30mm程度以上のものが好ましい。
また、上記潜堤は後述するようなスラグを主原料とするブロック、すなわち、鉄鋼製造プロセスで発生したスラグを主原料とする粉粒状原料を炭酸反応で生成させたCaCOを主たるバインダーとして固結させて得られたブロック、鉄鋼製造プロセスで発生したスラグを主原料とする水和硬化体ブロックなどで構成することもできる。これらのブロックを適当に積み上げることにより、堅牢な潜堤を構築することができる。これらと上記塊状スラグを併用してもよい。
【0085】
高炉水砕スラグの敷設領域に設置される人工の海藻着生基盤や漁礁は、自然石、ブロック、鋼製構造体等の任意のもので構成することができるが、特に、上述したような鉄鋼製造プロセスで発生した塊状スラグ、鉄鋼製造プロセスで発生したスラグ(鉄鋼スラグ)を主原料とする粉粒状の原料を炭酸固化させて得られたブロック、或いは同じく鉄鋼スラグを主原料とする水和硬化体ブロックなどを用いるのが好ましい。
【0086】
これらのうち鉄鋼製造プロセスで発生した塊状スラグについては、先に述べた通りである。
また、主原料である鉄鋼スラグを炭酸固化させて得られたブロックとしては、例えば特許第3175694号で提案されている、鉄鋼スラグを主原料とする粉粒状原料を炭酸化反応で生成させたCaCO(場合によっては、さらにMgCO)を主たるバインダーとして固結させ、塊状させたものを用いることができる。また、鉄鋼スラグとしては、先に挙げたような各種スラグ、すなわち高炉で発生する高炉水砕スラグや高炉徐冷スラグ、予備処理、転炉、鋳造等の工程で発生する脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、鋳造スラグ等の製鋼スラグ、鉱石還元スラグ、電気炉スラグ等を用いることができる。
【0087】
このような鉄鋼スラグを炭酸固化させて得られたブロック(石材)は、▲1▼スラグ中に含まれるCaO(またはCaOから生成したCa(OH))の大部分がCaCOに変化するため、CaOによる海水のpH上昇を防止できる、▲2▼スラグに適量の鉄分(特に、金属鉄、含金属鉄材)が含まれることにより、この鉄分が海水中に溶出することで海水中に栄養塩として鉄分が補給され、これが海藻類の育成に有効に作用する、▲3▼スラグを炭酸固化して得られたブロックは全体(表面及び内部)がポーラスな性状を有しており、このため石材表面に海藻類が付着し易く、しかも石材内部もポーラス状であるため、石材中に含まれている海藻類の成育促進に有効な成分(例えば、ケイ酸塩イオンや鉄分)が海水中に溶出しやすい、などにより海藻の着生基盤や漁礁として有効に機能する。また、主原料であるスラグの一部又は全部として高炉水砕スラグを用いることにより、上述したようなケイ酸塩イオンの溶出を特に促進することができるため、海藻成育環境の改善や磯焼け防止、赤潮防止などに特に有効である。このためブロックの全原料又は主原料を高炉水砕スラグとすることが最も好ましい。
【0088】
また、鉄鋼スラグを主原料とする水和硬化ブロックは、鉄鋼スラグを主原料(骨材及び/又は結合材)として含む原料を水和硬化させて得られるものであり、鉄鋼スラグとしては、先に挙げたような各種スラグ、すなわち高炉で発生する高炉水砕スラグや高炉徐冷スラグ、予備処理、転炉、鋳造等の工程で発生する脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、鋳造スラグ等の製鋼スラグ、鉱石還元スラグ、電気炉スラグ等を用いることができる。水和硬化によるブロックの製造では、原料を水と混練後、型枠に入れ、通常1〜4週間養生することによってブロックが製造される。
【0089】
また、主原料(骨材及び/又は結合材)であるスラグの一部又は全部として高炉水砕スラグを用いることにより、上述したようなケイ酸塩イオンの溶出を特に促進することができるため、海藻成育環境の改善や磯焼け防止、赤潮防止などに特に有効である。このためブロックの全原料又は主原料を高炉水砕スラグとすることが最も好ましい。
なお、ブロックに用いる結合材としては、上述した高炉水砕スラグの微粉末などの他にシリカ含有物質(例えば、粘土、フライアッシュ、ケイ砂、シリカゲル、シリカシューム)、セメント、消石灰、NaOHなどを適宜組み合わせて使用することもできる。
【0090】
以上のようなブロックを高炉水砕スラグの敷設領域に設置する場合には、個々のブロックを高炉水砕スラグ層上に設置してもよいし、複数のブロックを積み上げ或いは組み付けてもよい。特に、ブロックに漁礁としての機能を持たせる場合には、複数のブロックを積み上げ或いは組み付けることにより、複数のブロック間に魚介類が棲息できるような空間部を形成することが好ましい。
また、塊状スラグを高炉水砕スラグの敷設領域に設置する場合には、例えばスラグを山状に積み上げたり、或いはスラグを金網籠など入れて設置するなど、任意の設置形態を採ることができる。
【0091】
以上述べたような高炉水砕スラグを敷設材とする浅場の造成又は修復において、高炉水砕スラグの流出防止用の潜堤として塊状スラグ及び/又はスラグ(特に好ましくは高炉水砕スラグ)を主原料とするブロックを用い、且つ高炉水砕スラグの敷設領域に設置する海藻着生基盤や漁礁としても、塊状スラグ及び/又はスラグ(特に好ましくは高炉水砕スラグ)を主原料とするブロックを用いることにより、先に述べたようなスラグによる水中の環境改善作用(すなわち、珪藻類の増殖による海藻類成育環境の改善作用や磯焼け・赤潮の発生抑制作用、硫化水素の発生防止による青潮の発生抑制作用、底質・水質の浄化作用など)が最も効果的に得られ、しかも浅場の造成又は修復用の資材として天然資源を用いることなく、100%リサイクル材(鉄鋼スラグ)を用いることができ、リサイクル材の有効利用、施工の低コスト化、天然資源の利用による環境破壊の防止などの面からも極めて有利である。
【0092】
図5は、高炉水砕スラグを敷設材とする浅場の造成又は修復の一実施形態を示したもので、4は水底に適当な厚さに敷設された高炉水砕スラグ、5は敷設された高炉水砕スラグの流失を防止するために高炉水砕スラグ4の周囲に設置された潜堤であり、この潜堤5は塊状スラグ(製鋼スラグ)を積み上げることにより構築されている。さらに、6は敷設された高炉水砕スラグ層上に積み上げられることにより海藻着生基盤及び/又は漁礁を構成するブロックであり、このブロック6としては、鉄鋼スラグ(好ましくは高炉水砕スラグ)を主原料とする粉粒状原料を炭酸固化させて得られたブロック、或いは同じく鉄鋼スラグ(好ましくは高炉水砕スラグ)を主原料とする水和硬化体ブロックなどを用いる。
【0093】
このように高炉水砕スラグ4を海底に敷設するとともに、その流失防止用の潜堤5として塊状スラグを用い、さらに高炉水砕スラグ4の敷設領域に鉄鋼スラグ(好ましくは高炉水砕スラグ)で構成されたブロック6を海藻着生基盤及び/又は漁礁として設置することにより、海藻類や魚介類の成育・棲息環境に最も適した浅場が造成又は修復されることになる。
なお、以上述べた浅場の造成又は修復においても、使用される高炉水砕スラグの組成や性状、高炉水砕スラグの敷設形態、高炉水砕スラグからのケイ酸塩イオンの溶出機構、その他の高炉水砕スラグの機能などは、先に磯焼け海域の藻場造成法や磯焼け防止法に関して述べたものと同様である。
【0094】
以上のようなスラグ流失防止用の潜堤を設ける場合の好ましい実施形態を整理すると以下のようになる。
(1) 海岸に面した海底に、粒径0.5mm以上のスラグ粒子の割合が90mass%以上、好ましくは粒径1.0mm以上のスラグ粒子の割合が70mass%以上の高炉水砕スラグを敷設するとともに、該高炉水砕スラグの敷設領域の周囲にスラグ流失防止用の潜堤を設置し、且つ該高炉水砕スラグの敷設領域には人工の海藻着生基盤及び/又は漁礁を設置する水中の環境改善方法。
(2) 上記(1)の環境改善方法において、潜堤の少なくとも一部を、鉄鋼製造プロセスで発生した塊状のスラグ、鉄鋼製造プロセスで発生したスラグを主原料とする粉粒状原料を炭酸反応で生成させたCaCOを主たるバインダーとして固結させて得られたブロック、鉄鋼製造プロセスで発生したスラグを主原料とする水和硬化体ブロックの中から選ばれる1種以上で構成する水中の環境改善方法。
(3) 上記(1)又(2)の環境改善方法において、人工の海藻着生基盤及び/又は漁礁の少なくとも一部を、鉄鋼製造プロセスで発生した塊状のスラグ、鉄鋼製造プロセスで発生したスラグを主原料とする粉粒状原料を炭酸反応で生成させたCaCOを主たるバインダーとして固結させて得られたブロック、鉄鋼製造プロセスで発生したスラグを主原料とする水和硬化体ブロックの中から選ばれる1種以上で構成する水中の環境改善方法。
【0095】
【実施例】
[実施例1]
水深4mのヘドロが堆積した海底において、篩い分けして得られた粒径0.5mm以上のスラグ粒子の割合が90mass%以上の高炉水砕スラグを30cmの厚さで10m×10mの範囲に敷設した(本発明例)。また、比較例として、隣接する同様の条件の海底部に、篩い分けして得られた粒径0.5mm以上のスラグ粒子の割合が85mass%の高炉水砕スラグを同様の条件で敷設した。なお、このヘドロが堆積した海底部には少量のゴカイ類のみが棲息していた。
【0096】
敷設から1年経過後に、高炉水砕スラグの敷設層における生物棲息量、敷設層直上水と周囲のヘドロ層直上水の溶存酸素量と硫化水素量の調査を行った。その結果、本発明例、比較例とも高炉水砕スラグの敷設層中には貝類やゴカイ類等の多様な底棲生物が棲息していたが、生物棲息量は湿重量で本発明例が637g/m、比較例が503g/mであり、本発明例の生物棲息量は比較例に較べて約20%多かった。また、溶存酸素量については、ヘドロ直上水の溶存酸素量が1.2ppmであったのに対して、敷設層直上水の溶存酸素量は本発明例、比較例ともに6ppmであった。また、硫化水素量については、ヘドロ直上水では0.02ppmの硫化水素が検出されたのに対して、本発明例、比較例の敷設層直上水ではともに硫化水素は検出されなかった。
【0097】
[実施例2]
水深5mのヘドロが堆積した海底から砂浜となる海岸までの領域において、篩い分けして得られた粒径1.0mm以上のスラグ粒子の割合が80mass%以上の高炉水砕スラグを50cm〜2mの厚さで20m×60mの範囲に敷設した(本発明例)。また、比較例として、隣接する同様の条件の海底部に、篩い分けして得られた粒径0.5mm以上のスラグ粒子の割合が80mass%の高炉水砕スラグを同様の条件で敷設した。なお、ヘドロが堆積した海底部には少量のゴカイ類のみが棲息していた。
【0098】
敷設から1年経過後に、高炉水砕スラグの敷設層における生物棲息量、敷設層直上水と周囲のヘドロ層直上水の溶存酸素量と硫化水素量、敷設層中の間隙水のpHの調査を行った。その結果、本発明例、比較例とも高炉水砕スラグの敷設層中には貝類やゴカイ類等の多様な底棲生物が棲息していたが、生物棲息量は湿重量で本発明例が786g/m、比較例が472g/mであり、本発明例の生物棲息量は比較例に較べて約40%多かった。また、溶存酸素量については、ヘドロ直上水の溶存酸素量が0.5ppmであったのに対して、水深2mの敷設層直上水の溶存酸素は本発明例、比較例ともに7ppmであった。また、硫化水素量については、ヘドロ直上水では0.05ppmの硫化水素が検出されたのに対して、本発明例、比較例の敷設層直上水ではともに硫化水素は検出されなかった。また、水深2m、スラグ敷設厚さ2mの地点におけるスラグ敷設層上面から深さ0.5mでの間隙水のpHは、本発明例では8.5であり、硫酸還元菌の活動を抑えられるレベルであった。また、比較例では間隙水のpHは、本発明例よりも高い8.7であった。
【0099】
[実施例3]
・発明例(1)
図6に示すように磯焼けした岩礁性の海底の凹部に、篩い分けして得られた粒径0.5mm以上のスラグ粒子の割合が95mass%以上の高炉水砕スラグを20cm厚さで10m×10mの範囲に設置した。その後、この付近の海底部での珪藻類及び大型海藻類の着生の調査を継続して行った。その結果、スラグ設置1週後には、スラグ設置場所近傍の岩礁に付着珪藻が観察され、スラグ設置1ヶ月後にはスラグ設置場所から海流の下流側30mまで付着珪藻が観察された。また、大型の海藻類は、スラグ設置1ヶ月後にスラグ設置場所の近傍に観察され、スラグ設置6ヶ月後には海流の下流側20mの範囲で観察された。また、長期の観察では、5年経過した後も6ヶ月後と同様に珪藻類と大型の海藻類が観察された。特に大型の海藻類はその種類も増加した。
【0100】
・発明例(2)
砂質の海底で、その周囲20mの岩礁性海底部が磯焼け状態となっている海域において、図7に示すように砂質部に、篩い分けして得られた粒径1.0mm以上のスラグ粒子の割合が85mass%以上の高炉水砕スラグを50cmの厚さで30m×30mの範囲に設置した。さらに、その上に製鋼スラグ硬化体及び製鋼スラグを設置し、人工の岩礁を作った。その後、この付近の海底部での付着珪藻及び大型海藻類の着生の調査を継続して行った。その結果、スラグ設置1週間後には、スラグ設置場所の人工岩礁に付着珪藻が観察され、スラグ設置1ヶ月後にはスラグ設置場所から20m離れた岩礁においても付着珪藻が観察された。また、大型の海藻類については、スラグ設置1ヶ月後にスラグ設置場所の人工岩礁に観察され、スラグ設置6ヶ月後には設置場所から20m離れた岩礁においても観察された。長期の観察では、5年経過した後も6ヶ月後と同様に人工岩礁と天然岩礁の双方に珪藻類と大型海藻類が観察された。特に大型の海藻類はその種類も増加した。
【0101】
[実施例4]
沿岸から沖合500m〜1kmの赤潮多発海域(湾内)において、海岸近くの海底に、篩い分けして得られた粒径0.5mm以上のスラグ粒子の割合が95mass%以上の高炉水砕スラグを略30cmの厚さに敷設した。その敷設範囲は海岸線から沖合に40m(水深2〜7m)までの範囲であって、海岸線の総延長200mの範囲とした。
高炉水砕スラグの設置後(設置時期は夏期)、その設置場所と旧来の赤潮発生ポイント(海域)の表層海水中のケイ酸塩濃度と珪藻量とを継続的に調査した。その結果を表2に示す。これによれば、高炉水砕スラグの設置2週間後には、その設置場所と旧来の赤潮発生ポイントでの表層海水中のケイ酸塩濃度が増加しており、元々ケイ酸塩濃度の低かった赤潮発生ポイントでも珪藻量が増加していた。また、高炉水砕スラグの設置後3年間調査を継続したが、この間赤潮の発生は全く認められず、また高炉水砕スラグの設置場所では海藻や魚介類も多数観察された。
【0102】
【表2】
Figure 2004024204
【0103】
[実施例5]
・発明例(1)
湾内の平坦な水底(砂質上に泥質が堆積した水底)に形成された直径が約30mの凹部(深掘り部分)に、篩い分けして得られた粒径1.0mm以上のスラグ粒子の割合が90mass%以上の高炉水砕スラグを凹部周囲の水底面との平均高低差が1m以下([d−d]≦1m)となるように敷設した。敷設厚みは約15mであった。
この敷設材の敷設による水中の懸濁の度合いを調べるため、凹部の中心部の直上水深5m地点において、上記敷設材の敷設直前の懸濁物質量と敷設材の敷設直後(30分後)の懸濁物質量をそれぞれ測定し、その差を求めた。
また、敷設材の敷設後、3年にわたって半年毎に敷設部水底面の直上、敷設部から50m離れた地点での水底面の直上及び敷設部から100m離れた地点での水底面の直上の各位置で水の硫化水素濃度を測定した。また、敷設してから3年後の敷設材上面レベル(水底面)の沈下量(平均値)を測定した。それらの結果を表3に示す。
【0104】
・発明例(2)
湾内の平坦な水底(砂質上に泥質が堆積した水底)に形成された直径が約20mの凹部(深掘り部分)に、篩い分けして得られた粒径1.0mm以上のスラグ粒子の割合が85mass%以上の高炉水砕スラグ60mass%、高炉徐冷スラグ10mass%、製鋼スラグ20mass%、都市ゴミスラグ10mass%の混合物を凹部周囲の水底面との平均高低差が1m以下([d−d]≦1m)となるように敷設した。敷設厚みは約10mであった。
この敷設材の敷設による水中の懸濁の度合いを調べるため、凹部の中心部の直上水深5m地点において、上記敷設材の敷設直前の懸濁物質量と敷設材の敷設直後(30分後)の懸濁物質量をそれぞれ測定し、その差を求めた。
また、敷設材の敷設後、3年にわたって半年毎に敷設部水底面の直上、敷設部から50m離れた地点での水底面の直上及び敷設部から100m離れた地点での水底面の直上の各位置で水の硫化水素濃度を測定した。また、敷設してから3年後の敷設材上面レベル(水底面)の沈下量(平均値)を測定した。それらの結果を表3に示す。
【0105】
・発明例(3)
湾内の平坦な水底であって、砂質上に泥質が堆積した水底の50m×50mの範囲に、篩い分けして得られた粒径0.5mm以上のスラグ粒子の割合が90mass%以上の高炉水砕スラグ90mass%、製鋼スラグ10mass%の混合物を厚さ50cmに敷設した。
この敷設材の敷設による水中の懸濁の度合いを調べるため、敷設領域の中心部の直上水深5m地点において、上記敷設材の敷設直前の懸濁物質量と敷設材の敷設直後(30分後)の懸濁物質量をそれぞれ測定し、その差を求めた。
また、敷設材の敷設後、3年にわたって半年毎に敷設部水底面の直上、敷設部から50m離れた地点での水底面の直上及び敷設部から100m離れた地点での水底面の直上の各位置で水の硫化水素濃度を測定した。それらの結果を表3に示す。
【0106】
・比較例(1)
湾内の平坦な水底(砂質上に泥質が堆積した水底)に形成された直径が約40mの凹部(深掘り部分)に、海砂を凹部周囲の水底面との平均高低差が1m以下([d−d]≦1m)となるように敷設した。敷設厚みは約8mであった。この敷設材の敷設による水中の懸濁の度合いを調べるため、凹部の中心部の直上水深5m地点において、上記敷設材の敷設直前の懸濁物質量と敷設材の敷設直後(30分後)の懸濁物質量をそれぞれ測定し、その差を求めた。
また、敷設材の敷設後、3年にわたって半年毎に敷設部水底面の直上、敷設部から50m離れた地点での水底面の直上及び敷設部から100m離れた地点での水底面の直上の各位置で水の硫化水素濃度を測定した。また、敷設してから3年後の敷設材上面レベル(水底面)の沈下量(平均値)を測定した。それらの結果を表3に示す。
【0107】
・比較例(2)
湾内の平坦な水底(砂質上に泥質が堆積した水底)に形成された直径が約30m、深さ10mの凹部(深掘り部分)について、発明例1における敷設材の敷設時とほぼ同時期から3年にわたって半年毎に深掘部水底面の直上、深掘部から50m離れた地点での水底面の直上及び深掘部から100m離れた地点での水底面の直上の各位置で水の硫化水素濃度を測定した。その結果を表3に示す。
【0108】
【表3】
Figure 2004024204
【0109】
[実施例6]
底層水の溶存酸素濃度が約2ppm(飽和溶解度:約7ppm)となっている水域(約400m四方の水域)の海底に、篩い分けして得られた粒径1.0mm以上のスラグ粒子の割合が85mass%以上の高炉水砕スラグを厚さ約20cmに敷設した。1ヶ月経過後に、スラグ敷設水域の底層水の溶存酸素濃度を測定したところ約4.5ppmに上昇していた。
[実施例7]
底層水の硫化水素濃度が0.5〜1.2ppmとなっている水域(約1ha)の海底に、篩い分けして得られた粒径1.0mm以上のスラグ粒子の割合が90mass%以上の高炉水砕スラグを厚さ約35cmに敷設した。1ヶ月経過後、6ヶ月経過後、1年経過後にそれぞれスラグ敷設水域の底層水の硫化水素濃度を測定(測定方法:検知管式、検出限界:0.01ppm)したが、硫化水素は検出されなかった。
【0110】
[実施例8]
底層水の流速が3cm/秒の水域(約1.5ha)の海底に、篩い分けして得られた粒径0.5mm以上のスラグ粒子の割合が95mass%以上の高炉水砕スラグを厚さ約3mに敷設した。このスラグ敷設前とスラグを敷設してから3ヶ月経過後の底層水の水質を比較したところ、スラグ敷設前は硫化水素濃度が1.8ppm、溶存酸素濃度が0.2ppmであったのに対し、スラグを敷設してから3ヶ月経過後では硫化水素濃度が検出限界以下に、溶存酸素濃度が4.8ppmにそれぞれ改善された。
【0111】
[実施例9]
海水塩分濃度による密度躍層(表層水の塩分濃度:1.5%、底層水の塩分濃度:2.6%)が形成された水域(約10ha)の海底に、篩い分けして得られた粒径1.0mm以上のスラグ粒子の割合が95mass%以上の高炉水砕スラグを厚さ約0.2mに敷設した。このスラグ敷設前とスラグを敷設してから3ヶ月経過後の底層水の水質を比較したところ、スラグ敷設前は硫化水素濃度が3ppm、溶存酸素濃度が0.1ppmであったのに対し、スラグを敷設してから3ヶ月経過後では硫化水素濃度が検出限界以下に、溶存酸素濃度が4ppmにそれぞれ改善され、また、高炉水砕スラグの敷設により水底が浅くなったため、底層水の塩分濃度も2.3%まで低下した。
【0112】
[実施例10]
海水温による密度躍層(表層水の水温:24℃、底層水の水温:14℃)が形成された水域(約0.5ha)の海底に、篩い分けして得られた粒径1.0mm以上のスラグ粒子の割合が90mass%以上の高炉水砕スラグを厚さ約3mに敷設した。このスラグ敷設前とスラグを敷設してから6ヶ月経過後の底層水の水質を比較したところ、スラグ敷設前は硫化水素濃度が0.8ppm、溶存酸素濃度が0.3ppmであったのに対し、スラグを敷設してから6ヶ月経過後では硫化水素濃度が検出限界以下に、溶存酸素濃度が3ppmにそれぞれ改善され、また、高炉水砕スラグの敷設により水底が浅くなったため、底層水の水温も16℃まで上昇した。
【0113】
【発明の効果】
以上述べたように本発明の水中の環境改善方法によれば、安価で且つ大量に入手できる所定の粒度構成を有する高炉水砕スラグを水中に設置するだけで、水底や水浜における好ましい環境、特に覆砂、養浜、浅場や干潟の造成等において砂地に棲息する生物に好適な環境を形成することができる。また、青潮の発生防止、磯焼けの防止、赤潮の発生防止、或いは藻場の造成や海藻成育環境の修復などにも優れた効果を発揮できる。
【図面の簡単な説明】
【図1】生成ままの高炉水砕スラグの代表的な粒度構成(篩い通過重量)を示すグラフ
【図2】従来法において水底の凹部に敷設した敷設材の作用を示す説明図
【図3】本発明の実施形態において水底の凹部に敷設した敷設材の作用を示す説明図
【図4】本発明による水中の環境改善方法の一実施形態を示す説明図
【図5】本発明による水中の環境改善方法の実施形態において、造成された浅場を示す説明図
【図6】実施例3における磯焼け海域の藻場造成の実施状況を示す説明図
【図7】実施例3における磯焼け海域の藻場造成の他の実施状況を示す説明図
説明図
【符号の説明】
A…高炉水砕スラグ、1,1′…凹部、2…敷設材、3…ケーソン、4…高炉水砕スラグ、5…潜堤、6…ブロック、20…スラグ、20a…高炉水砕スラグ、20b…高炉水砕スラグ以外のスラグ、21…スラグ以外の素材、X,Y…水底面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for improving the environment of underwater or water beaches, and in particular, to an environment improving method suitable for providing a favorable environment for living organisms, such as sand covering, nourishment, creation of shallow fields and tidal flats, and the like. Regarding the materials used.
[0002]
[Prior art]
2. Description of the Related Art In recent years, in seaports and other coastal sea areas, there has been a problem of sedimentation of sediment and water due to sludge sedimentation, and disappearance of shallow fields and beaches due to collection and loss of sea sand. Above all, measures to prevent the occurrence of blue tide and red tide caused directly or indirectly by pollution of sediment and water quality, and the decline and disappearance of the growth and habitat of seaweeds and aquatic organisms have become major issues. The development of marine environment improvement technology that can solve the above problems is desired.
[0003]
Conventionally, measures have been taken to improve the sedimented sediment, such as covering the seabed with natural sand (sea sand, mountain sand) and other measures. Sludge dredging may also be performed.
In addition, when sand is covered with natural sand, it may also be used to create a habitat for fish and shellfish that live on the sandy water bottom, and natural stone may be used instead of natural sand in anticipation of the construction effect. Sometimes used.
[0004]
However, if natural sand or natural stone is used as the sand covering material, the extraction thereof may cause new environmental destruction. In addition, natural sands and natural stones do not have a chemical sediment / water purification function, that is, a function of removing eutrophic components such as phosphorus eluted from the sediment and a function of suppressing and removing hydrogen sulfide. Even if the sedimented water bottom is covered with sand, the purification effect of sediment and water quality cannot be expected much. Therefore, problems such as the occurrence of red tide and blue tide in the coastal sea area, and the attenuation and disappearance of the habitat and growth environment of living organisms and seaweed cannot be effectively improved.
[0005]
In recent years, so-called beach nourishment, in which a large amount of sand is thrown into the beach, has been performed for the purpose of restoring a sandy beach that has disappeared due to erosion of the coast or the like, or for the purpose of creating an artificial beach that is a place for marine recreation. . Furthermore, recently, the excellent water purification function of tidal flats and shallow fields has been recognized, and attempts have been made to artificially restore lost tidal flats and shallow fields or to create new ones. A large amount of sand etc. is put in for the construction. However, if natural sand or natural stone is used as the laying material for the construction of such beach nourishment, tidal flats, shallow grounds, etc., there is a possibility that new environmental destruction may be caused by the extraction.
[0006]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to solve such problems of the prior art, and to use a laying material that can be obtained inexpensively and in large quantities other than natural sands and natural stones, and to provide a favorable environment on the water bottom or a beach, particularly sand covering and beach nourishment. Another object of the present invention is to provide an environment improvement method capable of forming an environment suitable for living organisms living in a sandy land in the creation of a shallow ground or a tidal flat. Another object of the present invention is to provide a method for improving the environment which is effective in preventing the occurrence of red tide and blue tide, preventing the seaweed growing environment from deteriorating or disappearing due to sea burning, etc. Still another object of the present invention is to provide a laying material suitable for such an environmental improvement method.
[0007]
[Means for Solving the Problems]
In view of the problems of the prior art as described above, the present inventors have studied laying materials particularly suitable for sand covering and beach nourishment, or for forming flats and shallow grounds, and as a result, a blast furnace generated in a steel manufacturing process. Granulated slag: (1) Properties and appearance are close to those of natural sand; (2) Unlike natural sand, it has a chemical sediment / water purification effect when laid in water; 3) Since it contains a large amount of silicic acid and has high elution of silicate ions, it effectively functions as a silicate ion release source effective for preventing the growth of diatoms and seaweeds and the occurrence of red tide, etc. {Circle around (4)} It has been found that it is very suitable as the above-mentioned laying material in that it can be put in a large amount in a wide water area or a beach because it is inexpensive and can be obtained in large quantities.
[0008]
Furthermore, the present inventors studied the optimum conditions of granulated blast furnace slag when applied as a laying material to cover sand, nourishment, or creation of tidal flats and shallow grounds, and as a result, characteristics specific to granulated blast furnace slag From the viewpoint of the particle morphology, it has been found that it is particularly effective to use granulated blast furnace slag having a specific particle size composition.
The present invention has been made based on the above findings, and the features are as follows.
[0009]
(1) An underwater or water beach environment improving method, comprising laying granulated blast furnace slag having a ratio of slag particles having a particle diameter of 0.5 mm or more and 90 mass% or more on a water bottom or a beach.
(2) An underwater or water beach environment improving method, comprising laying granulated blast furnace slag having a particle diameter of 1.0 mm or more in a proportion of 70 mass% or more on a water bottom or a beach.
(3) In the environmental improvement method of the above (1) or (2), the granulated blast furnace slag is treated with sand covering material, beach nourishment material, shallow terracing material, tidal flat laying material, seaweed bed laying material, sea shore prevention material, red tide. A method for improving the environment of underwater or water beaches, which is laid on the bottom of the water or on the beach as a prevention material or a blue tide prevention material.
[0010]
(4) The underwater or water beach according to any one of (1) to (3) above, wherein the granulated blast furnace slag laid on the water bottom or the water beach serves as a silicate ion emission source. Environmental improvement method.
(5) Materials that are laid on the bottom of the water or on the beach as sand covering materials, beach nourishment materials, shallow terracing materials, tidal flat laying materials, seaweed beds laying materials, sea shore prevention materials, red tide prevention materials, or blue tide prevention materials. A blast furnace granulated slag having a ratio of slag particles having a particle size of 0.5 mm or more and 90 mass% or more, a material for improving the environment of underwater or water beaches.
(6) Materials that are laid as sand covering materials, beach nourishment materials, shallow terracing materials, tidal flat laying materials, seaweed beds laying materials, sea shore prevention materials, red tide prevention materials, or blue tide prevention materials on the water floor or beach. A blast furnace granulated slag having a ratio of slag particles having a particle diameter of 1.0 mm or more and 70 mass% or more, a material for improving the environment of underwater or water beaches.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method of improving the environment of underwater or water beaches of the present invention, granulated blast furnace slag having a predetermined particle size configuration is laid on the bottom of the water or the beach, but the granulated blast furnace slag is used as a material for laying on the bottom of the water or on the beach. The reason why it is very suitable is as follows.
{Circle around (1)} Granulated blast furnace slag is granular and white, and has properties and appearance close to that of natural sand. Therefore, it is possible to provide an environment suitable for living organisms living in sand.
(2) Unlike granulated sand, blast furnace granulated slag has a chemical sediment / water purification effect when laid on the bottom or on the beach.
[0012]
(3) Since granulated blast furnace slag contains a large amount of silicic acid and has a high silicate ion elution property, it is an effective source of silicate ions for growing seaweeds, preventing sea-burn and red tide. Works effectively.
(4) Granulated blast furnace slag is produced in large quantities as a by-product in the steelmaking process, and is a very inexpensive material, so it can be put into water or on the beach in large quantities. It is possible to put in the order of one million tons.
The operations (2) and (3) will be described later in detail.
[0013]
INDUSTRIAL APPLICABILITY The method of the present invention is an environmental improvement method capable of providing an underwater or beach environment suitable particularly for living organisms living on sandy land (for example, benthic living organisms such as shellfish and creatures). It can be particularly suitably applied to formation of shallow fields, formation of tidal flats, and the like. In these cases, the granulated blast furnace slag is laid on the bottom of the water or on the beach as sand covering material, beach nourishment material, shallow terracing material, tidal flat laying material, or the like.
In addition, the method of the present invention is also effective for seaweed bed creation, sea shore prevention, red tide prevention, and blue tide prevention. In these cases, the granulated blast furnace slag is used for seaweed bed creation material, sea shore prevention material, red tide prevention material. Or lay it on the bottom of the water or on the beach as a blue tide prevention material.
[0014]
Granulated blast furnace slag is slag obtained as a by-product in the steelmaking process, or slag from which ground iron (iron) has been removed, crushed, or crushed before or after removal of ground iron However, in the method of the present invention, these slags are subjected to particle size adjustment by sieving or the like, and granulated blast furnace slag having a predetermined particle size configuration is used.
[0015]
The abundance of benthic organisms such as shellfish and mosquitoes that live in sandy areas such as the seabed, beaches and tidal flats is greatly related to the size of the sand that composes the sandy area, and the relatively coarser sand has a larger abundance . This is because many of the organisms that inhabit the sand sunk into the sand and inhabit the sand, so that the sand is somewhat coarse and the gaps between the sand particles are larger, so that the environment is easier for the organisms to inhabit. However, if the gap is too large, it is difficult for small organisms to inhabit the environment. Therefore, the size of the gap needs to be appropriate.
[0016]
Granulated blast furnace slag is originally granular (that is, as-produced), the ratio of slag particles having a particle size of 5 mm or less is 90 mass% or more, and D50 is about 1 mm to 1.5 mm. FIG. 1 shows a typical precision configuration (sieve passing weight) of granulated blast furnace slag as produced. Further, the granulated blast furnace slag contains a large number of needle-like materials for reasons of its manufacturing method, and these needle-like materials are sharp enough to be punctured and damaged when touched by humans or living things.
[0017]
The present inventors laid blast-furnace granulated slags of various particle sizes on the shallow seabed where sludge was deposited, and conducted experiments to confirm the abundance of benthic organisms (shells and mosquitoes) after a certain period of time. went. As a result, the seabed in the shallow ground where the granulated blast furnace slag was laid showed an increase in the abundance of benthic organisms compared to the seabed where sludge was deposited, irrespective of the particle size composition, but in particular, the particle size was 0.5 mm or more. When blast-furnace granulated slag having a particle size composition of 90 mass% or more in slag particles and a particle size composition of 70 mass% or more in slag particles having a particle size of 1.0 mm or more is laid, the abundance of benthic organisms Remarkable increase was observed.
[0018]
Further, the granulated blast furnace slag is sieved with sieves having sieves of 0.49 mm and 1.18 mm, and the ratio of the slag particles having a particle size of 0.5 mm or more and the ratio of the slag particles having a particle size of 1.0 mm or more and the needle-like material are measured. The relationship with the content was investigated. Table 1 shows the results. According to this, when the ratio of slag particles having a particle size of 0.5 mm or more increases, the ratio of needle-like materials decreases. In particular, when the ratio of slag particles having a particle size of 0.5 mm or more has a particle size configuration of 90 mass% or more, The content of needles is about 1/10 of the initial (before sieving). When the ratio of slag particles having a particle diameter of 1.0 mm or more is 70 mass% or more, the content of the needle-like material is about 1/100 of the initial (before sieving). Therefore, by setting the particle size of the granulated blast furnace slag to have a ratio of slag particles having a particle size of 0.5 mm or more of 90 mass% or more, preferably a ratio of slag particles having a particle size of 1.0 mm or more of 70 mass% or more, It is possible to provide a highly safe laying material having a low content of a state substance.
[0019]
[Table 1]
Figure 2004024204
[0020]
In addition, when granulated blast furnace slag containing a large amount of fine particles is laid underwater or on a beach, the fine particles gradually become unevenly distributed in the laying layer, and the unevenly distributed fine particles may be consolidated. By using the relatively coarse particle size configuration as described above, such fine-grained portions are not consolidated.
For the above reasons, in the method of the present invention, granulated blast furnace slag having a ratio of slag particles having a particle size of 0.5 mm or more of 90 mass% or more, preferably a ratio of slag particles having a particle size of 1.0 mm or more of 70 mass% or more is used. It is laid on the bottom of the water or on the beach. Further, from the results in Table 1 and the like, a more preferable particle size configuration of the granulated blast furnace slag is such that the ratio of slag particles having a particle size of 1.0 mm or more is 80 mass% or more.
In order to obtain granulated blast furnace slag having such a particle size configuration, usually, granulated blast furnace slag is sieved. The sieving method may be any of dry sieving, wet sieving, and airflow separation.
[0021]
Hereinafter, a basic embodiment of the method of the present invention will be described.
(A) Laying granulated blast furnace slag to prevent blue tide (sand cover)
When seawater stagnates at the bottom of the water in an inner bay or the like, hydrogen sulfide is generated, which causes a so-called blue tide.
The main source of hydrogen sulfide is a sludge-like bottom, where water tends to stagnate, organic matter is deposited, and oxygen consumption is high. Hydrogen sulfide is likely to be generated at the bottom of the water where a concave portion having a crack is formed. In other words, as a result of water stagnation in such recesses, a significant oxygen-free state occurs, especially in summer, and a large amount of hydrogen sulfide is generated due to the decomposition of organic substances and the action of bacteria (sulfate-reducing bacteria). Anoxic water mass is formed. When a large amount of hydrogen sulfide is generated in the concave portion in this way, not only the inhabitants living in and around the concave portion are reduced, but the water mass containing the hydrogen sulfide flows out to the surrounding waters, leading to the occurrence of a so-called blue tide. . In addition, even in the bottom of the water other than the concave portion, in the sludge-like bottom where water tends to stagnate and organic matter is accumulated and oxygen consumption is large, similarly, hydrogen sulfide is generated and oxygen-free containing hydrogen sulfide is generated. Water bodies form, causing the death of benthic organisms, and anoxic water bodies flowing out into surrounding water bodies to generate blue tides.
[0022]
Conventionally, measures against this problem have been taken, such as spraying lime on the bottom of the water (particularly on the bottom of the water bottom) or covering the bottom of the water with natural sand (sea sand, mountain sand). However, as mentioned earlier, natural sands and natural stones do not have a chemical sediment / water purification effect, so when they are laid on the water bottom, for example, during the seawater stagnation period in summer or when biological activities occur. In the active period, about several ppm of hydrogen sulfide is generated by the action of sulfate-reducing bacteria in pore water even in a state where sludge is not deposited.
[0023]
On the other hand, the method of spraying lime on the water bottom involves (1) large cost, (2) pH control is difficult, and the water quality may be highly alkaline, and (3) lime hardens into a plate shape at the water bottom. As a result, the water in the mud underneath is not replaced, and as a result, a larger amount of hydrogen sulfide is generated. Flow out to the surroundings. Also, even if lime is sprayed, it is difficult to fill the concave portion with lime, and as a result, the concave portion will remain as it is, and therefore, the water in the concave portion becomes anoxic during the seawater stagnation period in summer, The phenomenon of large amounts of hydrogen sulfide cannot be fundamentally eliminated.
[0024]
In order to solve such a problem, the granulated blast furnace slag having a predetermined particle size composition is laid on the water bottom serving as a source of hydrogen sulfide by the method of the present invention, thereby generating hydrogen sulfide (further, eutrophication of seawater). And the occurrence of blue tide caused thereby can be effectively suppressed. Also, the granulated blast furnace slag laid on the water floor provides a good habitat for benthic organisms for the reasons described above, and brings about a significant increase in their abundance.
[0025]
By laying granulated blast-furnace slag on a water bottom (for example, a recess formed in the water bottom) serving as a source of hydrogen sulfide by the method of the present invention, the following effects can be obtained.
(1) Granulated blast furnace slag has a chemical sediment / water purification effect. That is, the CaO contained in the granulated blast furnace slag elutes into the water, whereby the pH in the water is appropriately increased, and as a result, the activity of the sulfate-reducing bacteria that generate hydrogen sulfide is suppressed. In addition, CaO, Fe contained in granulated blast furnace slag 2 O 3 By fixing the hydrogen sulfide in the water, hydrogen sulfide in the water can be reduced. Further, phosphorus in the water is adsorbed and fixed by CaO contained in the granulated blast furnace slag, and eutrophication of water, which is one of factors such as generation of blue tide, is suppressed. For this reason, when blast furnace granulated slag is laid at the source of hydrogen sulfide such as a concave part on the water bottom, the generation of hydrogen sulfide from the bottom mud is suppressed in that area, and the slag The generation of hydrogen sulfide is also suppressed, and a water purification effect is also obtained by immobilizing hydrogen sulfide and phosphorus on the slag particles. In addition, the upper layer of the laying material has a low hydrogen sulfide content and a large amount of dissolved oxygen, so that it becomes an environment that can easily inhabit living organisms, and has a high function as a base for living organisms.
[0026]
(2) Since granulated blast furnace slag is obtained by quenching blast furnace slag (molten slag) in a high-temperature molten state with jet water, its form and structure are not found in other vitreous materials as follows. Characteristics. In other words, while the structure of a general vitreous material is dense, in the case of granulated blast furnace slag, slag in the molten state is rapidly cooled by jet water due to nitrogen and water dissolved in the slag. Since the slag foams, the resulting slag particles become a vitreous material having a porous structure having a myriad of internal pores, and are relatively fine particles. For the same reason, the particles of the granulated blast furnace slag have an angular shape (a shape having a large number of sharp portions on the surface). Due to such morphological features, the aggregate of granulated blast furnace slag has a larger filling gap than the aggregate of granules made of general glassy material, and the granulated blast furnace slag used in the present invention is comparatively Since it has a coarse particle size configuration, it has excellent water permeability. For this reason, the water in the gap between the slag particles is easily replaced, and the dissolved oxygen concentration in this gap is sufficiently ensured, so that a favorable environment can be provided to benthic organisms.
[0027]
(3) When granulated blast furnace slag is laid on the bottom of the water, the activity of the sulfate-reducing bacteria is weakened by maintaining the pH in the pore water at about 8.5 by dissolving a small amount of Ca from the slag, thereby reducing the sulfate reduction. Although the generation of hydrogen sulfide by bacteria is effectively suppressed, especially since granulated blast furnace slag is vitreous as described above, elution of contained components and components in water or sediment compared to other slags The reaction proceeds very slowly. For this reason, the pH in water is not rapidly increased, and the effect of improving sediment and water quality is not lost in a short period of time.
[0028]
(4) When natural sand or natural stone is laid in a concave portion on the bottom of the water, which is a source of hydrogen sulfide, a large pressure due to the laying material acts on the inner wall of the concave portion. And spread horizontally, and as a result, the upper surface level (water bottom) of the laying material, which was almost the same level as the surrounding water bottom at the beginning of the laying, greatly sinks, causing water to stagnate However, there is a problem that a concave portion is formed again.
In contrast, granulated blast furnace slag has a much larger internal friction angle than natural sand and natural stone, so when blast furnace granulated slag is laid in a recess at the bottom of the water, the pressure acting on the inner wall of the recess from the laying material is compared. Target small. For this reason, a phenomenon in which the laying material spreads the inner wall of the concave portion and spreads in the horizontal direction unlike the case where natural sand or natural stone is used is unlikely to occur, and sinking at the upper surface level (water bottom surface) of the laying material does not easily occur. In particular, granulated blast furnace slag has a large internal friction angle as compared with other slags, and therefore has a small pressure on the inner wall of the recess and a low bulk density as compared with other slags. Therefore, subsidence at the upper surface level (water bottom surface) of the laying material can be minimized.
[0029]
This will be described with reference to FIGS. FIG. 2 shows a conventional method using natural sand or natural stone as a laying material, and FIG. 3 shows a method of the present invention using granulated blast furnace slag as a laying material. First, when natural sand or natural stone is laid in the concave portion 1 of the water bottom as in the conventional method (FIG. 2A), a large pressure F by the laying material 2 acts on the inner wall of the concave portion 1, and for a certain period after the laying, If it is too long, the laying material 2 spreads the inner wall of the concave portion 1 and spreads in the horizontal direction as shown in FIG. As a result, the water bottom surface X of the laying material, which is substantially at the same level as the surrounding water bottom surface Y at the beginning of the laying, sinks, and the concave portion 1 'is formed again. On the other hand, when the granulated blast furnace slag is laid in the recess 1 at the bottom of the water (FIG. 3A), the granulated blast furnace slag has a considerably larger internal friction angle than natural sand or natural stone. 1, the pressure F acting on the inner wall is small. For this reason, as shown in FIG. 3B, the phenomenon that the laying material 2 spreads the inner wall of the concave portion 1 and spreads in the horizontal direction hardly occurs, and the water bottom X of the laying material 2 hardly sinks.
[0030]
(5) When the laying material is laid on the bottom of the water, the laying material is transported to the laying place by a ship, and the laying material is directly or on-board via a chute or the like into the bottom of the water where the hydrogen sulfide is generated. At this time, there is a problem in that the muddy material and the deposited sludge forming the water bottom are rolled up in the water to generate a large amount of floating mud, which contaminates the water quality and the water bottom in the surrounding water area. Here, the granulated blast furnace slag contains a relatively large amount of unreacted Ca, and therefore unreacted Ca also exists on the surface of each slag particle. For this reason, when granulated blast furnace slag as a laying material is put into the water bottom from the ship, the muddy and sludge that constitute the water bottom are rolled up in the water and a large amount of floating mud is generated, but the floating mud falls to the water bottom Aggregated and trapped by Ca groups present on the surface of the slag in the middle, and settle to the bottom with the slag. In particular, since slag has a higher true specific gravity than natural sand, natural stone, and the like, slag that has agglomerated and captured floating mud quickly sinks to the bottom of the water. As a result, it is possible to appropriately prevent the generation of floating mud due to the introduction of the laying material to the water bottom and the contamination of the water quality and the water bottom in the surrounding water area by the floating mud.
[0031]
In the present embodiment, the water bottom on which the granulated blast furnace slag is laid is a water bottom that is or may be a source of hydrogen sulfide, and specifically, (1) formed on the water bottom A concave portion, (2) a water bottom where hydrogen sulfide is detected in the bottom water or a water bottom where the dissolved oxygen concentration in the bottom water is equal to or lower than a predetermined value, (3) a water bottom where the flow velocity of the bottom water is equal to or lower than a predetermined value, (4) Either the water bottom or the water bottom in which a density layer due to the water temperature and / or salt concentration is formed in the water. Further, the water area to which the present invention is applied may be any of the sea including a harbor, a river, a estuary, a lake and the like.
[0032]
In the present embodiment, the concave portion of the water bottom on which the granulated blast furnace slag is laid is usually a hole-shaped or groove-shaped concave portion artificially formed in the water bottom by sediment collection or dredging, but is not limited thereto. For example, it was artificially formed by installing a caisson or the like on a naturally formed concave part of the water bottom, or by installing a caisson on the water bottom where a slope or a shallow concave part is formed due to sediment collection or original topography. Depressions and the like are also targets. In general, the water bottom where the concave portion is formed is muddy or sandy. In such a concave portion formed in the water bottom, water tends to stagnate, and sludge easily accumulates, and thus tends to be a source of hydrogen sulfide.
In consideration of the stagnation of water and the like, the concave portion may be generally defined as a water bottom portion that is at least 2 m deeper than the surrounding water bottom surface. Further, depending on the case, the water bottom part which is deeper than the surrounding water bottom by 1 m or more, or the water bottom part which is 0.5 m or more deeper may be used as the concave portion.
[0033]
Here, there is no particular restriction on the type and scale of the concave portion to be applied, but the following are typical examples.
(A) Naturally present underwater depressions: Such underwater depressions have a relatively large area. In general, the recesses of this type which are the object of the method of the present invention are recesses having such a scale that the width of the narrowest portion in plan view is 50 m or more and the depth is 2 m or more.
(B) Concavities artificially formed in the water bottom by sediment collection, dredging, etc .: Such depressions in the water bottom have a relatively small area. In general, the recesses of this type, which are the object of the method of the present invention, are such that the width of the narrowest portion in plan view is 10 m or more and the depth is 5 m or more.
(C) In a place where a structure such as a caisson is installed on the water floor, the structure and the water bottom (for example, a concave portion of a naturally existing water bottom, an inclined surface or a shallow concave portion due to sediment collection or original topography) are formed. And concavities formed as a result of this: bottoms of such water bottoms also have a relatively small area. In general, the recesses of this type, which are the object of the method of the present invention, are recesses having such a scale that the width of the narrowest portion in plan view is 10 m or more and the depth is 2 m or more.
[0034]
There is no particular limitation on the laying form of the laying material (blast furnace granulated slag) in the concave portion, but the water bottom surface formed by the laying material upper surface laid in the concave portion is substantially equal to or larger than the surrounding water bottom surface. It preferably has a height. In addition, at least the average water depth d of the water bottom surface A formed by the laid laying material. 1 And the average water depth d of the water bottom B around the recess (around the recess) 0 Difference [d 1 -D 0 ] Is 2 m or less, preferably 1 m or less, more preferably 0.5 m or less, particularly preferably 0.3 m or less (in each case, [d 1 -D 0 ] Is particularly desirable. This difference [d 1 -D 0 Is 2 m or less, preferably 1 m or less, more preferably 0.5 m or less, and particularly preferably 0.3 m or less, so that the inflow and outflow of water inside and outside the recess can be smoothly performed because the recess is sufficiently shallow. (That is, the stagnation of water in the concave portion is eliminated), and the phenomenon that the water in the concave portion becomes anoxic in summer or the like can be appropriately prevented.
[0035]
Here, the average water depth d of the water bottom surface A formed by the laying material upper surface 1 The term “water depth” refers to the water depth when the water bottom surface is leveled evenly when the water bottom surface A formed by the laying material has undulations and irregularities, and the water bottom surface is uneven. Average water depth d of the water bottom B 0 The term "water depth" refers to the water depth when the water bottom surface is leveled evenly when the water bottom surface B around the concave portion has undulations and irregularities and thus has unevenness in the water depth.
[0036]
Further, in addition to selecting the laying place of the laying material based on the form (concave) of the water bottom as described above, the hydrogen sulfide or dissolved oxygen concentration in the bottom water is measured, and the water area where hydrogen sulfide is detected in the bottom water or A laying material (blast furnace granulated slag) may be laid on the bottom of the water in which the dissolved oxygen concentration in the bottom water is equal to or lower than a predetermined value.
Here, bottom water refers to water existing near the bottom of the water, and generally water within 2 m, preferably within 1 m from the bottom in the depth direction of the water. A laying material is laid on the bottom of a water area where hydrogen is detected or the measured dissolved oxygen concentration is equal to or lower than a predetermined value. In the case of hydrogen sulfide, if it is detected in the bottom water, lay a laying material on the bottom of the water area. In the case of the dissolved oxygen concentration, if the dissolved oxygen concentration of the bottom water is generally 10% or less of the saturated dissolved oxygen concentration, hydrogen sulfide may be generated by the action of the sulfate-reducing bacteria. It is preferable to lay the laying material on the bottom of a water area having an oxygen concentration of 10% or less. In general, if the dissolved oxygen concentration in the bottom water is less than 60% of the saturated dissolved oxygen concentration, there is a problem with the inhabitation of benthic organisms. Therefore, it is laid on the water bottom in a water area where the dissolved oxygen concentration is 60% or less of the saturated dissolved oxygen concentration. A material may be laid.
[0037]
Alternatively, the flow rate of the bottom water may be measured, and the laying material (blast furnace granulated slag) may be laid on the water bottom in a water area where the flow rate is equal to or lower than a predetermined value. This is because the bottom velocity of the bottom water is small, and the water bottom where water stagnation easily occurs is likely to be a source of hydrogen sulfide. Note that the bottom water is water existing near the water bottom as described above, and may be generally water within 2 m, preferably within 1 m from the water bottom in the depth direction of the water.
In general, in a water area where the flow rate of the bottom water is 20 cm / sec or less, the dissolved oxygen concentration and the hydrogen sulfide concentration are strongly influenced by the water bottom. Therefore, it is preferable to lay a laying material on the water bottom in the water area having such a flow rate.
[0038]
Further, a laying material (blast furnace granulated slag) may be laid on the bottom of the water in which the density layer due to the water temperature and the salt concentration is formed in the water. When the density layer is formed in the water, oxygen supplied from the atmosphere into the water is difficult to diffuse to the bottom water, and hydrogen sulfide is easily generated.
The formation of the density layer can be determined by measuring the salt concentration and / or the water temperature in the water, and when it is determined that the density layer has been formed, the laying material is placed on the bottom of the water in the water area. Lay it.
As described above, (a) a water bottom where hydrogen sulfide is detected in the bottom water or a water bottom where the dissolved oxygen concentration in the bottom water is equal to or lower than a predetermined value, (b) a water bottom where the flow velocity of the bottom water is equal to or lower than a predetermined value, (C) In the case where any one of the water bottom and the bottom of the water area where a density layer due to the water temperature and / or the salt concentration is formed in the water is used as the laying place of the laying material, for example, a port or a bay having a high closed property (for example, a ria coast) Etc.) can be targeted.
[0039]
From the above-mentioned effect of the granulated blast furnace slag, it can be said that 100% of the granulated blast furnace slag is most preferable as the laying material. However, the granulated blast furnace slag and other materials, for example, the granulated blast furnace slag such as steelmaking slag, etc. Slag other than slag or a material other than slag may be used in combination. Slag generated in steelmaking processes other than blast furnace granulated slag includes blast furnace slowly cooled slag generated in the blast furnace, decarburized slag, dephosphorized slag, desulfurized slag, and desulfurized slag generated in processes such as pretreatment, converter, and casting. Examples include, but are not limited to, steelmaking slag such as silicon slag and cast slag, ore reduction slag, electric furnace slag, and the like, and two or more slags may be used in combination. Further, these slags may be those subjected to hydration treatment, carbonation treatment, aging, hydration hardening, carbonation hardening and the like. In addition, as materials other than slag, municipal garbage slag, waste concrete, mortar and refractory waste materials are preferable from the viewpoint of resource recycling.Other than that, for example, construction waste soil, fly ash, natural sand, natural stone, etc. May be used.
The municipal garbage slag, waste concrete, and the like may be those that have undergone hydration treatment, carbonation treatment, aging, hydration hardening, carbonation hardening, and the like.
[0040]
When using blast furnace granulated slag and other materials as the laying material, in order to appropriately obtain the action of the blast furnace granulated slag as described above, 50 mass% or more of the laying material laid in the concave portion, preferably It is desirable that 80 mass% or more of the blast furnace is composed of granulated blast furnace slag. In that case, the granulated blast furnace slag and other materials may be mixed, or the granulated blast furnace slag may be laid in the recess so that the granulated blast furnace slag is on the upper side and the other materials are on the lower side. preferable.
[0041]
When the upper layer is made of a laying material containing granulated blast furnace slag and the lower layer is made of a laying material made of another material, in order to appropriately obtain the action of the granulated blast furnace slag described above, It is desirable that the content of the granulated blast furnace slag is 60 mass% or more, preferably 80 mass% or more.
When the upper layer of the laying material in the recess is made of the blast furnace granulated slag or the laying material containing the blast furnace granulated slag of 60 mass% or more (preferably 80 mass% or more), the thickness of the upper layer is 0.1 m or more. , Preferably 0.5 m or more. If the thickness of the upper layer is less than 0.1 m, water containing hydrogen sulfide thereunder may easily pass through, and the above-mentioned effect may not be sufficiently obtained. Further, when the thickness is less than 0.1 m, it is difficult to control the thickness itself during construction. In addition, if the thickness of the upper layer is 1 m or more, the upper layer does not mix with the bottom mud, so that the slag does not solidify, thereby providing a sandy water bottom suitable as a habitat for living things. it can.
[0042]
When other slag is used together with the granulated blast furnace slag, when steelmaking slag such as desiliconized slag and decarburized slag is used, these slags have a high iron oxide content. Compared to this, it has a feature that the effect of immobilizing hydrogen sulfide and phosphorus is large. Therefore, for example, by forming the lower layer of the laying material in the concave portion with the steelmaking slag or the laying material including the steelmaking slag, hydrogen sulfide and phosphorus in the bottom mud can be fixed effectively. When the lower layer is made of a laying material including steelmaking slag, the content of the steelmaking slag in the lower layer is desirably 60 mass% or more, preferably 80 mass% or more. When the content of the steelmaking slag in the lower layer is less than 60 mass%, the above-described effects specific to the steelmaking slag cannot be sufficiently obtained.
[0043]
When the lower layer of the laying material in the recess is made of steelmaking slag or a laying material containing 60 mass% or more (preferably 80 mass% or more) of the laying material, the thickness of the lower layer is 0.1 m or more, preferably 0 m or more. .3 m or more. If the thickness of the lower layer is less than 0.1 m, water containing hydrogen sulfide and phosphorus passes through the lower layer before the fixing of hydrogen sulfide and phosphorus in the mud by the steelmaking slag is sufficiently performed, and the lower layer is formed. There is a possibility that the effect of immobilizing hydrogen or phosphorus may not be sufficiently obtained. If the thickness is less than 0.1 m, it is difficult to control the thickness itself during construction.
[0044]
From the characteristics of each slag as described above, for example, the following can be considered as the laying form of the laying material in the concave portion.
▲ 1 ▼ All laying materials: Granulated blast furnace slag
(2) Upper layer of laying material: Granulated blast furnace slag, Lower layer of laid material: Slag other than granulated blast furnace slag and / or material other than slag
(3) Upper layer of laying material: granulated blast furnace slag, Lower layer of laying material: steelmaking slag
(4) Upper layer of laying material: granulated blast furnace slag, middle layer of laying material: material other than slag or a mixture of slag and non-slag material, lower layer of laying material: steelmaking slag
[0045]
4 (a) to 4 (d) show a state in which the laying material 2 (blast furnace granulated slag or laying material including blast furnace granulated slag) is laid in the concave portion 1 on the bottom of the water, respectively, and FIG. As shown, the laying material 2 has an average water depth d of the water bottom surface A formed thereby. 1 And the average water depth d of the water bottom B around the recess 0 Difference [d 1 -D 0 ] Is 2 m or less, preferably 1 m or less (particularly preferably, so that the water bottom surface A formed by the laying material 2 is substantially equal to or higher than the water bottom surface B around the concave portion). You.
[0046]
FIG. 4A shows an embodiment in which a laying material 2 made of 100% granulated blast furnace slag or a laying material 2 in which blast furnace granulated slag is mixed with another material (eg, waste concrete) is laid in the recess 1. Is shown. FIG. 4 (b) shows a blast furnace granulated slag and other materials used as the laying material 2. A material 21 (eg, waste concrete) other than the blast furnace granulated slag is placed on the lower layer side, and An embodiment in which slags 20 are respectively laid on the upper layer side is shown. FIG. 4 (c) shows a blast furnace granulated slag 20a and other slag 20b (for example, steelmaking slag) used as the laying material 2. The granulated blast furnace slag 20a is on the upper layer side, and the other slag 20b is Are laid on the lower layer side, respectively. Further, FIG. 4D shows that the laying material 2 (for example, the above-mentioned (a) to (c)) is placed in the concave portion 1 artificially formed by installing the caisson 3 on the water bottom where the shallow concave portion is formed. An embodiment in which such a laying material is laid is shown.
[0047]
Also, when the laying material is laid on the water bottom other than the concave portion, the content of the granulated blast furnace slag in the laid material is preferably 60 mass% or more, and more preferably 80 mass% or more, and particularly, only the granulated blast furnace slag is used. Laying materials are most preferred. As the laying material other than the granulated blast furnace slag, the above-described various slags, municipal waste slag, waste concrete, and the like can be used. Further, it is desirable that the thickness of the laying material be 0.1 m or more, preferably 0.5 m or more for the same reason as described above.
[0048]
A preferred embodiment relating to the laying (sand covering) of the granulated blast furnace slag for the purpose of preventing the occurrence of the blue tide described above is as follows.
(1) Granulated blast-furnace slag having a mass of slag particles having a particle size of 0.5 mm or more in a mass of 90 mass% or more, and preferably a mass of slag particles having a particle size of 1.0 mm or more, in a mass of 70 mass% or more. Laying the underwater environment improvement method.
(2) The proportion of slag particles having a particle size of 0.5 mm or more is 90 mass% or more, preferably 70 mass%, preferably 90% by mass or more, in the concave portions formed on the water bottom. Underwater environment improvement method for laying laying materials consisting of granulated blast furnace slag as described above.
(3) The proportion of slag particles having a particle diameter of 0.5 mm or more, 90 mass%, in the water area where hydrogen sulfide is detected in the bottom water or in the water bottom where the dissolved oxygen concentration in the bottom water is equal to or lower than a predetermined value. As described above, an underwater environment improving method for laying a laying material composed of granulated blast furnace slag having a ratio of slag particles having a particle diameter of 1.0 mm or more and preferably 70 mass% or more.
[0049]
(4) A slag particle having a flow rate of 90 mass% or more, preferably 1.0 mm or more, of a slag particle having a particle diameter of 0.5 mm or more, in whole or in part, in a water bottom of a water area having a bottom layer water flow rate of a predetermined value or less. Underwater environment improvement method for laying laying materials consisting of granulated blast furnace slag having a ratio of 70 mass% or more.
(5) A ratio of slag particles having a particle diameter of 0.5 mm or more, preferably 90% by mass or more, preferably all or partly, in the water bottom of the water area in which a density layer due to water temperature and / or salt concentration was formed in the water. An underwater environment improving method for laying a laying material composed of granulated blast furnace slag having a ratio of slag particles of 1.0 mm or more and 70 mass% or more.
[0050]
(6) The proportion of slag particles having a particle size of 0.5 mm or more is 90 mass% or more, preferably 70 mass% or more, in a concave portion formed in the water bottom. Laying the laying material consisting of the granulated blast furnace slag described above, and the average water depth d of the water bottom surface formed by the laying material 1 And the average water depth d of the water bottom around the recess 0 Difference [d 1 -D 0 ] Is 2 m or less (provided that [d 1 -D 0 ] Is a negative value).
(7) In the environmental improvement method of (1) to (6), the laying material is made of granulated blast furnace slag and other materials, and the laying material is a mixture of granulated blast furnace slag and other materials. A method for improving the environment in water, in which the blast furnace granulated slag is in the upper layer and the other material is in the lower layer in the underwater state.
[0051]
(8) The underwater environment improvement method according to any one of the above (1) to (7), wherein 50 mass% or more of the laying material laid on the water bottom is made of granulated blast furnace slag.
(9) The method for improving the environment in water according to the above (8), wherein the uppermost layer of the laying material laid on the water bottom contains granulated blast furnace slag at 60 mass% or more.
(10) A blue tide prevention material laid on the water bottom serving as a source of hydrogen sulfide, wherein the proportion of slag particles having a particle size of 0.5 mm or more is 90 mass% or more, preferably slag particles having a particle size of 1.0 mm or more. A blast furnace granulated slag having a ratio of 70 mass% or more.
[0052]
(B) Laying of granulated blast furnace slag for beach nourishment, shallow ground development, tidal flat development, etc.
Beach nourishment refers to supplying sand from the outside to a coast where a sandy beach has disappeared due to erosion of the coast or an artificial beach.
A tidal flat refers to a flat place where water is submerged at high tide but rises at low tide and sand and mud are deposited on the surface. Generally, tidal flats are developed in the estuary and the inner bay. The shallow water literally refers to a shallow sea area with a water depth of several meters or less. On the seabed that extends from the coast to the offshore, terrain that often transitions to a rather steep slope called so-called Nada falling at a depth of about a few meters is often recognized, but in general, shallow is the shallower side than this Nada falling point Refers to the sea area.
[0053]
Sandy beaches, tidal flats, and shallow grounds are the main habitats for benthic organisms such as shellfish and molluscs, and granulated blast furnace slag having a predetermined particle size structure is laid as a nourishment material or tidal flat / shallow ground material according to the present invention. By doing so, it is possible to provide an environment where benthic organisms can easily inhabit as described above, and it is possible to significantly increase the amount of benthic organisms inhabited.
[0054]
Further, the granulated blast furnace slag laid in the method of the present invention is white and has a very small percentage of needle-like substances contained in the original granulated blast furnace slag. Can form safe sandy areas (sandy beaches, tidal flats, shallows) that are not damaged by needles.
Also, granulated blast furnace slag laid as a nourishment material, a tidal flat or a shallow ground development material has a purifying function of sediment and water quality as described in (A) above, and a silicate as described later. Since it also has a function as a source of releasing salt ions, it also has a purifying effect on sediment and water quality and a promoting effect on growth of seaweeds and the like by silicate ions eluted from slag.
A water beach or a water area to which the present embodiment is applied may be any of a sea including a port, a river, a estuary, a lake and the like.
[0055]
A preferred embodiment of the laying of granulated blast furnace slag for the purpose of beach nourishment, creation of tidal flats, shallow grounds, and the like described above is summarized as follows.
(1) A blast furnace granulated slag having a ratio of slag particles having a particle size of 0.5 mm or more as a beach nourishment material having a mass ratio of 90 mass% or more, preferably 1.0 mm or more, is preferably 70 mass% or more. A method for improving the environment of underwater or water beaches by laying to provide beach nourishment.
(2) In a place where a tidal flat should be formed (including restoration), the ratio of slag particles having a particle size of 0.5 mm or more as a tidal flat forming material should be 90 mass% or more, and preferably the proportion of slag particles having a particle size of 1.0 mm or more. A method for improving the environment of underwater or water beaches in which tidal flats are formed by laying granulated blast furnace slag of 70 mass% or more.
(3) The proportion of slag particles having a particle size of 0.5 mm or more as a shallow terrain material is 90 mass% or more, preferably 1.0 mm or more, on the seabed where a shallow field is to be created (including restoration). Is a method for improving the environment of underwater or water beaches, in which shallow ground development is performed by laying granulated blast furnace slag of 70 mass% or more.
[0056]
(C) Laying of granulated blast furnace slag for the purpose of preventing shore burning
The sea bottom where the sea-burn has occurred, to which the present embodiment is applied, is that the surface of the seaweed-growing base such as a rock reef or an artificial fish reef is covered with lime algae, and useful seaweed such as kelp, wakame, and alame disappears. Refers to the seafloor that is disappearing or disappearing.
In the sea area where the surface of the seaweed epithelium, such as rock reefs and artificial reefs, is covered with lime algae, the so-called "iso-yaki" state, useful seaweed (for example, kelp, wakame, alame, etc.) that feeds on fish and shellfish breeds. However, there is a problem that the fishery production in the sea area is significantly reduced.
[0057]
Conventionally, measures have been taken to install seaweed reefs in the sea area where the sea scorch has occurred, but once steel seaweeds have been installed, seaweeds other than calcareous algae have been found on the seaweeds for about two years. Although the algal reefs are bred and the sea-burn state is eliminated, the steel algal reef is covered with lime algae after about 3 years, and the effect is lost. For this reason, it is necessary to take measures such as installing a steel alga again, and it cannot be a drastic solution to the prevention of beach scorching. In recent years, seaweed beds have been revived by removing sea urchins in sea areas where sea scorching has occurred.However, the removal of sea urchins has to be done manually, which is inefficient and costly. Because the sea area that can be applied to the area is narrow, it cannot be a trump card to eliminate shore burning.
[0058]
On the other hand, it is known that diatoms grow by increasing the silicate concentration in seawater, and as a result, the growth of lime algae is suppressed. A method has been proposed in which a glass plate of which the solubility of components is adjusted is attached to the surface of algae reefs made of concrete or the like, and the glass plates are laid in the sea area of the sea. Japanese Patent Application Laid-Open No. 6-335330 discloses a seaweed bed made of a vitreous material containing silicon, sodium and / or potassium, and iron for the purpose of growing seaweed by dissolving constituent components into seawater. A method of submerging breeding material in the sea has been proposed.
[0059]
However, the vitreous material used to increase the silicate concentration in seawater in such a conventional technique is expensive because it is an artificial product, and this may cause sea-burn or cause the seaweed growing environment to be out of order for some reason. Massive installations in large areas of wide seas that have declined or disappeared are costly. Further, according to the study by the present inventors, the artificial vitreous material used in the prior art does not always have sufficient elution of silicon into seawater or the like, and the amount of sedimentation is limited. It was found that the seaweed was limited to the vicinity of the installation site, and no effective improvement of the sea bake or improvement of the seaweed growth environment could be obtained.
[0060]
In order to cope with such a problem, granulated blast furnace slag having a predetermined particle size configuration is applied to the seabed where sea-burning is occurring or a seaweed growing environment is declining or disappearing by the method of the present invention. By laying, the granulated blast furnace slag becomes a release source of silicate ions effective for the growth of seaweed, and it is possible to improve or prevent shore burning and promote the growth of seaweed. Also, the granulated blast furnace slag laid on the water floor provides a good habitat for benthic organisms for the reasons described above, and brings about a significant increase in their abundance.
Also, when laying granulated blast furnace slag on the water floor, it can be used in a state of being mixed with other materials (for example, steelmaking slag, fly ash, silica sand, mountain sand, sea sand, clay, etc.) Even in this case, it is necessary to use the granulated blast furnace slag required in order to secure a desired silicate elution amount.
[0061]
Granulated blast furnace slag is SiO 2 Glass material containing a large amount of a CaO component and a CaO component (in general, SiO 2 2 : 30 mass% or more, CaO: 35 mass% or more). Therefore, the granulated blast furnace slag laid on the bottom of the water has an attack on the silicate network structure of Ca ions generated by dissolution of CaO contained therein. The silicate network is disrupted, which elutes silicate ions into the water. That is, in the case of granulated blast furnace slag, in addition to the action of silicate ions gradually dissolving in water due to the cutting of the silicate network structure by water molecules, the silicate network structure by Ca ions dissolved from the slag The action of dissolving the silicate ions in water is obtained by the fragmentation of the blast furnace granulated slag, and thus the mechanism of elution of the silicate ions of the granulated blast furnace slag is the same as that of the artificial vitreous material mentioned above as the prior art. The silicate ion eluting action of the water molecule and the silicate ion eluting action of the Ca ion attack are combined, and silicate is much easier to elute than artificial glass.
[0062]
In addition, granulated blast furnace slag is obtained by quenching blast furnace slag (molten slag) in a high-temperature molten state with jet water, and its form and structure are not found in artificial vitreous materials as follows. There is a characteristic.
That is, generally, the artificial vitreous material has a dense structure, whereas the granulated blast furnace slag becomes a vitreous material having a porous structure having a myriad of internal pores, as described above, and has relatively fine particles. It becomes. For the same reason, the particles of the granulated blast furnace slag have an angular shape (a shape having a large number of sharp portions on the surface). Therefore, due to such characteristics in terms of form and structure, granulated blast furnace slag has a much larger specific surface area than granular materials obtained by crushing an artificial vitreous material with a crushing device. There is a feature that silicate ions are easily eluted. Furthermore, many sharp points present on the surface of the granulated blast furnace slag particles are in a fine form, so that fine powders are very suitable for dissolving silicates as well as having high solubility of components. .
[0063]
In addition, from the above-mentioned morphological features, the blast furnace granulated slag laminate has a larger filling gap than a granular laminate obtained by crushing an artificial vitreous material with a crusher, Moreover, the granulated blast furnace slag used in the present invention has a relatively coarse particle size configuration, and thus has excellent water permeability. For this reason, the silicate ion eluted from the granulated blast furnace slag is characterized in that it is more easily diffused to the outside of the laminate than that of an artificial vitreous material.
[0064]
In addition, since granulated blast furnace slag elutes Ca ions, the granulated blast furnace slag has the above-described effect of suppressing the generation of hydrogen sulfide when installed in water. Is less likely to occur, resulting in a state in which less hydrogen sulfide is present and more dissolved oxygen than in a natural sand or glass laminate. It can be said that this state is easy to inhabit for the settling organisms, and therefore, the granulated blast furnace slag installed in the sea is a source of silicate ions and also functions as a base for organisms, From this point, it is effective for improvement of the sea-burn.
[0065]
Incidentally, slag obtained as a by-product in the steelmaking process includes blast furnace granulated slag, blast furnace slow cooling slag and steelmaking slag (for example, decarburized slag, dephosphorized slag, desulfurized slag, desiliconized slag, electric furnace) Such as steelmaking slag), but these slag particles have a dense structure and do not have a porous structure like granulated blast furnace slag, and the particle size of slag particles is much larger than granulated blast furnace slag. Even when the slag particles are pulverized, the shape of each slag particle does not become an angular shape (a shape having a large number of sharp portions on the surface) like granulated blast furnace slag. For this reason, the specific surface area is much smaller than granulated blast furnace slag. In addition, since the blast furnace slowly cooled slag has a large amount of sulfide eluted, there is a problem that the COD of seawater is increased and the concentration of hydrogen sulfide is increased in the filling gap of the slag laminate. In addition, most of steelmaking slag is made of SiO 2 Is small and the content of CaO is large, so that the amount of silicate dissolved is also small from this aspect. Therefore, it is not possible to sufficiently supply silicate ions into water from these slags, and any of them is not suitable as a sea shore preventing material.
[0066]
The basicity of the granulated blast furnace slag is four-component basicity (CaO + Al 2 O 3 + MgO) / SiO 2 Is preferably 1.6 to 2.5, and more preferably 1.6 to 2.0. If the above basicity of the granulated blast furnace slag is less than 1.6, SiO in the slag 2 Of silicate ions into seawater tends to decrease due to an increase in the stability of silicate. On the other hand, when the basicity exceeds 2.0, particularly when it exceeds 2.5, the amount of crystalline in the slag increases, and the elution of Ca increases simultaneously with the elution of the silicate. In some cases, a precipitate is formed, and the supply amount of silicate to water may be reduced.
[0067]
Although the concentration of silicate ions in water required for diatom growth is 10 μmol / L or more, such silicate ion concentration can be easily achieved by laying granulated blast furnace slag. As a result, diatoms stably propagate on the surface of the seaweed epithelium on the seabed. As a result, the growth of lime algae is suppressed, and large seaweeds such as kelp and alame grow. Also, diatoms that have propagated on the surface of the seaweed epithelial substrate are different from lime algae and feed on fish and shellfish. Therefore, if diatoms proliferate, marine resources increase in the sea area where the sea is burnt. In addition, since the silicate ions are eluted from the granulated blast furnace slag for a long period of time, the effect of preventing diatoms from growing and the effect of preventing shore burning is also maintained over a long period of time.
[0068]
Next, a particularly preferred embodiment of the method for creating a seaweed bed in a seaside burnt sea area will be described.
In this seaweed bed creation method, it is preferable to install granulated blast furnace slag around or near the seaweed-growing base at the seabed where the sea-burn has occurred. As a result, the silicate ions eluted from the granulated blast furnace slag cause the seawater around the seaweed-growing substrate to have a high silicate concentration, and diatoms can be effectively propagated on the seaweed-growing substrate.
The seaweed epiphyte may be either natural or artificial. In the former case, it is a rock reef, and in the latter case, it is a steel block, a concrete block, a natural stone, a slag mass, or the like. In the latter case, the seaweed growth base may be installed after the granulated blast furnace slag is laid. The seabed on which the artificial seaweed epithelium is to be installed is not limited to rocky shores and sandy areas.
[0069]
In addition, the granulated blast furnace slag can be installed not only in the sea area where the sea scorch is actually occurring but also in the sea bottom where the sea scorch may occur, thereby preventing the sea scorch in the sea area. Also in this case, the granulated blast furnace slag is installed in the same form as that described above.
As described above, the main sea area to which the seaweed bed creation method and the sea-burn prevention method of the sea-burning sea area according to the present embodiment are applied (the sea area that actually generates or may cause sea-burning) is mainly the sea area facing the open sea. Therefore, the sea area is in contrast to the sea area that is eutrophicated by nutrients flowing into the river where a so-called red tide occurs.
[0070]
The preferred embodiment of the method of the present invention relating to the laying of the granulated blast furnace slag for the purpose of preventing the shore burning described above is summarized as follows.
(1) The proportion of slag particles having a particle size of 0.5 mm or more as a material for preventing sea shore is 90 mass% or more, preferably the proportion of slag particles having a particle size of 1.0 mm or more is 70 mass% in the sea bottom where the sea shore is generated. A method for improving the underwater environment by laying the above granulated blast-furnace slag to create seaweed beds in the sea with seashore.
(2) In the environmental improvement method of the above (1), by laying granulated blast furnace slag around or near a natural or artificial seaweed-growing base, to create a seaweed bed in the sea with a scorched sea, the underwater environment improvement. Method.
(3) The underwater environment improvement method according to the above (2), in which the blast furnace granulated slag is laid, and then an artificial seaweed growth base is installed to create a seaweed bed in a sea-burned sea area.
[0071]
(4) The proportion of slag particles having a particle size of 0.5 mm or more as a material for preventing sea shore is 90 mass% or more, and preferably the proportion of slag particles having a particle size of 1.0 mm or more is 70 mass, in the sea bottom where shore scorching may occur. % Of blast furnace water granulated slag is installed to prevent rocky shores.
(5) The underwater environment improvement method of preventing shore burning by laying granulated blast furnace slag around or near a natural or artificial seaweed-growing base in the environment improvement method of (4).
(6) The method for improving the environment in the water according to the above (5), wherein the blast furnace granulated slag is laid, and then an artificial seaweed epiphylaxis is installed to prevent seashore burning.
(7) It is a sea shore prevention material laid on the sea bottom where sea shore is generated or the sea bottom where the occurrence of sea shore is to be prevented, and the ratio of slag particles having a particle size of 0.5 mm or more is 90 mass% or more. A blast furnace granulated slag having a ratio of slag particles having a particle diameter of 1.0 mm or more, preferably 70 mass% or more, is a material for environmental improvement in water.
[0072]
(D) Installation of granulated blast furnace slag to prevent red tide
The red tide is a phenomenon in which microorganisms in the water, especially phytoplankton, grow abnormally and the seawater is colored. In recent years, the cultivated fish (for example, hamachi and Thailand) have been killed in large quantities, and have particularly seriously affected the aquaculture fishery. Therefore, measures to prevent it are needed.
There are a wide variety of species that cause red tide, and among them, the large proliferation of specific flagellates, such as Shutnera, is considered to be a major cause of the red tide that causes the mass death of cultured fish. Because red tides occur in eutrophic seas, it is said that the prevention of red tides is effective in reducing nutrients flowing into rivers by covering sand, dredging, and improving sewerage.
[0073]
However, the effects of sand cover and dredging are lost due to newly deposited organic matter after the construction is completed, and the Seto Inland Sea, where the occurrence of red tide is a problem, is limited because the workable sea area is limited to relatively shallow sea areas. It is difficult to apply to the center and the like. In addition, these constructions are very costly, which also limits the scope of application. In addition, reducing nutrients flowing into rivers by improving sewerage systems is effective in reducing nutrients in the entire sea area.However, this is also effective in seawater stagnation during the summer months in areas remote from the coast, such as the central Seto Inland Sea. In addition, it causes eutrophication of the surface seawater, and the decrease in diatoms in the surface seawater due to this eutrophication is one of the growth factors of flagellates, such as Shutnera, which cause red tide.
[0074]
Recently, as one of the measures to prevent red tide, a method has been studied in which diatoms are propagated by adding soluble silicon (silicate ions) to seawater to suppress the growth of flagellates such as Shutnera, which cause red tide. Regarding this method, Japanese Patent Application Laid-Open No. Hei 10-94341 proposes a red tide prevention method in which an artificial vitreous material containing soluble silicon is mounted on a floating body and installed in the sea.
It is known that the application of soluble silicon to seawater propagates diatoms in surface seawater that has become oligotrophic, and diatoms are competitive species of flagellates such as Shutnera that cause red tide. In addition, since diatoms are stably present in the surface seawater because of their higher proliferative power than flagellates, abnormal growth of flagellates such as Shutnera is suppressed, and as a result, generation of red tide is prevented.
[0075]
However, the vitreous material used to increase the silicate concentration in seawater in the above-described conventional technology is expensive because it is an artificial product, and if it is installed in large quantities in a wide sea area where red tide has occurred, it will be enormous. Costly. Further, as described above, according to the study by the present inventors, the artificial vitreous material used in the prior art does not necessarily have sufficient elution of silicon into seawater or the like, and the amount of sedimentation is also low. Due to the limitation, the supply of silicon was limited to the vicinity of the installation location, and it was found that an effective red tide prevention effect could not be obtained.
In order to solve such a problem, the granulated blast furnace slag having a predetermined particle size composition is laid on the bottom of the water as a red tide preventing material by the method of the present invention, whereby the granulated blast furnace slag becomes a source of silicate ions, and Generation is effectively suppressed. Also, the granulated blast furnace slag laid on the water floor provides a good habitat for benthic organisms for the reasons described above, and brings about a significant increase in their abundance.
[0076]
When laying granulated blast furnace slag on the water floor, it can be used in a state of being mixed with other materials (for example, steelmaking slag, fly ash, silica sand, mountain sand, sea sand, clay, etc.) However, it is necessary to use an amount of granulated blast furnace slag required to secure a desired amount of silicon (silicate ion) eluted.
The granulated blast furnace slag has excellent characteristics as a source of silicate ions as described in (C) above. Therefore, the granulated blast furnace granulated slag used in the environmental improvement method of this embodiment is also used. The composition and properties of the slag, the laying configuration of the granulated blast furnace slag, the mechanism of elution of silicate ions from the granulated blast furnace slag, and other functions of the granulated blast furnace slag are the same as those described above with respect to (C). It is.
[0077]
In the red tide prevention method according to the present embodiment, the granulated blast furnace slag is desirably installed within a water depth of 15 m (shallower), preferably within 10 m (both at the time of low tide). This is because if the installation depth of the granulated blast furnace slag is too large, the eluted silicate ions are less likely to reach the surface seawater, which is inefficient in increasing the silicate concentration of the surface seawater.
Further, when the sea area where the red tide occurs is close to the coast (for example, within several km from the coast), the granulated blast furnace slag may be laid so as to cover the seabed within a depth of 15 m, preferably within 10 m. The silicate ions eluted from the granulated slag cause the seawater in the coastal sea area to have a high silicate concentration, and this seawater is washed offshore by the ocean current, so that the silicate concentration in the surface seawater around the sea area increases, and diatoms Can be effectively propagated.
[0078]
The concentration of silicate ions in seawater required for the growth of diatoms is assumed to be 10 μmol / L or more, and such silicate ion concentration can be obtained by installing granulated blast furnace slag in the sea by the method of the present invention. That is, it is easily achieved by installing in the sea, preferably within a water depth of 15 m (more preferably, within a water depth of 10 m). Thereby, diatoms (competitive species of flagellates such as Shutnera) stably propagate in the surface seawater, and abnormal growth of flagellates such as Shutnera causing red tide is prevented. In addition, stable breeding of diatoms has an effect on the propagation of fish and shellfish that use the diatoms as food, and also has an effect on increasing marine resources. In addition, since silicate ions are eluted from the granulated blast furnace slag for a long period of time, the growth of diatoms and the associated effect of preventing red tide are also continued for a long period of time.
[0079]
The main sea area to which the red tide prevention method according to the present embodiment is applied (old red tide frequently occurring sea area) is a sea area that is eutrophicated mainly by river inflow nutrients in inland seas and bays, so that a so-called "iso-yake" may occur. It is a sea area that contrasts with a natural sea area.
In the above embodiments, the case where the present invention is applied to seawater has been described.However, red tides also occur in brackish waters and freshwater bodies, and thus the red tide prevention method according to the present embodiment applies to these waters. Can also be applied.
[0080]
The preferred embodiment relating to the laying of the granulated blast furnace slag for the purpose of preventing the occurrence of the red tide described above is as follows.
(1) In a seawater area, brackish water area or freshwater area, the proportion of slag particles having a particle diameter of 0.5 mm or more as a red tide preventing material in water is 90 mass% or more, preferably the proportion of slag particles having a particle diameter of 1.0 mm or more is 70 mass. % Of blast furnace granulated slag is installed to prevent red tides.
(2) An underwater environment improvement method according to the above (1), wherein red tide is prevented by installing granulated blast furnace slag in water at a depth of 15 m or less.
(3) A red tide prevention material to be installed in a sea area where the red tide is generated or in a sea area where the generation of the red tide is to be prevented, wherein the ratio of slag particles having a particle diameter of 0.5 mm or more is 90 mass% or more, preferably An underwater environment-improving material composed of granulated blast furnace slag having a slag particle ratio of 1.0 mm or more and a mass ratio of 70 mass% or more.
[0081]
Specific embodiments of the underwater environment improvement method of the present invention include the forms described above, that is, the blue tide prevention method (sand cover), the method of creating nourishment or tidal flats and shallow fields, and the method of creating seaweed beds in shore-burned sea areas. In addition to the sea-burn prevention law and the red tide prevention law, for example, there is an environmental improvement method (restoration) for sea areas where the seaweed growth environment has declined or disappeared due to causes other than sea-burn.
Even in such environmental improvement methods, the composition and properties of the granulated blast furnace slag used, the laying configuration of the granulated blast furnace slag, the mechanism of elution of silicate ions from the granulated blast furnace slag, and other blast furnace granulated slag The functions and the like are the same as those described above with respect to the seaweed bed creation method and the seabreak prevention method in the sea with seashore.
[0082]
Each of the embodiments (A), (C), and (D) of the present invention described above may also be used to create or restore a so-called shallow surface facing the coast. In other words, so-called shallow fields suitable for the growth and habitation of seaweeds and fish and shellfish may decline or disappear due to sea sand erosion or dredging, mainly in the sea area facing the coast. A granulated blast furnace slag can be laid as a sand covering material or the like on the sea bottom, in addition to creating or restoring the environment.
In this case, in order to prevent the granulated blast furnace slag from flowing out due to a sea current or the like, it is preferable to install a submerged levee around the granulated blast furnace slag. In addition, it is preferable to set up an artificial seaweed-growing base and a fishing reef in the area where the granulated blast furnace slag is laid, so as to prepare a growth and habitat environment for seaweed and seafood.
[0083]
The submerged levee to prevent the granulated blast furnace slag from flowing out can be made of any material, but by building up a submerged levee by stacking massive slag (mass slag generated in the steel making process), for example, concrete The submerged levee can be formed easily and at low cost without using a product or constructing a concrete structure. While granulated blast furnace slag is originally in a granular form, steelmaking slag and the like are easily obtained in a lump and have a large specific gravity. Therefore, a solid submerged levee is constructed by stacking the slag at a predetermined height. And the slag is in a lump, so there is no danger of slag disappearing due to ocean currents. In addition, since steelmaking slag also has an action of purifying sediment and water quality, it has an advantage that it can contribute to improvement of the underwater environment.
[0084]
As the massive slag to be used, blast furnace slow cooling slag generated in a blast furnace (however, the blast furnace slow cooling slag is preferably sufficiently aged to prevent S from being eluted in water), pretreatment, and converter. , Slag, dephosphorization slag, desulfurization slag, desiliconization slag, steelmaking slag such as cast slag, ore reduction slag, electric furnace slag, etc. generated in the process of casting, etc., and using two or more of these Is also good. Among these slags, decarburized slag and cast slag are particularly preferable because of their high specific gravity. In general, the size of the slag is preferably one having a lump diameter of about 30 mm or more.
Further, the submerged levee is a block made of slag as a main material as will be described later, that is, a CaCO which is produced by a carbonation reaction of a powdery or granular material mainly made of slag generated in a steelmaking process. 3 Can be constituted by a block obtained by consolidating as a main binder, a hydrated hardened material block using slag generated in a steelmaking process as a main raw material, and the like. By appropriately stacking these blocks, a robust submerged levee can be constructed. These may be used in combination with the massive slag.
[0085]
The artificial seaweed formation base and fishing reef installed in the blast furnace granulated slag laying area can be composed of natural stones, blocks, steel structures and the like. A block obtained by solidifying carbonized solid granular slag generated in the manufacturing process, powdered raw material mainly composed of slag (iron and steel slag) generated in the steel manufacturing process, or hydration hardening mainly using steel slag It is preferable to use a body block or the like.
[0086]
Among them, the massive slag generated in the steel manufacturing process is as described above.
Further, as a block obtained by carbonating and solidifying steel slag as a main raw material, for example, a CaCO which is produced by a carbonation reaction of a powdery and granular raw material using steel slag as a main raw material proposed in Japanese Patent No. 3175694, for example. 3 (In some cases, MgCO 3 ) Can be used as the main binder and consolidated. Examples of the steel slag include various slags as mentioned above, namely, granulated blast furnace slag and blast furnace slowly cooled slag generated in a blast furnace, decarburized slag generated in processes such as pretreatment, converter and casting, and dephosphorization. Steelmaking slag such as slag, desulfurized slag, desiliconized slag, and cast slag, ore reduction slag, electric furnace slag, and the like can be used.
[0087]
A block (stone material) obtained by carbonizing and solidifying such steel slag is used for (1) CaO (or Ca (OH) generated from CaO) contained in the slag. 2 ) Is mostly CaCO 3 (2) Since the slag contains an appropriate amount of iron (particularly metallic iron and metal-containing iron material), the iron elutes into the seawater, and Iron is replenished as a nutrient inside, and this effectively acts on the growth of seaweed. (3) The block obtained by carbonizing and solidifying slag has a porous property as a whole (surface and inside). Because of this, seaweeds easily adhere to the stone surface, and since the inside of the stone is porous, there are components (eg, silicate ions and iron) effective in promoting the growth of seaweed contained in the stone. It functions effectively as a base for seaweed formation and as a fishing reef because it is easily eluted in seawater. In addition, the use of granulated blast furnace slag as part or all of the slag as the main raw material can particularly promote the elution of silicate ions as described above, thus improving the seaweed growth environment and preventing sea-burn. It is particularly effective for preventing red tide. For this reason, it is most preferable that all raw materials or main raw materials of the block be granulated blast furnace slag.
[0088]
The hydration-hardening block using steel slag as a main raw material is obtained by hydrating and hardening a raw material containing steel slag as a main raw material (aggregate and / or binder). Various types of slag such as blast furnace granulated slag and blast furnace slow-cooled slag generated in blast furnaces, decarburized slag, dephosphorized slag, desulfurized slag, and desiliconized slag generated in processes such as pretreatment, converter, and casting Steel slag such as cast slag, ore reduction slag, electric furnace slag and the like can be used. In the production of a block by hydration hardening, the raw material is kneaded with water, put in a mold, and usually cured for 1 to 4 weeks to produce the block.
[0089]
Further, by using granulated blast furnace slag as part or all of the slag that is the main raw material (aggregate and / or binder), the elution of silicate ions as described above can be particularly promoted, It is particularly effective in improving the seaweed growth environment, preventing sea-burn, and preventing red tide. For this reason, it is most preferable that all raw materials or main raw materials of the block be granulated blast furnace slag.
In addition, as a binder used for the block, in addition to the above-mentioned fine powder of the granulated blast furnace slag, a silica-containing substance (for example, clay, fly ash, silica sand, silica gel, silica shaum), cement, slaked lime, NaOH, or the like is appropriately used. They can be used in combination.
[0090]
When the above blocks are installed in the blast furnace granulated slag laying area, individual blocks may be installed on the granulated blast furnace slag layer, or a plurality of blocks may be stacked or assembled. In particular, when a block has a function as a fishing reef, it is preferable to form a space in which fish and shellfish can live between the plurality of blocks by stacking or assembling the plurality of blocks.
When the massive slag is installed in the area where the granulated blast furnace slag is laid, an arbitrary installation form such as stacking the slag in a mountain or installing the slag in a wire mesh basket or the like can be adopted.
[0091]
In the above-mentioned construction or restoration of shallow grounds using granulated blast furnace slag as a laying material, massive slag and / or slag (particularly preferably granulated blast furnace slag) is mainly used as a submerged dike for preventing outflow of granulated blast furnace slag. Using a block as a raw material, and also as a seaweed formation base and a fishing reef to be installed in a laying area of granulated blast furnace slag, a block mainly composed of massive slag and / or slag (particularly preferably granulated blast furnace slag) is used. As a result, the effects of slag on the improvement of the underwater environment (i.e., the improvement of the seaweed growth environment by diatom propagation, the suppression of sea-burn and red tide generation, and the prevention of hydrogen sulfide generation by blue tide) 100% recycling without the use of natural resources as a material for the construction or restoration of shallow grounds. Can be used wood (steel slag), effective use of recycled materials, the cost of the construction, it is extremely advantageous in terms of prevention of environmental destruction by the use of natural resources.
[0092]
FIG. 5 shows an embodiment of the construction or restoration of a shallow ground using granulated blast furnace slag as a laying material, where 4 is granulated blast furnace slag laid at an appropriate thickness on the water bottom and 5 is laid. The submerged levee 5 is installed around the granulated blast furnace slag 4 in order to prevent the granulated blast furnace slag from flowing out. The submerged levee 5 is constructed by stacking massive slag (steelmaking slag). Reference numeral 6 denotes a block constituting a seaweed-growing base and / or a fishing reef by being stacked on the laid granulated blast furnace slag layer. As the block 6, steel slag (preferably granulated blast furnace slag) is used. A block obtained by carbonizing and solidifying a powdery or granular raw material as a main raw material, or a hydrated hardened material block mainly made of steel slag (preferably granulated blast furnace slag) is used.
[0093]
In this way, the granulated blast furnace slag 4 is laid on the sea floor, the massive slag is used as the submerged levee 5 for preventing the blast furnace granulated slag 4, and the steel slag (preferably granulated blast furnace slag) is used in the area where the granulated blast furnace slag 4 is laid. By installing the constructed block 6 as a seaweed-growing base and / or a fishing reef, a shallow ground that is most suitable for the growth and habitat environment of seaweeds and seafood is created or restored.
In the above-mentioned construction or restoration of the shallow ground, the composition and properties of the granulated blast furnace slag used, the laying configuration of the granulated blast furnace slag, the mechanism of elution of silicate ions from the granulated blast furnace slag, and other blast furnaces The function of the granulated slag and the like are the same as those described above with respect to the seaweed bed creation method and the seashore burning prevention method in the seashore seashore.
[0094]
A preferred embodiment in the case of providing a submerged levee for preventing slag flow as described above will be summarized as follows.
(1) Laying granulated blast-furnace slag having a ratio of slag particles with a particle size of 0.5 mm or more, 90 mass% or more, preferably a ratio of slag particles with a particle size of 1.0 mm or more, 70 mass% or more, on the seabed facing the coast. In addition, a submerged levee for preventing slag loss is installed around the area where the granulated blast furnace slag is laid, and an artificial seaweed formation base and / or fishing reef is installed in the area where the granulated blast furnace slag is laid. Environmental improvement method.
(2) In the environmental improvement method of the above (1), at least a part of the submerged embankment is subjected to a carbonation reaction of a lump of slag generated in a steel manufacturing process and a powdery or granular raw material mainly containing slag generated in a steel manufacturing process. CaCO generated 3 A method for improving the environment in water comprising at least one selected from a block obtained by consolidating slag as a main binder and a hydrated hardened material block using slag generated in a steelmaking process as a main raw material.
(3) In the environmental improvement method according to the above (1) or (2), at least a part of the artificial seaweed-growing base and / or the fishing reef is replaced with massive slag generated in a steel manufacturing process, slag generated in a steel manufacturing process. Produced by the carbonic acid reaction of powdery and granular raw material mainly composed of 3 A method for improving the environment in water comprising at least one selected from a block obtained by consolidating slag as a main binder and a hydrated hardened material block using slag generated in a steelmaking process as a main raw material.
[0095]
【Example】
[Example 1]
On the seabed where sludge with a depth of 4 m is deposited, blast-furnace granulated slag in which the ratio of slag particles having a particle size of 0.5 mm or more and obtained by sieving is 90 mass% or more is laid in a 10 cm × 10 m area at a thickness of 30 cm. (Example of the present invention). In addition, as a comparative example, granulated blast furnace slag having a rate of 85 mass% of slag particles having a particle size of 0.5 mm or more and obtained by sieving was laid under the same conditions on the adjacent seabed under the same conditions. In addition, only a small amount of mosquitoes inhabited the seabed where the sludge was deposited.
[0096]
One year after the laying, the amount of living organisms in the laying layer of the granulated blast furnace slag, the amount of dissolved oxygen and the amount of hydrogen sulfide immediately above the laying layer and around the sludge layer were investigated. As a result, various benthic organisms such as shellfish and molluscs inhabited in the laying layer of the granulated blast furnace slag in both the present invention example and the comparative example. However, the living organism amount was 637 g in wet weight. / M 2 503 g / m in Comparative Example 2 Thus, the amount of living organisms of the present invention example was about 20% larger than that of the comparative example. Regarding the dissolved oxygen amount, the dissolved oxygen amount immediately above the sludge was 1.2 ppm, whereas the dissolved oxygen amount immediately above the laying layer was 6 ppm in both the present invention example and the comparative example. Regarding the amount of hydrogen sulfide, 0.02 ppm of hydrogen sulfide was detected in the water directly above the sludge, whereas no hydrogen sulfide was detected in the water immediately above the laying layer of the present invention example and the comparative example.
[0097]
[Example 2]
In the area from the seabed where the sludge with a depth of 5 m is deposited to the shore where the beach becomes a sandy beach, the granulated blast furnace slag having a ratio of slag particles having a particle size of 1.0 mm or more obtained by sieving and having a mass of 80 mass% or more is subjected to 50 cm to 2 m. It was laid in a range of 20 m × 60 m in thickness (example of the present invention). As a comparative example, granulated blast furnace slag having a ratio of slag particles having a particle size of 0.5 mm or more and having a mass ratio of 80 mass% obtained by sieving was laid under the same conditions on the adjacent seabed under the same conditions. In addition, only a small amount of mosquitoes inhabited the seabed where the sludge was deposited.
[0098]
One year after the installation, surveys were conducted on the amount of living organisms in the laying layer of the granulated blast furnace slag, the amount of dissolved oxygen and hydrogen sulfide in the water immediately above the laying layer and in the surrounding sludge layer, and the pH of pore water in the laying layer. went. As a result, various benthic organisms such as shellfish and mosquitoes inhabited the laying layer of the granulated blast furnace slag in both the present invention example and the comparative example, but the living organism amount was 786 g in wet weight. / M 2 The comparative example is 472 g / m. 2 Thus, the amount of living organisms of the present invention example was about 40% larger than that of the comparative example. Regarding the dissolved oxygen content, the dissolved oxygen content of the water immediately above the sludge was 0.5 ppm, whereas the dissolved oxygen content of the water immediately above the laying layer at a depth of 2 m was 7 ppm in both the present invention example and the comparative example. Regarding the amount of hydrogen sulfide, 0.05 ppm of hydrogen sulfide was detected in the water directly above the sludge, whereas no hydrogen sulfide was detected in the water immediately above the laying layer of the present invention example and the comparative example. The pH of the pore water at a depth of 0.5 m from the upper surface of the slag laying layer at a depth of 2 m and a slag laying thickness of 2 m is 8.5 in the present invention example, which is a level at which the activity of sulfate-reducing bacteria can be suppressed. Met. In the comparative example, the pH of the pore water was 8.7, which was higher than that of the present invention.
[0099]
[Example 3]
・ Invention example (1)
As shown in FIG. 6, blast-furnace granulated slag having a particle size of at least 95 mass% and a particle size of at least 95 mass% obtained by sieving is immersed in a rocky reef seabed recessed seashore as shown in FIG. It was installed in a range of × 10 m. After that, the investigation of diatoms and large seaweeds on the seabed near this area was continued. As a result, one week after the slag was installed, attached diatoms were observed on a reef near the slag installation site, and one month after the slag was installed, the attached diatoms were observed from the slag installation site to 30 m downstream of the ocean current. Also, large seaweeds were observed in the vicinity of the slag installation site one month after the installation of the slag, and were observed within a range of 20 m downstream of the ocean current six months after the installation of the slag. In long-term observation, diatoms and large seaweeds were observed even after 5 years, as in 6 months. In particular, the types of large seaweeds increased.
[0100]
-Invention example (2)
In the sandy seabed, in a sea area where the reef-like seabed of 20 m around the seabed is in a state of seashore, as shown in FIG. 7, the sandy part is sieved to obtain a particle size of 1.0 mm or more. Granulated blast furnace slag having a slag particle ratio of 85 mass% or more was set in a range of 30 m × 30 m with a thickness of 50 cm. Further, a hardened steelmaking slag and a steelmaking slag were installed thereon, and an artificial reef was made. After that, the investigation of the adhesion of attached diatoms and large seaweeds on the sea bottom near this area was continued. As a result, one week after the slag was set, attached diatoms were observed on the artificial reef at the slag setting place, and one month after the slag was set, the attached diatoms were also observed on a rock reef 20 m away from the slag setting place. In addition, large seaweeds were observed on artificial reefs at the slag setting site one month after the slag was installed, and also on rocks 20 m away from the installation site six months after the slag was installed. In the long-term observation, diatoms and large seaweeds were observed on both artificial reefs and natural reefs after 5 years as well as after 6 months. In particular, the types of large seaweeds increased.
[0101]
[Example 4]
In the sea area where red tide is frequent (500m to 1km) offshore from the coast (inside the bay), blast-furnace granulated slag with a ratio of slag particles with a particle size of 0.5mm or more obtained by sieving and having a mass ratio of 95mass% or more is roughly on the seabed near the coast. It was laid to a thickness of 30 cm. The laying range was a range from the shoreline to 40 m offshore (water depth 2 to 7 m) and a total length of the shoreline of 200 m.
After installing the granulated blast furnace slag (in summer), the silicate concentration and diatom content in the surface seawater at the installation site and the old red tide occurrence point (sea area) were continuously investigated. Table 2 shows the results. According to this, two weeks after the installation of the granulated blast furnace slag, the silicate concentration in the surface seawater at the installation site and at the old red tide occurrence point has increased, and the red tide that originally had a low silicate concentration Diatom abundance also increased at the outbreak point. Investigations were continued for three years after the installation of the granulated blast furnace slag. During this period, no red tide was observed, and many seaweeds and seafood were observed at the location of the granulated blast furnace slag.
[0102]
[Table 2]
Figure 2004024204
[0103]
[Example 5]
・ Invention example (1)
Slag particles with a particle size of 1.0 mm or more obtained by sieving into a concave part (deep digging part) with a diameter of about 30 m formed on a flat water bottom (water bottom with muddy deposits on sand) in the bay Of blast furnace granulated slag having a ratio of 90 mass% or more to the water bottom around the recess is 1 m or less ([d 1 -D 0 ] ≤ 1 m). The laying thickness was about 15 m.
In order to examine the degree of suspension in water due to the laying of the laying material, the amount of suspended matter immediately before laying the laying material and the amount immediately after the laying of the laying material (after 30 minutes) were measured at a depth of 5 m immediately above the center of the recess. The amounts of suspended substances were measured, and the differences were determined.
In addition, after the laying of the laying material, every six months for three years, directly above the water bottom at the laying part, directly above the water bottom at a point 50 m away from the laying part, and directly above the water bottom at a point 100 m away from the laying part. The hydrogen sulfide concentration of the water was measured at the location. Also, the amount of settlement (average value) of the laying material upper surface level (water bottom surface) three years after the laying was measured. Table 3 shows the results.
[0104]
-Invention example (2)
Slag particles with a particle size of 1.0 mm or more obtained by sieving into a concave part (deep digging part) with a diameter of about 20 m formed on a flat water bottom (water bottom with muddy deposits on sand) in the bay A mixture of granulated blast furnace slag 60 mass%, blast furnace slowly cooled slag 10 mass%, steelmaking slag 20 mass%, and municipal waste slag 10 mass% having a percentage of 85 mass% or more was mixed with an average height difference of 1 m or less ([d 1 -D 0 ] ≤ 1 m). The laying thickness was about 10 m.
In order to examine the degree of suspension in water due to the laying of the laying material, the amount of suspended matter immediately before laying the laying material and the amount immediately after the laying of the laying material (after 30 minutes) were measured at a depth of 5 m immediately above the center of the recess. The amounts of suspended substances were measured, and the differences were determined.
In addition, after the laying of the laying material, every six months for three years, directly above the water bottom at the laying part, directly above the water bottom at a point 50 m away from the laying part, and directly above the water bottom at a point 100 m away from the laying part. The hydrogen sulfide concentration of the water was measured at the location. Also, the amount of settlement (average value) of the laying material upper surface level (water bottom surface) three years after the laying was measured. Table 3 shows the results.
[0105]
-Invention example (3)
In the flat bottom of the bay, the ratio of slag particles having a particle size of 0.5 mm or more obtained by sieving is 90 mass% or more in a range of 50 m × 50 m of the bottom where mud is deposited on sand. A mixture of 90 mass% of granulated blast furnace slag and 10 mass% of steelmaking slag was laid to a thickness of 50 cm.
In order to examine the degree of suspension in water due to the laying of the laying material, at a depth of 5 m immediately above the center of the laying area, the amount of suspended solids immediately before the laying of the laying material and immediately after the laying of the laying material (after 30 minutes) Was measured, and the difference was determined.
In addition, after the laying of the laying material, every six months for three years, directly above the water bottom at the laying part, directly above the water bottom at a point 50 m away from the laying part, and directly above the water bottom at a point 100 m away from the laying part. The hydrogen sulfide concentration of the water was measured at the location. Table 3 shows the results.
[0106]
-Comparative example (1)
The average height difference between the sea bottom and the water bottom around the recess is 1 m or less in a recess (deep digging part) with a diameter of about 40 m formed on the flat water bottom (water bottom where mud is deposited on the sand) in the bay. ([D 1 -D 0 ] ≤ 1 m). The laying thickness was about 8 m. In order to examine the degree of suspension in water due to the laying of the laying material, the amount of suspended matter immediately before laying the laying material and the amount immediately after the laying of the laying material (after 30 minutes) were measured at a depth of 5 m immediately above the center of the recess. The amounts of suspended substances were measured, and the differences were determined.
In addition, after the laying of the laying material, every six months for three years, directly above the water bottom at the laying part, directly above the water bottom at a point 50 m away from the laying part, and directly above the water bottom at a point 100 m away from the laying part. The hydrogen sulfide concentration of the water was measured at the location. Also, the amount of settlement (average value) of the laying material upper surface level (water bottom surface) three years after the laying was measured. Table 3 shows the results.
[0107]
-Comparative example (2)
About the concave part (deep digging part) with a diameter of about 30 m and a depth of 10 m formed in the flat water bottom in the bay (water bottom where the mud was deposited on the sand), almost the same as when laying the laying material in Invention Example 1 Every six months for three years from the timing, water is located directly above the water bottom at the deep excavation point, at the point 50 m away from the deep excavation part, and at the position immediately above the water bottom at a point 100 m away from the deep excavation part. Was measured for hydrogen sulfide concentration. Table 3 shows the results.
[0108]
[Table 3]
Figure 2004024204
[0109]
[Example 6]
Ratio of slag particles having a particle size of 1.0 mm or more obtained by sieving the seabed of a water area (water area of about 400 m square) where the dissolved oxygen concentration of the bottom layer water is about 2 ppm (saturation solubility: about 7 ppm). The granulated blast furnace slag having a mass of 85 mass% or more was laid with a thickness of about 20 cm. After one month, the dissolved oxygen concentration of the bottom water in the slag laying water area was measured to be about 4.5 ppm.
[Example 7]
The ratio of slag particles having a particle size of 1.0 mm or more obtained by sieving to the seabed of a water area (about 1 ha) in which the hydrogen sulfide concentration of the bottom layer water is 0.5 to 1.2 ppm is 90 mass% or more. Granulated blast furnace slag was laid to a thickness of about 35 cm. After one month, six months, and one year later, the concentration of hydrogen sulfide in the bottom water of the slag laying water area was measured (method: detection tube type, detection limit: 0.01 ppm), but hydrogen sulfide was detected. Did not.
[0110]
Example 8
A blast furnace granulated slag having a rate of 95 mass% or more of slag particles having a particle diameter of 0.5 mm or more obtained by sieving is placed on a seabed in a water area (approximately 1.5 ha) having a bottom layer water flow rate of 3 cm / sec. It was laid about 3 m. When the water quality of the bottom water before and after the slag was laid was compared with that of the slag three months after the slag was laid, the hydrogen sulfide concentration was 1.8 ppm and the dissolved oxygen concentration was 0.2 ppm before the slag was laid. After 3 months from the laying of the slag, the hydrogen sulfide concentration was improved to below the detection limit and the dissolved oxygen concentration was improved to 4.8 ppm.
[0111]
[Example 9]
It was obtained by sieving to the seabed of a water area (about 10 ha) in which a density layer (salinity of surface water: 1.5%, salinity of bottom water: 2.6%) based on seawater salinity was formed. Granulated blast furnace slag having a ratio of slag particles having a particle diameter of 1.0 mm or more and 95 mass% or more was laid with a thickness of about 0.2 m. When the water quality of the bottom water before and after the slag was laid was compared with that of the slag three months after the slag was laid, the hydrogen sulfide concentration was 3 ppm and the dissolved oxygen concentration was 0.1 ppm before the slag was laid. 3 months after laying, the concentration of hydrogen sulfide was improved below the detection limit and the concentration of dissolved oxygen was improved to 4 ppm, respectively. It decreased to 2.3%.
[0112]
[Example 10]
A particle diameter of 1.0 mm obtained by sieving a sea area (approximately 0.5 ha) in which a density crest (water temperature of surface water: 24 ° C., water temperature of bottom water: 14 ° C.) is formed by sea water temperature. Granulated blast furnace slag having a ratio of the above slag particles of 90 mass% or more was laid in a thickness of about 3 m. When comparing the water quality of the bottom water before laying the slag and after 6 months from laying the slag, the hydrogen sulfide concentration was 0.8 ppm and the dissolved oxygen concentration was 0.3 ppm before the slag was laid. Six months after the slag was laid, the hydrogen sulfide concentration was improved below the detection limit and the dissolved oxygen concentration was improved to 3 ppm, and the water bottom became shallow due to the blast furnace granulated slag. Also rose to 16 ° C.
[0113]
【The invention's effect】
As described above, according to the underwater environment improvement method of the present invention, the blast furnace granulated slag having a predetermined particle size configuration that is inexpensive and available in large quantities is simply installed in the water, and a favorable environment in the water bottom or on the beach is provided. In particular, it is possible to form an environment suitable for living organisms in the sandy land in sand covering, beach nourishment, creation of shallow fields, tidal flats, and the like. In addition, the present invention can exert excellent effects on prevention of occurrence of blue tide, prevention of sea scorching, prevention of occurrence of red tide, creation of seaweed beds and restoration of seaweed growing environment.
[Brief description of the drawings]
FIG. 1 is a graph showing a typical particle size configuration (sieve weight) of granulated blast furnace slag as produced.
FIG. 2 is an explanatory view showing an operation of a laying material laid in a concave portion of a water bottom in a conventional method.
FIG. 3 is an explanatory view showing an operation of a laying material laid in a concave portion of a water bottom in the embodiment of the present invention.
FIG. 4 is an explanatory diagram showing an embodiment of a method for improving the environment of underwater environment according to the present invention.
FIG. 5 is an explanatory view showing a shallow field created in the embodiment of the underwater environment improving method according to the present invention.
FIG. 6 is an explanatory view showing the state of implementation of seaweed bed creation in the seashore area in Example 3
FIG. 7 is an explanatory view showing another embodiment of the seaweed bed creation in the seashore area in Example 3;
Illustration
[Explanation of symbols]
A: Granulated blast furnace slag, 1, 1 ': recess, 2: Laying material, 3: caisson, 4: Granulated blast furnace slag, 5: submerged bank, 6: block, 20: slag, 20a: granulated blast furnace slag, 20b: Slag other than granulated blast furnace slag, 21: Material other than slag, X, Y: Water bottom

Claims (6)

粒径0.5mm以上のスラグ粒子の割合が90mass%以上である高炉水砕スラグを水底又は水浜に敷設することを特徴とする水中又は水浜の環境改善方法。A method for improving the environment of underwater or water beaches, comprising laying granulated blast furnace slag having a ratio of slag particles having a particle diameter of 0.5 mm or more of 90 mass% or more on a water bottom or a beach. 粒径1.0mm以上のスラグ粒子の割合が70mass%以上である高炉水砕スラグを水底又は水浜に敷設することを特徴とする水中又は水浜の環境改善方法。A method for improving the environment of underwater or water beaches, comprising laying granulated blast furnace slag having a ratio of slag particles having a particle diameter of 1.0 mm or more and 70 mass% or more on a water bottom or a beach. 高炉水砕スラグを、覆砂材、養浜材、浅場造成材、干潟造成材、藻場造成材、磯焼け防止材、赤潮防止材又は青潮防止材として、水底又は水浜に敷設することを特徴とする請求項1又は2に記載の水中又は水浜の環境改善方法。Laying granulated blast furnace slag as sand covering material, beach nourishment material, shallow terracing material, tidal flat laying material, seaweed bed laying material, sea shore prevention material, red tide prevention material or blue tide prevention material on the water bottom or beach The method for improving the environment of underwater or water beaches according to claim 1 or 2, wherein: 水底又は水浜に敷設された高炉水砕スラグがケイ酸塩イオン放出源となることを特徴とする請求項1、2又は3に記載の水中又は水浜の環境改善方法。4. The method for improving the environment of underwater or water beach according to claim 1, wherein the granulated blast furnace slag laid on the water bottom or beach is a silicate ion emission source. 5. 水底又は水浜に覆砂材、養浜材、浅場造成材、干潟造成材、藻場造成材、磯焼け防止材、赤潮防止材又は青潮防止材として敷設される資材であって、粒径0.5mm以上のスラグ粒子の割合が90mass%以上である高炉水砕スラグからなることを特徴とする水中又は水浜の環境改善用資材。Materials that are laid as sand covering materials, beach nourishment materials, shallow terracing materials, tidal flat surfacing materials, seaweed beds surfacing materials, sea shore prevention materials, red tide prevention materials, or blue tide prevention materials on the bottom of the water or on the beach. A material for improving the environment of underwater or water beaches, comprising a granulated blast furnace slag having a ratio of slag particles of 0.5 mm or more of 90 mass% or more. 水底又は水浜に覆砂材、養浜材、浅場造成材、干潟造成材、藻場造成材、磯焼け防止材、赤潮防止材又は青潮防止材として敷設される資材であって、粒径1.0mm以上のスラグ粒子の割合が70mass%以上である高炉水砕スラグからなることを特徴とする水中又は水浜の環境改善用資材。Materials that are laid as sand covering materials, beach nourishment materials, shallow terracing materials, tidal flat surfacing materials, seaweed beds surfacing materials, sea shore prevention materials, red tide prevention materials, or blue tide prevention materials on the bottom of the water or on the beach. A material for improving the environment of underwater or water beaches, comprising a granulated blast furnace slag having a ratio of slag particles of 1.0 mm or more and 70 mass% or more.
JP2002189850A 2002-06-28 2002-06-28 Environmental improvement method and environmental improvement materials for underwater or beach Expired - Fee Related JP3729160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189850A JP3729160B2 (en) 2002-06-28 2002-06-28 Environmental improvement method and environmental improvement materials for underwater or beach

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189850A JP3729160B2 (en) 2002-06-28 2002-06-28 Environmental improvement method and environmental improvement materials for underwater or beach

Publications (3)

Publication Number Publication Date
JP2004024204A true JP2004024204A (en) 2004-01-29
JP2004024204A5 JP2004024204A5 (en) 2005-10-13
JP3729160B2 JP3729160B2 (en) 2005-12-21

Family

ID=31184153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189850A Expired - Fee Related JP3729160B2 (en) 2002-06-28 2002-06-28 Environmental improvement method and environmental improvement materials for underwater or beach

Country Status (1)

Country Link
JP (1) JP3729160B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068732A (en) * 2004-08-06 2006-03-16 Hiroshima Univ Water area environment improving material and water area environment improving method using the same
JP2006274789A (en) * 2005-03-04 2006-10-12 Jfe Steel Kk Artificial beach nourishment method
JP2007061054A (en) * 2005-09-01 2007-03-15 Jfe Steel Kk Sand cover structure and sand cover method at water bottom
JP2007126838A (en) * 2005-11-01 2007-05-24 Nippon Steel Corp Construction method using covering sand
JP2007252343A (en) * 2006-03-25 2007-10-04 Jfe Steel Kk Method for modifying or creating adhesion base of seaweed, and sea bottom created product
JP2008263791A (en) * 2007-04-16 2008-11-06 Tokyo Kiyuuei:Kk Method for growing bivalves and base material for improving bottom quality
CN101269998B (en) * 2007-03-23 2011-06-15 宝山钢铁股份有限公司 Application of carbonatation revolving furnace steel scoria in accelerating carbonic anhydride absorption of ocean
JP2014008050A (en) * 2012-07-03 2014-01-20 Nippon Steel & Sumitomo Metal Aquatic environment restoration material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068732A (en) * 2004-08-06 2006-03-16 Hiroshima Univ Water area environment improving material and water area environment improving method using the same
JP2006274789A (en) * 2005-03-04 2006-10-12 Jfe Steel Kk Artificial beach nourishment method
JP2007061054A (en) * 2005-09-01 2007-03-15 Jfe Steel Kk Sand cover structure and sand cover method at water bottom
JP2007126838A (en) * 2005-11-01 2007-05-24 Nippon Steel Corp Construction method using covering sand
JP2007252343A (en) * 2006-03-25 2007-10-04 Jfe Steel Kk Method for modifying or creating adhesion base of seaweed, and sea bottom created product
CN101269998B (en) * 2007-03-23 2011-06-15 宝山钢铁股份有限公司 Application of carbonatation revolving furnace steel scoria in accelerating carbonic anhydride absorption of ocean
JP2008263791A (en) * 2007-04-16 2008-11-06 Tokyo Kiyuuei:Kk Method for growing bivalves and base material for improving bottom quality
JP2014008050A (en) * 2012-07-03 2014-01-20 Nippon Steel & Sumitomo Metal Aquatic environment restoration material

Also Published As

Publication number Publication date
JP3729160B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
JP4736449B2 (en) Construction method of shallow ground
JP5070667B2 (en) Underwater environment improvement method
JP2000157094A (en) Stone material for sinking and disposing in water and its production
JP4736443B2 (en) Construction method of shallow ground
JP3729160B2 (en) Environmental improvement method and environmental improvement materials for underwater or beach
JP2007063923A (en) Sand cover structure and sand cover method for water bottom
JP4736444B2 (en) Construction method of shallow ground
JP2004236546A (en) Method for improving environment in water or on water beach
JP2004000104A (en) Method for improving underwater or environmental water shore
JP4924577B2 (en) Seawall structure
JP2002176877A (en) Block to be installed under water
JP4904791B2 (en) Artificial submarine base for aquatic animal settlement / growth or farmland bottom purification
JP4872275B2 (en) Covering sand at the bottom of the water
JP3968898B2 (en) Artificial stone mainly composed of slag and method for producing the same
JP4069056B2 (en) Tidal flat, shallow water environment restoration material
JP4736448B2 (en) Construction method of shallow ground
JP2003158946A (en) Method for improving underwater or waterside environment
JP2004236545A (en) Method for improving environment in water or on water beach
JP4997687B2 (en) How to improve water environment
JP2003286711A (en) Method for improving environment of bottom of water
JP5168027B2 (en) Repair method for steel revetment structures
JP4013368B2 (en) Stone material for submergence and method for producing the same
JP2000143303A (en) Building stone to be sunk in water and production of the same stone
JP2006288323A (en) Artificial water bottom base
EP1018298A1 (en) Stone material for submerging into water, method of production thereof, and method of forming submarine forest

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050603

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050603

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees