JP2004017436A - Manufacturing method for safety tire - Google Patents

Manufacturing method for safety tire Download PDF

Info

Publication number
JP2004017436A
JP2004017436A JP2002174457A JP2002174457A JP2004017436A JP 2004017436 A JP2004017436 A JP 2004017436A JP 2002174457 A JP2002174457 A JP 2002174457A JP 2002174457 A JP2002174457 A JP 2002174457A JP 2004017436 A JP2004017436 A JP 2004017436A
Authority
JP
Japan
Prior art keywords
tire
pressure
foamable composition
rim
resistant container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002174457A
Other languages
Japanese (ja)
Other versions
JP4166515B2 (en
Inventor
Koji Otani
大谷 光司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2002174457A priority Critical patent/JP4166515B2/en
Publication of JP2004017436A publication Critical patent/JP2004017436A/en
Application granted granted Critical
Publication of JP4166515B2 publication Critical patent/JP4166515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)
  • Tyre Moulding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make a tire stably runnable even when it is damaged, without sacrificing the rolling resistance and comfortableness in riding on the occasion of normal running before it is damaged. <P>SOLUTION: On the occasion of manufacturing a safety tire by fitting the tire to an application rim and by disposing a foamable composition in a space inside the tire demarcated by the tire and the rim, a pressure vessel filled with the foamable composition is connected to the tire fitted with the rim with a pipe interposed therebetween, and the internal pressure of the pressure-resisting vessel is made higher than that of the tire. The foamable composition is transferred from the vessel into the tire by the differential pressure, so as to be disposed therein. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、外傷を受けた後も通常の走行を可能とする安全タイヤの製造方法に関するものである。
【0002】
【従来の技術】
空気入りタイヤ、例えば乗用車用タイヤにおいては、タイヤ内部にゲージ圧で150kPaから250kPa程度の圧力下に空気を封じ込めて、タイヤのカーカスおよびベルト等のタイヤ骨格部に張力を発生させ、この張力によって、タイヤへの入力に対してタイヤの変形並びにその復元を可能としている。すなわち、タイヤの内圧が所定の範囲に保持されることによって、タイヤの骨格に一定の張力を発生させて、荷重支持機能を付与するとともに、剛性を高めて、駆動、制動および旋回性能などの、車両の走行に必要な基本性能を付与している。
【0003】
ところで、この所定の内圧に保持されたタイヤが外傷を受けると、この外傷を介して空気が外部に漏れ出してタイヤ内圧が大気圧まで減少する、いわゆるパンク状態となるため、タイヤ骨格部に発生させていた張力はほとんど失われることになる。すると、タイヤに所定の内圧が付与されることによって得られる、荷重支持機能や、駆動、制動および旋回性能も失われる結果、そのタイヤを装着した車両は走行不能に陥るのである。
【0004】
そこで、パンク状態においても走行を可能とする、いわゆる安全タイヤについて多くの提案がなされている。例えば、自動車用の空気入り安全タイヤ及びリム組立体としては、二重壁構造を有するもの、タイヤ内に荷重支持装置を配設したもの、タイヤサイド部を補強したものなど種々のタイプのものが提案されている。これらの提案の内、実際に使用されている技術としては、タイヤのサイドウォール部を中心にショルダー部からビ−ド部にかけての内面に比較的硬質のゴムからなるサイド補強層を設けたタイヤがあり、この種のタイヤは主にへん平比が60%以下の、いわゆるランフラットタイヤとして適用されている。
【0005】
しかし、サイド補強層を追加する手法は、タイヤ重量を30%から40%も増加してタイヤの縦ばね定数を上昇するため、転がり抵抗の大幅な悪化とパンク前の通常走行時の乗り心地性低下をまねく不利がある。従って、通常走行時の性能、燃費および環境に悪い影響を与えることから、未だ汎用性に乏しい技術である。
【0006】
一方、タイヤ断面高さの高い、へん平比が60%以上の空気入りタイヤにおいては、比較的高速かつ長距離の走行によるサイドウォール部の発熱を避けるために、リムに中子などの内部支持体を固定してパンク時の荷重を支持する構造とした、ランフラットタイヤが主に適用されている。
【0007】
しかし、パンク後のランフラット時にタイヤと内部支持体との間で発生する、局所的な繰り返し応力にタイヤが耐えることができずに、結果としてパンク後の走行距離は100kmから200km程度に限定されていた。加えて、内部支持体をタイヤ内部に配置してからタイヤをリムに組み付ける作業は、煩雑で長時間を要することも問題であった。この点、リムの幅方向一端側と他端側とのリム径に差を設けて、内部支持体を挿入し易くした工夫も提案されているが、十分な効果は得られていない。
【0008】
なお、内部支持体をそなえるランフラットタイヤのパンク後走行距離を延ばすには、骨格材を追加してタイヤ構造をより重厚にすることが有効であるが、骨格材を追加した分、通常使用時の転がり抵抗や乗り心地性が悪化するため、この手法を採用することは現実的ではない。
【0009】
さらに、これらの従来技術の安全タイヤは、通常のアスファルト路面や、不整地路面等の摩擦係数がある程度高い路面では、パンク後の走行能力をある程度発揮できる。しかしながら、冬期の氷路や雪路に代表される摩擦係数の低い路面では、パンクしたタイヤが駆動輪ではなく遊輪であった場合、大きな欠点を露呈することとなる。すなわち、パンク前の状態では、当然タイヤの撓みが小さく、円に近い形状を保っているため、発進時に駆動輪から発生する駆動力によって車両が動き始めたとき、車両の動きに伴って遊輪が転動を始める。ところが、パンク後の状態では、タイヤの撓みが大きく、円形状からは逸脱した形状となる。遊輪は、ホイールが自ら転動できない、すなわち駆動力を出せない車輪であるため、遊輪の転動は、車両の動きと路面の摩擦係数に依存する事となる。よって摩擦係数の低い路面では、車両が動き始めても、路面の摩擦係数が低いために、パンクにより大きく撓んで円形状から逸脱したタイヤは、接地踏面内で大きな滑りを発生し、転動することなく引きずられながら車両と共に移動することとなる。その理由は、接地踏面内での接地圧力分布が、パンク前の比較的均一な状態に比して、大きな撓み変形と共に極端に不均一になるからである。このような状況は、発進時のみではなく、制動時にも発生する。よって、あらかじめ車両に搭載された機能である摩擦係数の低い路面で安全な走行を補完するための「駆動力調整機能(トラクションコントロールシステム)」や、制動時のタイヤロックを回避する「制動力調整機能(アンチロックブレーキシステム)」などが充分に発揮しないばかりか、誤作動を起こし、車両が制御不能に陥る危険性をはらんでいるのである。特に、前輪が遊輪かつ操舵輪であり、後輪が駆動輪である車両においては、前輪がパンクすると操舵性が極端に低下し、大変危険な状態に陥る事は言うまでもない。
【0010】
また、タイヤとこれに組付けるリムとの組立体の内部空洞へ独立気泡を有する発泡体を充填したタイヤが、例えば特開平6−127207号公報、特開平6−183226号公報、特開平7−186610号公報および特開平8−332805号公報などに記載されている。これらに提案されたタイヤは、主に農耕用タイヤ、ラリー用タイヤ、二輪車用タイヤおよび自転車タイヤなど特殊な、または小型のタイヤに限定されるものである。従って、乗用車用タイヤやトラックおよびバス用タイヤなど、とりわけ転がり抵抗や乗り心地性を重視するタイヤへの適用は未知数であった。そしていずれの発泡体も発泡倍率が低いために、気泡を有する発泡体のわりには重量が大きく、振動乗り心地性や燃費の悪化を避けられない上、その独立気泡内部は大気圧であるため、従来タイヤの高圧空気の代替とするには機能的に不十分であった。
【0011】
さらに、特許第2987076号公報には、発泡体充填材を内周部に挿入したパンクレスタイヤが開示されているが、気泡内圧が大気圧に極めて近いことによる不利に加え、発泡体がウレタン系であるために、ウレタン基の分子間水素結合に起因するエネルギーロスが大きく、自己発熱性が高い。よって、ウレタン発泡体をタイヤ内に充填した場合、タイヤ転動時のくり返し変形により、発泡体が発熱し大幅に耐久性が低下する。また、気泡を独立して形成するのが難しい素材を用いているため、気泡が連通しやすくて気体を保持することが難しく、所望のタイヤ内圧(荷重支持能力又はたわみ抑制能力、以下同様)を得られない不利がある。
【0012】
さらにまた、特開昭48−47002号公報には、独立気泡を主体とする多気泡体の外周をゴムや合成樹脂等の厚さ0.5〜3mmの外***膜で一体的に包被密封した膨張圧力気泡体の多数をタイヤ内に充填し、該タイヤを規定内圧に保持した、パンクレスタイヤが提案されている。この技術は、発泡体の気泡内気圧を常圧より高くするために、膨張圧力気泡体となる独立気泡体形成配合原料中の発泡剤配合量をタイヤ内容積に対して、少なくとも同等以上の発生ガスが発生する発泡剤配合量に設定しており、これによって通常の少なくとも空気入りタイヤと同様の性能を目指している。
【0013】
上記技術では、膨張圧力気泡体中の気泡内ガスの散逸を防ぐために、外***膜で一体的に包被密封しているが、この外***膜の材料として例示されているものは、自動車用チューブまたは該チューブ形成用配合物のような材料のみである。つまり、タイヤチューブ等に用いられる、窒素ガス透過性の低いブチルラバーを主体とした軟質弾性外***膜にて包被密封を施し、これらの多数をタイヤ内に充填している。製法としては、軟質弾性外***膜として未加硫のタイヤチューブを、膨張圧力気泡体として未加硫の独立気泡体形成配合原料を用い、これらの多数をタイヤとリムの組立体の内部に配置後、加熱により発泡させ、発泡体充填タイヤを得ている。発泡体の膨張によるタイヤ内部の常圧空気は、リムに開けられた排気小孔から自然排気される。
【0014】
ここで、乗用車用タイヤの内圧は、一般的に常温における150〜250kPa程度に設定されるため、上記の発泡体充填タイヤを製造するには、その加硫成形の加熱時(140℃程度)の状態において、絶対圧で上記内圧の約1.5倍程度になっているものと、気体の状態方程式から推定される。ところが、この程度の圧力レベルでは、加硫圧力不足をまねいてブローンが発生するのを避けることは出来ない。このブローン現象を回避するためには、発泡剤配合量を大幅に増加して発泡による発生圧力を高めたり、加熱温度を高める必要がある。しかしながら、発泡剤配合量を増加する手法は、発泡剤配合量の増加により常温時の内圧が300kPaを大きく超えてしまうため、従来の空気入りタイヤの代替品とするのは困難であった。また、加熱温度を高める手法は、熱老化によるタイヤのダメージが大きくなってタイヤの耐久性を大幅に悪化させるため、長期使用における耐久性に問題が生じる。一方、タイヤおよびリム組立体の内部には、軟質弾性外***膜に包まれた膨張圧力気泡体が多数配置されているが、上記ブローンが発生した軟質弾性外***膜同士の摩擦、タイヤ内面およびリム内面との摩擦等、耐久性面での問題が大きい。以上から上記の問題は、膨張圧力気泡体の形状が一体的なドーナツ形状をとるのとは異なり、分割された多数の膨張圧力気泡体を配置することに起因する大きな欠点とも言える。また、リムに開けられた排気小孔は、膨張圧力気泡体の膨張によるタイヤ内部の常圧空気を自然排気するためには有効であるものの、膨張圧力気泡体中の気泡内ガスの散逸経路となってしまうため、長期間の使用に耐えうるものではない。
【0015】
さらに、軟質弾性外***膜として、タイヤチューブ等の、窒素ガス透過性が小さいブチルラバーを主体とした配合組成物を用いているが、ブチルラバーは加硫反応速度が極めて遅いために、反応を完結させるためには、140℃程度の温度では多大なる加熱時間を必要とする。このことは、軟質弾性外***膜の架橋密度不足を意味し、軟質弾性外***膜の剥離発生の一要因になることはいうまでもない。また、加熱時間の延長は、前述した熱老化によるタイヤのダメージを更に大きくするため、耐久性の低下を避けられず、得策とはいえない。
【0016】
【発明が解決しようとする課題】
かような技術的背景の下、通常走行時における転がり抵抗および乗り心地性を犠牲にすることなしに、タイヤ受傷後にあっても安定した走行が可能となる安全タイヤの提供が希求されていたのである。
そこで、この発明は、上記の要求を満足する安全タイヤの提供を可能とする、安全タイヤの新規な製造方法について提案することを目的とする。
【0017】
【課題を解決するための手段】
すなわち、この発明の要旨構成は、次のとおりである。
(1)タイヤを適用リムに装着し、該タイヤと適用リムとで区画されたタイヤの内部に発泡性組成物を配置した、安全タイヤを製造するに当たり、該発泡性組成物が充填された耐圧容器を、適用リム装着後のタイヤに管を介して連結し、該タイヤの内圧に比して耐圧容器の内圧を高くして、その差圧をもって発泡性組成物を耐圧容器からタイヤ内部へ移送し、タイヤの内部に発泡性組成物を配置することを特徴とする安全タイヤの製造方法。
【0018】
(2) タイヤを適用リムに装着し、該タイヤと適用リムとで区画されたタイヤの内部を、さらに複数室に分割すると共に、その少なくとも一室に、発泡性組成物を配置した、安全タイヤを製造するに当たり、該発泡性組成物が充填された耐圧容器を、適用リム装着後のタイヤの発泡性組成物を配置する室に管を介して連結し、該室の内圧に比して耐圧容器の内圧を高くして、その差圧をもって発泡性組成物を耐圧容器からタイヤ内部の室への移送し、室内部に発泡性組成物を配置することを特徴とする安全タイヤの製造方法。
【0019】
(3) タイヤを適用リムに装着し、該タイヤと適用リムとで区画されたタイヤの内部を、さらに複数室に分割すると共に、その少なくとも一室に、発泡性組成物を配置した、安全タイヤを製造するに当たり、該発泡性組成物が充填された耐圧容器を、中空リング体に管を介して連結し、該中空リング体の内圧に比して耐圧容器の内圧を高くして、その差圧をもって発泡性組成物を耐圧容器から中空リング体へ移送し、中空リング体内部に発泡性組成物を配置してから、該中空リング体を適用リム装着前のタイヤ内部に組み込んだのち、タイヤを適用リムに装着することを特徴とする安全タイヤの製造方法。
【0020】
(4) 上記(1)、(2)または(3)において、差圧が100kPa以上であることを特徴とする安全タイヤの製造方法。
【0021】
(5) 上記(1)ないし(4)のいずれかにおいて、発泡性組成物は、発泡剤を封入した粒子から成ることを特徴とする安全タイヤの製造方法。
【0022】
【発明の実施の形態】
まず、この発明が対象とする安全タイヤについて、その幅方向断面を示す図1及び図2に基づいて説明する。
すなわち、図1の安全タイヤは、タイヤ1を適用リム2に装着し、該タイヤ1と適用リム2とで区画されたタイヤ1の内部に、樹脂による連続相と独立気泡とからなる、発泡性組成物3を配置して成る。なお、タイヤ1は、各種自動車用タイヤ、例えば乗用車用タイヤなどの一般に従うものであれば、特に構造を限定する必要はない。例えば、図示のタイヤは一般的な自動車用タイヤであり、1対のビード部4間でトロイド状に延びるカーカス5のクラウン部に、その半径方向外側へ順にベルト6およびトレッド7を配置して成る。なお、図において、符号8はインナーライナー層および9は発泡性組成物3周囲の空隙である。
【0023】
上記発泡性組成物3は、略球形状の樹脂による連続相で囲まれた独立気泡を有する、例えば径が10μmから500μm程度の中空体、あるいは独立気泡による小部屋の多数を含む海綿状構造体である。すなわち、該発泡性組成物3は、外部と連通せずに密閉された独立気泡を内包する粒子であり、該独立気泡の数は単数であってもよいし、複数であってもよい。この粒子が独立気泡を有することは、該粒子が独立気泡を密閉状態で内包する樹脂製の殻を有することである。上記の樹脂による連続相とは、この樹脂製の殻を構成する成分組成上の連続相を指す。
【0024】
この発泡性組成物3を内部に配置したタイヤが受傷すると、発泡性組成物3とともにタイヤに車両によって指定される内圧を付与していた発泡性組成物3相互間の空隙9に存在する気体がタイヤの外側に漏れ出る結果、タイヤとリムとの組立体の内圧はタイヤの外側と同程度の圧力に低下する。そして、この内圧低下の過程において、次の事がタイヤ内で起こっている。
【0025】
まず、タイヤが受傷し内圧が低下し始めると、発泡性組成物3が受傷部を封止し、急激な内圧低下を抑制する。その一方、タイヤ内圧の低下に伴いタイヤの撓み量は増加し、タイヤとリムとの組立体の内容積が減少する事によって、タイヤとリムとの組立体の内容積が充填した発泡性組成物3の総体積に近づいてくる。さらにタイヤ内圧が低下すると、タイヤとリムとの組立体の内容積が充填した発泡性組成物3の総体積とほぼ同等の状態にまで減少する。この状態からは、発泡性組成物3そのものが直接的に荷重を負担することとなり、その後の走行に必要な最低限のタイヤ撓み量を保持することとなる。一方、上記の車両によって指定される内圧(以下、車両指定内圧という)下で存在していた発泡性組成物3の独立気泡中の気泡内圧力は、受傷後も上記の車両指定内圧に準じた圧力を保ったまま、言い換えれば、受傷前の粒子総体積を保持したままタイヤとリムとの組立体内に存在する事となる。よって、さらにタイヤが転動する事により、発泡性組成物3そのものが直接的に荷重を負担しつつ粒子同士が摩擦を引き起こし自己発熱するために、タイヤとリムとの組立体内の粒子の温度が急上昇する。すると、発泡性組成物3の熱膨張開始温度を越え、発泡性組成物3の独立気泡中の気泡内圧力が車両指定内圧に準じた圧力であるのに加え、発泡性組成物3温度の急上昇によりさらに気泡内圧力が上昇しているために、発泡性組成物3が一気に体積膨張しタイヤ内圧を受傷前に近い状態まで復活させる事ができるのである。
【0026】
上記の状態は、発泡性組成物3が直接的に荷重を負担することで走行に必要な最低限のタイヤ内圧を与えている状態である。この状態でのタイヤの撓みは比較的小さく、従来技術による安全タイヤに比して円形状を保つ事ができ、よって接地踏面内の接地圧力分布が比較的均一な状態を保つ事ができるために、例えばスタッドレスタイヤなどの冬期路面走行を主体としたタイヤに、上記の発泡性組成物3中空粒子を充填した本発明のタイヤにあっては、タイヤ受傷後であってもスタッドレスタイヤのもつ基本的な性能を低下させる事はない。すなわち、氷雪路等での摩擦係数の低い路面にあっても、駆動性、制動性、旋回性などの操縦性能を悪化させることが少なく、走行不能に陥る事はない。
【0027】
以上の効果は、タイヤの内側に発泡性組成物3を配置することにより得られるから、タイヤ構造自体を規制する必要はなく、汎用のタイヤ、そして汎用のリムを活用して、新たに安全タイヤを提供できる。
【0028】
また、図2に示す安全タイヤは、タイヤ1を適用リム2に装着し、該タイヤ1と適用リム2とで区画されたタイヤ1の内部を複数室、図示例ではそれぞれタイヤ1の周方向に連続する2つの室1aおよび1bに分割し、これら室の少なくとも一室、図示例で室1aに空気や窒素などの気体を充填すると共に、残りの少なくとも一室、図示例で室1bに、上記した発泡性組成物3を配置して成る。
【0029】
なお、タイヤ1の室1aおよび1bを区画する隔壁9には、通常のチューブと同じブチルゴムの一層構造でもよいが、図3にしめすように、隔壁9を熱可塑性樹脂組成物による外層9aと、ゴム弾性体からなる内層9bとからなるラミネート構造とすることも可能である。ここで、図3における、符号10は、隔壁9部分をリム2周りに組み付ける際に、該リムのフランジを落とし込むための凹所からなるドロップ部である。すなわち、隔壁9部分を後述のように中空リング体としてタイヤ1内部に組み込む際、リム径よりも小径とした中空リング体を用いて、中空リング体そのものがリムを締め付けることによって、リムに中空リング体を固定している。従って、リムベースより大径のフランジを中空リング体が通過するためのドロップ部10が必要になるのである。
【0030】
この図2または図3に示す安全タイヤは、受傷すると室1a内の気体が外部へ散逸するものの、この気体の散逸後に生じた圧力差によって発泡性組成物3が膨張する結果、限定された距離を走行可能とするに足る内圧、つまりたわみ抑制能力並びに荷重支持機能を複合体が発現することができるため、ランフラットタイヤとして十分な性能を有するものとなる。
【0031】
以上の構成を有する安全タイヤは、この発明の方法に従って製造することができる。すなわち、リム装着後のタイヤの内部または隔壁で区画した室内に発泡性組成物を直接配置するか、または図2および図3の例では発泡性組成物を内部に配置した中空リング体(すなわち隔壁)を、リム装着前のタイヤの内部に設置することにより得られる。
【0032】
ここで、発泡性組成物を、リム装着後のタイヤ内部、あるいは中空リング体の内部に充填するには、ダイヤフラムポンプ等を用いた圧入充填法が選択されるのが通例である。しかしながら、特に発泡性組成物が流動性の劣る粉粒体の場合に、かような手法を用いると、配管内において発泡性組成物が圧密現象を引き起し、発泡性組成物の移送が行えなくなるという問題が発生する。この圧密現象は、発泡性組成物の移送系において固気比、すなわち移送される流体に含まれる固体成分V(リットル)と気体成分V(リットル)との比V/Vが上昇するために発生するものである。これを回避するためには、予め固気比を極めて低くしておくことが有効であるが、固気比の低下は、言い換えるなら移送効率が極端に低下することを示している。従って、生産性を著しく阻害するため、この手法を採用することは難しい。
【0033】
一方、固気比を変化させない移送手法としては、吸引充填法が挙げられる。吸引充填法は、タイヤの内部、あるいは中空リング体の内部に通ずる開口部を複数箇所に設け、一方の開口部より内部の空気を吸引し、その空気の流れに乗じて、他方の開口部より発泡性組成物の充填を行うものである。この手法の場合、固気比一定のまま充填が行えるため、圧密現象を回避することが可能である。しかしながら、複数箇所の開口部を必要とすることから、特に安全タイヤへの適用に特殊な専用ホイールの使用が前提となり、実現性に乏しい。
【0034】
そこで、発明者は、固気比の変化に着目し、開口部が一箇所でありながら発泡性組成物を圧密させることなく充填する方法について鋭意研究した結果、生産性をも向上させ得る、この発明の方法を導くに到ったのである。
【0035】
次に、この発明の基本原理を、リム装着後のタイヤの内部に発泡性組成物を充填する場合を例に説明する。
すなわち、図4に示すように、リム2に装着されたタイヤ1と、発泡性組成物11が充填された耐圧容器12とを管13によって連結し、タイヤの内圧に比して耐圧容器12の内圧を高く設定しておく。このとき、管13の中間にボールバルブなどの圧力封止弁14を設置し、両者間の圧力差が平衡に達しないようにしておく。次いで、圧力封止弁14を開放すると、耐圧容器12の内圧とタイヤの内圧との差(以下、差圧という)によって、耐圧容器12内の高圧気体がタイヤ1内へと流れ込み、その気流に乗せて発泡性組成物11を移送し、タイヤ1の内部に発泡性組成物11を配置する。
【0036】
なお、管13からの分岐に設けたフィルター15および圧力封止弁16は、発泡性組成物11を充填完了後にタイヤ内圧を低下する際に用いる。つまり、所定量の発泡性組成物11がタイヤ1内部に配置された後、圧力封止弁14を閉じることによって、発泡性組成物11の移送が完了する。この時点では、タイヤ1内部の圧力は高いため、管13をタイヤ1から取り外すことができない。そこで、フィルター15に通じる圧力封止弁16を開放することにより、タイヤ1内部に配置された発泡性組成物11を漏洩させることなく、タイヤ内圧を大気圧にまで低下させることが可能となる。
【0037】
ここで、圧密の支配因子である固気比を詳細に考察してみる。移送中は、耐圧容器12〜タイヤ1間に圧力勾配が発生している。従って、移送中の気体は、タイヤに近づくにつれ圧力が減少し、同時にその体積を増加させてゆくことになる。一方、発泡性組成物11の連続相、つまり樹脂製の殻は、常温(T:ガラス転移点以下)においてはガラス状態であるため、周囲の圧力変動に呼応して体積変化を生じることはない。たとえ、その内部に高圧ガスを封入していたとしても、発泡性組成物11の体積変化は極めて微小で、実質的にその変化が固気比に影響を与えることはないため、タイヤに近づくほど気体成分のリッチな、つまり固気比の小さな状態となる。最終的には、圧力平衡に達した時点で発泡性組成物11の移送は停止するが、上記の基本原理により、この発明の手法は、開口部が一箇所であっても圧密が発生せず、良好な充填効率を発揮することができる。更に、従来の充填手法よりも、非常に速い移送速度を得ることが可能となる。
【0038】
また、この発泡性組成物の移送時の差圧は、100kPa以上であることが好ましい。なぜなら、耐圧容器12からタイヤ内部への発泡性組成物の移送速度は、耐圧容器12およびタイヤの差圧に依存するため、この差圧が100kPa以下では移送効率の低下が著しい上、前述の基本原理から明らかなように、圧密を回避するためには固気比を低下せしめる必要が有るが、圧力差が100kPa以下では充分な圧力勾配が得られない為、固気比の低下が不十分で圧密を引き起しやすい。
【0039】
以上の説明では、リム装着後のタイヤ内部に発泡性組成物を移送して配置する例を示したが、先に図2または図3に示したタイヤ内部の複数室の少なくとも一室に発泡性組成物を移送して配置する場合は、当該室に、発泡性組成物11が充填された耐圧容器12を管13によって連結し、上記したように差圧による発泡性組成物11の移送を行えばよい。あるいは、発泡性組成物11を配置する室を区画している隔壁を、中空リング体で構成し、この中空リング体の内部に予め、上記と同様の手法で発泡性組成物11を充填してから、この中空リング体を、リム装着前のタイヤ内に組み込み、その後リムにタイヤを装着することによっても、安全タイヤの製造が実現できる。
【0040】
【実施例】
図4に示したところに従って、内容積50リットルの耐圧容器12下部に設けられた排出口12aと、5.5J−13のリムに装着後の175/70R13の乗用車用タイヤのタイヤバルブとを耐圧ホース(管)13にて連結した。このとき、タイヤバルブのコアは取り除いておいた。なお、耐圧ホース13の中間部にはボールバルブ(圧力封止弁)14を設置し耐圧容器12およびタイヤ1間を分断し、さらにタイヤ側の耐圧ホース13は途中で分岐しており、一方はタイヤ1のバルブに、他方はフィルター15を経由した後、ボールバルブ(圧力封止弁)16にて封止されている。
【0041】
ここで、耐圧容器12内に、発泡性組成物としてアクゾノーベル社製の発泡中空バルーン(商標名:エクスパンセル092DE120)を400g充填した後、タンク内を絶対圧で500kPaまで加圧したが、耐圧ホースの中間部に挿入したボールバルブ14により発泡中空バルーンがタイヤ1内に流入することはない。このときのタイヤ内圧は大気圧(100kPa)である。その後、ボールバルブ14を開放し、耐圧容器12内の発泡中空バルーンをタイヤ内に移送して配置した。
【0042】
発泡中空バルーン400gが全てタイヤ内への移送が完了した後、ボールバルブ13を閉め、次いでボールバルフ16を開放した。ここで、ボールバルブ16を開放すると、タイヤ内の高圧エアーは漏洩するが、ボールバルブ16以前に設置されたフィルター15により、発泡中空バルーンがタイヤ外に出てくることはない。この操作により、タイヤ内の圧力が大気圧にまで戻った後、タイヤバルブから耐圧ホース13を抜き、バルブコアを装着すれば、安全タイヤがえられる。
以上の工程において、発泡中空バルーン400gがタイヤ内に移送されるのに要する時間を測定し、充填性の評価メジャーとした。
【0043】
また、比較として、前述と同様にリム装着後のタイヤにおいてタイヤバルブを一個増設し、合計二個のタイヤバルブB1およびB2を用いて吸引充填法を行った。すなわち、図5に示すように、発泡中空バルーンがタイヤ内に残留するように、一方のタイヤバルブB1にはフィルターを装着した。他方のタイヤバルブB2はホース13に連結されており、発泡中空バルーン11:400gが満たされた耐圧容器12に導入されている。ここで、吸引ポンプを用いて、タイヤバルブB1からタイヤ内のエアーを吸引し、発泡中空バルーン400g全てがタイヤ内に移送されるのに要する時間を測定した。ここで用いた吸引ポンプは、真空機工株式会社製、MINIVAC PD−136である。
【0044】
さらに、比較として、前述と同様にリム装着後のタイヤにおいて、タイヤバルブを一個増設し、合計二個のタイヤバルブを用いて充填法を行った。すなわち、図5に示す圧入充填の際に、高圧化するタイヤ内圧を逃がしつつ、発泡中空バルーンがタイヤ内に残留するように、一方のタイヤバルブB1にはフィルターを装着した。他方のタイヤバルブB2はホース13に連結されており、発泡中空バルーン11:400gが満たされた耐圧容器12に導入されている。そして、ホース13中間部にダイヤフラムポンプPが設置されており、このダイヤフラムポンプPを用いて、発泡中空バルーン400g全てがタイヤ内に移送されるのに要する時間を測定した。ここでダイヤフラムポンプは、株式会社タクミナ製、エアクッションポンプDL25−SL−GG−Xである。
【0045】
なお、各充填法に用いた耐圧ホースは、試験条件統一の為、内径10mmのウレタンホースに限定した。各充填法に用いたタイヤバルブは、特殊なものではなく、一般に市販されている通常のタイヤバルブを用いた。
【0046】
また、図4に示した差圧充填法に用いた耐圧容器は、具体的には図7に示すとおりである。すなわち、耐圧容器12は、例えば図7に示すように、第1タンク12a及び第2タンク12bから構成し、第1タンク12aから所定量に計量した発泡性組成物を第2タンク12bに移送し、この第2タンク12bから正確な量の発泡性組成物をタイヤ1に充填することが可能である。この場合、第1タンク12aは大量の材料をストックしておくため大型であるので、精密な計量には適さないが、第2タンク12bに計量機能を持たせるとよい。すなわち、予め所定の重量を計量して第2タンク12bに移送し、タイヤに充填して減った重量を測定することにより、正確な充填量を導き出すことができる。例えば、第2タンク12bを天秤20の上に置き、その状態で充填することによって、計量に併せた充填が実現する。
【0047】
上記の3種類の充填方法について、タイヤバルブを通常のものから特殊な形状のものに変更して上記と同様の充填試験を行って評価した。ここで用いた特殊バルブとは、バルブ内径を6mmまで拡大したものである。通常バルブおよび特殊バルブを用いた時の充填性評価結果を、表1に示す。
【0048】
【表1】

Figure 2004017436
【0049】
同様に、タイヤサイズを205/65R15、リムサイズを6・5JJ−13にまで拡大し、充填バルーン量を600gとした時の充填性評価結果を、表2に示す。
【0050】
【表2】
Figure 2004017436
【0051】
表1と同じタイヤおよびリムを用いて、充填される発泡性組成物を、松本油脂製薬株式会社製の発泡中空バルーン(商標:マツモト・マイクロスフェアーF80ED)300gに変更して充填した時の充填性評価結果を、表3に示す。
【0052】
【表3】
Figure 2004017436
【0053】
【発明の効果】
この発明によって、タイヤ受傷前の通常走行時における転がり抵抗および乗り心地性を犠牲にすることなしに、タイヤ受傷状態にあっても安定した走行を可能とした安全タイヤを、効率良くかつ経済的に製造することができる。
【図面の簡単な説明】
【図1】この発明に従う安全タイヤを示すタイヤ幅方向断面図である。
【図2】この発明に従う別の安全タイヤを示すタイヤ幅方向断面図である。
【図3】この発明に従う他の安全タイヤを示すタイヤ幅方向断面図である。
【図4】この発明に従う安全タイヤの製造方法を示す図である。
【図5】在来手法による安全タイヤの製造方法を示す図である。
【図6】在来手法による安全タイヤの製造方法を示す図である。
【図7】耐圧容器の具体例を示す図である。
【符号の説明】
1 タイヤ
2 リム
1a 室
1b 室
3 発泡性組成物
4 ビードコア
5 カーカス
6 ベルト
7 トレッド
8 インナーライナー層
11 発泡性組成物
12 耐圧容器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a safety tire that enables normal running even after being injured.
[0002]
[Prior art]
In a pneumatic tire, for example, in a tire for a passenger car, the air is sealed under a pressure of about 150 kPa to about 250 kPa with a gauge pressure inside the tire, and a tension is generated in a tire skeleton such as a carcass and a belt of the tire. Deformation of the tire and its restoration are possible in response to the input to the tire. That is, by maintaining the internal pressure of the tire in a predetermined range, by generating a constant tension in the skeleton of the tire, to impart a load supporting function, to increase the rigidity, such as driving, braking and turning performance, It provides the basic performance required for running the vehicle.
[0003]
By the way, when the tire held at the predetermined internal pressure is damaged, air leaks out to the outside through the wound and the tire internal pressure decreases to the atmospheric pressure, resulting in a so-called puncture state. Most of the tension that had been applied will be lost. Then, the load supporting function and the driving, braking, and turning performances obtained by applying a predetermined internal pressure to the tires are also lost, so that the vehicle equipped with the tires cannot run.
[0004]
Therefore, many proposals have been made on so-called safety tires that enable running even in a punctured state. For example, various types of pneumatic safety tires and rim assemblies for automobiles include those having a double wall structure, those having a load supporting device disposed in the tire, and those having reinforced tire side portions. Proposed. Among these proposals, the technology actually used is a tire provided with a side reinforcing layer made of a relatively hard rubber on an inner surface from a shoulder portion to a bead portion around a sidewall portion of the tire. This type of tire is mainly used as a so-called run-flat tire having an aspect ratio of 60% or less.
[0005]
However, the method of adding a side reinforcing layer increases the tire's longitudinal spring constant by increasing the tire weight by 30% to 40%, so that the rolling resistance is significantly deteriorated and the riding comfort during normal running before puncturing. There is a disadvantage that leads to a decline. Therefore, it has a bad influence on the performance, fuel consumption and environment during normal running, and is therefore a technology that is still poor in versatility.
[0006]
On the other hand, in the case of a pneumatic tire having a high tire cross section and an aspect ratio of 60% or more, the rim is internally supported by a core or the like in order to avoid heat generation in the sidewall portion due to relatively high speed and long distance running. Run flat tires having a structure in which a body is fixed and a load at the time of puncturing is supported are mainly applied.
[0007]
However, the tire cannot withstand local repeated stress generated between the tire and the internal support during run flat after puncture, and as a result, the mileage after puncture is limited to about 100 km to 200 km. I was In addition, the work of assembling the tire to the rim after disposing the internal support inside the tire has been a problem in that it is complicated and takes a long time. In this regard, there has been proposed a device in which a difference is provided in the rim diameter between the one end side and the other end side in the width direction of the rim so that the internal support can be easily inserted. However, a sufficient effect has not been obtained.
[0008]
In order to extend the running distance after a puncture of a run flat tire having an internal support, it is effective to add a skeleton material to make the tire structure heavier, but the added skeleton material is used during normal use. It is not realistic to adopt this method because the rolling resistance and ride comfort of the vehicle deteriorate.
[0009]
Furthermore, these prior art safety tires can exert a certain level of running ability after puncturing on a road surface having a relatively high friction coefficient such as a normal asphalt road surface or an uneven road surface. However, on a road surface having a low coefficient of friction, such as an icy road or a snowy road in winter, when a punctured tire is not a driving wheel but a free wheel, a serious defect is exposed. In other words, in the state before the puncture, the deflection of the tires is small and the shape close to a circle is maintained. Start rolling. However, in the state after the puncture, the tire is largely bent and has a shape deviating from a circular shape. Since the idle wheel is a wheel that cannot roll itself, that is, cannot generate a driving force, the rolling of the idle wheel depends on the movement of the vehicle and the coefficient of friction of the road surface. Therefore, even when the vehicle starts to move on a road surface with a low friction coefficient, the tire that has deviated from a circular shape due to a puncture due to a low friction coefficient of the road surface due to a low friction coefficient may generate a large slip on the tread and contact the rolling surface. It will move with the vehicle without being dragged. The reason is that the contact pressure distribution in the contact tread surface becomes extremely non-uniform with large bending deformation as compared with a relatively uniform state before puncturing. Such a situation occurs not only at the time of starting but also at the time of braking. Therefore, a "driving force adjustment function (traction control system)" to supplement safe driving on a road surface with a low coefficient of friction, which is a function installed in the vehicle in advance, and "braking force adjustment to avoid tire lock during braking" Not only does the function (anti-lock brake system), etc. fail to be fully demonstrated, but there is also a risk that the vehicle will malfunction and lose control. In particular, in a vehicle in which the front wheels are idle wheels and steered wheels, and the rear wheels are drive wheels, when the front wheels are punctured, the steerability is extremely reduced, and it goes without saying that the vehicle is in a very dangerous state.
[0010]
Further, a tire in which a foam having closed cells is filled into an internal cavity of an assembly of a tire and a rim to be assembled with the tire is disclosed in, for example, JP-A-6-127207, JP-A-6-183226, and JP-A-7-183226. It is described in 186610 and JP-A-8-332805. These proposed tires are mainly limited to special or small tires such as agricultural tires, rally tires, motorcycle tires and bicycle tires. Therefore, its application to tires for passenger cars, tires for trucks and buses, and particularly to tires that emphasize rolling resistance and ride comfort is unknown. And since all foams have a low expansion ratio, the weight is large in place of the foam having bubbles, and it is inevitable that the vibration ride comfort and fuel consumption deteriorate, and the inside of the closed cells is at atmospheric pressure, Conventionally, it was not functionally sufficient to substitute high pressure air for tires.
[0011]
Further, Japanese Patent No. 2987076 discloses a puncture-free tire in which a foam filler is inserted into an inner peripheral portion. However, in addition to the disadvantage that the internal pressure of bubbles is very close to the atmospheric pressure, the foam is urethane-based. For this reason, energy loss due to intermolecular hydrogen bonding of the urethane group is large, and self-heating is high. Therefore, when the urethane foam is filled in the tire, the foam generates heat due to the repeated deformation during rolling of the tire, and the durability is greatly reduced. In addition, since a material that is difficult to form air bubbles independently is used, air bubbles are easily communicated and it is difficult to retain gas, and a desired tire internal pressure (load supporting ability or deflection suppressing ability, the same applies hereinafter). There are disadvantages that cannot be obtained.
[0012]
Further, Japanese Patent Application Laid-Open No. 48-47002 discloses that the outer periphery of a multi-cellular body mainly composed of closed cells is integrally covered and sealed with an outer coating film having a thickness of 0.5 to 3 mm such as rubber or synthetic resin. A puncture-less tire has been proposed in which a large number of inflated pressure bubbles are filled in a tire and the tire is maintained at a specified internal pressure. In this technology, in order to make the pressure inside the cells of the foam higher than the normal pressure, the amount of the foaming agent in the raw material for forming the closed cells to be expanded pressure bubbles is at least equal to or greater than the tire volume. The compounding amount of the foaming agent that generates gas is set, thereby aiming at the same performance as at least a normal pneumatic tire.
[0013]
In the above-mentioned technology, in order to prevent the gas inside the bubbles in the inflated pressure foam from being dissipated, the envelope is integrally sealed with an outer coating, but the material of the outer coating is exemplified by an automobile tube or Only materials such as the tube forming compound. In other words, the wrap is sealed with a soft elastic outer coating mainly composed of butyl rubber having low nitrogen gas permeability used for a tire tube or the like, and many of these are filled in the tire. As a manufacturing method, an unvulcanized tire tube is used as a soft elastic outer covering film, and an unvulcanized closed cell forming compound material is used as an inflation pressure foam, and a large number of these are placed inside a tire and rim assembly. Foamed by heating to obtain a foam-filled tire. The normal pressure air inside the tire due to the expansion of the foam is naturally exhausted from the exhaust holes formed in the rim.
[0014]
Here, since the internal pressure of a passenger car tire is generally set to about 150 to 250 kPa at room temperature, the above-mentioned foam-filled tire is manufactured at the time of heating during vulcanization molding (about 140 ° C.). In the state, it is estimated from the gas state equation that the absolute pressure is about 1.5 times the above internal pressure. However, at such a pressure level, it is not possible to avoid the occurrence of blown air resulting from insufficient vulcanization pressure. In order to avoid this blown phenomenon, it is necessary to greatly increase the amount of the foaming agent to increase the pressure generated by foaming and to increase the heating temperature. However, in the method of increasing the amount of the foaming agent, the internal pressure at room temperature greatly exceeds 300 kPa due to the increase in the amount of the foaming agent. Therefore, it has been difficult to use the method as a substitute for a conventional pneumatic tire. In addition, the method of increasing the heating temperature causes a problem in durability over a long period of use because the tire is greatly damaged due to thermal aging and the durability of the tire is greatly deteriorated. On the other hand, inside the tire and the rim assembly, a number of inflated pressure bubbles wrapped in the soft elastic outer coating are arranged, but the friction between the soft elastic outer coatings generated by the blown, the inner surface of the tire and the inner surface of the rim. There is a great problem in terms of durability, such as friction with the material. From the above, it can be said that the above problem is a major drawback caused by disposing a large number of divided inflation pressure bubbles, unlike the case where the shape of the inflation pressure bubbles takes an integral donut shape. In addition, although the exhaust holes formed in the rim are effective for naturally exhausting the normal pressure air inside the tire due to the expansion of the inflation pressure foam, the exhaust holes and the gas passages in the inflation pressure bubble are dissipated. Therefore, it cannot be used for a long time.
[0015]
Furthermore, as the soft elastic outer coating film, a compound composition mainly composed of butyl rubber having low nitrogen gas permeability, such as a tire tube, is used, but butyl rubber has a very low vulcanization reaction rate, so the reaction is completed. To do so, a large heating time is required at a temperature of about 140 ° C. This means that the cross-linking density of the soft elastic outer coating film is insufficient, and it is needless to say that the soft elastic outer coating film is one of the causes of peeling. Further, the extension of the heating time further increases the damage of the tire due to the heat aging described above.
[0016]
[Problems to be solved by the invention]
Under such technical background, there has been a demand for the provision of safety tires that enable stable driving even after tire injuries without sacrificing rolling resistance and riding comfort during normal driving. is there.
Therefore, an object of the present invention is to propose a novel manufacturing method of a safety tire that enables provision of a safety tire satisfying the above-mentioned requirements.
[0017]
[Means for Solving the Problems]
That is, the gist configuration of the present invention is as follows.
(1) A tire is mounted on an applicable rim, and a foamable composition is disposed inside a tire partitioned by the tire and the applied rim. In manufacturing a safety tire, a pressure resistance filled with the foamable composition is used. The container is connected to the tire after application of the rim via a pipe, the internal pressure of the pressure-resistant container is increased relative to the internal pressure of the tire, and the foamable composition is transferred from the pressure-resistant container to the inside of the tire with the pressure difference. And a foamable composition disposed inside the tire.
[0018]
(2) A safety tire in which a tire is mounted on an application rim, the interior of the tire defined by the tire and the application rim is further divided into a plurality of chambers, and a foamable composition is arranged in at least one of the chambers. In manufacturing the foamable composition, the pressure-resistant container filled with the foamable composition is connected via a pipe to a chamber in which the foamable composition of the tire after application of the rim is mounted, and the pressure-resistant container is compared with the internal pressure of the chamber. A method for producing a safety tire, comprising increasing the internal pressure of a container, transferring the foamable composition from the pressure-resistant container to a chamber inside the tire with the pressure difference, and disposing the foamable composition inside the room.
[0019]
(3) A safety tire in which a tire is mounted on an application rim, and the interior of the tire partitioned by the tire and the application rim is further divided into a plurality of chambers, and a foamable composition is disposed in at least one of the chambers. In the production of the pressure-resistant container filled with the foamable composition, a hollow ring body is connected via a pipe, and the internal pressure of the pressure-resistant container is increased as compared with the internal pressure of the hollow ring body. The foamable composition is transferred from the pressure-resistant container to the hollow ring body with pressure, the foamable composition is arranged inside the hollow ring body, and then the hollow ring body is incorporated into the tire before the application rim is attached, and then the tire A method for manufacturing a safety tire, wherein the method is mounted on a rim.
[0020]
(4) The method for producing a safety tire according to (1), (2) or (3), wherein the differential pressure is 100 kPa or more.
[0021]
(5) The method for producing a safety tire according to any one of the above (1) to (4), wherein the foamable composition comprises particles in which a foaming agent is encapsulated.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
First, a safety tire according to the present invention will be described with reference to FIGS.
That is, the safety tire shown in FIG. 1 has a foaming property in which a tire 1 is mounted on an applied rim 2 and a continuous phase of resin and closed cells are formed inside the tire 1 partitioned by the tire 1 and the applied rim 2. Composition 3 is arranged. In addition, the structure of the tire 1 is not particularly limited as long as the tire 1 generally follows various kinds of automobile tires, for example, passenger car tires. For example, the illustrated tire is a general automobile tire, and is formed by arranging a belt 6 and a tread 7 on a crown portion of a carcass 5 extending in a toroidal shape between a pair of bead portions 4 in a radially outward direction. . In addition, in the figure, the code | symbol 8 is an inner liner layer and 9 is a space | gap around the foaming composition 3.
[0023]
The foamable composition 3 has closed cells surrounded by a continuous phase of a substantially spherical resin, for example, a hollow body having a diameter of about 10 μm to 500 μm, or a spongy structure including a large number of small chambers formed of closed cells. It is. That is, the foamable composition 3 is a particle containing closed cells which are not communicated with the outside and are sealed, and the number of the closed cells may be singular or plural. The fact that the particles have closed cells means that the particles have a resin shell enclosing the closed cells in a sealed state. The continuous phase of the resin described above refers to a continuous phase on the component composition constituting the resin shell.
[0024]
When the tire in which the foamable composition 3 is disposed is damaged, gas present in the voids 9 between the foamable compositions 3 that have given the tire an internal pressure specified by the vehicle together with the foamable composition 3 is generated. As a result of leaking out of the tire, the internal pressure of the tire and rim assembly drops to a pressure similar to that of the outside of the tire. In the process of the internal pressure drop, the following occurs in the tire.
[0025]
First, when the tire is damaged and the internal pressure starts to decrease, the foamable composition 3 seals the damaged part and suppresses a sharp decrease in the internal pressure. On the other hand, the amount of flexure of the tire increases as the tire internal pressure decreases, and the internal volume of the tire / rim assembly decreases, thereby filling the internal volume of the tire / rim assembly. 3 approaching the total volume. When the tire internal pressure further decreases, the internal volume of the assembly of the tire and the rim decreases to a state substantially equal to the total volume of the filled foamable composition 3. From this state, the foamable composition 3 itself bears the load directly, and maintains the minimum amount of tire deflection necessary for subsequent traveling. On the other hand, the pressure in the closed cells of the foamable composition 3 which was present under the internal pressure specified by the vehicle (hereinafter referred to as the vehicle-specified internal pressure) was in accordance with the vehicle-specified internal pressure even after the injury. It is present in the tire and rim assembly while maintaining the pressure, in other words, maintaining the total volume of the particles before the injury. Therefore, when the tire further rolls, the foaming composition 3 itself directly bears the load and causes friction between the particles, causing self-heating. Therefore, the temperature of the particles in the assembly of the tire and the rim becomes lower. Soaring. Then, in addition to exceeding the thermal expansion start temperature of the foamable composition 3, the pressure inside the cells in the closed cells of the foamable composition 3 is equal to the pressure specified by the vehicle, and the temperature of the foamable composition 3 rises rapidly. As a result, the foamable composition 3 further expands in volume at a stretch because the pressure inside the bubbles is further increased, and the tire pressure can be restored to a state close to that before the injury.
[0026]
The above state is a state in which the foamable composition 3 directly applies the load to give the minimum tire pressure necessary for running. The deflection of the tire in this state is relatively small, and the tire can maintain a circular shape as compared with the safety tire according to the related art, so that the contact pressure distribution in the contact tread can be kept relatively uniform. For example, in the tire of the present invention in which the above foamable composition 3 hollow particles are filled into a tire mainly for running on a road in winter such as a studless tire, even if the tire is injured, the basic property of the studless tire is Performance will not be reduced. That is, even on a road surface having a low friction coefficient such as an icy road, the driving performance, the braking performance, the turning performance and the like are hardly degraded, and the vehicle does not run.
[0027]
Since the above effects can be obtained by disposing the foamable composition 3 inside the tire, there is no need to regulate the tire structure itself, and a general-purpose tire and a general-purpose rim are used to newly provide a safety tire. Can be provided.
[0028]
In the safety tire shown in FIG. 2, the tire 1 is mounted on the applied rim 2, and the inside of the tire 1 divided by the tire 1 and the applied rim 2 is provided in a plurality of chambers, in the illustrated example, each in the circumferential direction of the tire 1. The chamber is divided into two continuous chambers 1a and 1b, and at least one of these chambers, the chamber 1a in the illustrated example, is filled with a gas such as air or nitrogen, and the remaining at least one chamber, the chamber 1b in the illustrated example, is charged into the above chamber. The foamable composition 3 is arranged.
[0029]
The partition 9 that partitions the chambers 1a and 1b of the tire 1 may have a single-layer structure of butyl rubber, which is the same as a normal tube. However, as shown in FIG. 3, the partition 9 has an outer layer 9a made of a thermoplastic resin composition, It is also possible to adopt a laminate structure including the inner layer 9b made of a rubber elastic body. Here, reference numeral 10 in FIG. 3 denotes a drop portion formed by a recess for dropping a flange of the rim when the partition 9 is assembled around the rim 2. That is, when the partition 9 portion is incorporated into the tire 1 as a hollow ring body as described later, the hollow ring body itself is tightened by using a hollow ring body having a diameter smaller than the rim diameter, whereby the hollow ring is attached to the rim. Your body is fixed. Therefore, the drop part 10 for the hollow ring body to pass through the flange whose diameter is larger than the rim base becomes necessary.
[0030]
In the safety tire shown in FIG. 2 or FIG. 3, although the gas in the chamber 1a is dissipated to the outside when injured, the foamable composition 3 expands due to the pressure difference generated after the dissipation of the gas. Since the composite can exhibit an internal pressure sufficient to allow the vehicle to travel, that is, a deflection suppressing ability and a load supporting function, the tire has sufficient performance as a run flat tire.
[0031]
The safety tire having the above configuration can be manufactured according to the method of the present invention. That is, the foamable composition is directly disposed inside the tire after the rim is mounted or in a room partitioned by the partition, or in the example of FIGS. 2 and 3, a hollow ring body (that is, the partition) in which the foamable composition is disposed inside ) Is installed inside the tire before the rim is mounted.
[0032]
Here, in order to fill the foamable composition into the tire after the rim is mounted, or into the hollow ring, a press-fitting method using a diaphragm pump or the like is generally selected. However, particularly when the foamable composition is a powder having poor fluidity, the use of such a technique causes the foamable composition to cause a consolidation phenomenon in the pipe, so that the foamable composition can be transferred. The problem of disappearing occurs. This consolidation phenomenon is caused by the solid-gas ratio in the transfer system of the foamable composition, that is, the solid component V contained in the transferred fluid. S (Liter) and gas component V G (Liter) V S / V G Is caused by rising. In order to avoid this, it is effective to make the solid-gas ratio extremely low in advance, but a decrease in the solid-gas ratio indicates that the transfer efficiency is extremely reduced in other words. Therefore, it is difficult to adopt this method because productivity is significantly impaired.
[0033]
On the other hand, as a transfer method that does not change the solid-gas ratio, a suction filling method can be used. In the suction filling method, the opening inside the tire or the inside of the hollow ring body is provided at a plurality of locations, the air inside is sucked from one opening, the air flow is multiplied, and the other opening is used. This is for filling the foamable composition. In the case of this method, the filling can be performed with the solid-gas ratio kept constant, so that the compaction phenomenon can be avoided. However, since a plurality of openings are required, it is premised on the use of a special dedicated wheel especially for application to a safety tire, and the feasibility is poor.
[0034]
Then, the inventor pays attention to the change in the solid-gas ratio, and as a result of earnestly studying a method of filling the foamable composition without consolidating while the opening is located at one place, the productivity can be improved. They have led to the method of the invention.
[0035]
Next, the basic principle of the present invention will be described by taking, as an example, a case where the foamable composition is filled into the tire after the rim is mounted.
That is, as shown in FIG. 4, the tire 1 mounted on the rim 2 and the pressure-resistant container 12 filled with the foamable composition 11 are connected by the pipe 13, and the pressure-resistant container 12 is compared with the internal pressure of the tire. Set the internal pressure high. At this time, a pressure sealing valve 14 such as a ball valve is installed in the middle of the pipe 13 so that the pressure difference between the two does not reach equilibrium. Next, when the pressure sealing valve 14 is opened, a high-pressure gas in the pressure-resistant container 12 flows into the tire 1 due to a difference between the internal pressure of the pressure-resistant container 12 and the internal pressure of the tire (hereinafter, referred to as a differential pressure), and The foamable composition 11 is transported by being put thereon, and the foamable composition 11 is arranged inside the tire 1.
[0036]
Note that the filter 15 and the pressure sealing valve 16 provided at the branch from the pipe 13 are used when the internal pressure of the tire is reduced after the filling of the foamable composition 11 is completed. That is, after a predetermined amount of the foamable composition 11 is disposed inside the tire 1, the transfer of the foamable composition 11 is completed by closing the pressure sealing valve 14. At this point, since the pressure inside the tire 1 is high, the pipe 13 cannot be removed from the tire 1. Therefore, by opening the pressure sealing valve 16 communicating with the filter 15, the internal pressure of the tire can be reduced to the atmospheric pressure without leaking the foamable composition 11 disposed inside the tire 1.
[0037]
Here, the solid-gas ratio which is a controlling factor of the consolidation will be considered in detail. During the transfer, a pressure gradient is generated between the pressure-resistant container 12 and the tire 1. Therefore, the pressure of the gas being transferred decreases as it approaches the tire, and at the same time, the volume of the gas increases. On the other hand, the continuous phase of the foamable composition 11, that is, the shell made of resin, is at room temperature (T g (Below the glass transition point), since it is in a glassy state, it does not change in volume in response to fluctuations in ambient pressure. Even if a high-pressure gas is sealed therein, the change in volume of the foamable composition 11 is extremely small, and the change does not substantially affect the solid-gas ratio. The gas component is rich, that is, the solid-gas ratio is small. Eventually, when the pressure equilibrium is reached, the transfer of the foamable composition 11 is stopped. However, according to the above-described basic principle, the method of the present invention does not cause consolidation even if only one opening is provided. , Good filling efficiency can be exhibited. Furthermore, it is possible to obtain a very high transfer speed compared to the conventional filling method.
[0038]
Further, the differential pressure during the transfer of the foamable composition is preferably 100 kPa or more. This is because the transfer speed of the foamable composition from the pressure-resistant container 12 to the inside of the tire depends on the pressure difference between the pressure-resistant container 12 and the tire. Therefore, when the pressure difference is 100 kPa or less, the transfer efficiency is significantly reduced. As is clear from the principle, it is necessary to lower the solid-gas ratio in order to avoid consolidation, but if the pressure difference is less than 100 kPa, a sufficient pressure gradient cannot be obtained. Easy to cause consolidation.
[0039]
In the above description, an example in which the foamable composition is transferred and arranged inside the tire after the rim is mounted has been described, but at least one of the plurality of chambers inside the tire shown in FIG. 2 or FIG. When the composition is transferred and arranged, a pressure-resistant container 12 filled with the foaming composition 11 is connected to the chamber by a tube 13, and the foaming composition 11 is transferred by the differential pressure as described above. Just do it. Alternatively, a partition partitioning a chamber in which the foamable composition 11 is arranged is formed of a hollow ring body, and the interior of the hollow ring body is previously filled with the foamable composition 11 in the same manner as described above. Therefore, the safety tire can be manufactured by incorporating the hollow ring body into the tire before the rim is mounted, and then mounting the tire on the rim.
[0040]
【Example】
As shown in FIG. 4, the discharge port 12a provided in the lower part of the pressure-resistant container 12 having an inner volume of 50 liters and the tire valve of the 175 / 70R13 passenger car tire mounted on the 5.5J-13 rim are pressure-resistant. The hose (tube) 13 was connected. At this time, the core of the tire valve was removed. In addition, a ball valve (pressure sealing valve) 14 is installed at an intermediate portion of the pressure-resistant hose 13 to divide the pressure-resistant container 12 and the tire 1, and the pressure-resistant hose 13 on the tire side branches off in the middle. The other of the tires passes through a filter 15 and is sealed with a ball valve (pressure sealing valve) 16.
[0041]
Here, after filling 400 g of a foamed hollow balloon (trade name: Expancel 092DE120) manufactured by Akzo Nobel as a foamable composition into the pressure-resistant container 12, the tank was pressurized to an absolute pressure of 500 kPa. The foamed hollow balloon does not flow into the tire 1 by the ball valve 14 inserted in the middle part of the pressure-resistant hose. The tire internal pressure at this time is the atmospheric pressure (100 kPa). Thereafter, the ball valve 14 was opened, and the foamed hollow balloon in the pressure-resistant container 12 was transferred to and disposed in the tire.
[0042]
After the transfer of all 400 g of the foamed hollow balloon into the tire was completed, the ball valve 13 was closed, and then the ball valve 16 was opened. Here, when the ball valve 16 is opened, the high-pressure air in the tire leaks, but the hollow foam balloon does not come out of the tire due to the filter 15 installed before the ball valve 16. By this operation, after the pressure in the tire returns to the atmospheric pressure, the pressure-resistant hose 13 is removed from the tire valve, and a valve core is attached to obtain a safety tire.
In the above steps, the time required for 400 g of the hollow hollow balloon to be transferred into the tire was measured, and the measured value was used as an evaluation measure of the filling property.
[0043]
For comparison, one tire valve was additionally provided in the tire after the rim was mounted, and the suction filling method was performed using a total of two tire valves B1 and B2 as described above. That is, as shown in FIG. 5, a filter was mounted on one of the tire valves B1 so that the foamed hollow balloon remained in the tire. The other tire valve B2 is connected to a hose 13 and is introduced into a pressure-resistant container 12 filled with 400 g of a hollow foam balloon. Here, the air in the tire was suctioned from the tire valve B1 using a suction pump, and the time required for transferring all 400 g of the foamed hollow balloon into the tire was measured. The suction pump used here is MINIVAC PD-136 manufactured by Vacuum Kiko Co., Ltd.
[0044]
Further, for comparison, one tire valve was added to the rim-mounted tire as described above, and a filling method was performed using a total of two tire valves. That is, at the time of press-filling shown in FIG. 5, a filter was attached to one of the tire valves B1 such that the internal pressure of the tire, which was increased, was released, and the foamed hollow balloon remained in the tire. The other tire valve B2 is connected to a hose 13 and is introduced into a pressure-resistant container 12 filled with 400 g of a hollow foam balloon. A diaphragm pump P was installed in the middle of the hose 13, and the time required for transferring all 400 g of the foamed hollow balloon into the tire was measured using the diaphragm pump P. Here, the diaphragm pump is an air cushion pump DL25-SL-GG-X manufactured by Takumina Corporation.
[0045]
The pressure-resistant hose used for each filling method was limited to a urethane hose having an inner diameter of 10 mm for uniform test conditions. The tire valve used for each filling method was not special, but a general commercially available tire valve was used.
[0046]
The pressure-resistant container used in the differential pressure filling method shown in FIG. 4 is specifically as shown in FIG. That is, as shown in FIG. 7, for example, the pressure-resistant container 12 includes a first tank 12a and a second tank 12b, and transfers the foamable composition measured in a predetermined amount from the first tank 12a to the second tank 12b. The tire 1 can be filled with an accurate amount of the foamable composition from the second tank 12b. In this case, since the first tank 12a is large in size for storing a large amount of material, it is not suitable for precise weighing, but the second tank 12b may have a weighing function. In other words, an accurate filling amount can be derived by measuring a predetermined weight in advance and transferring it to the second tank 12b, and measuring the weight reduced by filling the tire. For example, by placing the second tank 12b on the balance 20 and filling in that state, filling in accordance with the measurement is realized.
[0047]
The above three types of filling methods were evaluated by changing the tire valve from a normal one to a special shape and performing the same filling test as described above. The special valve used here is one in which the inner diameter of the valve is enlarged to 6 mm. Table 1 shows the evaluation results of the filling properties when using the normal valve and the special valve.
[0048]
[Table 1]
Figure 2004017436
[0049]
Similarly, Table 2 shows the evaluation results of the filling properties when the tire size is increased to 205 / 65R15, the rim size is increased to 6.5JJ-13, and the filling balloon amount is set to 600 g.
[0050]
[Table 2]
Figure 2004017436
[0051]
Using the same tires and rims as in Table 1, the foamable composition to be filled was changed to 300 g of a foamed hollow balloon (trade name: Matsumoto Microsphere F80ED) manufactured by Matsumoto Yushi Seiyaku Co., Ltd. and filled when filling. Table 3 shows the results of the sex evaluation.
[0052]
[Table 3]
Figure 2004017436
[0053]
【The invention's effect】
By the present invention, without sacrificing rolling resistance and ride comfort during normal running before tire damage, a safety tire that enables stable running even in the tire damaged state, efficiently and economically Can be manufactured.
[Brief description of the drawings]
FIG. 1 is a sectional view in the tire width direction showing a safety tire according to the present invention.
FIG. 2 is a sectional view in the tire width direction showing another safety tire according to the present invention.
FIG. 3 is a sectional view in the tire width direction showing another safety tire according to the present invention.
FIG. 4 is a diagram showing a method for manufacturing a safety tire according to the present invention.
FIG. 5 is a diagram showing a method for manufacturing a safety tire by a conventional method.
FIG. 6 is a view showing a method of manufacturing a safety tire by a conventional method.
FIG. 7 is a view showing a specific example of a pressure-resistant container.
[Explanation of symbols]
1 tire
2 rim
Room 1a
Room 1b
3 Foamable composition
4 Bead core
5 Carcass
6 belt
7 Tread
8 Inner liner layer
11 Foamable composition
12 pressure vessel

Claims (5)

タイヤを適用リムに装着し、該タイヤと適用リムとで区画されたタイヤの内部に発泡性組成物を配置した、安全タイヤを製造するに当たり、該発泡性組成物が充填された耐圧容器を、適用リム装着後のタイヤに管を介して連結し、該タイヤの内圧に比して耐圧容器の内圧を高くして、その差圧をもって発泡性組成物を耐圧容器からタイヤ内部へ移送し、タイヤの内部に発泡性組成物を配置することを特徴とする安全タイヤの製造方法。A tire is mounted on the application rim, and the foamable composition is arranged inside the tire partitioned by the tire and the application rim. The tire is connected to the tire after application of the rim via a pipe, the internal pressure of the pressure-resistant container is increased relative to the internal pressure of the tire, and the foamable composition is transferred from the pressure-resistant container to the inside of the tire with the differential pressure, and the tire A method for producing a safety tire, comprising disposing a foamable composition inside a tire. タイヤを適用リムに装着し、該タイヤと適用リムとで区画されたタイヤの内部を、さらに複数室に分割すると共に、その少なくとも一室に、発泡性組成物を配置した、安全タイヤを製造するに当たり、該発泡性組成物が充填された耐圧容器を、適用リム装着後のタイヤの発泡性組成物を配置する室に管を介して連結し、該室の内圧に比して耐圧容器の内圧を高くして、その差圧をもって発泡性組成物を耐圧容器からタイヤ内部の室へ移送し、室内部に発泡性組成物を配置することを特徴とする安全タイヤの製造方法。A safety tire is manufactured in which a tire is mounted on an application rim, and the inside of the tire partitioned by the tire and the application rim is further divided into a plurality of chambers, and at least one of the chambers is provided with a foamable composition. In this case, the pressure-resistant container filled with the foamable composition is connected via a pipe to a chamber in which the foamable composition of the tire after application of the rim is placed, and the internal pressure of the pressure-resistant container is compared with the internal pressure of the chamber. , The foamable composition is transferred from the pressure-resistant container to the chamber inside the tire with the pressure difference, and the foamable composition is disposed inside the room. タイヤを適用リムに装着し、該タイヤと適用リムとで区画されたタイヤの内部を、さらに複数室に分割すると共に、その少なくとも一室に、発泡性組成物を配置した、安全タイヤを製造するに当たり、該発泡性組成物が充填された耐圧容器を、中空リング体に管を介して連結し、該中空リング体の内圧に比して耐圧容器の内圧を高くして、その差圧をもって発泡性組成物を耐圧容器から中空リング体へ移送し、中空リング体内部に発泡性組成物を配置してから、該中空リング体を適用リム装着前のタイヤ内部に組み込んだのち、タイヤを適用リムに装着することを特徴とする安全タイヤの製造方法。A safety tire is manufactured in which a tire is mounted on an application rim, and the inside of the tire partitioned by the tire and the application rim is further divided into a plurality of chambers, and at least one of the chambers is provided with a foamable composition. In this case, the pressure-resistant container filled with the foamable composition is connected to a hollow ring body via a pipe, the internal pressure of the pressure-resistant container is increased relative to the internal pressure of the hollow ring body, and foaming is performed using the differential pressure. The foamable composition is transferred from the pressure-resistant container to the hollow ring body, the foamable composition is disposed inside the hollow ring body, and then the hollow ring body is incorporated into the tire before the application rim is attached, and then the tire is applied to the application rim. A method for producing a safety tire, comprising: 請求項1、2または3において、差圧が100kPa以上であることを特徴とする安全タイヤの製造方法。4. The method according to claim 1, wherein the differential pressure is 100 kPa or more. 請求項1ないし4のいずれかにおいて、発泡性組成物は、発泡剤を封入した粒子から成ることを特徴とする安全タイヤの製造方法。The method according to any one of claims 1 to 4, wherein the foamable composition comprises particles in which a foaming agent is encapsulated.
JP2002174457A 2002-06-14 2002-06-14 Safety tire manufacturing method Expired - Fee Related JP4166515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002174457A JP4166515B2 (en) 2002-06-14 2002-06-14 Safety tire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174457A JP4166515B2 (en) 2002-06-14 2002-06-14 Safety tire manufacturing method

Publications (2)

Publication Number Publication Date
JP2004017436A true JP2004017436A (en) 2004-01-22
JP4166515B2 JP4166515B2 (en) 2008-10-15

Family

ID=31173419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174457A Expired - Fee Related JP4166515B2 (en) 2002-06-14 2002-06-14 Safety tire manufacturing method

Country Status (1)

Country Link
JP (1) JP4166515B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240470A (en) * 2005-03-03 2006-09-14 Bridgestone Corp Checking method of hollow particle for safety tire
JP2007038745A (en) * 2005-08-01 2007-02-15 Sumitomo Rubber Ind Ltd Assembly of pneumatic tire and rim

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105856970B (en) * 2016-04-08 2017-04-26 王义铭 Inflation-free bicycle tyre adopting hollow square band cavity structure and manufacturing method of inflation-free bicycle tyre

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240470A (en) * 2005-03-03 2006-09-14 Bridgestone Corp Checking method of hollow particle for safety tire
JP4652083B2 (en) * 2005-03-03 2011-03-16 株式会社ブリヂストン Inspection method of hollow particles for safety tires
JP2007038745A (en) * 2005-08-01 2007-02-15 Sumitomo Rubber Ind Ltd Assembly of pneumatic tire and rim

Also Published As

Publication number Publication date
JP4166515B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP4508535B2 (en) Safety tire and core for safety tire
CN104290539A (en) Tire
JP2018522780A (en) Pneumatic car tires
JP4382331B2 (en) Tire-rim assembly with excellent self-sealing and self-balancing properties
JP2003118312A (en) Pressure vessel, method and device for providing internal pressure into pressure vessel, method for supplying pressure vessel, and method for providing service thereafter
CN204109682U (en) A kind of tire
JP4166515B2 (en) Safety tire manufacturing method
JP2004243985A (en) Assembly body of tire with rim, and particle group filled in the assembly body
JP4603850B2 (en) Safety tire and rim assembly and foamable composition
JP4063561B2 (en) Safety tire and rim assembly
JP2004255981A (en) Assembly of tire and rim, and particles filled into assembly
JP4990485B2 (en) Tire and rim assembly and hollow particles arranged inside the assembly
JP2002103929A (en) Safety tire
JP2003048257A (en) Method for manufacturing safety tire
JP2003118325A (en) Assembly body of tire and rim and method for adjusting volume thereof
JP4002125B2 (en) Safety tire and rim assembly
JP3621689B2 (en) Tire and rim assembly and foamable composition
JP2003306006A (en) Tire and rim assembly body, and foaming composition
JP2003118315A (en) Safety tire, rim assembly body, and foaming composition
JP2003118326A (en) Assembly body of tire and rim
JP2003025806A (en) Safety tire and rim assembly and foaming composition
JP2003118327A (en) Safety tire, rim assembly body, and manufacturing method therefor
JP2006137107A (en) Method for producing safety tire
CN2774824Y (en) Anti-explosion inner tube for vehicle
JP2003025807A (en) Safety tire and rim assembly and forming composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4166515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees