JP5267505B2 - Semiconductor porcelain composition - Google Patents

Semiconductor porcelain composition Download PDF

Info

Publication number
JP5267505B2
JP5267505B2 JP2010119055A JP2010119055A JP5267505B2 JP 5267505 B2 JP5267505 B2 JP 5267505B2 JP 2010119055 A JP2010119055 A JP 2010119055A JP 2010119055 A JP2010119055 A JP 2010119055A JP 5267505 B2 JP5267505 B2 JP 5267505B2
Authority
JP
Japan
Prior art keywords
composition
tio
resistivity
room temperature
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010119055A
Other languages
Japanese (ja)
Other versions
JP2010241684A (en
Inventor
武司 島田
啓 松本
公一 寺尾
和也 田路
和裕 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2010119055A priority Critical patent/JP5267505B2/en
Publication of JP2010241684A publication Critical patent/JP2010241684A/en
Application granted granted Critical
Publication of JP5267505B2 publication Critical patent/JP5267505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

この発明は、PTCサーミスタ、PTCヒータ、PTCスイッチ、温度検知器などに用いられる、正の抵抗温度を有する半導体磁器組成物に関する。 The present invention relates to a semiconductor ceramic composition having a positive resistance temperature, which is used for a PTC thermistor, a PTC heater, a PTC switch, a temperature detector, and the like.

従来、正のPTCRを示す材料として、BaTiO3に様々な半導体化元素を置換した組成物が提案されている。これらの組成物は、キュリー温度が120℃前後であるため、用途に応じてキュリー温度をシフトさせることが必要になる。 Conventionally, compositions in which various semiconducting elements are substituted for BaTiO 3 have been proposed as materials exhibiting positive PTCR. Since these compositions have a Curie temperature of around 120 ° C., it is necessary to shift the Curie temperature depending on the application.

例えば、BaTiO3にSrTiO3を添加することによってキュリー温度をシフトさせることが提案されているが、その場合、キュリー温度は負の方向にのみシフトし、正の方向にはシフトしない。キュリー温度を正の方向にシフトさせる添加元素として用いられているのはPbTiO3だけである。しかし、PbTiO3は環境汚染を引き起こす元素を含有するため、近年、PbTiO3を使用しない材料が要望されている。 For example, it has been proposed to shift the Curie temperature by adding SrTiO 3 to BaTiO 3 , but in that case, the Curie temperature is shifted only in the negative direction and not in the positive direction. Only PbTiO 3 is used as an additive element to shift the Curie temperature in the positive direction. However, since PbTiO 3 contains an element that causes environmental pollution, a material that does not use PbTiO 3 has been demanded in recent years.

BaTiO3系半導体磁器において、Pb置換による抵抗温度係数の低下を防止するとともに、電圧依存性を小さくし、生産性や信頼性を向上させることを目的として、BaTiO3のBaの一部をBi-Naで置換したBa1-2x(BiNa)xTiO3なる構造において、xを0<x≦0.15の範囲とした組成物にNb、Taまたは希土類元素のいずれか一種または一種以上を加えて窒素中で焼結した後、酸化性雰囲気中で熱処理するBaTiO3系半導体磁器の製造方法が提案されている。 In BaTiO 3 semiconductor porcelain, a part of BaTiO 3 is added to Bi-- for the purpose of preventing decrease in temperature coefficient of resistance due to Pb substitution, reducing voltage dependence, and improving productivity and reliability. In the structure of Ba 1-2x (BiNa) x TiO 3 substituted with Na, in the nitrogen composition, one or more of Nb, Ta and rare earth elements is added to the composition in which x is in the range of 0 <x ≦ 0.15 There has been proposed a method of manufacturing a BaTiO 3 -based semiconductor porcelain that is sintered in a furnace and then heat-treated in an oxidizing atmosphere.

特開昭56-169301号公報Japanese Unexamined Patent Publication No. 56-169301

特許文献1には、その実施例であるBa1-2x(BiNa)xTiO3(0<x≦0.15)に、半導体元素として、Nd2O3を0.1モル%添加した組成物が開示されているが、他のNb、Taの添加量については同文献には何ら記載がなく、半導体化が不明である。 Patent Document 1 discloses a composition obtained by adding 0.1 mol% of Nd 2 O 3 as a semiconductor element to Ba 1-2x (BiNa) x TiO 3 (0 <x ≦ 0.15) as an example. However, the other Nb and Ta addition amounts are not described in the document, and it is not clear how to make them semiconductor.

そこで発明者らは、特許文献1に記載のBaの一部をBi-Naで置換した組成系について検討したところ、組成物の原子価制御を行う場合、3価の陽イオンを半導体化元素として添加すると、半導体化の効果が1価のNaイオンの存在のために低下し、室温における抵抗率が高くなるという問題を有し、これに対して半導体元素として上記のNd2O3を0.1モル%添加しているが、これではPTC用途として十分な半導体化を実現できないことを知見した。 Therefore, the inventors examined a composition system in which a part of Ba described in Patent Document 1 was substituted with Bi-Na. When performing valence control of the composition, a trivalent cation was used as a semiconducting element. When added, the effect of semiconductorization is reduced due to the presence of monovalent Na ions, and there is a problem that the resistivity at room temperature becomes high.On the other hand, 0.1 mol of Nd 2 O 3 is added as a semiconductor element. However, it has been found that sufficient semiconductorization for PTC applications cannot be realized.

この発明は、上述した従来のBaTiO3系半導体磁器組成物の問題を解決し、Pbを使用することなく、キュリー温度を正の方向へシフトすることができるとともに、室温における抵抗率を大幅に低下させた、半導体磁器組成物の提供を目的としている。 This invention solves the above-mentioned problems of the conventional BaTiO 3 based semiconductor ceramic composition, can shift the Curie temperature in the positive direction without using Pb, and greatly reduces the resistivity at room temperature. An object of the present invention is to provide a semiconductor ceramic composition.

発明者らは、BaTiO3系半導体磁器組成物において、Baの一部をBi-Naなどによって置換した場合の原子価制御に着目し、最適な原子価制御を行うための添加元素の含有量について鋭意研究の結果、Baの一部をA1元素(Na、K、Liの少なくとも一種)とA2元素(Bi)で置換するとともに、さらにBaを特定量のQ元素で置換することにより、最適な原子価制御ができ、室温における抵抗率を大幅に低下させることができることを知見した。 The inventors focused on valence control when a part of Ba is substituted with Bi-Na or the like in the BaTiO 3 based semiconductor ceramic composition, and the content of additive elements for optimal valence control. As a result of diligent research, while replacing a part of Ba with A1 element (at least one of Na, K, Li) and A2 element (Bi), and further substituting Ba with a specific amount of Q element, an optimal atom It was found that the valence can be controlled and the resistivity at room temperature can be greatly reduced.

また、発明者らは、Baの一部をA1元素(Na、K、Liの少なくとも一種)とA2元素(Bi)で置換するとともに、Tiの一部を特定量のM元素で置換することにより、上記と同様な効果が得られることを知見し、さらに、この場合、上記のQ元素による置換量よりも少量の置換量で原子価制御ができるという利点があることを知見し、この発明を完成した。 Further, the inventors replaced a part of Ba with an A1 element (at least one of Na, K, Li) and an A2 element (Bi), and also replaced a part of Ti with a specific amount of M element. The inventors have found that the same effect as described above can be obtained, and further, in this case, have found that there is an advantage that the valence can be controlled with a smaller amount of substitution than the amount of substitution with the above-mentioned Q element. completed.

すなわち、この発明は、組成式を、[(A10.5A20.5)xBa1-x][Ti1-zMz]O3(但し、A1はNa、K、Liの一種又は二種以上、A2はBi、MはNb、Ta、Sbの一種又は二種以上)と表し、前記x、zが、0<x≦0.2、0<z≦0.01、より好ましくは0<z≦0.005を満足することを特徴とする半導体磁器組成物である。 That is, in the present invention, the composition formula is [(A1 0.5 A2 0.5 ) x Ba 1-x ] [Ti 1-z M z ] O 3 (where A1 is one or more of Na, K, Li, A2 represents Bi and M represents one or more of Nb, Ta, and Sb), and x and z satisfy 0 <x ≦ 0.2, 0 <z ≦ 0.01, more preferably 0 <z ≦ 0.005. This is a semiconductor porcelain composition.

さらに、この発明は、上記構成の各半導体磁器組成物において、それぞれSi酸化物を3.0mol%以下、Ca酸化物を4.0mol%以下添加したことを特徴とする半導体磁器組成物である。
また、この発明は、上記構成の各半導体磁器組成物において、キュリー温度が120℃以上、室温の抵抗率が318Ωcm以下である半導体磁器組成物である。
Furthermore, the present invention is the semiconductor ceramic composition characterized in that Si oxide is added in an amount of 3.0 mol% or less and Ca oxide is added in an amount of 4.0 mol% or less in each of the semiconductor ceramic compositions having the above configuration.
The present invention is also the semiconductor ceramic composition having a Curie temperature of 120 ° C. or higher and a room temperature resistivity of 318 Ωcm or lower in each of the semiconductor ceramic compositions having the above-described configuration.

この発明によれば、BaTiO3系半導体磁器組成物において、環境汚染を引き起こすPbを使用することなく、キュリー温度を上昇させることができるとともに、室温における抵抗率を大幅に低下させた半導体磁器組成物を提供することができる。 According to the present invention, in the BaTiO 3 based semiconductor ceramic composition, the Curie temperature can be increased without using Pb that causes environmental pollution, and the resistivity at room temperature is greatly reduced. Can be provided.

この発明によるBaTiO3系半導体磁器組成物は、室温並びに所定の温度に達するまでの範囲における抵抗率が十分に低く、且つ目的温度域では抵抗率が急激に高くなる比抵抗特性を有し、PTCサーミスタ、PTCヒータ、PTCスイッチ、温度検知器など、特に自動車用ヒータなどの用途に最適である。 The BaTiO 3 based semiconductor ceramic composition according to the present invention has a resistivity characteristic that the resistivity is sufficiently low at a room temperature and a range until a predetermined temperature is reached, and the resistivity rapidly increases in a target temperature range. It is most suitable for applications such as thermistors, PTC heaters, PTC switches, temperature detectors, especially automotive heaters.

この発明の特徴は、Baの一部をA1元素(Na、K、Liの少なくとも一種、すなわち一種又は二種以上)とA2元素(Bi)で置換することにより、キュリー温度を正の方向にシフトさせるとともに、該A1、A2元素の置換によって乱れた原子価を最適に制御するために、Baの一部を特定量のQ元素(La、Dy、Eu、Gdの少なくとも一種)で置換し、[(A10.5A20.5)x(Ba1-yQy)1-x]TiO3組成とするか、または、Tiの一部を特定量のM元素で置換し、[(A10.5A20.5)xBa1-x][Ti1-zMz]O3組成とすることにある。 A feature of the present invention is that the Curie temperature is shifted in the positive direction by substituting a part of Ba with an A1 element (at least one of Na, K, Li, that is, one or more) and an A2 element (Bi). In addition, in order to optimally control the valence disturbed by the substitution of the A1, A2 element, a part of Ba is substituted with a specific amount of Q element (at least one of La, Dy, Eu, Gd), [ (A1 0.5 A2 0.5 ) x (Ba 1-y Q y ) 1-x ] TiO 3 composition, or a part of Ti is substituted with a specific amount of M element, and [(A1 0.5 A2 0.5 ) x The composition is Ba 1-x ] [Ti 1-z M z ] O 3 .

各組成の限定理由は以下のとおりである。
[(A10.5A20.5)x(Ba1-yQy)1-x]TiO3組成物において、A1はNa、K、Liの少なくとも一種、A2はBi、QはLa、Dy、Eu、Gdの少なくとも一種である。好ましくは、A1がNa、QがLaである。
The reasons for limiting each composition are as follows.
[(A1 0.5 A2 0.5 ) x (Ba 1-y Q y ) 1-x ] In the TiO 3 composition, A1 is at least one of Na, K, Li, A2 is Bi, Q is La, Dy, Eu, Gd Is at least one kind. Preferably, A1 is Na and Q is La.

上記組成式中、xはA1+A2の成分範囲を示し、0<x≦0.2が好ましい範囲である。xが0ではキュリー温度を高温側へシフトすることができず、0.2を超えると室温の抵抗率が103Ωcmを超えるため好ましくない。 In the above composition formula, x represents a component range of A1 + A2, and 0 <x ≦ 0.2 is a preferable range. If x is 0, the Curie temperature cannot be shifted to the high temperature side, and if it exceeds 0.2, the resistivity at room temperature exceeds 10 3 Ωcm, which is not preferable.

また、上記組成式中、yはQの成分範囲を示し、0.002≦y≦0.01が好ましい範囲である。yが0.002未満では組成物の原子価制御が不充分となり室温の抵抗率が103Ωcmを超えてしまう。また、yが0.01を超えると組成物が絶縁体化し、室温の抵抗率が103Ωcmを超えるため好ましくない。好ましくは0.005≦y≦0.01であり、室温の抵抗率をより低下することができる。なお、上記0.002≦y≦0.01はモル%表記では0.2モル%〜1.0モル%となる。 In the above composition formula, y represents a component range of Q, and 0.002 ≦ y ≦ 0.01 is a preferable range. If y is less than 0.002, the valence control of the composition is insufficient, and the resistivity at room temperature exceeds 10 3 Ωcm. On the other hand, if y exceeds 0.01, the composition becomes an insulator, and the resistivity at room temperature exceeds 10 3 Ωcm. Preferably, 0.005 ≦ y ≦ 0.01, and the resistivity at room temperature can be further reduced. The above 0.002 ≦ y ≦ 0.01 is 0.2 mol% to 1.0 mol% in terms of mol%.

[(A10.5A20.5)xBa1-x][Ti1-zMz]O3組成物において、A1はNa、K、Liの少なくとも一種、A2はBi、MはNb、Ta、Sbの少なくとも一種である。好ましくは、A1がNa、MがNbである。 [(A1 0.5 A2 0.5 ) x Ba 1-x ] [Ti 1-z M z ] O 3 In the composition, A1 is at least one of Na, K, Li, A2 is Bi, M is Nb, Ta, Sb. At least one kind. Preferably, A1 is Na and M is Nb.

上記組成式中、xはA1+A2の成分範囲を示し、0<x≦0.2が好ましい範囲である。xが0ではキュリー温度を高温側へシフトすることができず、0.2を超えると室温の抵抗率が103Ωcmを超えるため好ましくない。また、zはMの成分範囲を示し、0<z≦0.01が好ましい範囲である。zが0では原子価制御ができず、組成物が半導体化せず、0.01を超えると室温の抵抗率が103Ωcmを超えるため好ましくない。より好ましくは0<z≦0.005である。なお、上記0<z≦0.01はモル%表記で0〜1モル%(0を含まず)となる。 In the above composition formula, x represents a component range of A1 + A2, and 0 <x ≦ 0.2 is a preferable range. If x is 0, the Curie temperature cannot be shifted to the high temperature side, and if it exceeds 0.2, the resistivity at room temperature exceeds 10 3 Ωcm, which is not preferable. Z represents the component range of M, and 0 <z ≦ 0.01 is a preferable range. If z is 0, the valence cannot be controlled, the composition does not become a semiconductor, and if it exceeds 0.01, the resistivity at room temperature exceeds 10 3 Ωcm, which is not preferable. More preferably, 0 <z ≦ 0.005. The above 0 <z ≦ 0.01 is 0 to 1 mol% (not including 0) in terms of mol%.

上記[(A10.5A20.5)xBa1-x][Ti1-zMz]O3組成物の場合、原子価制御を行うために、TiをM元素で置換するが、この場合、M元素の添加(好ましい添加量0<z≦0.005)は、4価の元素であるTiサイトの原子価制御を目的としているため、前記[(A10.5A20.5)x(Ba1-yQy)1-x]TiO3組成物におけるQ元素の添加量(0.002≦y≦0.01)よりも少量で原子価制御を行うことができ、この発明による組成物の内部歪を軽減できるなどの利点を有する。 In the case of the above [(A1 0.5 A2 0.5 ) x Ba 1-x ] [Ti 1-z M z ] O 3 composition, Ti is replaced with M element in order to perform valence control. The addition of elements (preferably addition amount 0 <z ≦ 0.005) is intended to control the valence of the Ti site, which is a tetravalent element, so the above-mentioned [(A1 0.5 A2 0.5 ) x (Ba 1-y Q y ) The valence control can be performed with a smaller amount than the amount of addition of the Q element (0.002 ≦ y ≦ 0.01) in the 1-x ] TiO 3 composition, and the internal strain of the composition according to the present invention can be reduced. .

前記の[(A10.5A20.5)x(Ba1-yQy)1-x]TiO3組成物及び[(A10.5A20.5)xBa1-x][Ti1-zMz]O3組成物において、Si酸化物を3.0mol%以下、Ca酸化物を4.0mol%以下添加することにより、低温での焼結性を向上させることができる。いずれも上記限定量を超えて添加すると、組成物が半導体化を示さなくなるため好ましくない。 [(A1 0.5 A2 0.5 ) x (Ba 1-y Q y ) 1-x ] TiO 3 composition and [(A1 0.5 A2 0.5 ) x Ba 1-x ] [Ti 1-z M z ] O 3 By adding 3.0 mol% or less of Si oxide and 4.0 mol% or less of Ca oxide in the composition, the sinterability at low temperature can be improved. In any case, adding more than the above-mentioned limited amount is not preferable because the composition does not show semiconducting properties.

この発明による半導体磁器組成物の製造方法の一例を以下に説明する。
(1)各元素の酸化物粉末を準備し、それらを秤量の後、混合する。
(2)混合体を純水またはエタノール中でさらに混合した後、乾燥し、混合粉を得る。
(3)混合粉を900℃〜1100℃で2〜6時間仮焼する。
(4)仮焼体を純水またはエタノール中で粉砕した後、乾燥する。
(5)粉砕粉をPVAなどを用いて造粒した後、一軸プレス機によって成形する。
(6)成形体を300℃〜700℃で脱バインダー処理を行った後、大気中または還元雰囲気中で、1200℃〜1450℃で2〜6時間焼結する。
An example of a method for producing a semiconductor ceramic composition according to the present invention will be described below.
(1) Prepare oxide powders of each element, weigh them and mix them.
(2) The mixture is further mixed in pure water or ethanol and then dried to obtain a mixed powder.
(3) The mixed powder is calcined at 900 to 1100 ° C. for 2 to 6 hours.
(4) The calcined body is pulverized in pure water or ethanol and then dried.
(5) After the pulverized powder is granulated using PVA or the like, it is molded by a single screw press.
(6) The molded body is subjected to binder removal treatment at 300 ° C. to 700 ° C., and then sintered at 1200 ° C. to 1450 ° C. for 2 to 6 hours in the air or in a reducing atmosphere.

実施例1
主原料としてBaCO3、TiO2、半導体化元素としてLa2O3、Dy2O3、Eu2O3、Gd2O3、Nb2O5、Ta2O5、Sb2O3、焼結助剤としてSiO2、CaO、さらにキュリー温度のシフターとして(Na2CO3・Bi2O3・TiO2)、(K2CO3・Bi2O3・TiO2)、(Li2CO3・Bi2O3・TiO2)の各粉末を準備した。各粉末を表1〜表6に示す如く配合し、純水中で混合した後乾燥し、平均粒径0.6〜1.2μmの混合粉を得た。
Example 1
BaCO 3 and TiO 2 as main raw materials, La 2 O 3 , Dy 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , Sb 2 O 3 , sintered as semiconducting elements SiO 2 and CaO as auxiliaries, (Na 2 CO 3・ Bi 2 O 3・ TiO 2 ), (K 2 CO 3・ Bi 2 O 3・ TiO 2 ), (Li 2 CO 3・Each powder of Bi 2 O 3 · TiO 2 ) was prepared. Each powder was blended as shown in Tables 1 to 6, mixed in pure water and then dried to obtain a mixed powder having an average particle size of 0.6 to 1.2 μm.

次いで、該混合粉を組成に応じて900℃〜1100℃で2〜6時間仮焼した。得られた仮焼粉を純水中で平均粒径0.8〜1.5μmになるまで粉砕した後、粉砕粉を乾燥させた。次に、乾燥粉にPVAを添加し、混合した後、造粒装置によって造粒した。 Next, the mixed powder was calcined at 900 to 1100 ° C. for 2 to 6 hours depending on the composition. The calcined powder obtained was pulverized in pure water until the average particle size became 0.8 to 1.5 μm, and then the pulverized powder was dried. Next, PVA was added to the dry powder, mixed, and granulated by a granulator.

得られた造粒粉を一軸プレス装置により、成形密度2〜3g/cm3に成形した。得られた成形体を300℃〜700℃で脱バインダー後、酸素濃度75%の雰囲気中において、1300℃〜1360℃で4時間焼結し、焼結体を得た。 The obtained granulated powder was molded to a molding density of 2 to 3 g / cm 3 with a uniaxial press machine. The obtained molded body was debindered at 300 ° C. to 700 ° C. and then sintered at 1300 ° C. to 1360 ° C. for 4 hours in an atmosphere having an oxygen concentration of 75% to obtain a sintered body.

得られた焼結体を10mm×10mm×0.1mmの板状に加工し、試験片を得た。得られた試験片を抵抗測定に際し、室温から200℃までの範囲で抵抗値の変化を測定した。測定結果を表1〜表6に示す。 The obtained sintered body was processed into a plate shape of 10 mm × 10 mm × 0.1 mm to obtain a test piece. When the resistance of the obtained test piece was measured, a change in resistance value was measured in a range from room temperature to 200 ° C. The measurement results are shown in Tables 1 to 6.

表1のNo.1〜29が、[(A10.5Bi0.5)xBa1-x][Ti1-zNbz]O3組成物の場合、
表2のNo.30〜56が、[(A10.5Bi0.5)xBa1-x][Ti1-zSbz]O3組成物の場合、
表3のNo57〜86が、[(A10.5Bi0.5)x(Ba1-yLay)1-x]TiO3組成物の場合、
表4のNo.87〜102が、[(A10.5Bi0.5)x(Ba1-yGdy)1-x]TiO3組成物の場合、
表5のNo.103〜118が、[(A10.5Bi0.5)x(Ba1-yEuy)1-x]TiO3組成物の場合、
表6のNo.119〜134が、[(A10.5Bi0.5)x(Ba1-yDyy)1-x]TiO3組成物の場合を示す。
When No. 1 to 29 in Table 1 is a [(A1 0.5 Bi 0.5 ) x Ba 1-x ] [Ti 1-z Nb z ] O 3 composition,
When No. 30 to 56 in Table 2 are [(A1 0.5 Bi 0.5 ) x Ba 1-x ] [Ti 1-z Sb z ] O 3 composition,
When No57 to 86 in Table 3 are [(A1 0.5 Bi 0.5 ) x (Ba 1-y La y ) 1-x ] TiO 3 composition,
When No. 87 to 102 in Table 4 are [(A1 0.5 Bi 0.5 ) x (Ba 1-y Gd y ) 1-x ] TiO 3 composition,
When Nos. 103 to 118 in Table 5 are [(A1 0.5 Bi 0.5 ) x (Ba 1-y Eu y ) 1-x ] TiO 3 composition,
Nos. 119 to 134 in Table 6 show the case of [(A1 0.5 Bi 0.5 ) x (Ba 1-y Dy y ) 1-x ] TiO 3 composition.

比較例1
表1〜表6中、No.欄に*印を付してあるものは比較例である。すなわち、表1でNo.1〜4、No.11、表2でNo.30、No.31、No.44、表3でNo.57、No.58、表4でNo.87、No.88、表5でNo.103、No.104、表5でNo.119、No.120は比較例である。
Comparative Example 1
In Tables 1 to 6, those marked with * in the No. column are comparative examples. That is, No. 1 to 4 in Table 1, No. 11, No. 30, No. 31, No. 44 in Table 2, No. 57, No. 58 in Table 3, No. 87, No. in Table 4. 88, No. 103 and No. 104 in Table 5, and No. 119 and No. 120 in Table 5 are comparative examples.

実施例2
主原料としてBaCO3、TiO2、半導体化元素としてLa2O3、Nb2O5、キュリー温度のシフターとして(Na2CO3・Bi2O3・TiO2)の各粉末を準備した。各粉末を表7〜表8に示す如く配合し、純水中で混合した後乾燥し、平均粒径0.6〜1.2μmの混合粉を得た。
Example 2
BaCO 3 and TiO 2 as main raw materials, La 2 O 3 and Nb 2 O 5 as semiconducting elements, and (Na 2 CO 3 · Bi 2 O 3 · TiO 2 ) as Curie temperature shifters were prepared. Each powder was blended as shown in Tables 7 to 8, mixed in pure water and then dried to obtain a mixed powder having an average particle size of 0.6 to 1.2 μm.

次いで、該混合粉を組成に応じて900℃〜1100℃で2〜6時間仮焼した。得られた仮焼粉を純水中で平均粒径0.8〜1.5μmになるまで粉砕した後、粉砕粉を乾燥させた。次に、乾燥粉にPVAを添加し、混合した後、造粒装置によって造粒した。 Next, the mixed powder was calcined at 900 to 1100 ° C. for 2 to 6 hours depending on the composition. The calcined powder obtained was pulverized in pure water until the average particle size became 0.8 to 1.5 μm, and then the pulverized powder was dried. Next, PVA was added to the dry powder, mixed, and granulated by a granulator.

得られた造粒粉を一軸プレス装置により、成形密度2〜3g/cm3に成形した。得られた成形体を300℃〜700℃で脱バインダー後、酸素濃度75%の雰囲気中において、1380℃〜1450℃で4時間焼結し、焼結体を得た。 The obtained granulated powder was molded to a molding density of 2 to 3 g / cm 3 with a uniaxial press machine. The obtained molded body was debindered at 300 ° C. to 700 ° C. and then sintered at 1380 ° C. to 1450 ° C. for 4 hours in an atmosphere having an oxygen concentration of 75% to obtain a sintered body.

得られた焼結体を10mm×10mm×0.1mmの板状に加工し、試験片を得た。得られた試験片を抵抗測定で室温から200℃までの範囲で抵抗値の変化を測定した。測定結果を表7〜表8に示す。
表7のNo.135〜144が、[(A10.5Bi0.5)xBa1-x][Ti1-zNbz]O3組成物の場合、
表8のNo.145〜154が、[(A10.5Bi0.5)x(Ba1-yLay)1-x]TiO3組成物の場合を示す。
The obtained sintered body was processed into a plate shape of 10 mm × 10 mm × 0.1 mm to obtain a test piece. The resistance change of the obtained test piece was measured in the range from room temperature to 200 ° C. by resistance measurement. The measurement results are shown in Tables 7-8.
When No. 135 to 144 in Table 7 is a [(A1 0.5 Bi 0.5 ) x Ba 1-x ] [Ti 1-z Nb z ] O 3 composition,
Nos. 145 to 154 in Table 8 show the case of [(A1 0.5 Bi 0.5 ) x (Ba 1-y La y ) 1-x ] TiO 3 composition.

比較例2
表7〜表8中、No.欄に*印を付してあるものは比較例である。すなわち、表7でNo.135、No.136、表8でNo.145、No.146は比較例である。
Comparative Example 2
In Tables 7 to 8, those marked with * in the No. column are comparative examples. That is, No. 135 and No. 136 in Table 7 and No. 145 and No. 146 in Table 8 are comparative examples.

表1〜表8から明らかなように、本発明による半導体磁器組成物は、Pbを使用することなく、キュリー温度を上昇させることができるとともに、室温における抵抗率を大幅に低下させることが分かる。 As is apparent from Tables 1 to 8, it can be seen that the semiconductor ceramic composition according to the present invention can increase the Curie temperature and significantly reduce the resistivity at room temperature without using Pb.

この発明によると、環境汚染を引き起こすPbを使用することなく、キュリー温度を上昇させることができるとともに、室温における抵抗率を大幅に低下させることができるので、PTCサーミスタ、PTCヒータ、PTCスイッチ、温度検知器など利用することができる。特に自動車用ヒータなど、人体への影響が懸念される用途には最適である。 According to the present invention, the Curie temperature can be raised without using Pb that causes environmental pollution, and the resistivity at room temperature can be greatly reduced, so that the PTC thermistor, PTC heater, PTC switch, temperature Detectors can be used. It is particularly suitable for applications where there is a concern about the influence on the human body, such as an automotive heater.

Claims (4)

組成式を、[(A10.5A20.5)xBa1-x][Ti1-zMz]O3(但し、A1はNa、K、Liの一種又は二種以上、A2はBi、MはNb、Ta、Sbの一種又は二種以上)と表し、前記x、zが、0<x≦0.2、0<z≦0.01を満足する半導体磁器組成物。 The composition formula is [(A1 0.5 A2 0.5 ) x Ba 1-x ] [Ti 1-z M z ] O 3 (where A1 is one or more of Na, K, Li, A2 is Bi, M is Nb, Ta, or Sb), wherein x and z satisfy 0 <x ≦ 0.2 and 0 <z ≦ 0.01. zが、0<z≦0.005を満足する請求項1に記載の半導体磁器組成物。 2. The semiconductor ceramic composition according to claim 1, wherein z satisfies 0 <z ≦ 0.005. Si酸化物を3.0mol%以下、Ca酸化物を4.0mol%以下添加した請求項1または請求項2に記載の半導体磁器組成物。 3. The semiconductor ceramic composition according to claim 1, wherein Si oxide is added at 3.0 mol% or less and Ca oxide is added at 4.0 mol% or less. キュリー温度が120℃以上、室温の抵抗率が318Ωcm以下である請求項1〜3の何れか1項に記載の半導体磁器組成物。 The semiconductor ceramic composition according to any one of claims 1 to 3, which has a Curie temperature of 120 ° C or higher and a room temperature resistivity of 318 Ωcm or lower.
JP2010119055A 2010-05-25 2010-05-25 Semiconductor porcelain composition Expired - Fee Related JP5267505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010119055A JP5267505B2 (en) 2010-05-25 2010-05-25 Semiconductor porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010119055A JP5267505B2 (en) 2010-05-25 2010-05-25 Semiconductor porcelain composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004071444A Division JP4765258B2 (en) 2004-03-12 2004-03-12 Semiconductor porcelain composition

Publications (2)

Publication Number Publication Date
JP2010241684A JP2010241684A (en) 2010-10-28
JP5267505B2 true JP5267505B2 (en) 2013-08-21

Family

ID=43095135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010119055A Expired - Fee Related JP5267505B2 (en) 2010-05-25 2010-05-25 Semiconductor porcelain composition

Country Status (1)

Country Link
JP (1) JP5267505B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103360053B (en) * 2012-03-26 2015-06-03 常熟市林芝电子有限责任公司 Thermal sensitive ceramic material, PTC (positive temperature coefficient) thermistor made from thermal sensitive ceramic material for constant temperature heating and manufacturing method of PTC thermistor
JP6075877B2 (en) * 2013-10-31 2017-02-08 ニチコン株式会社 Semiconductor porcelain composition and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169301A (en) * 1980-06-02 1981-12-26 Tohoku Metal Ind Ltd Method of producing barium titanate semiconductor porcelain
JPS58107603A (en) * 1981-12-21 1983-06-27 住友金属鉱山株式会社 Method of producing positive temperature coefficient semiconductor magnetism
JPH06349604A (en) * 1993-04-14 1994-12-22 Komatsu Ltd Positive characteristic thermistor
JPH10294202A (en) * 1997-04-18 1998-11-04 Matsushita Electric Ind Co Ltd Positive temperature coefficient thermistor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010241684A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP4765258B2 (en) Semiconductor porcelain composition
KR101118320B1 (en) semiconductor ceramic composition
JP5445640B2 (en) Method for producing semiconductor porcelain composition
JP5218042B2 (en) Semiconductor porcelain composition
JP5228915B2 (en) Semiconductor porcelain composition and method for producing the same
JP5228916B2 (en) Semiconductor porcelain composition and method for producing the same
WO2006118274A1 (en) Semiconductor porcelain composition and process for producing the same
JP5228917B2 (en) Semiconductor porcelain composition and method for producing the same
WO2009081933A1 (en) Semiconductor ceramic composition
JPWO2008053813A1 (en) Semiconductor porcelain composition and method for producing the same
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
JP5267505B2 (en) Semiconductor porcelain composition
KR20110009653A (en) Process for producing semiconductor porcelain composition and heater employing semiconductor porcelain composition
WO2016002714A1 (en) Semiconductor ceramic composition and ptc element

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees