JP2004015856A - Ac motor driving device - Google Patents

Ac motor driving device Download PDF

Info

Publication number
JP2004015856A
JP2004015856A JP2002162261A JP2002162261A JP2004015856A JP 2004015856 A JP2004015856 A JP 2004015856A JP 2002162261 A JP2002162261 A JP 2002162261A JP 2002162261 A JP2002162261 A JP 2002162261A JP 2004015856 A JP2004015856 A JP 2004015856A
Authority
JP
Japan
Prior art keywords
current
voltage
dead time
command voltage
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002162261A
Other languages
Japanese (ja)
Inventor
Noriyuki Nagae
長江 紀之
Yasuo Kin
金 泰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2002162261A priority Critical patent/JP2004015856A/en
Publication of JP2004015856A publication Critical patent/JP2004015856A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an AC motor driving device capable of judging current polarity correctly and performing dead time compensation in such a way as to minimize speed ripples and current distortion. <P>SOLUTION: This AC motor driving device includes a next-detected-current judging means 104 and a current-polarity judging means 101. The means 104 waits without calculating a dead time compensating voltage until the data of a detected current Ifb[T2] at the next sampling section is obtained after the calculation of a command voltage V*[T1] to judge the finish of detecting the detected current at the next sampling section. The means 101 judges the current polarity from the detected current Ifb [T2] at the next sampling section. Also, a dead time compensating means 1 is provided that outputs a dead time compensating voltage V<SB>comp</SB>[T2]. A voltage addition calculating means 103 adds the dead time compensating voltage V<SB>comp</SB>[T2] to the command voltage V*[T2] calculated from a command voltage operating means 14. Then, the final command voltage Vf* is operated that is inputted to a PWM power conversion device 16. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ACモータ駆動装置に関し、特にPWMインバータのデッドタイム補償に関するものである。
【0002】
【従来の技術】
従来の電圧形インバータでは、上下スイッチング素子の同時導通による電流短絡事故を防止するためにデッドタイムを設けている。PWMインバータはスイッチング回数に伴って電流制御性能が高い反面、デッドタイムの影響を多く受けやすい。特に、低速と軽負荷の運転時における電流制御への影響は大きく、電流歪みとトルク脈動の一因ともなる。
こうしたインバータ装置のデッドタイム設定で生じる損失電圧を補償するには、先ず、デッドタイム設定による正確な損失電圧Vlossの把握が必要であり、式(1)で計算できる。又、この損失電圧はデッドタイム補償電圧Vcompとして扱える。
loss=Vcomp=td×fc×Vdc=(td/tc)×Vdc   (1)
ここで、tdはデッドタイム(オンディレイ時間)、
fcはスイッチングキャリア周波数(=1/tc)、
tcはスイッチングキャリア周期時間、
Vdcは直流電圧
である。
【0003】
次に、従来のデッドタイム補償法について説明する。
図3は従来のデッドタイム補償法の全体ブロック図である。
2は従来技術に係るデッドタイム補償手段、11はACモータ、12は電流検出手段(電流センサ)、13は電流偏差演算手段、14は指令電圧演算手段、15はPWM電力変換装置、16は直流電圧、201は電流極性判断手段、202は補償電圧「式(1)」、203は電圧加算演算手段である。なお、ACモータの位置・速度検出用のエンコーダの図示は省略している。
図3のブロック図において、動作を説明する。
偏差電流演算手段13は、指令電流I*から現在サンプリング区間での検出電流Ifb[T1]を差し引いて偏差電流ΔIを計算し、指令電圧演算手段14では偏差電流ΔIに制御ゲインを掛け算して指令電圧V*[T1]の演算を行う。また、極性電流判断手段201では現在サンプリング区間での検出電流Ifb[T1]を用いて電流極性の判断を行った後、その電流極性値(+1又は−1の値)を補償電圧「式(1)」202に掛け算してデッドタイム補償電圧Vcomp[T1]の演算を行う。最後に、電圧加算演算手段203でデッドタイム補償電圧Vcomp[T1]を指令電圧V*[T1]に加えて最終指令電圧Vf*[T1]を計算し、PWM電力変換装置15に入力し、ACモータ11を駆動するようになっている。
【0004】
ここで、図4に従来のデッドタイム補償法の全体タイミングチャートを示す。
図4のタイミングチャートは、現在サンプリング区間(T1)の中で指令電圧V*[T1]とデッドタイム補償電圧Vcomp[T1]を求めた後、同一サンプリング区間で最終指令電圧Vf*[T1]も計算することを表している。これらを式で表現すると式(2)に成る。
Vf*[T1]=V*[T1]+Vcomp[T1]        (2)
ここで、T1は現在サンプリング区間、V*[T1]は現在サンプリング区間での指令電圧、Vcomp[T1]は現在サンプリング区間でのデッドタイム補償電圧、Vf*[T1]は現在サンプリング区間での最終指令電圧である。
【0005】
【発明が解決しようとする課題】
ところが、従来技術では、電流極性の判断用検出電流が最終指令電圧をPWM電力変換装置に入力するときの実電流と極性が同じで、かつ、遅れが無いと仮定し、検出電流極性の判断を行い、その結果に従ってデッドタイム補償電圧の計算を行っている。
しかしながら、実際にはデッドタイム補償電圧の計算用検出電流が最終指令電圧をPWM電力変換装置に入力するときの実電流に比べて、1サンプリング時間だけ遅れている。そして、検出電流極性の判断を誤って、デッドタイム補償が正しく行われず、更に、デッドタイム補償を行わなかった場合よりも速度リップル及び電流特性(電流ひずみ)に悪影響を与えるという問題があった。
本発明は、上記課題を解決するためになされたものであり、電流極性を正しく判断し、速度リップル及び電流ひずみの最小化が出来るようにデッドタイム補償を実施できるACモータ駆動装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記問題を解決するため、本発明に係るACモータ駆動装置は、ACモータへ流れる電流を検出する電流検出手段と、現在サンプリング区間での検出電流と指令電流の偏差から偏差電流を計算する偏差電流演算手段と、前記偏差電流から指令電圧の演算を行う指令電圧演算手段と、前記指令電圧の演算後、次期サンプリング区間での検出電流の情報が得られるまでデッドタイム補償電圧の演算を行わず待機し、次期サンプリング区間での検出電流の検出の完了判断を行う次期検出電流判断手段と前記次期サンプリング区間での検出電流から電流極性の判断を行う電流極性判断手段を含むと共に、前記デッドタイム補償電圧を出力するデッドタイム補償手段と、前記指令電圧演算手段から計算された指令電圧に前記デッドタイム補償電圧を加えて最終指令電圧を演算する電圧加算演算手段と、前記電圧加算演算手段により得られた最終指令電圧となる直流電圧から交流電圧への変換を行うPWM電力変換装置と、を備えたものである。
【0007】
【発明の実施の形態】
以下、本発明の実施例を図に基づいて説明する。
図1は本発明の実施例を示すデッドタイム補償法に関する全体ブロック図である。なお、本発明が従来技術と同じ構成要素についてはその説明を省略し、異なる点のみ説明する。
図1において、1は本発明に係るデッドタイム補償手段、101は電流極性判断手段、102は補償電圧「式(1)」、103は電圧加算演算手段、104は次期検出電流判断手段である。
本発明が従来技術と異なる点は以下のとおりである。
すなわち、指令電圧V*[T1]の演算後、次期サンプリング区間での検出電流Ifb[T2]の情報が得られるまでデッドタイム補償電圧の演算を行わず待機し、次期サンプリング区間での検出電流の検出の完了判断を行う次期検出電流判断手段104と次期サンプリング区間での検出電流Ifb[T2]から電流極性の判断を行う電流極性判断手段101を含むと共に、デッドタイム補償電圧Vcomp[T2]を出力するデッドタイム補償手段1を設けた点である。
【0008】
次に動作について説明する。
図1の全体ブロック図において、電流検出手段12はACモータ11へ流れる電流をサンプリング区間毎に検出し、偏差電流演算手段13は指令電流I*から現在サンプリング区間での検出電流Ifb[T1]を差し引いて偏差電流ΔIを計算し、指令電圧演算手段14は偏差電流ΔIに制御ゲインを掛け算して指令電圧V*[T1]の計算を行う。ここで、次期サンプリング区間で求めた検出電流Ifb[T2]を得るまでに、デッドタイム補償電圧Vcomp[T2]の演算を行わず待機するように次期サンプリング電流判断手段104で行う。その後、次期サンプリング区間での検出電流Ifb[T2]が得られて、その情報から電流極性判断手段101で電流極性の判断「検出電流が0超過である場合は+1、0未満の場合は−1を出力」を行い、その電流極性値(+1又は−1の値)を式(1)102に掛け算してデッドタイム補償電圧Vcomp[T2]の演算を行う。
最後に、加算演算装置103でデッドタイム補償電圧Vcomp[T2]を指令電圧V*[T1]に加えて最終指令電圧Vf*[T2]を計算し、PWM電力変換装置15に入力する。
【0009】
ここで、図2は本発明の実施例を示すデッドタイム補償法に関するフローチャートである。図2のタイミングチャートは、現在サンプリング区間(T1)で指令電圧V*[T1]を求めた後、次期サンプリング区間(T2)で求めた検出電流Ifb[T2]から電流極性を演算してデッドタイム補償電圧Vcomp[T2]を演算し、そのデッドタイム補償電圧Vcomp[T2]を指令電圧V*[T1]に加えて最終指令電圧Vf*[T2]を計算して、PWM電力変換装置へ入力することを表している。これらを式で表現すると式(3)に成る。
Vf*[T2]=V*[T1]+Vcomp[T2]        (3)
ここで、T1は現在サンプリング区間、T2は次期サンプリング区間、V*[T1]は現在サンプリング区間での指令電圧、Vcomp[T2]は次期サンプリング区間でのデッドタイム補償電圧、Vf*[T2]は次期サンプリング区間での最終指令電圧である。
【0010】
したがって、本実施例に係るACモータ駆動装置は、指令電圧V*[T1]の演算後、次期サンプリング区間での検出電流Ifb[T2]の情報が得られるまでデッドタイム補償電圧の演算を行わず待機し、次期サンプリング区間での検出電流の検出の完了判断を行う次期検出電流判断手段104と次期サンプリング区間での検出電流Ifb[T2]から電流極性の判断を行う電流極性判断手段101を含むと共に、デッドタイム補償電圧Vcomp[T2]を出力するデッドタイム補償手段1を設けたので、サンプリング時間の遅れが無い検出電流から電流極性判断を行って正しい電流極性値を得ることでデッドタイムによる損失電圧を適切に補正できる。その結果、速度リップル及び電流ひずみを最小に抑えることができるACモータ駆動装置を提供することができる。
【0011】
【発明の効果】
以上述べたように本発明によれば、ACモータ駆動装置は、指令電圧の演算後、次期サンプリング区間での検出電流の情報が得られるまでデッドタイム補償電圧の演算を行わず待機し、次期サンプリング区間での検出電流の検出の完了判断を行う次期検出電流判断手段と次期サンプリング区間での検出電流から電流極性の判断を行う電流極性判断手段を含むと共に、デッドタイム補償電圧を出力するデッドタイム補償手段を設けたため、サンプリング時間の遅れが無い検出電流から電流極性判断を行って正しい電流極性値を得ることでデッドタイムによる損失電圧を適切に補正できる。その結果、速度リップル及び電流ひずみを最小に抑えることができるACモータ駆動装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例を示すデッドタイム補償法に関する全体ブロック図である。
【図2】本発明の実施例を示すデッドタイム補償法に関するフローチャートである。
【図3】従来のデッドタイム補償法の全体ブロック図である。
【図4】従来のデッドタイム補償法の全体タイミングチャートを示したものである。
【符号の説明】
1 デッドタイム補償手段(本発明)
2 デッドタイム補償手段(従来技術)
11 ACモータ
12 電流検出手段(電流センサ)
13 電流偏差演算手段
14 指令電圧演算手段
15 PWM電力変換装置
16 直流電圧
101、201 電流極性判断手段
102、202 補償電圧「式1」
103、203 電圧加算演算手段
104 次期検出電流判断手段
* 指令を表す添字
I* 指令電流
Vdc インバータの平滑直流電圧
V* 指令電圧
Vf* 最終指令電圧
Ifb 検出電流
ΔI 偏差電流
T1 現在サンプリング周期
T21 次期サンプリング周期
loss損失電圧
comp補償電圧
compデッドタイム補償電圧
PorM 電流極性の値(−1 又は +1)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an AC motor driving device, and more particularly, to dead time compensation of a PWM inverter.
[0002]
[Prior art]
In the conventional voltage type inverter, a dead time is provided to prevent a current short circuit accident due to simultaneous conduction of the upper and lower switching elements. Although the PWM inverter has high current control performance with the number of times of switching, it is easily affected by the dead time. In particular, the influence on the current control during low-speed and light-load operation is large, which also contributes to current distortion and torque pulsation.
In order to compensate for the loss voltage caused by the dead time setting of such an inverter device, first, it is necessary to accurately grasp the loss voltage V loss by the dead time setting, and it can be calculated by equation (1). Also, this loss voltage can be handled as a dead time compensation voltage Vcomp .
V loss = V comp = td × fc × Vdc = (td / tc) × Vdc (1)
Here, td is a dead time (on delay time),
fc is the switching carrier frequency (= 1 / tc),
tc is a switching carrier cycle time,
Vdc is a DC voltage.
[0003]
Next, a conventional dead time compensation method will be described.
FIG. 3 is an overall block diagram of a conventional dead time compensation method.
2 is a dead time compensating means according to the prior art, 11 is an AC motor, 12 is a current detecting means (current sensor), 13 is a current deviation calculating means, 14 is a command voltage calculating means, 15 is a PWM power converter, and 16 is DC Voltage, 201 is current polarity judging means, 202 is compensation voltage "Equation (1)", and 203 is voltage addition calculating means. The illustration of the encoder for detecting the position and speed of the AC motor is omitted.
The operation will be described with reference to the block diagram of FIG.
The deviation current calculation means 13 calculates the deviation current ΔI by subtracting the detection current Ifb [T1] in the current sampling section from the command current I *, and the command voltage calculation means 14 multiplies the deviation current ΔI by the control gain to obtain the command current. Calculation of voltage V * [T1] is performed. Further, the polarity current determining means 201 determines the current polarity using the detection current Ifb [T1] in the current sampling section, and then determines the current polarity value (a value of +1 or −1) as a compensation voltage “expression (1) ) 202 to calculate the dead time compensation voltage V comp [T1]. Lastly, the dead time compensation voltage Vcomp [T1] is added to the command voltage V * [T1] by the voltage addition calculating means 203 to calculate the final command voltage Vf * [T1], which is input to the PWM power converter 15; The AC motor 11 is driven.
[0004]
Here, FIG. 4 shows an overall timing chart of the conventional dead time compensation method.
The timing chart of FIG. 4 shows that the command voltage V * [T1] and the dead time compensation voltage V comp [T1] are obtained in the current sampling period (T1), and then the final command voltage Vf * [T1] in the same sampling period. Also means to calculate. When these are expressed by equations, equation (2) is obtained.
Vf * [T1] = V * [T1] + V comp [T1] (2)
Here, T1 is the current sampling interval, V * [T1] is the command voltage in the current sampling interval, V comp [T1] is the dead time compensation voltage in the current sampling interval, and Vf * [T1] is the current sampling interval. This is the final command voltage.
[0005]
[Problems to be solved by the invention]
However, in the prior art, the detection current for determination of the current polarity is assumed to have the same polarity as the actual current when the final command voltage is input to the PWM power converter, and that there is no delay, and the detection current polarity is determined. The dead time compensation voltage is calculated according to the result.
However, actually, the detection current for calculating the dead time compensation voltage is delayed by one sampling time as compared with the actual current when the final command voltage is input to the PWM power converter. In addition, there is a problem that the dead time compensation is not correctly performed by erroneously determining the detection current polarity, and that the speed ripple and the current characteristics (current distortion) are more adversely affected than when the dead time compensation is not performed.
The present invention has been made to solve the above problems, and provides an AC motor driving device capable of correctly determining a current polarity and performing dead time compensation so as to minimize speed ripple and current distortion. With the goal.
[0006]
[Means for Solving the Problems]
In order to solve the above problem, an AC motor driving device according to the present invention includes a current detection unit that detects a current flowing to an AC motor, and a deviation current that calculates a deviation current from a deviation between a detected current and a command current in a current sampling period. A calculating means, a command voltage calculating means for calculating a command voltage from the deviation current, and a standby after calculating the command voltage without calculating the dead time compensation voltage until information on a detected current in a next sampling section is obtained. And a next detection current judging means for judging completion of detection of the detection current in the next sampling section, and a current polarity judgment means for judging current polarity from the detection current in the next sampling section. And a dead time compensating means for outputting the dead time compensating voltage to the command voltage calculated by the command voltage calculating means. A voltage addition calculation unit for calculating a final command voltage, is obtained and a PWM power converter for converting from a DC voltage as a final command voltage obtained to the AC voltage by the voltage addition operation means.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall block diagram relating to a dead time compensation method showing an embodiment of the present invention. The description of the same components as those of the prior art will be omitted, and only different points will be described.
In FIG. 1, reference numeral 1 denotes a dead time compensating unit according to the present invention, 101 denotes a current polarity judging unit, 102 denotes a compensation voltage “Equation (1)”, 103 denotes a voltage addition calculating unit, and 104 denotes a next detected current judging unit.
The differences between the present invention and the prior art are as follows.
That is, after the calculation of the command voltage V * [T1], the operation waits without performing the calculation of the dead time compensation voltage until the information of the detection current Ifb [T2] in the next sampling section is obtained. A next detection current judging means 104 for judging the completion of the detection and a current polarity judging means 101 for judging the current polarity from the detection current Ifb [T2] in the next sampling section are included. The dead time compensation voltage Vcomp [T2] is also determined. The point is that dead time compensating means 1 for outputting is provided.
[0008]
Next, the operation will be described.
In the overall block diagram of FIG. 1, a current detection unit 12 detects a current flowing to the AC motor 11 for each sampling interval, and a deviation current calculation unit 13 calculates a detection current Ifb [T1] in a current sampling interval from a command current I *. The difference voltage ΔI is calculated by subtraction, and the command voltage calculation means 14 calculates the command voltage V * [T1] by multiplying the difference current ΔI by the control gain. Here, until the detection current Ifb [T2] obtained in the next sampling section is obtained, the next sampling current determination unit 104 performs a standby without performing the calculation of the dead time compensation voltage V comp [T2]. Thereafter, the detection current Ifb [T2] in the next sampling section is obtained, and the current polarity determination means 101 determines the current polarity from the information. "If the detection current is more than 0, it is +1; if it is less than 0, it is -1. Is output, and the current polarity value (+1 or −1) is multiplied by the equation (1) 102 to calculate the dead time compensation voltage V comp [T2].
Finally, the addition command device 103 calculates the final command voltage Vf * [T2] by adding the dead time compensation voltage V comp [T2] to the command voltage V * [T1], and inputs the calculated command voltage Vf * [T2] to the PWM power conversion device 15.
[0009]
FIG. 2 is a flowchart showing a dead time compensation method according to an embodiment of the present invention. The timing chart of FIG. 2 shows that after the command voltage V * [T1] is obtained in the current sampling section (T1), the current polarity is calculated from the detected current Ifb [T2] obtained in the next sampling section (T2), and the dead time is calculated. Compute the compensation voltage V comp [T2], add the dead time compensation voltage V comp [T2] to the command voltage V * [T1], calculate the final command voltage Vf * [T2], and send it to the PWM power converter. Indicates that the input is required. When these are expressed by equations, equation (3) is obtained.
Vf * [T2] = V * [T1] + Vcomp [T2] (3)
Here, T1 is the current sampling interval, T2 is the next sampling interval, V * [T1] is the command voltage in the current sampling interval, V comp [T2] is the dead time compensation voltage in the next sampling interval, and Vf * [T2]. Is the final command voltage in the next sampling section.
[0010]
Therefore, the AC motor driving apparatus according to the present embodiment does not calculate the dead time compensation voltage until the information of the detection current Ifb [T2] in the next sampling section is obtained after the calculation of the command voltage V * [T1]. It includes a next detection current judging means 104 which waits and judges completion of detection of the detection current in the next sampling section, and a current polarity judgment means 101 which judges current polarity from the detection current Ifb [T2] in the next sampling section. The dead time compensating means 1 for outputting the dead time compensation voltage V comp [T2] is provided, so that the current polarity is determined from the detected current having no delay in the sampling time and the correct current polarity value is obtained, so that the loss due to the dead time is obtained. The voltage can be corrected appropriately. As a result, it is possible to provide an AC motor driving device capable of minimizing the speed ripple and the current distortion.
[0011]
【The invention's effect】
As described above, according to the present invention, after the calculation of the command voltage, the AC motor driving apparatus waits without performing the calculation of the dead time compensation voltage until the information of the detection current in the next sampling section is obtained. Dead time compensation for determining the completion of detection of the detected current in the section and current polarity determining means for determining the current polarity from the detected current in the next sampling section and outputting a dead time compensation voltage Since the means is provided, it is possible to appropriately correct the loss voltage due to the dead time by determining the current polarity from the detected current having no delay in the sampling time and obtaining the correct current polarity value. As a result, it is possible to provide an AC motor driving device capable of minimizing the speed ripple and the current distortion.
[Brief description of the drawings]
FIG. 1 is an overall block diagram relating to a dead time compensation method showing an embodiment of the present invention.
FIG. 2 is a flowchart illustrating a dead time compensation method according to an embodiment of the present invention.
FIG. 3 is an overall block diagram of a conventional dead time compensation method.
FIG. 4 is an overall timing chart of a conventional dead time compensation method.
[Explanation of symbols]
1 Dead time compensation means (the present invention)
2 Dead time compensation means (prior art)
11 AC motor 12 Current detection means (current sensor)
13 Current deviation calculating means 14 Command voltage calculating means 15 PWM power converter 16 DC voltage 101, 201 Current polarity determining means 102, 202 Compensation voltage "Equation 1"
103, 203 Voltage addition calculation means 104 Next detection current determination means * Subscript I * representing command Command current Vdc Smooth DC voltage V of inverter Command voltage Vf * Final command voltage Ifb Detection current ΔI Deviation current T1 Current sampling cycle T21 Next sampling Period V loss Loss voltage V comp Compensation voltage V comp Dead time compensation voltage PorM Current polarity value (-1 or +1)

Claims (1)

ACモータへ流れる電流を検出する電流検出手段と、
現在サンプリング区間での検出電流と指令電流の偏差から偏差電流を計算する偏差電流演算手段と、
前記偏差電流から指令電圧の演算を行う指令電圧演算手段と、
前記指令電圧の演算後、次期サンプリング区間での検出電流の情報が得られるまでデッドタイム補償電圧の演算を行わず待機し、次期サンプリング区間での検出電流の検出の完了判断を行う次期検出電流判断手段と前記次期サンプリング区間での検出電流から電流極性の判断を行う電流極性判断手段を含むと共に、前記デッドタイム補償電圧を出力するデッドタイム補償手段と、
前記指令電圧演算手段から計算された指令電圧に前記デッドタイム補償電圧を加えて最終指令電圧を演算する電圧加算演算手段と、
前記電圧加算演算手段により得られた最終指令電圧となる直流電圧から交流電圧への変換を行うPWM電力変換装置と、を備えたことを特徴とするACモータ駆動装置。
Current detection means for detecting a current flowing to the AC motor;
Deviation current calculation means for calculating a deviation current from a deviation between the detected current and the command current in the current sampling section;
Command voltage calculating means for calculating a command voltage from the deviation current;
After calculating the command voltage, stand by without performing the calculation of the dead time compensation voltage until information of the detected current in the next sampling section is obtained, and determine the completion of detection of the detected current in the next sampling section. Means and a current polarity determining means for determining the current polarity from the detected current in the next sampling interval, and a dead time compensating means for outputting the dead time compensating voltage,
Voltage addition calculating means for calculating the final command voltage by adding the dead time compensation voltage to the command voltage calculated from the command voltage calculating means,
An AC motor driving device, comprising: a PWM power conversion device that converts a DC voltage, which is a final command voltage obtained by the voltage addition calculating means, into an AC voltage.
JP2002162261A 2002-06-04 2002-06-04 Ac motor driving device Pending JP2004015856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002162261A JP2004015856A (en) 2002-06-04 2002-06-04 Ac motor driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002162261A JP2004015856A (en) 2002-06-04 2002-06-04 Ac motor driving device

Publications (1)

Publication Number Publication Date
JP2004015856A true JP2004015856A (en) 2004-01-15

Family

ID=30431044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002162261A Pending JP2004015856A (en) 2002-06-04 2002-06-04 Ac motor driving device

Country Status (1)

Country Link
JP (1) JP2004015856A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295643A (en) * 2006-04-20 2007-11-08 Renesas Technology Corp Magnetic disc controller
JP2008152851A (en) * 2006-12-16 2008-07-03 Renesas Technology Corp Voice coil motor (vcm) driver and magnetic disk controlling device
CN102811013A (en) * 2012-07-31 2012-12-05 株洲南车时代电气股份有限公司 AC (alternating current) drive control system and method as well as voltage error measuring method of inverter of AC drive control system
JP2015077009A (en) * 2013-10-09 2015-04-20 株式会社東芝 Power converter
CN108649794A (en) * 2018-03-23 2018-10-12 加码技术有限公司 A kind of high-voltage power circuit
CN113346796A (en) * 2020-02-14 2021-09-03 广东威灵电机制造有限公司 Motor control device, dead zone compensation method, motor system, and storage medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295643A (en) * 2006-04-20 2007-11-08 Renesas Technology Corp Magnetic disc controller
JP2008152851A (en) * 2006-12-16 2008-07-03 Renesas Technology Corp Voice coil motor (vcm) driver and magnetic disk controlling device
CN102811013A (en) * 2012-07-31 2012-12-05 株洲南车时代电气股份有限公司 AC (alternating current) drive control system and method as well as voltage error measuring method of inverter of AC drive control system
JP2015077009A (en) * 2013-10-09 2015-04-20 株式会社東芝 Power converter
CN108649794A (en) * 2018-03-23 2018-10-12 加码技术有限公司 A kind of high-voltage power circuit
CN113346796A (en) * 2020-02-14 2021-09-03 广东威灵电机制造有限公司 Motor control device, dead zone compensation method, motor system, and storage medium
CN113346796B (en) * 2020-02-14 2022-07-12 广东威灵电机制造有限公司 Motor control device, dead zone compensation method, motor system, and storage medium

Similar Documents

Publication Publication Date Title
US7560897B2 (en) Current controller and current offset correction
JP4759422B2 (en) Power converter system and washing machine using the same
US8084986B2 (en) Dead-time compensation apparatus of PWM inverter and method thereof
KR101091745B1 (en) Motor controlling apparatus and controlling method of the same
JP2004048868A (en) Speed controller for synchronous motor
JP2007202365A (en) Power converter device and motor drive unit using it
JP2008086129A (en) Ac motor controller and constant measurement apparatus
KR101353737B1 (en) Motor control apparatus
US20180159458A1 (en) Control apparatus and control method
KR100693152B1 (en) Vector control invertor
JP2001309697A (en) Electric motor control device
JP2008253093A (en) Electric motor controller and control method
JP2010246260A (en) Motor control device and method
JP2004015856A (en) Ac motor driving device
JP2002300800A (en) Power converter
JP2003309975A (en) Pwm cycloconverter and control method therefor
JP2005229717A (en) Current sensorless-control method and device of synchronous motor
KR20110117738A (en) Motor controlling apparatus and method of the same
JP2004112879A (en) Ac motor driver
JP5550423B2 (en) Control device for permanent magnet synchronous motor
JPH09271198A (en) Control equipment of pm motor
JP2002315389A (en) Motor controller
JP2002272182A (en) Ac motor driving apparatus
JP2002281779A (en) Ac motor driver
JP2022090317A (en) Inverter control device, and control method of inverter