JP2004014484A - Cooling water circulation/feed system for fuel cell - Google Patents

Cooling water circulation/feed system for fuel cell Download PDF

Info

Publication number
JP2004014484A
JP2004014484A JP2002170757A JP2002170757A JP2004014484A JP 2004014484 A JP2004014484 A JP 2004014484A JP 2002170757 A JP2002170757 A JP 2002170757A JP 2002170757 A JP2002170757 A JP 2002170757A JP 2004014484 A JP2004014484 A JP 2004014484A
Authority
JP
Japan
Prior art keywords
cooling water
fuel cell
amount
valve
ion exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002170757A
Other languages
Japanese (ja)
Other versions
JP3979582B2 (en
JP2004014484A5 (en
Inventor
Takeshi Ushio
牛尾 健
Mitsuharu Imazeki
今関 光晴
Yoshiro Shimoyama
下山 義郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002170757A priority Critical patent/JP3979582B2/en
Publication of JP2004014484A publication Critical patent/JP2004014484A/en
Publication of JP2004014484A5 publication Critical patent/JP2004014484A5/ja
Application granted granted Critical
Publication of JP3979582B2 publication Critical patent/JP3979582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling water circulation/feed system for a fuel cell allowing the miniaturization of a cooling water circulation pump, and capable of reducing power consumption. <P>SOLUTION: This cooling water circulation/feed system has: a circulation passage for circulating the cooling water to the fuel cell; the cooling water circulation pump in the circulation passage; a cooler; and a temperature regulator for regulating the water temperature of the cooling water fed to the fuel cell by adjusting the distribution amount of the cooling water to the cooler. In the cooling water circulation/feed system, a bypass passage bypassing the fuel cell is formed in the circulation passage; an ion exchanger for keeping the electric conductivity of the cooling water low is installed in the bypass passage; a valve for controlling a water flow rate to the ion exchanger is installed; and the fuel cell is cooled by feeding the cooling water to the fuel cell while circulating it with the cooling water circulation pump. The distribution amounts of the cooling water to the fuel cell and the ion exchanger are controlled by controlling the opening and closing of the valve according the operation state of the temperature regulator. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池を冷却する燃料電池用の冷却水循環供給システムに関し、更に詳しくは、冷却水の電気伝導度を低く維持するためにイオン交換器を設けた燃料電池用の冷却水循環供給システムに関する。
【0002】
【従来の技術】
一般に、燃料電池を直接冷却水を用いて冷却する燃料電池用の冷却水循環供給システムにおいては、冷却水を介した液絡現象(蒸気と水が一緒に混じった状態で燃料電池からオフガスが排出されるが、この水を通じて燃料電池を支えている構造体と「地絡」を起こす場合がある。この「地絡」を「液絡」という。)を防止するため、冷却水には高度な電気絶縁性が要求される。
そのためイオン交換器を冷却水循環経路のバイパス経路に設け、全循環流量のうちの一定割合の冷却水を前記イオン交換器のイオン交換樹脂層に通水・循環させて冷却水中の電離イオンを分離することによって冷却水の電気絶縁性を維持しており、その通水量をシステムの状況に応じて増減することも知られている。
【0003】
冷却水の電気絶縁性を維持するために、イオン交換器に通水させることが必要な流量は、その時点の冷却水の電気伝導度、及びシステム全体から発生するイオン量により決まる。
一般に、冷却水循環供給システム全体から発生するイオン量は、極力少なくなる様に材料仕様等が選定されているため、冷却水の温度が安定し電気伝導度が低い場合には、イオン交換器への通水量は少なくて済む。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の燃料電池用の冷却水循環供給システムは、以下のような問題があった。
(1)冷却水の電気伝導度が液絡現象により問題が発生する領域内、又はそれに近い場合には速やかに電気伝導度を低下させる必要があるので、イオン交換器への通水量を早急に増やす必要が生じ、そのため循環経路には大量の循環流量が必要となる。
(2)また、冷却水(純水等)には温度上昇に伴い電気伝導度が上昇する特性があるため、システムを起動・暖機する過程での水温上昇に伴い電気伝導度が高くなるときには、問題が発生する領域に達しないように、循環経路の循環流量を増加させることが必要となる。
【0005】
(3)さらに、イオン交換器に使用されるイオン交換樹脂は、一般に高温時に熱分解を起こし、イオン交換容量を減じてしまう性質があるため、電気伝導度に加えて通水温度も考慮した上でイオン交換器への通水量を制御するのがイオン交換樹脂の寿命の点からは望ましい。
(4)また、従来技術として、循環経路のバイパス経路に、イオン交換器と前記イオン交換器への通水量を制御可能な弁とを設け、前記循環経路に設けた電気伝導度検知手段からの信号に基づき前記弁の開閉制御を行うものがあるが、イオン交換器への通水量の増量時に、燃料電池の入口−出口間の冷却水の温度差を適性値以内に保つための必要流量を確実に確保するには冷却水循環供給システム全体の循環流量を余裕を持って設定する必要があり、このために、
▲1▼冷却水循環ポンプの大型化
▲2▼冷却水循環供給システム全体の消費電力の増大
の原因となっていた。
【0006】
本発明は、前記課題を解決するためになされたものであって、循環経路に冷却水を循環させる冷却水循環ポンプを小型化することができ、かつ、冷却水循環供給システム全体の消費電力を低減することができる燃料電池用の冷却水循環供給システムを提供することを目的とする。
【0007】
【課題を解決するための手段】
前記課題を解決するためになされた請求項1に記載された燃料電池用の冷却水循環供給システムは、燃料電池に対して冷却水を循環させる循環経路と、前記循環経路に、冷却水を循環させる冷却水循環ポンプと、冷却水を冷却する冷却器と、この冷却器への冷却水の配分量を増減することによって前記燃料電池へ供給する冷却水の水温を調整する温度調整装置とを有し、さらに前記循環経路に前記燃料電池を迂回するバイパス経路を設けて、このバイパス経路に冷却水の電気伝導度を低く維持するためのイオン交換器を設けると共に、前記イオン交換器への通水量を制御する弁を設け、前記冷却水循環ポンプで冷却水を循環させながら前記燃料電池に供給して前記燃料電池を冷却する燃料電池用の冷却水循環供給システムにおいて、前記温度調整装置の作動状態に応じて前記弁の開閉を制御して、前記燃料電池と前記イオン交換器への冷却水の配分量を制御することを特徴とするものである。
【0008】
請求項1に記載された発明によると、温度調整装置の作動状態、すなわち冷却器への冷却水の配分量(燃料電池の放熱要求量)に応じて、バイパス経路に設けた弁の開閉(イオン交換器への通水量)を制御することにより、燃料電池の冷却を維持するのに必要な冷却水量を確保することができ、しかもイオン交換器へ通水することもできる。
また、冷却器への冷却水の配分量を知った上でイオン交換器への通水量を制御するようにしたことで、従来のように循環経路の循環流量に余裕を持って循環させる必要がないので、冷却水循環供給システム全体の循環流量を減らすことができる。
従って、冷却水循環ポンプを小型化することができ、かつ、冷却水循環供給システム全体の消費電力を低減することができる。
【0009】
請求項2に記載された燃料電池用の冷却水循環供給システムは、前記温度調整装置が前記冷却器へ冷却水を通水しているときは、前記弁が前記イオン交換器への冷却水の配分量を所定値以下に制限することを特徴とする請求項1に記載の燃料電池用の冷却水循環供給システムである。
【0010】
請求項2に記載の発明によると、前記温度調整装置が前記冷却器へ冷却水を通水しているとき、すなわち燃料電池を冷却しているときは、前記弁により前記イオン交換器への冷却水の配分量を所定値以下に制限して、イオン交換器側から燃料電池側へ冷却水を戻してやることで、燃料電池の冷却を維持するのに必要な冷却水量を確保することができる。
【0011】
請求項3に記載された燃料電池用の冷却水循環供給システムは、前記弁による冷却水の制限量は、前記燃料電池の運転状態に応じて調節されることを特徴とする請求項2に記載の燃料電池用の冷却水循環供給システムである。
【0012】
請求項3に記載の発明によると、前記弁の制限量を、前記燃料電池の運転状態(発電量、水温、冷却水循環ポンプの作動量等)に応じて調節することにより、燃料電池の冷却を維持するために必要な冷却水量とイオン交換器へ通水する冷却水量との配分を最適化することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について図1〜図6を参照して説明する。
尚、図1は、本発明に係る燃料電池用の冷却水循環供給システムの一実施形態を示す全体の構成図、図2は、一実施形態の燃料電池用の冷却水循環供給システムにおいてイオン交換器への通水量を制御する場合の制御フローチャート、図3は、本発明に係るサーモスタットバルブの開弁特性を示す図、図4は、本発明に係る冷却水循環ポンプの出力に対する冷却水の全循環流量を示す図、図5は、冷却水の全循環流量に対するイオン交換器への通水量を示す図、図6は、一実施形態の燃料電池用の冷却水循環供給システムを車両に搭載した場合の冷却水の温度、サーモスタットバルブのリフト量、アクセル開度(負荷)の時間に対するそれぞれの経時変化を示す図である。
【0014】
最初に図1を参照して一実施形態の燃料電池用の冷却水循環供給システムについて説明する。
本発明に係る一実施形態の燃料電池用の冷却水循環供給システム1は、図1に示すように、
アノード極に供給される燃料ガスとカソード極に供給される酸化剤ガスとの電気化学反応により発電する燃料電池2には、前記燃料電池2内へ冷却水を通流させて燃料電池2を冷却するために冷却水の入口2aと出口2bとが設けられている。この冷却水の入口2aと出口2bには、冷却水を循環させるための循環経路3が接続されている。
循環経路3には、冷却水を循環するための冷却水循環ポンプ3aと、冷却水を冷却する冷却器としてのラジエータ3bと、前記ラジエータ3bへの冷却水の配分量を増減することで燃料電池2へ供給する冷却水の温度を調整する温度調整装置としてのサーモスタットバルブ3cとが順番に設けられている。
また、燃料電池2の入口2a近傍の循環経路3には、冷却水の電気伝導度を検知するための電気伝導度検知手段として電気伝導度センサ3e及び冷却水の温度を検知するための温度検知手段として温度センサ3dが設けられている。
【0015】
循環経路3にはラジエータ3bの上流で分岐しサーモスタットバルブ3cに接続される第一バイパス経路4が設けられている。この第一バイパス経路4は燃料電池2ヘ供給する冷却水をラジエータ3bで冷却する必要がない場合(燃料電池の放熱要求量が0の場合)には、サーモスタットバルブ3cの切り替えによって直接燃料電池2へ冷却水を供給する。
また、冷却水の電気伝導度を低く保持するため、前記サーモスタットバルブ3cの下流側に設けられた前記燃料電池2への流れを迂回するバイパス経路である第二バイパス経路5には、2種類のイオン交換樹脂、すなわちカチオン交換樹脂及びアニオン交換樹脂を充填したイオン交換器5aと前記イオン交換器5aへの通水量を制御する弁5bとが設けられている。
【0016】
さらにサーモスタットバルブ3cの作動状態、冷却水の温度、燃料電池の発電量、冷却水循環ポンプの出力、電気伝導度等の電気入力信号に基づいて前記弁5bの開閉を制御する制御装置6が設けられている。ここで使用される制御装置6は、電気的制御回路、又は、RAM、ROM、CPU(又はMPU)及びI/O等を中心として構成されたマイクロコンピュータからなる電子制御装置である。この制御装置6の入力部には燃料電池2の出力に関する電気信号が入力されこれらの入力信号により燃料電池用の冷却水循環供給システム1が制御される。
【0017】
次に、このような構成からなる一実施形態の燃料電池用の冷却水循環供給システムにおいて発明の要部で使用されるサーモスタットバルブ3cについて説明する。
本実施形態で使用されるサーモスタットバルブ3cは、別名ワックス弁とも言われ、冷却水の温度が高いと弁体に封じこまれたワックスの粘度が低下し、弁のリフト量が変化することで流量を制御するボトムバイパス式の三方弁である。
【0018】
このようなサーモスタットバルブ3cの開弁特性について図3を参照して説明する。尚、図3の横軸は冷却水の温度、縦軸はサーモスタットバルブのリフト量である。図3からも判るように、サーモスタットバルブ3cの冷却水の温度に対するリフト量との関係は、微小なヒステリシス特性を示す。
本実施の形態では、サーモスタットバルブ3cの作動状態、すなわちラジエータ3bへの冷却水の配分量は、図3の開弁特性と冷却水の温度とから推測したリフト量から求めているが、図示しないリフトセンサで計測したサーモスタットバルブ3cの開弁量から求めるようにしても良い。
【0019】
このように構成される一実施形態の燃料電池用の冷却水循環供給システムにおいて、第二バイパス経路に設けたイオン交換器への通水量を弁で制御する場合の制御方法について図1から図5を参照して説明する。尚、説明は図2のイオン交換器への通水量を制御する場合の流量制御フローチャートに沿って行う。
(1)サーモスタットバルブ3cの作動状態、冷却水の温度、燃料電池2の発電量、冷却水循環ポンプ3aの出力、冷却水の電気伝導度を電気入力信号として制御装置6に読み込む(S1)。
(2)ラジエータ3cへの流量分配率が0%かどうかを判断する(S2)。
ステップ2で流量分配率が0%のとき(燃料電池2の起動時)は以下のように制御する。一方、ステップ2で流量分配率が0%でないとき(燃料電池2の通常運転時)は、後記する3−1)以後のように制御する。
尚、ここでいう「流量分配率」とはラジエータ3b側への冷却水の配分量を冷却水の全循環流量で割った百分率の値である。
【0020】
<ラジエータへの流量分配率が0%の場合>
2−1)電気伝導度センサ3eにより検知した電気伝導度の値が、第1所定値(液絡が起きない許容上限値)EC1以上かどうかを判断する(S3)。
2−2)電気伝導度が第1所定値EC1以上の場合は、第二バイパス経路5に設けた弁5bの開度を増やす(S7)。すなわちイオン交換器5aヘの通水量を増やして電気伝導度を低下させ、ステップ1に戻る。
2−3)電気伝導度が第1所定値EC1未満の場合は、さらに温度検知センサ3dにより検知した冷却水の温度が、所定値(イオン交換樹脂の熱劣化開始温度)T1以下かどうかを判断する(S4)。
【0021】
2−4)ステップ4において冷却水の温度が所定値T1を超える場合は、弁5bの開度を減らす(S6)。すなわちイオン交換樹脂の熱劣化を避けるためイオン交換器5aヘの通水量を減らし、ステップ1に戻る。
2−5)一方、ステップ4において冷却水の温度が所定値T1以下の場合は、さらに冷却水の電気伝導度が第2所定値(液絡が起きない許容下限値)EC2以上かどうかを判断する(S5)。
2−6)ステップ5において電気伝導度が第2所定値EC2以上の場合は、弁5bの開度を増やす(S7)。すなわちイオン交換器5aヘの通水量を増やして電気伝導度を低下させ、ステップ1に戻る。
2−7)ステップ5において電気伝導度が第2所定値EC2未満の場合は、弁5bの開度を減らす(S6)。すなわち冷却水の電気伝導度及び冷却水の温度が液絡を起こさない安全領域にあるので、ラジエータ3cへの冷却水の配分量を増やすためイオン交換器5aヘの通水量を減らし、ステップ1に戻る。
【0022】
<ラジエータへの流量分配率が0%でない場合>
3−1)ステップ2において、ラジエータ3bの流量分配率が0%でない場合は、燃料電池2の発電量、冷却水の温度、冷却水循環ポンプ3aの出力から第二バイパス経路5に設けた弁5bの開度に上限値を設ける(S8)。
ここで、弁5bの開度に上限値を設ける方法について図4及び図5を参照して説明する。最初、図4に示す冷却水の温度と冷却水循環ポンプ3aの出力との関係から冷却系を循環する冷却水の全循環流量を求める。次に、図5に示す燃料電池2の発電量(発熱量)と最初に求めた冷却水の全循環流量とから、イオン交換器5aへの通水量の上限値を求める。
このように弁5bの開度に上限値を設けることで、燃料電池2の発電量が大きいとき、又は冷却水の全循環流量が小さいときは、イオン交換器5aへの通水量を低減して、燃料電池2に戻す冷却水量を大きくし、燃料電池2の冷却性能を確保することができる。
【0023】
3−2)次に、電気伝導度センサ3eから求めた冷却水の電気伝導度が第1所定値(液絡が起きない許容上限値)EC1以上かどうかを判断する(S9)。
3−3)電気伝導度が第1所定値EC1以上の場合は、さらに弁5bの開度が上限値未満かどうかを判断する(S13)。
3−4)ステップ13において弁5bの開度が上限値未満の場合は、弁5bの開度を増やす(S14)。すなわちイオン交換器5aヘの通水量を増やして電気伝導度を低下させ、ステップ1に戻る。
3−5)ステップ13において弁5bの開度が上限値以上の場合は、弁5bの開度をそのまま保持し(S15)、ステップ1に戻る。
【0024】
3−6)ステップ9において電気伝導度が第1所定値EC1未満の場合は、冷却水の温度が所定値(イオン交換樹脂の熱劣化開始温度)T1以下かどうかを判断する(S10)。
3−7)冷却水の温度が所定値T1を超える場合は、弁5bの開度を減らす(S12)。すなわちイオン交換樹脂の熱劣化を避けるためイオン交換器5aヘの通水量を減らし、ステップ1に戻る。
3−8)冷却水の温度が所定値T1以下の場合は、さらに電気伝導度が第2所定値(液絡が起きない許容下限値)EC2以上かどうかを判断する(S11)。
3−9)ステップ11で電気伝導度が第2所定値EC2以上の場合は、さらに弁5bの開度が上限値未満かどうかを判断する(S13)。
【0025】
3−10)ステップ13において弁5bの開度が上限値未満の場合は、弁5bの開度を増やす(S14)。すなわちイオン交換器5aヘの通水量を増やして電気伝導度を低下させ、ステップ1に戻る。
3−11)ステップ13において弁5bの開度が上限値以上の場合は、弁5bの現在の開度をそのまま保持し(S15)、ステップ1に戻る。
3−12)ステップ11において電気伝導度が第2所定値EC2未満の場合は、弁5bの開度を減らす(S12)。すなわち冷却水の電気伝導度及び冷却水の温度が液絡を起こさない安全領域にあるので、イオン交換器5aヘの通水量を減らし、ステップ1に戻る。
【0026】
このような構成と作用を有する一実施形態の燃料電池用の冷却水循環供給システムによれば、
(1)サーモスタットバルブ3cの作動状態、すなわちラジエータ3bへの冷却水の配分量(燃料電池の放熱要求量)に応じて、第二バイパス経路5に設けた弁5bの開閉(イオン交換器への通水量)を制御することにより、燃料電池2の冷却を維持するのに必要な冷却水量を確保することができ、しかもイオン交換器5aへ通水することもできる。
また、ラジエータ3bへの冷却水の配分量を知った上でイオン交換器5aへの通水量を制御するようにしたことで、従来のように循環経路の循環流量に余裕を持って循環させる必要がないので、冷却水循環供給システム全体の循環流量を減らすことができる。従って、冷却水循環ポンプ3aを小型化することができ、かつ、冷却水循環供給システム全体の消費電力を低減することができる。
(2)サーモスタットバルブ3cが前記ラジエータ3bへ冷却水を通水しているとき、すなわち燃料電池2を冷却しているときは、前記弁5bにより前記イオン交換器5aへの冷却水の配分量を所定値以下に制限して、イオン交換器5a側から燃料電池2側へ冷却水を戻してやることで、燃料電池2の冷却を維持するのに必要な冷却水量を確保することができる。
(3)前記弁5bの制限量を、前記燃料電池2の運転状態(発電量、水温、冷却水循環ポンプ3aの作動量等)に応じて調節することにより、燃料電池2の冷却を維持するために必要な冷却水量とイオン交換器5aへ通水する冷却水量との配分を最適化することができる。
【0027】
次に、このような一実施形態の燃料電池用の冷却水循環供給システムを車両に搭載した場合の冷却水の温度と、サーモスタットバルブのリフト量と、アクセル開度の時間に対するそれぞれの経時変化について図1及び図6を参照して説明する。
(1)車両のイグニッションキーのスイッチON。
(2)燃料電池2が起動すると冷却水循環ポンプ3aも起動し、燃料電池2の冷却が開始される。
(3)冷却水の温度は、燃料電池2内での反応熱により室温、例えば20℃から徐々に上昇する。冷却水の温度が例えば70℃になるとサーモスタットバルブ3cの弁体のリフト量が中間開度となり、ラジエータ3b側に冷却水が通水されて冷却水の冷却が開始される。サーモスタットバルブ3cの作動状態(ラジエータ3bへの冷却水の配分量)に応じて弁5bを制御することで、冷却水の温度が燃料電池2の通常の作動温度(約80℃)で安定する。
【0028】
(4)車両のアイドリングが終了し、アクセルペダルの開度が全閉状態から中開度まで開放する。
(5)車両が走行を開始し、アクセル開度を全開にして加速すると、サーモスタットバルブ3cのリフト量が全開となる。燃料電池用の冷却水循環供給システムが安定した後は、車両に要求される速度に応じてアクセルの開度は変化する。
(6)以後、燃料電池2の放熱要求量に応じてサーモスタットバルブ3cの弁体のリフト量が変化し、このサーモスタットバルブ3cの作動状態に応じて第二バイパス経路5に設けられたイオン交換器5aへの通水量を制御する弁5bを制御することにより、燃料電池2の冷却を維持するのに必要な冷却水量を確保し、かつ、イオン交換器5aへも通水することができる。
【0029】
このようにして、一実施形態の燃料電池用の冷却水循環供給システム1を車両に搭載すれば、従来のように循環経路3の循環流量に余裕をもって循環させる必要がないため冷却水循環ポンプ3aの小型化、かつ、冷却水循環供給システム全体の省電力化が図れるので、車両に搭載したときの空いたスペースを有効に活用でき、かつ、車両の省電力化を図ることができる。
【0030】
本発明は、上述した実施形態に限定されるものではなく、発明の技術的範囲を逸脱しない範囲内で適宜変更して実施可能である。
例えば、循環経路の循環流量の検知方法は、冷却水循環ポンプの出力の替わりに、循環経路に流量計を設けてこの流量計からの電気信号により検知するようにしても良い。
また、イオン交換器5aの替わりに電気透析装置を使用することもできる。
さらに、冷却器としてラジエータ3b以外に多管式の水冷式熱交換器を使用することもできる。
【0031】
【発明の効果】
前記実施形態に詳述したように、本発明によれば、以下の効果を奏する。
1.請求項1に記載の発明によれば、温度調整装置の作動状態、すなわち冷却器への冷却水の配分量(燃料電池の放熱要求量)に応じて、バイパス経路に設けた弁の開閉(イオン交換器への通水量)を制御することにより、燃料電池の冷却を維持するのに必要な冷却水量を供給することができ、しかもイオン交換器への通水量も確保することができる。また、冷却器への冷却水の配分量を知った上でイオン交換器への通水量を制御するようにしたことで、従来のように循環経路の循環流量に余裕を持って循環させる必要がないので、冷却水循環供給システム全体の循環流量を減らすことができる。従って、冷却水循環ポンプを小型化することができ、かつ、冷却水循環供給システム全体の消費電力を低減することができる。
2.請求項2に記載の発明によれば、前記温度調整装置が前記冷却器へ冷却水を通水しているとき、すなわち燃料電池を冷却しているときは、前記弁により前記イオン交換器への冷却水の配分量を所定値以下に制限して、イオン交換器側から燃料電池側へ冷却水を戻してやることで、燃料電池の冷却を維持するのに必要な冷却水量を確保することができる。
3.請求項3に記載の発明によれば、前記弁の制限量を、前記燃料電池の運転状態に応じて調節することにより、燃料電池の冷却を維持するために必要な冷却水量とイオン交換器へ通水する冷却水量との配分を最適化することができる。
【図面の簡単な説明】
【図1】本発明に係る燃料電池用の冷却水循環供給システムの一実施形態を示す全体の構成図である。
【図2】一実施形態の燃料電池用の冷却水循環供給システムにおいてイオン交換器への通水量を制御する場合の流量制御フローチャートである。
【図3】本発明に係るサーモスタットバルブの開弁特性を示す図である。
【図4】本発明に係る冷却水循環ポンプの出力に対する冷却水の全循環流量を示す図である。
【図5】冷却水の全循環流量に対するイオン交換器への通水量を示す図である。
【図6】燃料電池用の冷却水循環供給システムを車両に搭載した場合の冷却水の温度、サーモスタットバルブのリフト量、アクセル開度の時間に対するそれぞれの経時変化を示す図である。
【符号の説明】
1           燃料電池用の冷却水循環供給システム
2           燃料電池
3           循環経路
3a          冷却水循環ポンプ
3b          ラジエータ(冷却器)
3c          サーモスタットバルブ(温度調整装置)
3d          温度センサ(温度検知手段)
3e          電気伝導度センサ(電気伝導度検知手段)
4           第一バイパス経路
5           第二バイパス経路(バイパス経路)
5a          イオン交換器
5b          弁
6           制御装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cooling water circulating supply system for a fuel cell, which cools a fuel cell, and more particularly, to a cooling water circulating supply system for a fuel cell, which is provided with an ion exchanger to maintain low electric conductivity of the cooling water. .
[0002]
[Prior art]
Generally, in a cooling water circulating supply system for a fuel cell in which the fuel cell is directly cooled using cooling water, a liquid junction phenomenon (a state in which off-gas is discharged from the fuel cell in a state where steam and water are mixed together) through the cooling water. However, the water may cause a “ground fault” with the structure supporting the fuel cell through this water. This “ground fault” is called a “liquid fault”. Insulation is required.
Therefore, an ion exchanger is provided in the bypass path of the cooling water circulation path, and a certain percentage of the total circulation flow is passed through and circulated through the ion exchange resin layer of the ion exchanger to separate ionized ions in the cooling water. Thus, it is also known that the electrical insulation of the cooling water is maintained, and the flow rate of the cooling water is increased or decreased according to the state of the system.
[0003]
In order to maintain the electrical insulation of the cooling water, the flow rate required to flow through the ion exchanger is determined by the electrical conductivity of the cooling water at that time and the amount of ions generated from the entire system.
In general, the material specifications etc. are selected so that the amount of ions generated from the entire cooling water circulating supply system is as small as possible.If the cooling water temperature is stable and the electric conductivity is low, the ion The amount of water flow is small.
[0004]
[Problems to be solved by the invention]
However, the conventional cooling water circulation supply system for a fuel cell has the following problems.
(1) When the electric conductivity of the cooling water is in or close to the region where the problem occurs due to the liquid junction phenomenon, it is necessary to reduce the electric conductivity promptly. There is a need to increase the amount, and therefore a large circulation flow rate is required in the circulation path.
(2) In addition, since the cooling water (pure water, etc.) has a characteristic that the electrical conductivity increases with an increase in temperature, when the electrical conductivity increases with an increase in the water temperature in the process of starting and warming up the system. Therefore, it is necessary to increase the circulation flow rate of the circulation path so as not to reach the area where the problem occurs.
[0005]
(3) Further, ion exchange resins used in ion exchangers generally have a property of causing thermal decomposition at high temperatures and reducing the ion exchange capacity. It is desirable to control the flow rate of water to the ion exchanger from the viewpoint of the life of the ion exchange resin.
(4) Further, as a conventional technique, an ion exchanger and a valve capable of controlling the flow rate of water to the ion exchanger are provided in a bypass path of the circulation path, and a signal from an electric conductivity detection unit provided in the circulation path is provided. There is a type that performs the opening and closing control of the valve based on a signal.However, when the amount of water flowing to the ion exchanger is increased, the required flow rate for maintaining the temperature difference of the cooling water between the inlet and the outlet of the fuel cell within an appropriate value is set. In order to ensure this, it is necessary to set the circulation flow rate of the entire cooling water circulation supply system with a margin.
(1) The size of the cooling water circulation pump is increased (2) The power consumption of the entire cooling water circulation supply system is increased.
[0006]
The present invention has been made in order to solve the above-described problems, and can reduce the size of a cooling water circulation pump that circulates cooling water in a circulation path, and reduce the power consumption of the entire cooling water circulation supply system. It is an object of the present invention to provide a cooling water circulating supply system for a fuel cell that can be used.
[0007]
[Means for Solving the Problems]
The cooling water circulation supply system for a fuel cell according to claim 1, wherein the cooling water is circulated through the fuel cell, and the cooling water is circulated through the circulation path. A cooling water circulation pump, a cooler that cools the cooling water, and a temperature adjustment device that adjusts the temperature of the cooling water to be supplied to the fuel cell by increasing or decreasing the distribution amount of the cooling water to the cooler, Further, a bypass path bypassing the fuel cell is provided in the circulation path, and an ion exchanger for keeping the electric conductivity of the cooling water low is provided in the bypass path, and a flow rate of water to the ion exchanger is controlled. A cooling water circulation supply system for a fuel cell that cools the fuel cell by supplying the fuel cell while circulating the cooling water with the cooling water circulation pump. By controlling the opening and closing of the valve according to the operating state of the integer unit, and is characterized in that to control the distribution amount of the cooling water to the ion exchanger and the fuel cell.
[0008]
According to the first aspect of the present invention, the valve provided in the bypass path is opened and closed (ionized) according to the operating state of the temperature control device, that is, the amount of cooling water allocated to the cooler (the required amount of heat release from the fuel cell). By controlling the amount of water flowing to the exchanger, the amount of cooling water required to maintain the cooling of the fuel cell can be ensured, and water can be passed to the ion exchanger.
Also, knowing the amount of cooling water allocated to the cooler and controlling the amount of water flowing to the ion exchanger, it is necessary to circulate with a sufficient amount of circulation flow in the circulation path as in the past. Therefore, the circulation flow rate of the entire cooling water circulation supply system can be reduced.
Therefore, the size of the cooling water circulation pump can be reduced, and the power consumption of the entire cooling water circulation supply system can be reduced.
[0009]
The cooling water circulation supply system for a fuel cell according to claim 2, wherein the valve distributes the cooling water to the ion exchanger when the temperature regulator is passing cooling water to the cooler. The cooling water circulation supply system for a fuel cell according to claim 1, wherein the amount is limited to a predetermined value or less.
[0010]
According to the second aspect of the present invention, when the temperature adjusting device is passing cooling water to the cooler, that is, when cooling the fuel cell, the cooling to the ion exchanger is performed by the valve. By limiting the amount of water distribution to a predetermined value or less and returning the cooling water from the ion exchanger to the fuel cell, it is possible to secure the amount of cooling water required to maintain the cooling of the fuel cell.
[0011]
The cooling water circulation supply system for a fuel cell according to claim 3, wherein a limit amount of the cooling water by the valve is adjusted according to an operation state of the fuel cell. It is a cooling water circulation supply system for a fuel cell.
[0012]
According to the third aspect of the present invention, the cooling amount of the fuel cell is controlled by adjusting the limit amount of the valve according to the operating state of the fuel cell (power generation amount, water temperature, operation amount of the cooling water circulation pump, etc.). It is possible to optimize the distribution of the amount of cooling water required to maintain the amount of cooling water and the amount of cooling water flowing to the ion exchanger.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is an overall configuration diagram showing an embodiment of a cooling water circulation supply system for a fuel cell according to the present invention. FIG. 2 is a diagram showing an embodiment of a cooling water circulation supply system for a fuel cell according to the embodiment. FIG. 3 is a diagram showing the valve opening characteristics of the thermostat valve according to the present invention, and FIG. 4 is a graph showing the total circulation flow rate of the cooling water with respect to the output of the cooling water circulation pump according to the present invention. FIG. 5 is a diagram showing the amount of water flowing to the ion exchanger with respect to the total circulation flow rate of the cooling water, and FIG. 6 is the cooling water when the cooling water circulation supply system for a fuel cell of one embodiment is mounted on a vehicle. FIG. 4 is a diagram showing changes over time with respect to time of temperature, lift amount of a thermostat valve, and accelerator opening (load).
[0014]
First, a cooling water circulation supply system for a fuel cell according to an embodiment will be described with reference to FIG.
As shown in FIG. 1, a cooling water circulation supply system 1 for a fuel cell according to an embodiment of the present invention includes:
In the fuel cell 2 that generates power by an electrochemical reaction between the fuel gas supplied to the anode and the oxidant gas supplied to the cathode, cooling water is passed through the fuel cell 2 to cool the fuel cell 2. For this purpose, an inlet 2a and an outlet 2b for the cooling water are provided. A circulation path 3 for circulating the cooling water is connected to the cooling water inlet 2a and the outlet 2b.
The circulation path 3 includes a cooling water circulation pump 3a for circulating the cooling water, a radiator 3b as a cooler for cooling the cooling water, and a fuel cell 2 by increasing or decreasing the distribution amount of the cooling water to the radiator 3b. And a thermostat valve 3c as a temperature adjusting device for adjusting the temperature of the cooling water supplied to the heater.
In the circulation path 3 near the inlet 2a of the fuel cell 2, an electric conductivity sensor 3e as electric conductivity detecting means for detecting the electric conductivity of the cooling water and a temperature detection for detecting the temperature of the cooling water. A temperature sensor 3d is provided as a means.
[0015]
The circulation path 3 is provided with a first bypass path 4 branched upstream of the radiator 3b and connected to the thermostat valve 3c. When the cooling water supplied to the fuel cell 2 does not need to be cooled by the radiator 3b (when the required amount of heat radiation of the fuel cell is 0), the first bypass path 4 directly switches the fuel cell 2 by switching the thermostat valve 3c. Supply cooling water to
Further, in order to keep the electric conductivity of the cooling water low, the second bypass path 5 which is a bypass path provided on the downstream side of the thermostat valve 3c and bypasses the flow to the fuel cell 2 has two types. An ion exchanger 5a filled with an ion exchange resin, that is, a cation exchange resin and an anion exchange resin, and a valve 5b for controlling the flow rate of water to the ion exchanger 5a are provided.
[0016]
Further, there is provided a control device 6 for controlling the opening and closing of the valve 5b based on the operation state of the thermostat valve 3c, the temperature of the cooling water, the power generation amount of the fuel cell, the output of the cooling water circulation pump, and the electric input signal such as the electric conductivity. ing. The control device 6 used here is an electronic control device including an electric control circuit or a microcomputer mainly configured with a RAM, a ROM, a CPU (or an MPU), an I / O, and the like. Electric signals related to the output of the fuel cell 2 are input to an input section of the control device 6, and the cooling water circulation / supply system 1 for the fuel cell is controlled by these input signals.
[0017]
Next, the thermostat valve 3c used in the main part of the invention in the cooling water circulation supply system for a fuel cell according to one embodiment having such a configuration will be described.
The thermostat valve 3c used in the present embodiment is also referred to as a wax valve. When the temperature of the cooling water is high, the viscosity of the wax sealed in the valve body is reduced, and the valve lift is changed to change the flow rate. Is a bottom bypass type three-way valve that controls the pressure.
[0018]
The valve opening characteristics of the thermostat valve 3c will be described with reference to FIG. The horizontal axis in FIG. 3 is the temperature of the cooling water, and the vertical axis is the lift amount of the thermostat valve. As can be seen from FIG. 3, the relationship between the temperature of the cooling water of the thermostat valve 3c and the lift amount shows a small hysteresis characteristic.
In the present embodiment, the operating state of the thermostat valve 3c, that is, the distribution amount of the cooling water to the radiator 3b is obtained from the lift amount estimated from the valve opening characteristics and the temperature of the cooling water in FIG. 3, but is not shown. It may be determined from the opening amount of the thermostat valve 3c measured by the lift sensor.
[0019]
In the cooling water circulating supply system for a fuel cell according to one embodiment configured as described above, FIGS. 1 to 5 illustrate a control method in a case where the amount of water flowing to the ion exchanger provided in the second bypass path is controlled by a valve. It will be described with reference to FIG. The description will be made in accordance with the flow control flowchart of FIG. 2 for controlling the flow of water to the ion exchanger.
(1) The operating state of the thermostat valve 3c, the temperature of the cooling water, the amount of power generated by the fuel cell 2, the output of the cooling water circulation pump 3a, and the electric conductivity of the cooling water are read into the control device 6 as electric input signals (S1).
(2) It is determined whether the flow distribution ratio to the radiator 3c is 0% (S2).
When the flow distribution ratio is 0% in step 2 (when the fuel cell 2 is started), control is performed as follows. On the other hand, if the flow distribution ratio is not 0% in step 2 (during normal operation of the fuel cell 2), control is performed as in 3-1) described later.
The “flow rate distribution ratio” here is a percentage value obtained by dividing the distribution amount of the cooling water to the radiator 3b by the total circulation flow amount of the cooling water.
[0020]
<When the flow distribution ratio to the radiator is 0%>
2-1) It is determined whether or not the value of the electric conductivity detected by the electric conductivity sensor 3e is equal to or more than a first predetermined value (an allowable upper limit value at which no liquid junction occurs) EC1 (S3).
2-2) If the electric conductivity is equal to or greater than the first predetermined value EC1, the opening of the valve 5b provided in the second bypass path 5 is increased (S7). That is, the amount of water flowing to the ion exchanger 5a is increased to lower the electric conductivity, and the process returns to step 1.
2-3) If the electric conductivity is lower than the first predetermined value EC1, it is further determined whether the temperature of the cooling water detected by the temperature detection sensor 3d is equal to or lower than a predetermined value (temperature at which thermal deterioration of the ion exchange resin starts to deteriorate) T1. (S4).
[0021]
2-4) If the temperature of the cooling water exceeds the predetermined value T1 in step 4, the opening of the valve 5b is reduced (S6). That is, the amount of water passing through the ion exchanger 5a is reduced to avoid thermal deterioration of the ion exchange resin, and the process returns to step 1.
2-5) On the other hand, when the temperature of the cooling water is equal to or lower than the predetermined value T1 in step 4, it is further determined whether or not the electric conductivity of the cooling water is equal to or higher than a second predetermined value (allowable lower limit value at which no liquid junction occurs) EC2. (S5).
2-6) If the electric conductivity is equal to or larger than the second predetermined value EC2 in step 5, the opening of the valve 5b is increased (S7). That is, the amount of water flowing to the ion exchanger 5a is increased to lower the electric conductivity, and the process returns to step 1.
2-7) If the electric conductivity is less than the second predetermined value EC2 in step 5, the opening degree of the valve 5b is reduced (S6). That is, since the electric conductivity of the cooling water and the temperature of the cooling water are in a safety region where no liquid junction occurs, the amount of water flowing to the ion exchanger 5a is reduced in order to increase the amount of cooling water distributed to the radiator 3c. Return.
[0022]
<When the flow distribution ratio to the radiator is not 0%>
3-1) If the flow distribution rate of the radiator 3b is not 0% in step 2, the valve 5b provided in the second bypass path 5 is determined based on the power generation amount of the fuel cell 2, the temperature of the cooling water, and the output of the cooling water circulation pump 3a. An upper limit value is set for the opening degree (S8).
Here, a method of providing an upper limit value for the opening degree of the valve 5b will be described with reference to FIGS. First, the total circulation flow rate of the cooling water circulating in the cooling system is obtained from the relationship between the temperature of the cooling water and the output of the cooling water circulation pump 3a shown in FIG. Next, the upper limit of the amount of water flowing to the ion exchanger 5a is determined from the amount of power generation (calorific value) of the fuel cell 2 shown in FIG. 5 and the total circulation flow rate of the cooling water determined first.
By setting the upper limit of the opening of the valve 5b in this manner, when the power generation amount of the fuel cell 2 is large or when the total circulation flow rate of the cooling water is small, the amount of water flowing to the ion exchanger 5a is reduced. The amount of cooling water returned to the fuel cell 2 can be increased, and the cooling performance of the fuel cell 2 can be ensured.
[0023]
3-2) Next, it is determined whether or not the electrical conductivity of the cooling water obtained from the electrical conductivity sensor 3e is equal to or more than a first predetermined value (an allowable upper limit value at which no liquid junction occurs) EC1 (S9).
3-3) If the electrical conductivity is equal to or greater than the first predetermined value EC1, it is further determined whether the opening of the valve 5b is less than the upper limit (S13).
3-4) If the opening of the valve 5b is less than the upper limit in step 13, the opening of the valve 5b is increased (S14). That is, the amount of water flowing to the ion exchanger 5a is increased to lower the electric conductivity, and the process returns to step 1.
3-5) If the opening of the valve 5b is equal to or more than the upper limit in step 13, the opening of the valve 5b is held as it is (S15), and the process returns to step 1.
[0024]
3-6) If the electric conductivity is less than the first predetermined value EC1 in step 9, it is determined whether the temperature of the cooling water is equal to or lower than a predetermined value (temperature at which thermal deterioration of the ion exchange resin starts to deteriorate) T1 (S10).
3-7) If the temperature of the cooling water exceeds the predetermined value T1, the opening of the valve 5b is reduced (S12). That is, the amount of water passing through the ion exchanger 5a is reduced to avoid thermal deterioration of the ion exchange resin, and the process returns to step 1.
3-8) If the temperature of the cooling water is equal to or lower than the predetermined value T1, it is further determined whether or not the electric conductivity is equal to or higher than a second predetermined value (allowable lower limit value at which no liquid junction occurs) EC2 (S11).
3-9) If the electric conductivity is equal to or more than the second predetermined value EC2 in step 11, it is further determined whether or not the opening of the valve 5b is less than the upper limit (S13).
[0025]
3-10) If the opening of the valve 5b is less than the upper limit in step 13, the opening of the valve 5b is increased (S14). That is, the amount of water flowing to the ion exchanger 5a is increased to lower the electric conductivity, and the process returns to step 1.
3-11) If the opening of the valve 5b is equal to or larger than the upper limit in step 13, the current opening of the valve 5b is held as it is (S15), and the process returns to step 1.
3-12) If the electric conductivity is less than the second predetermined value EC2 in step 11, the opening of the valve 5b is reduced (S12). That is, since the electric conductivity of the cooling water and the temperature of the cooling water are in the safety region where no liquid junction occurs, the flow of water to the ion exchanger 5a is reduced, and the process returns to step 1.
[0026]
According to the cooling water circulation supply system for a fuel cell of one embodiment having such a configuration and operation,
(1) Opening and closing of the valve 5b provided in the second bypass path 5 (in accordance with the operating state of the thermostat valve 3c, that is, the amount of cooling water allocated to the radiator 3b (the required amount of heat radiation of the fuel cell)). By controlling the amount of water flow, the amount of cooling water required to maintain the cooling of the fuel cell 2 can be ensured, and water can be passed to the ion exchanger 5a.
Further, since the amount of cooling water to the radiator 3b is known and the amount of water flowing to the ion exchanger 5a is controlled, it is necessary to circulate the circulation flow of the circulation path with a margin as in the conventional case. Therefore, the circulation flow rate of the entire cooling water circulation supply system can be reduced. Therefore, the cooling water circulation pump 3a can be reduced in size, and the power consumption of the entire cooling water circulation supply system can be reduced.
(2) When the thermostat valve 3c is passing cooling water to the radiator 3b, that is, when cooling the fuel cell 2, the amount of cooling water distributed to the ion exchanger 5a is controlled by the valve 5b. By limiting the cooling water to the predetermined value or less and returning the cooling water from the ion exchanger 5a side to the fuel cell 2 side, the amount of cooling water necessary to maintain the cooling of the fuel cell 2 can be secured.
(3) To maintain the cooling of the fuel cell 2 by adjusting the limiting amount of the valve 5b according to the operating state of the fuel cell 2 (power generation amount, water temperature, operation amount of the cooling water circulation pump 3a, etc.). Between the amount of cooling water necessary for the cooling and the amount of cooling water flowing to the ion exchanger 5a can be optimized.
[0027]
Next, the time-dependent change with respect to the temperature of the cooling water, the lift amount of the thermostat valve, and the time of the accelerator opening when the cooling water circulation supply system for a fuel cell of one embodiment is mounted on a vehicle is shown. 1 and FIG.
(1) Switch on the ignition key of the vehicle.
(2) When the fuel cell 2 is started, the cooling water circulation pump 3a is also started, and the cooling of the fuel cell 2 is started.
(3) The temperature of the cooling water gradually increases from room temperature, for example, 20 ° C., due to the reaction heat in the fuel cell 2. When the temperature of the cooling water reaches, for example, 70 ° C., the lift amount of the valve body of the thermostat valve 3c becomes an intermediate opening degree, the cooling water flows through the radiator 3b, and cooling of the cooling water is started. By controlling the valve 5b in accordance with the operation state of the thermostat valve 3c (the amount of cooling water allocated to the radiator 3b), the temperature of the cooling water is stabilized at the normal operating temperature of the fuel cell 2 (about 80 ° C.).
[0028]
(4) The idling of the vehicle is completed, and the accelerator pedal is released from the fully closed state to the middle degree.
(5) When the vehicle starts running and accelerates with the accelerator opening fully opened, the lift amount of the thermostat valve 3c becomes fully open. After the cooling water circulation supply system for the fuel cell is stabilized, the accelerator opening changes according to the speed required for the vehicle.
(6) Thereafter, the lift amount of the valve body of the thermostat valve 3c changes according to the required heat radiation amount of the fuel cell 2, and the ion exchanger provided in the second bypass path 5 according to the operation state of the thermostat valve 3c. By controlling the valve 5b that controls the amount of water flowing to the fuel cell 5a, the amount of cooling water required to maintain the cooling of the fuel cell 2 can be ensured, and water can also flow to the ion exchanger 5a.
[0029]
In this manner, if the cooling water circulation supply system 1 for a fuel cell according to one embodiment is mounted on a vehicle, it is not necessary to circulate the circulation flow rate of the circulation path 3 with a margin as in the related art. In addition, power saving of the entire cooling water circulation supply system can be achieved, so that an empty space when mounted on the vehicle can be effectively utilized, and power saving of the vehicle can be achieved.
[0030]
The present invention is not limited to the above-described embodiment, and can be implemented with appropriate modifications without departing from the technical scope of the invention.
For example, in the method of detecting the circulation flow rate in the circulation path, a flowmeter may be provided in the circulation path instead of the output of the cooling water circulation pump, and detection may be performed by an electric signal from the flowmeter.
Further, an electrodialysis device can be used instead of the ion exchanger 5a.
Furthermore, besides the radiator 3b, a multi-tube water-cooled heat exchanger can be used as the cooler.
[0031]
【The invention's effect】
As described in detail in the above embodiment, the present invention has the following effects.
1. According to the first aspect of the present invention, the valve provided in the bypass path is opened and closed (ionized) in accordance with the operating state of the temperature control device, that is, the amount of cooling water allocated to the cooler (the required amount of heat release from the fuel cell). By controlling the amount of water flowing through the exchanger, the amount of cooling water required to maintain the cooling of the fuel cell can be supplied, and the amount of water flowing through the ion exchanger can be secured. Also, knowing the amount of cooling water allocated to the cooler and controlling the amount of water flowing to the ion exchanger, it is necessary to circulate with a sufficient amount of circulation flow in the circulation path as in the past. Therefore, the circulation flow rate of the entire cooling water circulation supply system can be reduced. Therefore, the size of the cooling water circulation pump can be reduced, and the power consumption of the entire cooling water circulation supply system can be reduced.
2. According to the invention as set forth in claim 2, when the temperature adjusting device is passing cooling water to the cooler, that is, when cooling the fuel cell, the valve controls the temperature of the ion exchanger. By limiting the distribution amount of the cooling water to a predetermined value or less and returning the cooling water from the ion exchanger side to the fuel cell side, it is possible to secure a cooling water amount necessary to maintain the cooling of the fuel cell. .
3. According to the third aspect of the present invention, the amount of cooling water required for maintaining the cooling of the fuel cell and the amount of cooling water required for maintaining the cooling of the fuel cell are adjusted by adjusting the limited amount of the valve according to the operating state of the fuel cell. The distribution with the amount of cooling water to be passed can be optimized.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing one embodiment of a cooling water circulation supply system for a fuel cell according to the present invention.
FIG. 2 is a flow rate control flowchart in the case of controlling the amount of water flowing to an ion exchanger in the cooling water circulation supply system for a fuel cell according to one embodiment.
FIG. 3 is a view showing valve opening characteristics of a thermostat valve according to the present invention.
FIG. 4 is a diagram showing the total circulation flow rate of the cooling water with respect to the output of the cooling water circulation pump according to the present invention.
FIG. 5 is a diagram showing a flow rate of water to an ion exchanger with respect to a total circulation flow rate of cooling water.
FIG. 6 is a diagram showing changes over time with respect to the temperature of the cooling water, the lift amount of the thermostat valve, and the time of the accelerator opening when the cooling water circulation supply system for a fuel cell is mounted on a vehicle.
[Explanation of symbols]
Reference Signs List 1 cooling water circulation supply system for fuel cell 2 fuel cell 3 circulation path 3a cooling water circulation pump 3b radiator (cooler)
3c thermostat valve (temperature control device)
3d temperature sensor (temperature detection means)
3e Electric conductivity sensor (electric conductivity detecting means)
4 First bypass route 5 Second bypass route (bypass route)
5a ion exchanger 5b valve 6 controller

Claims (3)

燃料電池に対して冷却水を循環させる循環経路と、
前記循環経路に、冷却水を循環させる冷却水循環ポンプと、冷却水を冷却する冷却器と、この冷却器への冷却水の配分量を増減することによって前記燃料電池へ供給する冷却水の水温を調整する温度調整装置とを有し、
さらに前記循環経路に前記燃料電池を迂回するバイパス経路を設けて、このバイパス経路に冷却水の電気伝導度を低く維持するためのイオン交換器を設けると共に、前記イオン交換器への通水量を制御する弁を設け、
前記冷却水循環ポンプで冷却水を循環させながら前記燃料電池に供給して前記燃料電池を冷却する燃料電池用の冷却水循環供給システムにおいて、
前記温度調整装置の作動状態に応じて前記弁の開閉を制御して、前記燃料電池と前記イオン交換器への冷却水の配分量を制御することを特徴とする燃料電池用の冷却水循環供給システム。
A circulation path for circulating cooling water to the fuel cell;
In the circulation path, a cooling water circulation pump that circulates cooling water, a cooler that cools the cooling water, and the temperature of the cooling water supplied to the fuel cell by increasing or decreasing the amount of the cooling water distributed to the cooler. Having a temperature adjusting device for adjusting,
Further, a bypass path bypassing the fuel cell is provided in the circulation path, and an ion exchanger for keeping the electric conductivity of the cooling water low is provided in the bypass path, and a flow rate of water to the ion exchanger is controlled. To provide a valve
In a cooling water circulation supply system for a fuel cell that cools the fuel cell by supplying the fuel cell while circulating the cooling water with the cooling water circulation pump,
A cooling water circulation supply system for a fuel cell, comprising: controlling opening and closing of the valve in accordance with an operation state of the temperature control device to control a distribution amount of cooling water to the fuel cell and the ion exchanger. .
前記温度調整装置が前記冷却器へ冷却水を通水しているときは、前記弁が前記イオン交換器への冷却水の配分量を所定値以下に制限することを特徴とする請求項1に記載の燃料電池用の冷却水循環供給システム。The valve according to claim 1, wherein the valve restricts a distribution amount of the cooling water to the ion exchanger to a predetermined value or less when the temperature adjusting device is passing the cooling water to the cooling device. A cooling water circulation supply system for a fuel cell as described in the above. 前記弁による冷却水の制限量は、前記燃料電池の運転状態に応じて調節されることを特徴とする請求項2に記載の燃料電池用の冷却水循環供給システム。The cooling water circulation supply system for a fuel cell according to claim 2, wherein the amount of cooling water limited by the valve is adjusted according to an operation state of the fuel cell.
JP2002170757A 2002-06-12 2002-06-12 Cooling water circulation supply system for fuel cell Expired - Fee Related JP3979582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002170757A JP3979582B2 (en) 2002-06-12 2002-06-12 Cooling water circulation supply system for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002170757A JP3979582B2 (en) 2002-06-12 2002-06-12 Cooling water circulation supply system for fuel cell

Publications (3)

Publication Number Publication Date
JP2004014484A true JP2004014484A (en) 2004-01-15
JP2004014484A5 JP2004014484A5 (en) 2005-08-04
JP3979582B2 JP3979582B2 (en) 2007-09-19

Family

ID=30436895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002170757A Expired - Fee Related JP3979582B2 (en) 2002-06-12 2002-06-12 Cooling water circulation supply system for fuel cell

Country Status (1)

Country Link
JP (1) JP3979582B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005086268A1 (en) * 2004-03-10 2005-09-15 Toyota Jidosha Kabushiki Kaisha Cooling device for fuel cell and cooling method
JP2005317276A (en) * 2004-04-27 2005-11-10 Toyota Motor Corp Control device of fuel cell
WO2006009323A1 (en) * 2004-07-23 2006-01-26 Toyota Jidosha Kabushiki Kaisha Coolant composition, cooling system and process for producing coolant composition
WO2008037611A1 (en) * 2006-09-28 2008-04-03 Robert Bosch Gmbh Fuel cell cooling device
JP2008115058A (en) * 2006-11-07 2008-05-22 Fuji Electric Holdings Co Ltd Fuel reforming apparatus
JP2010015710A (en) * 2008-07-01 2010-01-21 Toyota Motor Corp Conductivity reduction device of cooling liquid for fuel cell, and fuel cell system
JP2010140658A (en) * 2008-12-09 2010-06-24 Honda Motor Co Ltd Fuel cell system cooling device
JP2010182509A (en) * 2009-02-04 2010-08-19 Toyota Boshoku Corp Cooling system of fuel cell
KR101163464B1 (en) 2010-09-28 2012-07-18 현대자동차주식회사 Thermal management system for fuel cell vehicle maintaining electrical conductivity and heating capacity
DE102013020787A1 (en) * 2013-12-11 2015-06-11 Daimler Ag A fuel cell refrigeration cycle, a motor vehicle, and a method of operating the fuel cell refrigeration cycle
CN104752745A (en) * 2013-12-31 2015-07-01 现代自动车株式会社 Thermal management system for fuel cell vehicles
KR101601438B1 (en) 2013-12-31 2016-03-21 현대자동차주식회사 Thermal management system for fuel cell vehicles
CN109319972A (en) * 2018-08-30 2019-02-12 中国南方电网有限责任公司超高压输电公司天生桥局 A kind of outer cold water conductivity automatic control system of valve cooling system
CN112310439A (en) * 2020-09-24 2021-02-02 深圳国氢新能源科技有限公司 Water channel switching control method and device for fuel cell cooling system and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5380935B2 (en) * 2008-07-24 2014-01-08 トヨタ自動車株式会社 Fuel cell system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129061B2 (en) 2004-03-10 2012-03-06 Toyota Jidosha Kabushiki Kaisha Cooling device and cooling method for fuel cell
WO2005086268A1 (en) * 2004-03-10 2005-09-15 Toyota Jidosha Kabushiki Kaisha Cooling device for fuel cell and cooling method
DE112005000265B4 (en) 2004-03-10 2019-01-17 Toyota Jidosha Kabushiki Kaisha Cooling device and cooling method for a fuel cell
JP2005317276A (en) * 2004-04-27 2005-11-10 Toyota Motor Corp Control device of fuel cell
WO2006009323A1 (en) * 2004-07-23 2006-01-26 Toyota Jidosha Kabushiki Kaisha Coolant composition, cooling system and process for producing coolant composition
WO2008037611A1 (en) * 2006-09-28 2008-04-03 Robert Bosch Gmbh Fuel cell cooling device
JP2008115058A (en) * 2006-11-07 2008-05-22 Fuji Electric Holdings Co Ltd Fuel reforming apparatus
JP2010015710A (en) * 2008-07-01 2010-01-21 Toyota Motor Corp Conductivity reduction device of cooling liquid for fuel cell, and fuel cell system
JP2010140658A (en) * 2008-12-09 2010-06-24 Honda Motor Co Ltd Fuel cell system cooling device
JP2010182509A (en) * 2009-02-04 2010-08-19 Toyota Boshoku Corp Cooling system of fuel cell
KR101163464B1 (en) 2010-09-28 2012-07-18 현대자동차주식회사 Thermal management system for fuel cell vehicle maintaining electrical conductivity and heating capacity
DE102013020787A1 (en) * 2013-12-11 2015-06-11 Daimler Ag A fuel cell refrigeration cycle, a motor vehicle, and a method of operating the fuel cell refrigeration cycle
CN104752745A (en) * 2013-12-31 2015-07-01 现代自动车株式会社 Thermal management system for fuel cell vehicles
KR101601438B1 (en) 2013-12-31 2016-03-21 현대자동차주식회사 Thermal management system for fuel cell vehicles
US9522609B2 (en) 2013-12-31 2016-12-20 Hyundai Motor Company Thermal management system for fuel cell vehicles
CN109319972A (en) * 2018-08-30 2019-02-12 中国南方电网有限责任公司超高压输电公司天生桥局 A kind of outer cold water conductivity automatic control system of valve cooling system
CN112310439A (en) * 2020-09-24 2021-02-02 深圳国氢新能源科技有限公司 Water channel switching control method and device for fuel cell cooling system and storage medium

Also Published As

Publication number Publication date
JP3979582B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
JP3979582B2 (en) Cooling water circulation supply system for fuel cell
US7294422B2 (en) Cooling method for fuel cell
CN106941183B (en) Fuel cell system and fuel cell vehicle
CN105874635B (en) The control method of fuel cell system and fuel cell system
JP2007280827A (en) Temperature control system for fuel cell
JP5742946B2 (en) Fuel cell system
KR20200068796A (en) Control system and control method for fuel cell cooling
KR101592651B1 (en) Thermal management system for fuel cell vehicle and method thereof
US11469426B2 (en) Thermal management system for fuel cell vehicle
JP2003168462A (en) Fuel cell cooling system and electric vehicle
JP3979581B2 (en) Cooling water circulation supply system for fuel cell
JP2004152666A (en) Fuel cell system
JP2008226810A (en) Fuel cell power generation system
JP2006052902A (en) Cogeneration system
KR100514997B1 (en) Fuel cell system
CN115036531A (en) Fuel cell heat dissipation control method, system, equipment and computer
JP2010192141A (en) Coolant circuit system
JP2002175823A (en) Cooling equipment for fuel cell
CN116505018B (en) Fuel cell cooling system device and method for improving temperature uniformity of battery
JP2004152592A (en) Fuel cell system
CN217955910U (en) Fuel cell heat dissipation control device and fuel cell
KR101551034B1 (en) Apparatus and Method for controlling open angle of control valve variably
JP2005190881A (en) Cooling device for fuel cell
US20220416277A1 (en) Fuel cell temperature management device and fuel cell system using same
JP2003123804A (en) Cooling method of fuel cell

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140706

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees