JP2004022211A - Discharge plasma treatment device - Google Patents

Discharge plasma treatment device Download PDF

Info

Publication number
JP2004022211A
JP2004022211A JP2002172015A JP2002172015A JP2004022211A JP 2004022211 A JP2004022211 A JP 2004022211A JP 2002172015 A JP2002172015 A JP 2002172015A JP 2002172015 A JP2002172015 A JP 2002172015A JP 2004022211 A JP2004022211 A JP 2004022211A
Authority
JP
Japan
Prior art keywords
magnetic
field generating
discharge plasma
generating means
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002172015A
Other languages
Japanese (ja)
Inventor
Taijirou Uchida
内田 岱二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2002172015A priority Critical patent/JP2004022211A/en
Priority to DE10326135.4A priority patent/DE10326135B4/en
Priority to TW092115746A priority patent/TWI270939B/en
Priority to US10/457,519 priority patent/US6885154B2/en
Priority to KR1020030037773A priority patent/KR101051979B1/en
Publication of JP2004022211A publication Critical patent/JP2004022211A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic neutralline discharge plasma treatment device in which a metal such as opaque steel can be used without using a magnetic wall in the vacuum chamber, while generating a low voltage and low temperature high density plasma and maintaining time-space and spatial control concerning the size and the location of the generated plasma, and which is of low cost and has wide applications. <P>SOLUTION: The discharge plasma treatment device comprises a magnetic field generating means that is formed of a link of positions of magnetic field "zero"existing in succession in the vacuum chamber and generates a magnetic neutralline of a shape and size corresponding to the shape and size of the treated object, and an electric field generating means arranged in the vacuum chamber and generates a discharge plasma in the space containing the magnetic neutralline, by impressing a high frequency electric field in the inclined direction including a right angle to the magnetic neutralline generated in the vacuum chamber by the magnetic field generating means. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマを利用して基板、ターゲット等の被処理物にエッチング、スパッタリング、コーティング、CVD等の処理を行うようにした放電プラズマ処理装置に関するものである。
【0002】
【従来の技術】
磁気中性線放電プラズマ処理装置についてはこれまでに、日本国特許第2705897号及び同第3177573号においてその存在が確立され、有効性が認められて産業上の実績もあがってきた。この磁気中性線放電(Magnetic eutraline ischarge: NLDとも略称される)プラズマ方式がもつ他方式にない特徴は主として二つある。
【0003】
一つの特徴は、生成させるプラズマの大きさや位置に関して時空間制御性をもっていることにあり、すなわち、時間的にも、空間的にも必要とするプラズマの大きさや位置を自由に変化できることにある。それはもともと磁気中性線というものは真空チャンバ内に容易に設置できるため、その形にそってプラズマが生成されるからであり、この自由度は他方式に見られない。別の特徴は、NLD方式でできるプラズマの生成過程で電子が磁場ゼロを含む領域内でrf電場を受けてエネルギーを得つつ何回も横切る結果齎らされるカオス的加熱によって、プラズマは低圧気体条件のもと、注入するパワーを増やしても電子群の内部エネルギー、3/2k neTe(ここにne: 電子密度、Te: 同温度、k: ボルツマン常数)の上昇は専ら密度の増加に集中して、温度は殆ど低温の侭保たれることにより、表面処理に不必要な高温成分が少なく、密度の増加によって処理速度がすすむことである。これら二つの特徴により磁気中性線放電プラズマ処理装置は、益々精密加工精度の要求されるマイクロレンズや光導波路等のガラス加工や低誘電率材料のエッチング等の分野における超微細化工において抜群の性能を誇っている現状である。
【0004】
添付図面の図5にはこれまで数多くの円盤状基板表面を処理する目的で製造された磁気中性線放電プラズマ処理装置の概念図である。円筒形真空チャンバAの外に同軸上に設置された上、中、下3つのコイルB、C、Dに流す電流を加減することにより真空チャンバA内に円形磁気中性線Eが形成される。プラズマの生成にはセラミックの如き絶縁性の円筒真空壁Fの外側に捲いたrfコイルGに流す励起電流によって発生する方位角方向の誘導電場によって円形磁気中性線Eを芯としたドーナツ型のプラズマが生成される。その際、ドーナツプラズマの径や上下位置は3つのコイルB、C、Dに流す電流の組合わせにより、たとえ処理中においても自由に制御され得る。
【0005】
このようにして生成される磁気中性線放電プラズマのもつプラズマそのものの特徴は、[0004]の項において前述したように低圧気体を用いて高密度・低温のプラズマが生成されるところにあり、この特徴は各種処理加工に極めて適したもので、この他方式にみられない特徴を保ちながら装置性能の向上を図ることが強く要望されている。
【0006】
【発明が解決しようとする課題】
磁気中性線放電プラズマ処理装置は上述のような抜群の性能を示しているにもかかわらず、処理装置としての使い易さ、手入れ調整期間の短縮という視点において改善すべきところがある。また、セラミックスの如く強固で真空耐性があって高価なものを使用すると装置自体の価格を高めることになり、安価で入手するのが容易な新材料の現出を待たねばならない。
【0007】
これまで具体化した円形磁気中性線放電プラズマの場合、円形に磁気中性線に沿って電場を印加するには原理上、円筒形磁器容器を真空チャンバの側壁としその外側に高周波(rf)用ワンターンコイルを巻かざるを得なかった。しかし、数十cmの直径をもつ肉厚の円筒磁器容器は高価であり、真空側の内面をいかに平滑にしても、特殊ガスとの親和力による吸着除去又は防止に対策をたてる必要があった。このことはICP方式による処理装置においても同種の解決すべき問題ではある。これらが本発明によって解決しようとする課題である。
【0008】
本発明は、上記の問題点を解決するため磁気中性線放電そのものに従来型にない新方式、すなわち磁気中性線に直角を含む傾斜角方向にrf電場を加えることにより磁気中性線を内に含む周囲の空間に磁気中性線放電プラズマを発生させる磁気中性線放電方式を採用した磁気中性線放電プラズマ処理装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、本発明によれば、真空チャンバ内においてプラズマを利用して被処理物を処理する放電プラズマ処理装置において、真空チャンバ内に連続して存在する磁場ゼロの位置の連がりによって形成され、被処理物の形状及び大きさに対応させた磁気中性線を生成するようにした磁場発生手段と、真空チャンバ内に配置され、磁場発生手段によって真空チャンバ内に生成される磁気中性線と直角を含む傾斜角方向に高周波電場を加えて磁気中性線を含む空間に放電プラズマを発生させる電場発生手段とを有することを特徴としている。
【0010】
磁場発生手段及び電場発生手段は、円形、多角形又は楕円形の軸対称に構成され得る。
【0011】
磁場発生手段は直流によって構成され得る。又は、磁場発生手段は商業周波数を含む交流によって構成され得る。代りに、磁場発生手段は直流と商業周波数を含む交流との合成によって構成され得る。
【0012】
好ましくは、高周波電場発生手段は、形成される磁気中性線を挿んで配置される一対の電極から成り得る。この場合、各電極は円板状又は穴あき円板状或いは環状に構成され得る。
【0013】
磁場発生手段は、同軸上に間隔をおいて上、中、下に配列した3つの磁場発生コイルから成り、その相隣るコイルによって発生する軸上磁場が互いに逆向きになるように磁場発生コイルに電流が流され、上コイルと下コイルとで形成される円形を含む閉曲磁気中性線の上下方向の位置を両コイル電流比で制御すると同時に中コイルの電流を制御することにより当該磁気中性線の径を含む大きさを加減するように構成され得る。
【0014】
【発明の実施の形態】
以下、添付図面の図1〜図4を参照して本発明の実施の形態について説明する。
添付図面の図1には本発明による磁気中性線放電プラズマ処理装置の一つの実施の形態を示している。図示装置は、横断面が円形の真空チャンバ1と、その外周に設けられ、真空チャンバ1内に連続して存在する磁場ゼロの位置の連がりによって形成される磁気中性線を生成するようにした三つの磁場発生コイル2、3、4と、真空チャンバ1内で、三つの磁場発生コイル2、3、4によって真空チャンバ1内に生成される円形磁気中性線5を上下に挟む位置に配置され、円形磁気中性線5に対して直角に高周波電場を加える一対の円板状(図2参照)又は環状(図3参照)の電極6、7とを有している。ここで本明細書で用語“環状”は円形、多角形又は楕円形の概念を包含するものとする。
【0015】
三つの磁場発生コイル2、3、4には、その相隣るコイルによって発生する軸上磁場が互いに逆向きになるように電流が流され、上コイル2と下コイル4とで形成される円形を含む閉曲磁気中性線の上下方向の位置を両コイル電流比で制御すると同時に中コイル3の電流を制御することにより磁気中性線5の径を含む大きさを加減するようにできる。また、三つの磁場発生コイル2、3、4は、図示例では円形磁気中性線5を生成するようにしているが、被処理物(図示していない)の形状及び大きさに対応した形状及び大きさの磁気中性線を生成するように構成され得る。
【0016】
真空チャンバ1内に配置された一対の円板状又は環状の電極6、7はそれぞれ高周波電源8、9に接続され、これら電極間に高周波電場を印加するようにされている。このような電場の掛け方を本明細書では“容量電場型”と定義する。これに対して[0007]の項で説明した従来方式は“誘導電場型”と呼ばれる。容量電場型においては、rf放電中に直流成分が含まれていると、上下電極6、7間の絶縁破壊を招き、機器損傷につながる恐れがある。そのため、本発明においてはこのような事態を阻止するために、各電極6、7はそれぞれ絶縁物10で被覆されている。また、各電極6、7の形状選択については処理技術の内容に応じて変わるものであり、CVDなどでは円板状のものが選択され、スパッタのためのターゲット等の第3面に必要とするものには環状のものが選択されて処理すべき基板からの溶射路をつくるようにされ得る。
【0017】
これに関連して、各電極6、7は、図示例では三つの磁場発生コイル2、3、4によって真空チャンバ1内に生成される円形磁気中性線5を含む平面に対して上下に平行に配置されているが、当然装置の使用目的に応じて磁場発生コイル2、3、4によって真空チャンバ1内に生成される磁気中性線に対して傾斜角方向に高周波電場を加えるように配置することもできる。
【0018】
ところで図示実施の形態では磁場発生手段として三つの磁場発生コイルが例示されているが、装置の構成上一つ以上であれば任意の数のコイルを用いることができる。また電場発生手段として円板状電極の代りに図4に示すような穴開き円板状電極を用いることもできる。
【0019】
【発明の効果】
以上説明してきたように、本発明によれば、真空チャンバ内においてプラズマを利用して被処理物を処理する放電プラズマ処理装置において、真空チャンバ内に連続して存在する磁場ゼロの位置の連がりによって形成され、被処理物の形状及び大きさに対応した形状及び大きさの磁気中性線を生成するようにした磁場発生手段と、真空チャンバ内に配置され、磁場発生手段によって真空チャンバ内に生成される磁気中性線と直角を含む傾斜角方向に高周波電場を加えて磁気中性線を含む空間に放電プラズマを発生させる電場発生手段とを設け、真空チャンバ内に生成される磁気中性線と直角を含む傾斜角方向に高周波電場を印加して、従来提案してきた誘導電場型から容量電場型に変更することによって、基本的に2つの特性すなわち低圧で低温高密度のプラズマ生成及び生成するプラズマの大きさと位置に関する時空間的・空間的制御性を維持しつつ、真空チャンバに磁性壁を用いずに不透鋼などの金属を用いることができるようになり、装置のコスト低減を図ることができる。その結果、放電プラズマ装置としてもつその応用範囲を改良し拡大することが可能となる。
【図面の簡単な説明】
【図1】本発明による磁気中性線放電プラズマ処理装置の一実施の形態の構成を示す概略縦断面図。
【図2】本発明による磁気中性線放電プラズマ処理装置に用いられる電場発生手段を成す円板状電極を示す概略斜視図。
【図3】本発明による磁気中性線放電プラズマ処理装置に用いられる電場発生手段を成す環状電極を示す概略斜視図。
【図4】本発明による磁気中性線放電プラズマ処理装置における電場発生手段を成す穴開き円板状電極を示す概略斜視図。
【図5】従来の誘導電場型円形磁気中性線放電プラズマ処理装置の構成の例を示す概略縦断面図。
【符号の説明】
1 :真空チャンバ
2 :磁場発生コイル
3 :磁場発生コイル
4 :磁場発生コイル
5 :磁気中性線
6 :電極
7 :電極
8 :高周波電源
9 :高周波電源
10:絶縁体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a discharge plasma processing apparatus that performs processing such as etching, sputtering, coating, and CVD on an object to be processed such as a substrate and a target using plasma.
[0002]
[Prior art]
The existence of a magnetic neutral-ray discharge plasma processing apparatus has been established in Japanese Patent Nos. 2,058,897 and 3,177,573, and its effectiveness has been recognized and industrial results have been obtained. The magnetic neutral loop discharge: wherein no other method has the (Magnetic N eutral L ine D ischarge NLD also abbreviated) plasma method are mainly two.
[0003]
One feature is that it has spatio-temporal control over the size and position of the plasma to be generated, that is, it can freely change the required size and position of the plasma both temporally and spatially. This is because a magnetic neutral wire can be easily installed in a vacuum chamber, and a plasma is generated along its shape. This degree of freedom is not found in other systems. Another feature is that during the plasma generation process that can be performed by the NLD method, the electrons are subjected to the rf electric field in the region including the zero magnetic field, and the energy is crossed many times while obtaining the energy. Under the conditions, even if the power to be injected is increased, the increase in the internal energy of the electron group, 3 / 2kneTe (where ne: electron density, Te: the same temperature, k: Boltzmann constant) concentrates exclusively on the increase in density. In addition, since the temperature is kept almost at a low temperature, there are few high-temperature components unnecessary for the surface treatment, and the processing speed is increased by increasing the density. Due to these two features, the magnetic neutral line discharge plasma processing equipment has outstanding performance in ultra-fine processing in fields such as glass processing of micro lenses and optical waveguides and etching of low dielectric constant materials, which require increasingly precise processing accuracy. It is a state of pride.
[0004]
FIG. 5 of the accompanying drawings is a conceptual diagram of a magnetic neutral discharge plasma processing apparatus manufactured for the purpose of processing many disk-shaped substrate surfaces. A circular magnetic neutral line E is formed in the vacuum chamber A by adjusting the current flowing through the three coils B, C, and D which are coaxially installed outside the cylindrical vacuum chamber A. . To generate the plasma, a doughnut-shaped donut centered on a circular magnetic neutral line E is generated by an azimuthally induced electric field generated by an excitation current flowing through an rf coil G wound on the outside of an insulating cylindrical vacuum wall F such as ceramic. A plasma is generated. At this time, the diameter and the vertical position of the donut plasma can be freely controlled even during the processing by a combination of currents flowing through the three coils B, C, and D.
[0005]
The characteristic of the plasma itself of the magnetic neutral line discharge plasma generated in this way is that high-density and low-temperature plasma is generated using a low-pressure gas as described above in [0004]. This feature is extremely suitable for various types of processing, and there is a strong demand for improving the performance of the apparatus while maintaining features not found in other methods.
[0006]
[Problems to be solved by the invention]
Despite the outstanding performance of the magnetic neutral beam discharge plasma processing apparatus described above, there is a need for improvement in terms of ease of use as the processing apparatus and shortening of the maintenance adjustment period. In addition, if a strong, vacuum-resistant and expensive material such as ceramics is used, the price of the device itself increases, and it is necessary to wait for the appearance of a new material that is cheap and easily available.
[0007]
In the case of the circular magnetic neutral line discharge plasma embodied so far, in order to apply an electric field along the magnetic neutral line in a circular shape, in principle, a cylindrical porcelain container is used as a side wall of a vacuum chamber and a high frequency (rf) is applied outside the vacuum chamber. I had to wind a one-turn coil. However, a thick cylindrical porcelain container having a diameter of several tens of cm is expensive, and no matter how smooth the inner surface on the vacuum side, it is necessary to take measures to remove or prevent adsorption by affinity with a special gas. . This is the same kind of problem to be solved in the ICP type processing apparatus. These are the problems to be solved by the present invention.
[0008]
The present invention solves the above-mentioned problems by adding a new method to the magnetic neutral wire discharge itself, which is not a conventional type, that is, by applying an rf electric field in a tilt angle direction including a right angle to the magnetic neutral wire. It is an object of the present invention to provide a magnetic neutral discharge plasma processing apparatus that employs a magnetic neutral discharge system for generating a magnetic neutral discharge plasma in a surrounding space included therein.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in a discharge plasma processing apparatus that processes an object to be processed using plasma in a vacuum chamber, a position of a magnetic field zero position continuously present in the vacuum chamber is set. A magnetic field generating means formed by a series of lines and configured to generate a magnetic neutral line corresponding to the shape and size of the object to be processed; and a magnetic field generating means disposed in the vacuum chamber and generated in the vacuum chamber by the magnetic field generating means. And an electric field generating means for applying a high-frequency electric field in a tilt angle direction including a right angle with the magnetic neutral line to generate discharge plasma in a space including the magnetic neutral line.
[0010]
The magnetic field generating means and the electric field generating means may be configured to be circular, polygonal or elliptical axially symmetric.
[0011]
The magnetic field generating means may be constituted by a direct current. Alternatively, the magnetic field generating means may be constituted by an alternating current including a commercial frequency. Alternatively, the magnetic field generating means may be constituted by a combination of direct current and alternating current including commercial frequencies.
[0012]
Preferably, the high-frequency electric field generating means may be composed of a pair of electrodes arranged to insert a formed magnetic neutral line. In this case, each electrode may be formed in a disc shape, a perforated disc shape, or an annular shape.
[0013]
The magnetic field generating means is composed of three magnetic field generating coils arranged coaxially at an interval of upper, middle, and lower, and the magnetic field generating coils are arranged such that axial magnetic fields generated by adjacent coils are opposite to each other. A current is applied to the magnetic field by controlling the vertical position of the closed magnetic neutral line including the circle formed by the upper coil and the lower coil with both coil current ratios and simultaneously controlling the current of the middle coil. It may be configured to adjust the size including the diameter of the neutral wire.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 of the accompanying drawings shows an embodiment of a magnetic neutral discharge plasma processing apparatus according to the present invention. The illustrated apparatus generates a vacuum chamber 1 having a circular cross section and a magnetic neutral line provided on the outer periphery thereof and formed by a series of positions of zero magnetic field existing continuously in the vacuum chamber 1. In the vacuum chamber 1, the three magnetic field generating coils 2, 3, 4 and the circular magnetic neutral wire 5 generated in the vacuum chamber 1 by the three magnetic field generating coils 2, 3, 4 are positioned vertically. And a pair of disk-shaped (see FIG. 2) or annular (see FIG. 3) electrodes 6 and 7 for applying a high-frequency electric field at right angles to the circular magnetic neutral wire 5. As used herein, the term "annular" is intended to encompass the concept of a circle, a polygon, or an ellipse.
[0015]
A current is applied to the three magnetic field generating coils 2, 3, 4 so that the axial magnetic fields generated by the adjacent coils are opposite to each other, and a circle formed by the upper coil 2 and the lower coil 4 is formed. By controlling the vertical position of the closed magnetic neutral line including the above with the coil current ratio and simultaneously controlling the current of the middle coil 3, the size including the diameter of the magnetic neutral line 5 can be adjusted. Although the three magnetic field generating coils 2, 3, and 4 generate the circular magnetic neutral wire 5 in the illustrated example, the shapes correspond to the shape and size of the object to be processed (not shown). And magnitude of magnetic neutral radiation.
[0016]
A pair of disk-shaped or ring-shaped electrodes 6 and 7 arranged in the vacuum chamber 1 are connected to high-frequency power sources 8 and 9, respectively, so that a high-frequency electric field is applied between these electrodes. Such a method of applying an electric field is defined as “capacitive electric field type” in this specification. On the other hand, the conventional method described in the section of [0007] is called “induction electric field type”. In the capacitive electric field type, if a direct current component is included in the rf discharge, dielectric breakdown between the upper and lower electrodes 6 and 7 may be caused, which may lead to equipment damage. Therefore, in the present invention, in order to prevent such a situation, each of the electrodes 6 and 7 is covered with the insulator 10. The selection of the shape of each of the electrodes 6 and 7 changes according to the content of the processing technique. For example, a disk-shaped electrode is selected in CVD or the like, and the third surface such as a target for sputtering is required. An annular one may be selected to create a spray path from the substrate to be processed.
[0017]
In this connection, each electrode 6, 7 is vertically parallel to the plane containing the circular magnetic neutral 5 generated in the vacuum chamber 1 by the three magnetic field generating coils 2, 3, 4 in the example shown. However, according to the purpose of use of the apparatus, a high-frequency electric field is applied in a tilt angle direction to a magnetic neutral line generated in the vacuum chamber 1 by the magnetic field generating coils 2, 3, and 4. You can also.
[0018]
By the way, in the illustrated embodiment, three magnetic field generating coils are exemplified as the magnetic field generating means, but any number of coils can be used as long as the number is one or more due to the configuration of the apparatus. Also, a perforated disc-shaped electrode as shown in FIG. 4 can be used as the electric field generating means instead of the disc-shaped electrode.
[0019]
【The invention's effect】
As described above, according to the present invention, in a discharge plasma processing apparatus that processes an object to be processed using plasma in a vacuum chamber, a series of positions of zero magnetic field existing continuously in the vacuum chamber are connected. Magnetic field generating means formed to generate a magnetic neutral ray having a shape and a size corresponding to the shape and size of the object to be processed, and a magnetic field generating means arranged in the vacuum chamber, and into the vacuum chamber by the magnetic field generating means. An electric field generating means for generating a discharge plasma in a space including the magnetic neutral line by applying a high-frequency electric field in a tilt angle direction including a direction perpendicular to the magnetic neutral line to be generated; By applying a high-frequency electric field in the direction of the tilt angle including a right angle to the line and changing from the conventionally proposed induction electric field type to the capacitive electric field type, basically, two characteristics, namely, low pressure While maintaining high-temperature and high-density plasma generation and spatio-temporal and spatial control over the size and position of generated plasma, metal such as impervious steel can be used without using magnetic walls in the vacuum chamber. Thus, the cost of the apparatus can be reduced. As a result, the application range of the discharge plasma device can be improved and expanded.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing a configuration of an embodiment of a magnetic neutral ray discharge plasma processing apparatus according to the present invention.
FIG. 2 is a schematic perspective view showing a disk-shaped electrode constituting an electric field generating means used in the magnetic neutral ray discharge plasma processing apparatus according to the present invention.
FIG. 3 is a schematic perspective view showing an annular electrode forming an electric field generating means used in the magnetic neutral ray discharge plasma processing apparatus according to the present invention.
FIG. 4 is a schematic perspective view showing a perforated disk-shaped electrode constituting an electric field generating means in the magnetic neutral ray discharge plasma processing apparatus according to the present invention.
FIG. 5 is a schematic longitudinal sectional view showing an example of the configuration of a conventional induction electric field type circular magnetic neutral beam discharge plasma processing apparatus.
[Explanation of symbols]
1: vacuum chamber 2: magnetic field generating coil 3: magnetic field generating coil 4: magnetic field generating coil 5: magnetic neutral wire 6: electrode 7: electrode 8: high frequency power supply 9: high frequency power supply 10: insulator

Claims (10)

真空チャンバ内においてプラズマを利用して被処理物を処理する放電プラズマ処理装置において、真空チャンバ内に連続して存在する磁場ゼロの位置の連がりによって形成され、被処理物の形状及び大きさに対応させた磁気中性線を生成するようにした磁場発生手段と、真空チャンバ内に配置され、磁場発生手段によって真空チャンバ内に生成される磁気中性線と直角を含む傾斜角方向に高周波電場を加えて磁気中性線を含む空間に放電プラズマを発生させる電場発生手段とを有することを特徴とする磁気中性線放電プラズマ処理装置。In a discharge plasma processing apparatus that processes an object to be processed using plasma in a vacuum chamber, the shape and size of the object to be processed are formed by a series of positions where a magnetic field that is continuously present in the vacuum chamber is zero. A magnetic field generating means adapted to generate a corresponding magnetic neutral line, and a high-frequency electric field arranged in a vacuum chamber and having a tilt angle including a right angle with the magnetic neutral line generated in the vacuum chamber by the magnetic field generating means. And an electric field generating means for generating discharge plasma in a space containing a magnetic neutral line. 磁場発生手段及び電場発生手段が円形、多角形又は楕円形の軸対称に構成される請求項1に記載の磁気中性線放電プラズマ処理装置。The magnetic neutral ray discharge plasma processing apparatus according to claim 1, wherein the magnetic field generating means and the electric field generating means are configured to be circular, polygonal, or elliptical in axial symmetry. 磁場発生手段が直流によって構成される請求項1に記載の磁気中性線放電プラズマ処理装置。2. The magnetic neutral ray discharge plasma processing apparatus according to claim 1, wherein the magnetic field generating means is constituted by a direct current. 磁場発生手段が商業周波数を含む交流によって構成される請求項1に記載の磁気中性線放電プラズマ処理装置。The magnetic neutral ray discharge plasma processing apparatus according to claim 1, wherein the magnetic field generating means is constituted by an alternating current including a commercial frequency. 磁場発生手段が直流と商業周波数を含む交流との合成によって構成される請求項1に記載の磁気中性線放電プラズマ処理装置。2. The magnetic neutral line discharge plasma processing apparatus according to claim 1, wherein the magnetic field generating means is configured by combining DC and AC including commercial frequency. 高周波電場発生手段が、形成される磁気中性線を挿んで配置される一対の電極から成る請求項1に記載の磁気中性線放電プラズマ処理装置。2. The magnetic neutral ray discharge plasma processing apparatus according to claim 1, wherein the high-frequency electric field generating means includes a pair of electrodes arranged to insert the formed magnetic neutral line. 各電極が円板状である請求項6に記載の磁気中性線放電プラズマ処理装置。7. The magnetic neutral beam discharge plasma processing apparatus according to claim 6, wherein each electrode has a disk shape. 各電極が穴あき円板状である請求項6に記載の磁気中性線放電プラズマ処理装置。7. The magnetic neutral line discharge plasma processing apparatus according to claim 6, wherein each electrode is in the shape of a perforated disk. 各電極が環状である請求項6に記載の磁気中性線放電プラズマ処理装置。7. The magnetic neutral beam discharge plasma processing apparatus according to claim 6, wherein each electrode is annular. 磁場発生手段が同軸上に間隔をおいて上、中、下に配列した3つの磁場発生コイルから成り、その相隣るコイルによって発生する軸上磁場が互いに逆向きになるように磁場発生コイルに電流が流され、上コイルと下コイルとで形成される円形を含む閉曲磁気中性線の上下方向の位置を両コイル電流比で制御すると同時に中コイルの電流を制御することにより当該磁気中性線の径を含む大きさを加減するようにした請求項1に記載の磁気中性線放電プラズマ処理装置。The magnetic field generating means is composed of three magnetic field generating coils arranged coaxially at an interval of upper, middle, and lower, and the magnetic field generating coils are arranged so that the axial magnetic fields generated by the adjacent coils are opposite to each other. An electric current flows, and the vertical position of a closed magnetic neutral line including a circle formed by the upper coil and the lower coil is controlled by the current ratio of both coils, and simultaneously the current of the middle coil is controlled by controlling the current of the middle coil. 2. The magnetic neutral beam discharge plasma processing apparatus according to claim 1, wherein the size including the diameter of the neutral wire is adjusted.
JP2002172015A 2002-06-12 2002-06-12 Discharge plasma treatment device Pending JP2004022211A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002172015A JP2004022211A (en) 2002-06-12 2002-06-12 Discharge plasma treatment device
DE10326135.4A DE10326135B4 (en) 2002-06-12 2003-06-06 A discharge plasma processing system
TW092115746A TWI270939B (en) 2002-06-12 2003-06-10 Discharge plasma processing system
US10/457,519 US6885154B2 (en) 2002-06-12 2003-06-10 Discharge plasma processing system
KR1020030037773A KR101051979B1 (en) 2002-06-12 2003-06-12 Discharge Plasma Processing Equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002172015A JP2004022211A (en) 2002-06-12 2002-06-12 Discharge plasma treatment device

Publications (1)

Publication Number Publication Date
JP2004022211A true JP2004022211A (en) 2004-01-22

Family

ID=31171726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002172015A Pending JP2004022211A (en) 2002-06-12 2002-06-12 Discharge plasma treatment device

Country Status (1)

Country Link
JP (1) JP2004022211A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007784A1 (en) * 2006-07-14 2008-01-17 Ulvac, Inc. Capacitive-coupled magnetic neutral line plasma sputtering system
CN103118478A (en) * 2013-01-18 2013-05-22 大连理工大学 Pulse penning discharge big-aperture plasma generating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007784A1 (en) * 2006-07-14 2008-01-17 Ulvac, Inc. Capacitive-coupled magnetic neutral line plasma sputtering system
KR101141391B1 (en) * 2006-07-14 2012-05-03 가부시키가이샤 아루박 Capacitive-coupled magnetic neutral line plasma sputtering system
JP4945566B2 (en) * 2006-07-14 2012-06-06 株式会社アルバック Capacitively coupled magnetic neutral plasma sputtering system
CN103118478A (en) * 2013-01-18 2013-05-22 大连理工大学 Pulse penning discharge big-aperture plasma generating device

Similar Documents

Publication Publication Date Title
KR920004912B1 (en) Plasma apparatus
US8409400B2 (en) Inductive plasma chamber having multi discharge tube bridge
KR100797206B1 (en) Uniform gas distribution in large area plasma source
TWI293855B (en) Plasma reactor coil magnet system
RU2369664C2 (en) Filtered vacuum arc plasma source
US6136139A (en) Plasma processing apparatus
US6523493B1 (en) Ring-shaped high-density plasma source and method
JP6284825B2 (en) Plasma processing equipment
KR102049117B1 (en) Substrate processing apparatus
JPH09139380A (en) Magnetic field that is shallow to enhance plasma processing by circulation of electron
JP2005146416A (en) Ionized physical vapor deposition apparatus using helical magnetic-resonant coil
JPH10130834A (en) Method for decreasing sputtering of coil at icp source
KR20030096041A (en) Discharge plasma processing system
EP0637054B1 (en) Discharge plasma processing device
JP3410558B2 (en) Plasma processing equipment
JP2004022211A (en) Discharge plasma treatment device
US6136140A (en) Plasma processing apparatus
JPH07245195A (en) Method and device for plasma processing
JP3823069B2 (en) Magnetic neutral discharge plasma processing equipment
JP2004022212A (en) Magnetic neutral line electrical discharge plasma treatment device
JP4355157B2 (en) Plasma processing method, plasma processing apparatus, and magnetic field generator
JPH09186000A (en) Plasma processing device
JP3968157B2 (en) Magnetic neutral wire discharge type plasma application equipment
JP3666999B2 (en) Plasma processing equipment
JPH09263949A (en) Plasma treating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411