JP2004014950A - Ceramics material having ptc characteristic - Google Patents

Ceramics material having ptc characteristic Download PDF

Info

Publication number
JP2004014950A
JP2004014950A JP2002169249A JP2002169249A JP2004014950A JP 2004014950 A JP2004014950 A JP 2004014950A JP 2002169249 A JP2002169249 A JP 2002169249A JP 2002169249 A JP2002169249 A JP 2002169249A JP 2004014950 A JP2004014950 A JP 2004014950A
Authority
JP
Japan
Prior art keywords
ptc
temperature
ceramics
curie point
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002169249A
Other languages
Japanese (ja)
Inventor
Takashi Kaimoto
貝本 隆
Shuichi Imazato
今里 州一
Yasushi Iwasako
祝迫 恭
Shigeya Sakaguchi
坂口 茂也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2002169249A priority Critical patent/JP2004014950A/en
Publication of JP2004014950A publication Critical patent/JP2004014950A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a PTC (positive temperature coefficient) ceramics material, facilitated in temperature control for the same compared with a conventional PTC material and capable of elevating a Curie point. <P>SOLUTION: The problem is solved by manufacturing a ceramics, having a composition shown by the formula of (Bi<SB>2</SB>O<SB>2</SB>)<SP>2+</SP>(A<SB>n-1</SB>B<SB>n</SB>O<SB>3n+1</SB>)<SP>2-</SP>. In the formula, A is constituted of one kind or two kinds or more selected from K, Na, Ca, Ba, Sr, Pb and Bi; B is constituted of one kind or two kinds or more selected from Ti, Nb, V, Ta, W and Mo; n is all numbers (comprise numbers except a natural number) which satisfy 1≤n≤8 while manufacturing a ceramics having a laminar crystalline structure to make a PTC element. The ceramics, showing the PTC characteristics, obtains a high Curie point and the set temperature control for the same is also facilitated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は温度上昇に伴い、抵抗率の上昇するPTC(Positive Temperature Coefficient:正の抵抗温度係数)特性を有するセラミックス材料に関する。
【0002】
【従来の技術】
従来からPTC特性を有する材料はその特異な性質を利用して、温度センサーやヒーターとして利用されている。特にヒーターとして利用する場合、抵抗変換温度(セラミックスの場合:キュリー点)付近で自己温度制御を行い、温度を一定に保持でき、過熱暴走しないといった安全性のほか、周囲の温度に応じて出力を制御するため省エネになるといった特徴がある。
【0003】
このようなPTC特性を有する材料として、これまで、カーボンと樹脂を複合化した有機質材料やBaTiOを主成分とするセラミックス材料がある。このうち、前者の有機質材料においては抵抗を低くでき、低電圧で利用できる、柔軟性を有するといった特徴がある反面、PTC特性が樹脂の熱膨張によってカーボンの電流パスを寸断していくというメカニズムに基づいているため、寿命が短いという致命的な欠点を有する。また、抵抗値や抵抗変換温度の選択幅が非常に狭いといった自由度にも欠けている。
【0004】
一方、後者のBaTiO系の主成分とするセラミックス材料の場合、抵抗値として10〜10Ω・cm、抵抗変換温度として〜300℃程度まで自由に選択できるうえ、そのPTC特性は電子物性に依存しているため、材料自身の変動がなく、耐久性に優れているといった特徴を有している。しかしながら、抵抗変換温度のキュリー点は用途拡大、高エネルギー化に伴い、高い温度特性への要求が高まりつつあり、特許2911959号、特開平11−224803号公報においては400〜500℃付近までそのキュリー点を高温側に持ってきているものの室温抵抗値が高く、その用途は限定されている。さらに、BaTiO系PTCセラミックス材料は製造時の焼成温度が1300℃以上と高く、電極と同時焼成することが困難であったため、焼成後に処理するなど手間とコストもかかるために量産には不向きであった。
一方、学術的に見た場合、BaTiO系PTCセラミックス材料においてはPTC特性が生じる理論については、様々な理論が唱えられているが、従来からHeywangが提唱した粒界障壁型モデルが最も支持されている。このHeywangの粒界障壁層モデルは粒界層の誘電率εがキュリー点以上でキュリー・ワイス則、ε=C・(T−Tc)(Tcはキュリー温度、Cはキューリー定数)を満足するとして、εのT>Tcの範囲においてρの急激な上昇が説明されるとするモデルであるが、十分に説明できない現象があるうえ、そのメカニズムも明確になっておらず、完全には説明がついていない。すなわち、学術的にもBaTiO系以外のPTC材料の発明が行われることに意義の大きいことがわかる。
【0005】
【発明が解決しようとする課題】
本発明が解決しようとする課題は焼成温度が低く、キューリー点が300度以上のPTC材料を得ることである。
【0006】
【課題を解決するための手段】
請求項1に記載の本発明は、(Bi2+(An−13n+12−の式で表される組成を有し、式中のAはK、Na、Ca、Ba、Sr、Pb、Biから選択される1種又は2種以上からなり、式中のBはTi、Nb、V、Ta、W、Moから選択される1種又は2種以上からなり、式中のnは1≦n≦8を満たす全ての数(自然数以外も含む)であり、層状結晶構造を有し、かつ、PTC特性を有するセラミックスである。
本発明における結晶構造は層状結晶構造を主体とするものである。層状構造を有すために、上記化学式におけるAサイト及びBサイトの1部を構成する原子に対して高原子価もしくは低原子価の元素と置換することで原子価制御を行い、その電気伝導性をもたせることができる。また、より抵抗値を下げるためにはAサイト及びBサイトの1部を高原子価の元素に置換することが好ましい。その置換量は0.01〜1.00mol%程度であって、特に0.05〜0.2mol%がより好ましい。それ以下の添加量だと、その作用は小さくなって室温抵抗値は高くなり不経済である。また、それ以上の添加量でも同じく室温抵抗値は高くなる。それらの作用の度合いは構成される添加元素とその分量によって変わる。
Aサイト及びBサイトに入る原子としてはAサイトにはK、Na、Ca、Ba、Sr、Pb、Biから選択される1種類以上の元素が、BサイトにはTi、Nb、Ta、V、W、Moから選択される1種類以上の元素が各々選択され、その原子の種類によってキュリー点を変えることができる。これらAサイト、Bサイトに入れる元素は、各サイトに入れる原子の組み合わせやイオンの大きさによって選択されるものであるが、いずれも実験の結果優れたPTC特性を有することが分かった。
製造上の条件はその焼成温度や合成温度などの条件は変わってくる。AサイトもしくはBサイトに対して原子価制御を行うが、その化合物は用途や仕様によって選定される。なお、BiTiNbOのようにAサイトにBi、BサイトにTi、Nbと違う元素を置換してもよく、Na0.5Bi4.5Ti15のようにNa0.5、Bi2.5と小数点以下の分配で置換してもよく、K0.5Bi4.5Ti15のようにK0.5Bi4.5でAサイトの1部を小数点以下の配分で置換しても良い。すなわち、用途、仕様に合わせてキュリー点、抵抗値を選定するために材料組成を調整することができる。つまり、nの数字は小数点もしくは分数になっても構わない。nは1から8の間で選定され、その範囲の組成であればPTC特性が十分に得られ、かつ結晶が安定である。nが1より小さい場合は結晶が安定しない。また、nが8より大きい場合は結晶の配向性が大きくなりすぎ、結晶構造は不安定となり、焼結性が悪くなって好ましくなく、また、特性も望めない。
また、Mn、Fe、Cu、V、Cr、Niなどの遷移金属元素を添加し、抵抗温度特性を改善することもでき、SiO、Al、TiO、Bi、Nb、PbO、KCO、NaCO、CaCO、BaCO、SrCO、B等もしくは焼成中に酸化物に変化する組成物の添加によって、それ自身もしくは主成分と反応して液相を生じさせ、粒径をコントロールすることで、抵抗温度特性、耐電圧特性などの電気的特性を改善することができる。以上の組成及び構造を持つことにより、本発明のPTC特性を有すセラミックスは従来のPTC材料と比較して高キューリー点の材料を得ることができ、添加元素の種類によりキューリー点を自由に調整でき、またいずれも焼成温度が低く、焼成を行いやすいという特徴を持つ。
【0007】
請求項2に記載の本発明は、ペロブスカイト構造を有することを特徴とする請求項1に記載のPTC特性を有するセラミックスである。ぺロブスカイト構造においては構成される原子に対して、一部分のみ置換しやすく、その特性、特に電気伝導度などの電気的特性に大きな影響を及ぼす。
【0008】
また、特に層状ペロブスカイト構造を含むことにより、イオンを置換しやすくなることから元素を置換する際にその製造が容易になり、高キューリー点でのPTC特性が容易に得られるようになり、また、所望のキューリー点を添加元素の制御により容易に得ることができる。
【0009】
【発明の実施の形態】
出発原料として、平均粒径が30μm以下で純度90%以上のBiの粉末およびK、Na、Ca、Ba、Sr、Pb、Bi、Ti、Nb、V、Ta、W、Mo元素の酸化物、炭酸化物、複合酸化物、複合炭酸化物などの粉末を所望の分量秤量しボールミル、ポットミル、アトライター、ヘンシェルミキサーなどの混合装置を用いて乾式又は湿式にて混合を行う。得られた粉末またはスラリーを乾燥させ、篩装置やスプレードライヤーを使用して造粒粉を得る。この際に、流動性の良い造粒粉を得るために有機物などのバインダーを入れることもできる。次に、造粒粉を一軸加圧プレス、ラバープレス、冷間静水圧プレスなどの方法にて200MPa〜3000MPa程度の圧力で加圧し、その後必要に応じてプレス体を加工した後に脱脂及び焼結を行う。脱脂及び焼結は大気雰囲気、不活性ガス雰囲気または真空雰囲気にて最高800℃〜1700℃程度の組成ごとの適当な温度にて行う。得られた焼結体に必要であれば機械加工を施し、その後にメタライズ等の方法で通電させ、電源に電気的に接続することにより、本発明のPTC素子を得ることができる。また、上記方法の乾燥後に一度いわゆる仮焼結を行った後で添加元素を含む化合物を添加し、その後に造粒に焼結を行う方法も取ることができる。
以下実施例により、より詳細に本発明の説明を行う。
【0010】
【実施例】
出発原料として99.9%のBi、TiOの混合比率Bi/TiOが元素比で4:3になるように調製し、ジルコニアボールを使用し、アルコール溶媒中、ボールミルで18時間混合した。得られた混合スラリーを乾燥後、大気中750℃、3時間の条件でいわゆる仮焼成を行った。得られた合成粉に対して半導体化元素Nbを0.1mol%、PVAをバインダーとして5wt%添加し、造粒後、1000MPaで1軸成形を行い、成形体を得た。得られた成形体を大気雰囲気にて最高1150℃まで加熱焼成した。 この得られた試料を試料No.1とした。焼結体のX線強度からLotgering法によって配向度を求めると、配向度は30°付近に(110)ピークを持っていた。また、得られた焼結体の密度を測定した結果、5.1g/cmで密度84%程度であった。さらに、素子温度と電気抵抗値を測定した結果、10kΩ・cmの室温抵抗値を示し、低温側から温度を上げていったところ、キュリー点660℃を挟む温度範囲620℃〜700℃の温度範囲にて電気抵抗が10倍以上高くなり、優れたPTC特性を示すことがわかった。
次に、出発原料を表1および表2に示す試料No.2〜試料No.26に示すようにそれぞれ調整し、前記試料No.1と同様に焼結まで行い、焼結後に得られた化合物及びその焼結体の特性を測定した結果を試料No.1の結果と合わせて表3および表4に示す。
【0011】
【表1】

Figure 2004014950
【0012】
【表2】
Figure 2004014950
表2中の*印の試料は、本発明の範囲外の比較試料である。
【0013】
【表3】
Figure 2004014950
【0014】
【表4】
Figure 2004014950
表4中の *印の試料は、本発明の範囲外の比較試料である。
【0015】
表1〜表4の結果より、試料No.1〜試料No.22に示す本発明の(Bi2+(An−13n+12−の式で表される組成を有し、式中のAはK、Na、Ca、Ba、Sr、Pb、Biから選択される1種又は2種以上の元素からなり、式中のBはTi、Nb、V、Ta、W、Moから選択される1種又は2種以上の元素からなるセラミックスは、いずれもPTC特性が顕著に表れ、キューリー点が300℃を超えるものが得られるか、または非常に低い焼成温度にてPTC素子を得ることができた。特に、層状ペロブスカイト構造を有する試料No.3、試料No.4、試料No.9、試料No.11、試料No.15、試料No.21の組織のものはいずれもキューリー点が高く、優れた特性を持つPTC素子を得ることができた。
それに対し、試料No.24〜試料No.26に示す本発明の範囲外の添加元素を加えて、その他の条件を同様に調製、焼結したセラミックスは、焼結温度を高くする必要があるにも拘わらず、得られた焼結体のキュリー点はいずれも200℃以下と低く、希望特性が得られないことが分かった。
また、(Bi2+(An−13n+12−の式で表される組成を有し、式中のAはK、Na、Ca、Ba、Sr、Pb、Biから選択される1種または2種以上の元素からなり、式中のBはTi、Nb、V、Ta、W、Moから選択される1種又は2種以上の元素であるセラミックスであるが、式中のnに対して1≦n≦8を満たさない試料No.23の試料は結晶の配向性が不安定であり、焼結温度は高くないが、キューリー点も低く、期待する特性は得られなかった。
また、本発明のPTC特性を持つセラミックスはいずれも常温での電気抵抗値が10kΩ・cm以下であり、またキュリー点がより高温における材料についても、温度と素子の電気抵抗を測定した際に、常温における電気抵抗値と比較するといずれもキューリー点を挟んで電気抵抗が10倍以上高くなるPTC特性を有するために、家庭用低電圧条件(たとえば100V電源)でも使用することができた。
【0016】
【発明の効果】
以上説明したように本発明によれば、従来のBaTiOを主成分とするセラミックス材料と比較してより高いキュリー点をもち、焼成温度が低く、積層品などに応用して卑金属を使用してコストを低減し、常温での電気抵抗をより下げることができ、低電圧での使用が可能になる。
【図面の簡単な説明】
【図1】BaTiOの置換元素がキュリー温度特性に影響を及ぼすことを示す図
【図2】本発明のPTC特性を有するセラミックのPTC特性を示す図[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ceramic material having PTC (Positive Temperature Coefficient: positive temperature coefficient of resistance) characteristics in which the resistivity increases as the temperature increases.
[0002]
[Prior art]
Conventionally, materials having PTC characteristics have been used as temperature sensors and heaters by utilizing their unique properties. Especially when used as a heater, self-temperature control is performed near the resistance conversion temperature (Curry point in the case of ceramics) to maintain the temperature constant, to prevent overheating and runaway, and to output according to the ambient temperature. There is a feature that it saves energy by controlling.
[0003]
As materials having such PTC characteristics, there have been organic materials obtained by compounding carbon and resin and ceramic materials containing BaTiO 3 as a main component. Among these, the former organic material has the characteristics of being able to lower resistance, being able to be used at a low voltage, and having flexibility, but the PTC characteristic is based on the mechanism that the current path of carbon is cut off by the thermal expansion of the resin. It has the fatal drawback of short lifespan. In addition, the degree of freedom such as a very narrow selection range of the resistance value and the resistance conversion temperature is lacking.
[0004]
On the other hand, in the case of the latter, which is a ceramic material mainly composed of BaTiO 3 , the resistance value can be freely selected from 10 to 10 6 Ω · cm and the resistance conversion temperature to about 300 ° C., and its PTC characteristics are inferior to electronic properties. Because of this, there is a characteristic that the material itself does not fluctuate and has excellent durability. However, the Curie point of the resistance conversion temperature is increasing as the demand for high temperature characteristics increases with the expansion of applications and the increase in energy. In Japanese Patent No. 2911959 and Japanese Patent Application Laid-Open No. H11-224803, the Curie point is about 400 to 500 ° C. Although the point is brought to the high temperature side, the room temperature resistance is high, and its use is limited. Further, the BaTiO 3 -based PTC ceramic material has a high firing temperature of 1300 ° C. or more at the time of production, and it is difficult to co-fire with the electrode. there were.
On the other hand, from an academic point of view, various theories have been advocated for the theory of PTC characteristics in BaTiO 3 -based PTC ceramic materials, but the grain boundary barrier model proposed by Heywang has been most supported. ing. This Heywang grain boundary barrier layer model satisfies the Curie-Weiss rule, ε r = C · (T−Tc) (Tc is the Curie temperature, C is the Curie constant) when the dielectric constant ε r of the grain boundary layer is equal to or higher than the Curie point. In this model, the rapid rise of ρ is explained in the range of T> Tc of ε r. However, there is a phenomenon that cannot be explained sufficiently, and the mechanism is not clear. There is no explanation. That is, it can be understood that the significance of the invention of PTC materials other than the BaTiO 3 system is significant from an academic point of view.
[0005]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to obtain a PTC material having a low firing temperature and a Curie point of 300 degrees or more.
[0006]
[Means for Solving the Problems]
The present invention is defined in claim 1, (Bi 2 O 2) 2+ (A n-1 B n O 3n + 1) has a composition represented by 2-formula, A in the formula is K, Na, Ca , Ba, Sr, Pb, Bi, and at least one selected from Ti, Nb, V, Ta, W, and Mo. N in the formula is any number satisfying 1 ≦ n ≦ 8 (including non-natural numbers), and is a ceramic having a layered crystal structure and having PTC characteristics.
The crystal structure in the present invention is mainly a layered crystal structure. In order to have a layered structure, the valence control is performed by substituting a high valence or low valence element for atoms constituting part of the A site and the B site in the above chemical formula, and Can be provided. In order to further reduce the resistance value, it is preferable to replace a part of the A site and the B site with a high-valent element. The substitution amount is about 0.01 to 1.00 mol%, and particularly preferably 0.05 to 0.2 mol%. If the addition amount is less than that, the effect becomes small and the room temperature resistance value becomes high, which is uneconomical. Further, even if the amount of addition is larger, the room temperature resistance value is similarly increased. The degree of their action depends on the additive elements and their contents.
As atoms entering the A site and the B site, at the A site, one or more elements selected from K, Na, Ca, Ba, Sr, Pb, and Bi, and at the B site, Ti, Nb, Ta, V, One or more elements selected from W and Mo are selected, and the Curie point can be changed depending on the type of the atom. The elements to be placed at the A site and the B site are selected depending on the combination of atoms to be placed at each site and the size of the ions. As a result of the experiment, it was found that the PTC characteristics were excellent.
Manufacturing conditions vary depending on the firing temperature and synthesis temperature. Valence control is performed on the A site or the B site, and the compound is selected depending on the application and specifications. Incidentally, Bi 3 Bi in the A site to the TiNbO 9, Ti at the B site may be replaced with elements different from Nb, Na 0.5 as Na 0.5 Bi 4.5 Ti 4 O 15 , Bi 2.5 may be replaced by decimal fractional distribution, such as K 0.5 Bi 4.5 Ti 4 O 15 with K 0.5 Bi 4.5 for a portion of the A site to be fractional fractional distribution. May be substituted. That is, the material composition can be adjusted in order to select the Curie point and the resistance value according to the application and specifications. That is, the number n may be a decimal point or a fraction. n is selected from 1 to 8, and if the composition is within the range, PTC characteristics are sufficiently obtained and the crystal is stable. When n is smaller than 1, the crystal is not stable. On the other hand, when n is larger than 8, the crystal orientation becomes too large, the crystal structure becomes unstable, and the sinterability deteriorates, which is not preferable, and the characteristics cannot be expected.
Further, a transition metal element such as Mn, Fe, Cu, V, Cr, or Ni can be added to improve the resistance temperature characteristics, and SiO 2 , Al 2 O 3 , TiO 2 , Bi 2 O 3 , Nb 2 By adding O 5 , PbO, K 2 CO 3 , Na 2 CO 3 , CaCO 3 , BaCO 3 , SrCO 3 , B 2 O 3, or a composition which changes to an oxide during calcination, it can be itself or a main component. By reacting to form a liquid phase and controlling the particle size, electrical characteristics such as resistance temperature characteristics and withstand voltage characteristics can be improved. By having the above composition and structure, the ceramics having the PTC characteristics of the present invention can obtain a material having a higher Curie point than conventional PTC materials, and the Curie point can be freely adjusted by the type of the added element. Each of them has a feature that the firing temperature is low and firing is easy.
[0007]
According to a second aspect of the present invention, there is provided a ceramic having a PTC characteristic according to the first aspect, which has a perovskite structure. In the perovskite structure, only a part of the atoms constituting the perovskite structure is easily replaced, which greatly affects the characteristics, particularly the electric characteristics such as electric conductivity.
[0008]
In addition, particularly by including a layered perovskite structure, it becomes easy to substitute an ion, so that the element can be easily produced when substituting an element, and PTC characteristics at a high Curie point can be easily obtained. A desired Curie point can be easily obtained by controlling the added element.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
As a starting material, powder of Bi 2 O 3 having an average particle diameter of 30 μm or less and a purity of 90% or more and elements of K, Na, Ca, Ba, Sr, Pb, Bi, Ti, Nb, V, Ta, W, and Mo Powders such as oxides, carbonates, composite oxides, and composite carbonates are weighed and weighed in a desired amount, and mixed in a dry or wet manner using a mixing device such as a ball mill, a pot mill, an attritor, and a Henschel mixer. The obtained powder or slurry is dried, and a granulated powder is obtained using a sieving apparatus or a spray drier. At this time, a binder such as an organic substance can be added in order to obtain granulated powder having good fluidity. Next, the granulated powder is pressed at a pressure of about 200 MPa to 3000 MPa by a method such as a uniaxial pressing press, a rubber press, or a cold isostatic pressing, and then, if necessary, a pressed body is processed, followed by degreasing and sintering. I do. Degreasing and sintering are performed in an air atmosphere, an inert gas atmosphere, or a vacuum atmosphere at an appropriate temperature of about 800 ° C. to 1700 ° C. for each composition. The PTC element of the present invention can be obtained by subjecting the obtained sintered body to machining, if necessary, and then energizing by a method such as metallization and electrically connecting to a power source. In addition, a method may be employed in which a so-called temporary sintering is performed once after the drying in the above method, a compound containing the additional element is added, and then sintering is performed for granulation.
Hereinafter, the present invention will be described in more detail with reference to examples.
[0010]
【Example】
As a starting material, a mixture ratio of 99.9% Bi 2 O 3 and TiO 2 was prepared so that the element ratio Bi 2 O 3 / TiO 2 was 4: 3, and zirconia balls were used in an alcohol solvent in a ball mill. For 18 hours. After drying the obtained mixed slurry, so-called calcination was performed in air at 750 ° C. for 3 hours. To the obtained synthetic powder, 0.1 mol% of a semiconducting element Nb 2 O 5 and 5 wt% of PVA as a binder were added, and after granulation, uniaxial molding was performed at 1000 MPa to obtain a molded body. The obtained molded body was heated and fired in an air atmosphere up to 1150 ° C. The obtained sample was designated as Sample No. It was set to 1. When the degree of orientation was determined from the X-ray intensity of the sintered body by the Lotgering method, the degree of orientation had a (110) peak near 30 °. The density of the obtained sintered body was measured, and it was 5.1 g / cm 3 and the density was about 84%. Further, as a result of measuring the element temperature and the electric resistance value, it showed a room temperature resistance value of 10 kΩ · cm, and when the temperature was increased from a low temperature side, a temperature range of 620 ° C. to 700 ° C. sandwiching the Curie point of 660 ° C. It was found that the electric resistance was increased by 10 times or more, and excellent PTC characteristics were exhibited.
Next, starting materials were sample Nos. Shown in Tables 1 and 2. No. 2 to sample no. 26, and adjusted as shown in Sample No. 26. Sintering was performed in the same manner as in Sample No. 1 and the results obtained by measuring the properties of the compound obtained after sintering and the characteristics of the sintered body were shown in Sample No. The results are shown in Tables 3 and 4 together with Table 1.
[0011]
[Table 1]
Figure 2004014950
[0012]
[Table 2]
Figure 2004014950
The samples marked * in Table 2 are comparative samples outside the scope of the present invention.
[0013]
[Table 3]
Figure 2004014950
[0014]
[Table 4]
Figure 2004014950
The samples marked * in Table 4 are comparative samples outside the scope of the present invention.
[0015]
From the results in Tables 1 to 4, Sample No. No. 1 to No. 1 It has a composition represented by the formula (Bi 2 O 2) 2+ ( A n-1 B n O 3n + 1) 2- of the present invention shown in 22, the A in the formula K, Na, Ca, Ba, Sr , Pb, Bi, a ceramic comprising one or more elements selected from the group consisting of Ti, Nb, V, Ta, W, and Mo In any case, PTC characteristics were remarkably exhibited, and a Curie point exceeding 300 ° C. was obtained, or a PTC element was obtained at a very low firing temperature. In particular, Sample No. 1 having a layered perovskite structure was used. 3, sample no. 4, sample no. 9, sample no. 11, sample no. 15, sample no. Each of the 21 structures had a high Curie point, and a PTC element having excellent characteristics was obtained.
On the other hand, the sample No. 24 to sample no. Ceramics prepared by adding other elements outside the range of the present invention shown in FIG. 26 and adjusting other conditions in the same manner and sintering the sintered body obtained despite the necessity of increasing the sintering temperature. The Curie point was as low as 200 ° C. or less, and it was found that desired characteristics could not be obtained.
Further, it has a composition represented by the formula (Bi 2 O 2 ) 2+ (A n-1 Bn O 3n + 1 ) 2- , where A is K, Na, Ca, Ba, Sr, Pb, Bi. Wherein B is a ceramic that is one or more elements selected from Ti, Nb, V, Ta, W, and Mo, Sample No. not satisfying 1 ≦ n ≦ 8 for n in the formula. In sample No. 23, the crystal orientation was unstable and the sintering temperature was not high, but the Curie point was low and the expected characteristics could not be obtained.
Further, any of the ceramics having the PTC characteristics of the present invention has an electric resistance value of 10 kΩ · cm or less at room temperature, and also has a Curie point of a higher temperature, when the temperature and the electric resistance of the element are measured. Compared to the electrical resistance value at room temperature, all have PTC characteristics in which the electrical resistance is 10 times or more higher than the Curie point, so that they can be used even at home low voltage conditions (for example, 100 V power supply).
[0016]
【The invention's effect】
As described above, according to the present invention, it has a higher Curie point, a lower sintering temperature, and uses a base metal for application to laminates and the like as compared with the conventional ceramic material containing BaTiO 3 as a main component. The cost can be reduced, the electric resistance at room temperature can be further reduced, and the device can be used at a low voltage.
[Brief description of the drawings]
FIG. 1 is a diagram showing that a substitution element of BaTiO 3 affects Curie temperature characteristics. FIG. 2 is a diagram showing PTC characteristics of a ceramic having PTC characteristics of the present invention.

Claims (2)

(Bi2+(An−13n+12−の式で表される組成を有し、式中のAはK、Na、Ca、Ba、Sr、Pb、Biから選択される1種又は2種以上からなり、式中のBはTi、Nb、V、Ta、W、Moから選択される1種又は2種以上からなり、式中のnは1≦n≦8を満たす全ての数(自然数以外も含む)であり、層状結晶構造を有し、かつ、PTC特性を有するセラミックス。 (Bi 2 O 2) 2+ ( A n-1 B n O 3n + 1) has a composition represented by 2 expression, choice A in formula K, Na, Ca, Ba, Sr, Pb, Bi, Wherein B is one or more selected from Ti, Nb, V, Ta, W and Mo, and n in the formula is 1 ≦ n ≦ 8 Ceramics having all numbers (including non-natural numbers) satisfying the above, having a layered crystal structure, and having PTC characteristics. 層状結晶構造の一部または全部が層状ペロブスカイト構造であることを特徴とする請求項1に記載のPTC特性を有するセラミックス。The ceramics having PTC characteristics according to claim 1, wherein a part or all of the layered crystal structure has a layered perovskite structure.
JP2002169249A 2002-06-10 2002-06-10 Ceramics material having ptc characteristic Pending JP2004014950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002169249A JP2004014950A (en) 2002-06-10 2002-06-10 Ceramics material having ptc characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002169249A JP2004014950A (en) 2002-06-10 2002-06-10 Ceramics material having ptc characteristic

Publications (1)

Publication Number Publication Date
JP2004014950A true JP2004014950A (en) 2004-01-15

Family

ID=30435903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002169249A Pending JP2004014950A (en) 2002-06-10 2002-06-10 Ceramics material having ptc characteristic

Country Status (1)

Country Link
JP (1) JP2004014950A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064799A1 (en) * 2004-12-13 2006-06-22 Osaka University Composite metal oxide photocatalyst exhibiting responsibility to visible light
WO2012023614A1 (en) 2010-08-20 2012-02-23 学校法人 城西大学 Monoclonal antibody having immunosuppressive activity or fragment to which antigen thereof is bonded
CN106495684A (en) * 2016-10-08 2017-03-15 常州创索新材料科技有限公司 A kind of preparation method of lead-free piezoceramic material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064799A1 (en) * 2004-12-13 2006-06-22 Osaka University Composite metal oxide photocatalyst exhibiting responsibility to visible light
WO2012023614A1 (en) 2010-08-20 2012-02-23 学校法人 城西大学 Monoclonal antibody having immunosuppressive activity or fragment to which antigen thereof is bonded
CN106495684A (en) * 2016-10-08 2017-03-15 常州创索新材料科技有限公司 A kind of preparation method of lead-free piezoceramic material

Similar Documents

Publication Publication Date Title
TWI389868B (en) Semiconductor porcelain composition and method of manufacturing the same
JP4765258B2 (en) Semiconductor porcelain composition
JP5757239B2 (en) Semiconductor porcelain composition and method for producing the same, PTC element and heating module
KR101390609B1 (en) Semiconductor ceramic composition and method for producing the same
JP5228915B2 (en) Semiconductor porcelain composition and method for producing the same
KR101118320B1 (en) semiconductor ceramic composition
WO2008053813A1 (en) Semiconductor ceramic composition and process for producing the same
JPWO2007097462A1 (en) Semiconductor porcelain composition
WO1998011568A1 (en) Ptc thermistor material
WO2008050877A1 (en) Semiconductor ceramic composition and method for producing the same
JPWO2010067866A1 (en) Semiconductor ceramic and positive temperature coefficient thermistor
KR20170094085A (en) Semiconductor ceramic composition and ptc thermistor
WO2009119335A1 (en) Process for producing semiconductor porcelain composition/electrode assembly
CN101528632B (en) Semiconductor ceramic composition and method for producing the same
TWI485122B (en) Manufacturing method of semiconductor porcelain composition and heater for semiconductor porcelain composition
JP2004014950A (en) Ceramics material having ptc characteristic
JP5267505B2 (en) Semiconductor porcelain composition
JP2012224537A (en) Sintered body for ptc element, method for producing the same, the ptc element, and heat generating module
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JP2005119904A (en) Bismuth oxide based ceramics
JPH06163204A (en) Semiconducting bismuth-layer-form structure oxide and ptc thermistor element
JPH11106256A (en) Production of barium titanate-based semiconductor material
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
JP2000286104A (en) Manufacture of positive temperature coefficient thermistor
JPH1070008A (en) Manufacture of positive temperature coefficient thermistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080722