JP2004012088A - Pressure switch with built-in defrosting function - Google Patents

Pressure switch with built-in defrosting function Download PDF

Info

Publication number
JP2004012088A
JP2004012088A JP2002169527A JP2002169527A JP2004012088A JP 2004012088 A JP2004012088 A JP 2004012088A JP 2002169527 A JP2002169527 A JP 2002169527A JP 2002169527 A JP2002169527 A JP 2002169527A JP 2004012088 A JP2004012088 A JP 2004012088A
Authority
JP
Japan
Prior art keywords
pressure
defrosting
defrost
built
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002169527A
Other languages
Japanese (ja)
Inventor
Koichi Otani
大谷 浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2002169527A priority Critical patent/JP2004012088A/en
Publication of JP2004012088A publication Critical patent/JP2004012088A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets

Landscapes

  • Defrosting Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure switch provided with a defrosting period timer function of timing a defrosting period and having a built-in defrosting function carrying out an inexpensive and accurate defrosting process. <P>SOLUTION: The pressure switch with the built-in defrosting function composes a refrigeration system with a plurality of showcases in parallel connection with a solenoid valve 61, an expansion valve 62 and an evaporator 63 in parallel connection, and serially connected refrigerators 1 having a plurality of compressors 30S and 30L and a condenser 40. It has a pressure detecting means for detecting low pressure side refrigerant pressures of the compressors 30, and the timer function. The defrosting period is monitored by using the timer function, and judgement of an end of defrosting is conditional upon an end of the defrosting period and rising of the low pressure refrigerant pressures of the compressors. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、除霜機能を内蔵した電子式圧力スイッチに関する。
【0002】
【従来の技術】
従来、スーパーマーケット等では、一台の冷凍機に互いに並列に連結した複数のショーケースを直列に接続した冷凍システムが使われている。各ショーケースにはそれぞれ、電磁弁、膨張弁、蒸発器が配置されており、圧縮機や凝縮器からなる冷凍機は共通して別途設けられている。
【0003】
さらにこの圧縮機は複数併設されており、その共通の低圧側に電子式圧力スイッチが取りつけられている。予め圧力領域に対してどの圧縮機を動作させるかを決めておき制御すると容量制御できることは公知である。
【0004】
すなわち、特開平10−62019号公報には、直列に接続した電磁弁と膨張弁と蒸発器からなるショーケースを複数並列に接続し、並列に接続された複数台の圧縮機を有する冷凍機に直列に接続した冷凍システムにおいて、圧縮機の低圧側の冷媒圧力を検出して、この検出圧力に基づいて圧縮機の動作を開始させるまたは停止させるを判断する電子式デジタル圧力スイッチが提案されている。
【0005】
【発明が解決しようとする課題】
本発明は、除霜期間を計時する除霜期間時計機能を備えることにより、低価格で正確な除霜処理を行える除霜機能を内蔵した圧力スイッチを提供することを目的とする。
【0006】
【課題を解決するための手段】
前記公報に示される除霜機能内臓デジタル圧力スイッチは、圧縮機の低圧側の冷媒圧力が所定圧力以下に低下すると圧縮機の動作を開始しているが、圧縮機の動作停止と動作開始との間隔が極端に小さくなること(ショートサイクル)を避けるために、時計機能を備えて遅延時間を設けている。本発明は、この遅延時間を得るのに用いられている時計機能を、除霜周期時計機能にも利用して除霜の開始を信号出力する。さらに、前記時計機能を用いて除霜期間の終了を監視し、圧縮機の低圧側の冷媒圧力の上昇によって除霜が終了したことと、除霜期間が終了したことを判断項目に加えることによって、除霜終了を正確に検知して除霜終了信号を出力する。以上の方法で除霜用の特別な時計機能をシステムから排除し、低価格でしかも圧力と時間から正確な除霜を行える圧力スイッチを提供する。
【0007】
すなわち、上記課題を解決するために、本発明は、並列に接続された複数の蒸発器と、圧縮機と凝縮器とを有する冷凍機を直列に接続した冷凍システムを構成する除霜機能を内臓した圧力スイッチにおいて、圧縮機の低圧側の冷媒圧力を検出する圧力検出手段と、時計機能とを備え、時計機能を用いて除霜期間を監視し、除霜期間が終了したことおよび圧縮機の低圧側の冷媒圧力の上昇を条件として、除霜の終了を判断する。
【0008】
さらに、本発明は、上記除霜機能を内蔵した圧力スイッチにおいて、前記時計機能を用いて除霜周期を監視し、除霜処理の開始を指示する。また、本発明は、上記除霜機能を内蔵した圧力スイッチにおいて、強制的に除霜を指令する手段を有し、除霜周期に関係なく除霜処理の開始を指示する。本発明は、上記除霜機能を内蔵した圧力スイッチにおいて冷媒圧力信号をデジタルで処理する。
【0009】
【発明の実施の形態】
図1を用いて、本発明にかかる除霜機能内蔵デジタル圧力スイッチを用いた冷凍システムの構成の概要を説明する。この冷凍システムは、除霜機能内臓デジタル圧力スイッチ10とアキュムレータ20と並列に接続された圧縮機30Lおよび30Sと凝縮器40とレシーバタンク50からなる冷凍機1と、電磁弁61と膨張弁62と蒸発器63の直列接続体を複数台並列に接続したショーケース6とを、直列に接続して構成される。除霜機能内臓デジタル圧力スイッチ10は、圧縮機30の低圧側の冷媒圧力を検出して、圧縮機動作開始信号と除霜開始信号を出力し、除霜周期時計機能(タイマー)のタイムアップ信号を用いて除霜終了信号を出力する。
【0010】
除霜機能内臓デジタル圧力スイッチ10は、並列に配置された圧縮機30S,30Lの低圧側共通圧力を検知し、予め決めたある圧力領域において圧縮機30Sと30Lを容量制御する手段である。
【0011】
アキュームレータ20は、空気と熱交換して蒸発器63から排出された冷媒を気液分離する手段である。
【0012】
圧縮機30は、冷媒を高温高圧の気化冷媒にする。圧縮機30Sを例えば5馬力、圧縮器30Lを例えば10馬力とすると、圧縮機30Sおよび圧縮機30Lが未動作のとき0馬力、圧縮機30Sのみ動作のとき5馬力、圧縮機30Lのみ動作のとき10馬力、圧縮機30Sと圧縮機30Lが共に動作するときは15馬力での、4つの状態の容量制御ができる。
【0013】
凝縮器40は、高温高圧の気化冷媒の熱を外気に放出し液化冷媒にする手段である。
【0014】
レシーバタンク50は、液化冷媒を溜め、液化冷媒を安定して供給する手段である。
【0015】
電磁弁61は、液化冷媒の供給量を調整する手段である。
【0016】
膨張弁62は、液化冷媒を膨張させて低温冷媒を生成する手段である。
【0017】
蒸発器63は、低温冷媒と外気との熱交換を行い冷気を生成する手段である。
【0018】
図2を用いて、ショーケース6の除霜機能部分の構成を説明する。蒸発器63には、温度検出手段64と、通電スイッチ69を介して電源に接続されたヒータ68が設けられる。蒸発器63の温度を温度検出手段64が検出して、膨張弁の開度を制御している。除霜処理時にヒータ68に通電することによって、蒸発器63に付着した霜を融解して取り除いている。
【0019】
蒸発器63の排出管には、温度検出手段65が設けられており、除霜の終了を感知して、除霜制御部66と切替スイッチ67を介して電磁弁61の開閉動作を掌っている。
【0020】
このような構成を有する冷凍システムでは、各ショーケース6a,6b,6cが一つの冷凍機1に接続されているので、各ショーケースを個別に除霜することができず、除霜周期時計機能(タイマー)により所定の時間間隔で周期的に除霜処理を行なっている。圧力スイッチに内蔵された除霜周期時計機能(タイマー)によって周期的に除霜処理が開始されると、各ショーケース6の膨張弁62の前段に設けられている電磁弁61が閉じられ、蒸発器63内の冷媒はアキュムレータ20に回収される。その後蒸発器63をヒータ68で加熱することによって、霜が取り除かれる。
【0021】
このとき電磁弁61が閉じているので圧力スイッチ10は低圧になり、冷凍機1の運転が停止するので、この冷媒圧力の低下から各ショーケース6が除霜モードに入ったことを確認することができる。しかし、冷媒回収時に各ショーケース6の蒸発器63に残存冷媒があった状態で除霜のために加熱すると、残存する冷媒が気化して圧縮機30の低圧側の圧力を上昇させることとなり、圧力スイッチの圧力検出手段だけで、除霜が開始されていることを判断することは危険が伴い、除霜が確実に行われない場合がある。
【0022】
このため除霜周期時計機能(タイマー)から除霜が開始された信号を得て、除霜開始されてから一定の時間は冷媒圧力が変動検出しても無視し、一定時間が経過した後に低圧側の冷媒圧力を検知し冷媒回収を判断する。このため本発明のように除霜周期時計機能(タイマー)と圧力スイッチが同一ユニットであり上記のように時間を重視する場合を判断して圧縮機を操作することは除霜を確実に行うためには重要な要素となる。
【0023】
除霜終了の場合にも、前述のように、蒸発器63への霜の付着程度によって各ショーケース6の除霜時間に長短が発生する。したがって、圧縮機30の低圧側の冷媒圧力のみで除霜が終了したことを判断するのは、確実性に欠けるおそれがある。
【0024】
この場合には、除霜開始から所定の時間(除霜期間)が経過するまでは冷媒圧力の変動が生じても無視し、所定時間(除霜期間)経過後に冷媒圧力が上昇したことを検出すると、除霜が終了したことを判断し、除霜終了信号を出すことにより、確実な除霜が行われる。
【0025】
このような働きをする本発明にかかる除霜機能内臓デジタル圧力スイッチ10の構成の概要を、図3を用いて説明する。除霜機能内臓デジタル圧力スイッチ10は、圧力検出器11と、制御・演算部12と、時計機能部(タイマー)13と、スイッチ操作部14と、圧縮機制御信号出力部15と、除霜制御信号出力部16と、アナログ/デジタル(A/D)変換部17を有して構成される。さらに、除霜機能内臓デジタル圧力スイッチ10は、メモリー部181と、表示部182と、電源部183とを有している。また、時計機能部13は、動作開始遅延時計機能(タイマー)131と、除霜周期時計機能(タイマー)132とを有している。
【0026】
圧力検出器11は、圧縮機の低圧側の冷媒圧力を検出して、電圧に変換する検出器である。
【0027】
制御・演算部12は、4ステップ動作、除霜開始信号・除霜終了信号を演算・制御する手段である。
【0028】
時計機能部13は、動作開始遅延時計機能131と、除霜周期時計機能132とを有している。
【0029】
動作開始遅延時計機能131は、圧縮機30が動作を停止した後動作を再開するときの動作開始遅延時間計時用の時計機能である。
【0030】
除霜周期時計機能132は、除霜周期を計時する除霜周期時計機能および除霜中の時間を計時する除霜期間時計機能である。
【0031】
スイッチ操作部14は、設定値の入力手段としての機能とともに、強制除霜スイッチ141を有しており、強制除霜開始信号入力手段としても働く。
【0032】
圧縮機制御信号出力部15は、冷媒圧力入力と設定値より演算した結果に従って複数の圧縮機をそれぞれ動作させる圧縮機動作停止信号を出力する。
【0033】
除霜制御信号出力部16は、除霜周期時計機能(タイマー)値、圧力データより演算した結果に従って除霜開始を指示する除霜信号、除霜終了を指示する除霜終了信号を出力する。
【0034】
A/D変換部17は、電圧に変換された冷媒圧力をデジタル信号に変換する変換手段である。
【0035】
メモリー部181は、制御・演算部12の演算結果を一時溜めるRAM、プログラムを格納するROM、後述する複数の圧力域におけるオン/オフ圧力値や制御出力論理表等の設定値を格納保持する不揮発メモリーとから構成される。
【0036】
表示部182は、冷媒圧力の表示、除霜中の表示、設定入力時の確認表示をする表示部である。
【0037】
蒸発器63への霜の付着具合によって長短はあるが、各ショーケース6に取り付けられたサーミスタ65により蒸発器63の温度が上がると除霜を停止し、膨張弁62の前段に設けられている電磁弁61を開く。すると、圧縮機30の低圧側に取り付けられた圧力スイッチ10の圧力は上昇し、除霜が終了したことがわかる。
【0038】
図4〜図7を用いて、上記除霜機能内臓デジタル圧力スイッチ10を用いた冷凍システムの動作を説明する。この動作態様では、メモリー部181に、図5に示すような3種類の圧力域(圧力域、圧力域、圧力域2)毎のオン動作圧/オフ動作圧が記憶されている。圧力域のオン動作圧力をPon、オフ動作圧力をPoffとし、圧力域のオン動作圧力をPon、オフ動作圧力をPoffとし、圧力域のオン動作圧力をPon、オフ動作圧力をPoffとすると、それぞれの動作圧力は、例えばPoff<Poff<Poff<Pon<Pon<Ponに設定される。
【0039】
さらに、メモリー部181には、図6に示す制御出力論理表が格納されている。フラグF,F,Fは、圧力域に対応したフラグであり、信号は圧縮機30Sの動作を指示する信号であり、信号は圧縮機30Lの動作指示する信号であって、“0”は動作オフを、“1”は動作オンを表わしている。
【0040】
すなわち、この動作態様では、圧力領域を、「圧力域、圧力域、圧力域」の3つに分け、圧縮機30S,30Lをオン/オフする設定値をそれぞれ設ける。また、各圧力域においてオン設定値より冷媒圧力が高いかオフ設定値より冷媒圧力が低いかを判断し、それぞれの圧力域にフラグF〜Fを設け、検査結果を記録する。各フラグが記録されると制御出力論理表に従って圧縮機30S,30Lをオン/オフさせれば、4ステップの容量制御が行われる。
【0041】
上記の4ステップの容量制御を行うに必要となる、フラグF,F,Fの組合せは、000,100,110,111の4つの態様のみですむが、制御出力論理表として完成させるためには、図6に示した制御出力論理表のように、F,F,Fが、010,001,101,011では、信号および信号の出力をそれぞれ01,10,10,11のように適宜設定してもよい。
【0042】
まず、冷凍システムに電源が投入されると除霜周期時計機能(タイマー)132が起動される(S0)、次いで、圧力検出器11が圧縮機の低圧側の冷媒圧力を検出し(S1)、A/D変換部17でデジタル信号に変換して演算・制御部12へ送信する。演算・制御部12は、検出した圧力Psが、圧力域0のオン動作圧力Ponより大きいか否かを判断する(S2)。Ps<PonであればフラグFを“1”にセットする(S3)、Ps≧PonであればフラグFを“0”に、セットする(S4)。
【0043】
次に、演算・制御部12は、検出した圧力Psが、圧力域1のオン動作圧力Ponより大きいか否かを判断する(S5)。Ps<PonであればフラグFを“1”にセットする(S6)、Ps≧PonであればフラグFを“0”に、セットする(S7)。
【0044】
さらに、演算・制御部12は、検出した圧力Psが、圧力域2のオン動作圧力Ponより大きいか否かを判断する(S8)。Ps<PonであればフラグFを“1”にセットする(S9)、Ps≧PonであればフラグFを“0”に、セットする(S10)。
【0045】
各フラグF,F,Fがセットされると、制御・演算部12は、メモリー181に格納された制御出力論理表を参照して、信号および信号を出力する(S11)。これにより圧縮機30S,30Lはそれぞれ、信号、信号に従っていずれかのステップで容量制御された運転が行われる。(図7、圧力制御・圧縮機動作)
【0046】
次いで、除霜時計機能132が、除霜周期時間を経過したか否かを監視する(S12)。ステップS12は、圧力制御のプログラムフロー(S1〜S11)に含まれ、常に圧力制御中に除霜周期時間になっていないかを確認している。除霜周期時間が経過していると、除霜の開始を指示する除霜信号を出力するとともに除霜期間時計機能を起動する(S13)。
【0047】
この除霜信号を受けると、ショーケース6は、電磁弁61a〜61cを閉じ、冷媒をアキュムレータ20に回収する(図7、冷媒回収期間)とともに、ヒータ68に通電して除霜動作を行う(図7、除霜中)。蒸発器63の温度が上昇すると、除霜制御部66は電磁弁61a〜61cを開いて、除霜を終了する(図7、除霜終了動作)。
【0048】
上記一連の除霜動作が行われる間、除霜時計機能は、除霜期間が終了したか否かを監視しており(S14)、除霜期間が経過すると、圧力検出器11が冷媒圧力を検知して(S15)、冷媒圧力が所定の値以上に上昇してかどうかを判断し(S16)、冷媒圧力が所定の値以上に上昇しているならば確かに除霜が終了していると判断して、除霜終了信号を出力する(S17)。
【0049】
最後に、除霜周期時計機能を開始させて(S18)、ステップS1に戻り、図7の圧力制御へ移行する。
【0050】
上記除霜処理において、S13→S15→S16→S14→S17のようにステップS14と、ステップS15,S16の順序を入れ替え、冷媒の圧力を検出した後、除霜期間が終了したか否かを判断してもよい。
【0051】
さらに、上記のフローとは別に、メンテナンス要員が直接霜の状態を確かめて必要に応じて強制除霜スイッチ141を操作すると、ステップS13以降の除霜動作のフローが起動され、除霜処理を実行する。
【0052】
本発明によれば、動作開始遅延時計機能を果たす時計機能を利用して除霜周期と除霜期間を監視することができ、正確な除霜処理を実行することができる。
【0053】
【発明の効果】
除霜終了を正確に検知し除霜終了信号を出力することができ、除霜周期計時用の時計機能および除霜期間計時用の時計機能を専用の時計機能として設けずに、制御プログラムによってこれらの時計機能を得ることができるので、低価格で、しかも圧力と時間から正確な除霜を行うことができる除霜機能を内蔵した圧力スイッチを提供することができる。
【図面の簡単な説明】
【図1】冷凍システムの構成の概要を説明する図。
【図2】冷凍システムを構成するショーケースの構成を説明する図。
【図3】冷凍システムを構成する除霜機能を内蔵した圧力スイッチの機能構成を説明するブロック図。
【図4】上記冷凍システムの動作態様を説明するフローチャート。
【図5】圧力域と動作態様を説明する図。
【図6】制御出力論理表。
【図7】除霜処理における冷媒圧力と動作内容を説明する図。
【符号の説明】
1 冷凍機
10 除霜機能内臓デジタル圧力スイッチ
11 圧力検出器
12 制御・演算部
13 時計機能部
131 動作開始遅延時計機能
132 除霜周期時計機能(タイマー)
14 スイッチ操作部
141 強制除霜スイッチ
15 圧縮機制御信号出力部
16 除霜制御信号出力部
17 A/D変換部
181 メモリー部
182 表示部
183 電源部
20 アキュームレータ
30 圧縮機
40 凝縮器
50 レシーバタンク
6 ショーケース
61 電磁弁
62膨張弁
63 蒸発器
64 温度検出器
65 温度検出器
66 除霜制御部
67 切替スイッチ
68 ヒータ
69 通電スイッチ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electronic pressure switch having a built-in defrost function.
[0002]
[Prior art]
Conventionally, a supermarket or the like uses a refrigeration system in which a plurality of showcases connected in parallel to one refrigerator are connected in series. Each showcase is provided with a solenoid valve, an expansion valve, and an evaporator, and a refrigerator including a compressor and a condenser is separately provided in common.
[0003]
Further, a plurality of the compressors are provided side by side, and an electronic pressure switch is mounted on a common low pressure side. It is known that the capacity can be controlled by preliminarily determining which compressor is to be operated in the pressure region and controlling the compressor.
[0004]
That is, JP-A-10-62019 discloses a refrigerator having a plurality of compressors connected in parallel, in which a plurality of showcases each including an electromagnetic valve, an expansion valve, and an evaporator connected in series are connected in parallel. In a refrigeration system connected in series, an electronic digital pressure switch that detects refrigerant pressure on the low pressure side of the compressor and determines whether to start or stop the operation of the compressor based on the detected pressure has been proposed. .
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a pressure switch having a built-in defrosting function capable of performing an accurate and low-cost defrosting process by providing a defrosting period clock function for measuring a defrosting period.
[0006]
[Means for Solving the Problems]
The digital pressure switch with a built-in defrost function disclosed in the above publication starts the operation of the compressor when the refrigerant pressure on the low pressure side of the compressor falls below a predetermined pressure, but the operation of the compressor is stopped and the operation is started. In order to prevent the interval from becoming extremely small (short cycle), a delay time is provided with a clock function. The present invention uses the clock function used to obtain the delay time as a defrost cycle clock function to output a signal indicating the start of defrost. Furthermore, by monitoring the end of the defrost period using the clock function, by adding to the determination items that the defrost has been completed by the rise of the refrigerant pressure on the low pressure side of the compressor, and that the defrost period has been completed. , And accurately detects the end of the defrost and outputs a defrost end signal. By the above method, a special clock function for defrosting is eliminated from the system, and a pressure switch capable of performing accurate defrosting at low cost and from pressure and time is provided.
[0007]
That is, in order to solve the above-mentioned problem, the present invention has a built-in defrosting function that constitutes a refrigeration system in which a plurality of evaporators connected in parallel and a refrigerator having a compressor and a condenser are connected in series. The pressure switch has a pressure detecting means for detecting the refrigerant pressure on the low pressure side of the compressor, and a clock function, monitors the defrost period using the clock function, and that the defrost period has ended and the compressor The end of defrosting is determined on condition that the refrigerant pressure on the low pressure side rises.
[0008]
Further, according to the present invention, in the pressure switch having a built-in defrost function, the defrost cycle is monitored using the clock function, and the start of the defrost process is instructed. Further, in the present invention, the pressure switch having the built-in defrosting function has means for forcibly instructing the defrosting, and instructs the start of the defrosting process regardless of the defrosting cycle. The present invention digitally processes the refrigerant pressure signal in the pressure switch having the above-described defrosting function.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
An outline of the configuration of a refrigeration system using a digital pressure switch with a built-in defrost function according to the present invention will be described with reference to FIG. This refrigeration system includes a refrigerator 1 including compressors 30L and 30S, a condenser 40 and a receiver tank 50 connected in parallel with a digital pressure switch 10 with a built-in defrosting function and an accumulator 20, a solenoid valve 61 and an expansion valve 62. A showcase 6 in which a plurality of series-connected evaporators 63 are connected in parallel is connected in series. The defrost function built-in digital pressure switch 10 detects the refrigerant pressure on the low pressure side of the compressor 30, outputs a compressor operation start signal and a defrost start signal, and a time-up signal of a defrost cycle clock function (timer). To output a defrost end signal.
[0010]
The digital pressure switch 10 with a built-in defrost function is means for detecting the low pressure side common pressure of the compressors 30S and 30L arranged in parallel and controlling the capacity of the compressors 30S and 30L in a predetermined pressure range.
[0011]
The accumulator 20 is means for exchanging heat with air to separate the refrigerant discharged from the evaporator 63 into gas and liquid.
[0012]
The compressor 30 converts the refrigerant into a high-temperature and high-pressure vaporized refrigerant. Assuming that the compressor 30S is, for example, 5 hp and the compressor 30L is, for example, 10 hp, 0 hp when the compressor 30S and the compressor 30L are not operating, 5 hp when only the compressor 30S is operating, and when only the compressor 30L is operating When the compressor 30S and the compressor 30L operate together at 10 horsepower, capacity control in four states can be performed at 15 horsepower.
[0013]
The condenser 40 is means for releasing the heat of the high-temperature and high-pressure vaporized refrigerant to the outside air to convert it into a liquefied refrigerant.
[0014]
The receiver tank 50 is a unit that stores the liquefied refrigerant and stably supplies the liquefied refrigerant.
[0015]
The solenoid valve 61 is a means for adjusting the supply amount of the liquefied refrigerant.
[0016]
The expansion valve 62 is a means for expanding the liquefied refrigerant to generate a low-temperature refrigerant.
[0017]
The evaporator 63 is means for performing heat exchange between the low-temperature refrigerant and the outside air to generate cool air.
[0018]
The configuration of the defrosting function portion of the showcase 6 will be described with reference to FIG. The evaporator 63 is provided with a temperature detecting means 64 and a heater 68 connected to a power supply via a power switch 69. The temperature of the evaporator 63 is detected by the temperature detecting means 64, and the opening of the expansion valve is controlled. By supplying electricity to the heater 68 during the defrosting process, frost attached to the evaporator 63 is melted and removed.
[0019]
The exhaust pipe of the evaporator 63 is provided with a temperature detecting means 65, which senses the completion of defrosting, and controls the opening and closing operation of the electromagnetic valve 61 via a defrosting control unit 66 and a switch 67. I have.
[0020]
In the refrigeration system having such a configuration, since each showcase 6a, 6b, 6c is connected to one refrigerator 1, each showcase cannot be individually defrosted, and the defrost cycle clock function is not provided. The defrosting process is periodically performed at predetermined time intervals by a (timer). When the defrosting process is periodically started by a defrosting cycle clock function (timer) built in the pressure switch, the electromagnetic valve 61 provided in front of the expansion valve 62 of each showcase 6 is closed to evaporate. The refrigerant in the vessel 63 is collected by the accumulator 20. Then, the frost is removed by heating the evaporator 63 with the heater 68.
[0021]
At this time, since the solenoid valve 61 is closed, the pressure switch 10 becomes low pressure, and the operation of the refrigerator 1 is stopped. Therefore, it is confirmed from the decrease in the refrigerant pressure that each showcase 6 has entered the defrost mode. Can be. However, when the refrigerant is heated for defrosting while the residual refrigerant is present in the evaporator 63 of each showcase 6 at the time of refrigerant recovery, the residual refrigerant is vaporized and the pressure on the low pressure side of the compressor 30 is increased. Determining that defrost has been started only by the pressure detecting means of the pressure switch involves a danger, and the defrost may not be performed reliably.
[0022]
For this reason, a signal indicating that defrost has started is obtained from the defrost cycle clock function (timer), and a certain period of time after the start of defrost is ignored even if a change in refrigerant pressure is detected. The refrigerant pressure on the side is detected to determine refrigerant recovery. For this reason, as in the present invention, operating the compressor by judging the case where the defrost cycle clock function (timer) and the pressure switch are the same unit and placing emphasis on time as described above is to surely perform defrosting. Is an important factor.
[0023]
Even when the defrosting is completed, as described above, the length of the defrosting time of each showcase 6 varies depending on the degree of adhesion of the frost to the evaporator 63. Therefore, judging that the defrost is completed only by the refrigerant pressure on the low pressure side of the compressor 30 may lack reliability.
[0024]
In this case, even if a change in the refrigerant pressure occurs until a predetermined time (defrost period) has elapsed from the start of defrosting, it is ignored, and it is detected that the refrigerant pressure has increased after the predetermined time (defrost period) has elapsed. Then, it is determined that the defrost is completed, and a defrost end signal is issued, so that the defrost is reliably performed.
[0025]
The outline of the configuration of the digital pressure switch 10 with a built-in defrost function according to the present invention having such a function will be described with reference to FIG. The digital pressure switch 10 with built-in defrost function includes a pressure detector 11, a control / calculation unit 12, a clock function unit (timer) 13, a switch operation unit 14, a compressor control signal output unit 15, a defrost control It has a signal output section 16 and an analog / digital (A / D) conversion section 17. Further, the digital pressure switch 10 with a built-in defrost function has a memory unit 181, a display unit 182, and a power supply unit 183. Further, the clock function unit 13 has an operation start delay clock function (timer) 131 and a defrost cycle clock function (timer) 132.
[0026]
The pressure detector 11 is a detector that detects the refrigerant pressure on the low pressure side of the compressor and converts it into a voltage.
[0027]
The control / calculation unit 12 is means for calculating and controlling a four-step operation, a defrost start signal and a defrost end signal.
[0028]
The clock function unit 13 has an operation start delay clock function 131 and a defrost cycle clock function 132.
[0029]
The operation start delay clock function 131 is a clock function for measuring an operation start delay time when the operation is restarted after the compressor 30 stops operating.
[0030]
The defrost cycle clock function 132 is a defrost cycle clock function that measures a defrost cycle and a defrost period clock function that measures the time during defrost.
[0031]
The switch operation unit 14 has a forced defrost switch 141 in addition to a function as a set value input unit, and also functions as a forced defrost start signal input unit.
[0032]
The compressor control signal output unit 15 outputs a compressor operation stop signal for operating each of the plurality of compressors according to the result calculated from the refrigerant pressure input and the set value.
[0033]
The defrost control signal output unit 16 outputs a defrost signal for instructing the start of defrost and a defrost end signal for instructing the end of defrost according to the result calculated from the defrost cycle clock function (timer) value and the pressure data.
[0034]
The A / D converter 17 is a conversion unit that converts the refrigerant pressure converted into a voltage into a digital signal.
[0035]
The memory unit 181 temporarily stores a calculation result of the control / calculation unit 12, a ROM for storing programs, and a non-volatile for storing and setting on / off pressure values in a plurality of pressure ranges described later and set values such as a control output logic table. And a memory.
[0036]
The display unit 182 is a display unit that displays the refrigerant pressure, displays during defrosting, and displays confirmation when setting is input.
[0037]
Defrosting is stopped when the temperature of the evaporator 63 rises due to the thermistor 65 attached to each showcase 6, although it depends on how frost adheres to the evaporator 63. The thermistor 65 is provided in front of the expansion valve 62. The solenoid valve 61 is opened. Then, the pressure of the pressure switch 10 attached to the low pressure side of the compressor 30 rises, and it can be seen that the defrost has been completed.
[0038]
The operation of the refrigeration system using the digital pressure switch 10 with a built-in defrost function will be described with reference to FIGS. In this operation mode, the ON / OFF operation pressure for each of three types of pressure ranges (pressure range 0 , pressure range 1 , and pressure range 2) as shown in FIG. 5 is stored in the memory unit 181. The ON operating pressure of pressure zone 0 is P 0 on, the OFF operating pressure is P 0 off, the ON operating pressure of pressure zone 1 is P 1 on, the OFF operating pressure is P 1 off, and the ON operating pressure of pressure zone 2 is Assuming that P 2 on and the off operating pressure are P 2 off, the respective operating pressures are set to, for example, P 0 off <P 1 off <P 2 off <P 0 on <P 1 on <P 2 on.
[0039]
Further, the memory 181 stores a control output logic table shown in FIG. Flags F 0 , F 1 , and F 2 are flags corresponding to pressure ranges 0 to 2 , signal 1 is a signal for instructing operation of compressor 30S, and signal 2 is a signal for instructing operation of compressor 30L. Thus, "0" indicates operation off and "1" indicates operation on.
[0040]
In other words, in this operation mode, the pressure range is divided into three, "pressure range 0 , pressure range 1 , and pressure range 2 ", and set values for turning on / off the compressors 30S and 30L are provided. Further, it is determined whether the refrigerant pressure is higher than the ON set value or lower than the OFF set value in each pressure range, flags F 0 to F 2 are provided in each pressure range, and the test result is recorded. When each flag is recorded, if the compressors 30S, 30L are turned on / off according to the control output logic table, four-step capacity control is performed.
[0041]
The combination of the flags F 0 , F 1 , and F 2 required for performing the above-described four-step capacity control requires only four modes of 000, 100, 110, and 111, but the control output logic table is completed. For this purpose, as shown in the control output logic table shown in FIG. 6, when F 0 , F 1 , and F 2 are 010, 001, 101, and 011, the outputs of signal 1 and signal 2 are 01, 10, and 10 respectively. , 11 as appropriate.
[0042]
First, when power is turned on to the refrigeration system, the defrost cycle clock function (timer) 132 is started (S0), and then the pressure detector 11 detects the refrigerant pressure on the low pressure side of the compressor (S1). The signal is converted into a digital signal by the A / D converter 17 and transmitted to the arithmetic and control unit 12. The arithmetic and control unit 12 determines whether or not the detected pressure Ps is higher than the ON operation pressure P 0 on in the pressure range 0 (S2). If Ps <P 0 on, the flag F 0 is set to “1” (S3). If Ps ≧ P 0 on, the flag F 0 is set to “0” (S4).
[0043]
Next, the arithmetic and control unit 12 determines whether or not the detected pressure Ps is higher than the ON operation pressure P 1 on of the pressure range 1 (S5). If Ps <P 1 on, the flag F 1 is set to “1” (S6), and if Ps ≧ P 1 on, the flag F 1 is set to “0” (S7).
[0044]
Further, the arithmetic and control unit 12 determines whether or not the detected pressure Ps is higher than the ON operation pressure P 2 on of the pressure range 2 (S8). If Ps <P 2 on, the flag F 2 is set to “1” (S 9). If Ps ≧ P 2 on, the flag F 2 is set to “0” (S 10).
[0045]
When the flags F 0 , F 1 , and F 2 are set, the control / calculation unit 12 outputs the signal 1 and the signal 2 with reference to the control output logic table stored in the memory 181 (S11). As a result, the compressors 30S and 30L operate in a capacity-controlled manner in one of the steps according to the signal 1 and the signal 2 , respectively. (Fig. 7, pressure control / compressor operation)
[0046]
Next, the defrost clock function 132 monitors whether the defrost cycle time has elapsed (S12). Step S12 is included in the pressure control program flow (S1 to S11), and it is always checked whether the defrost cycle time has been reached during the pressure control. If the defrost cycle time has elapsed, a defrost signal for instructing the start of defrost is output, and the defrost period clock function is activated (S13).
[0047]
Upon receiving the defrost signal, the showcase 6 closes the solenoid valves 61a to 61c, collects the refrigerant in the accumulator 20 (FIG. 7, refrigerant collection period), and energizes the heater 68 to perform a defrost operation (FIG. 7). (FIG. 7, defrosting). When the temperature of the evaporator 63 rises, the defrost control unit 66 opens the solenoid valves 61a to 61c and ends the defrost (FIG. 7, defrost end operation).
[0048]
During the above-described series of defrosting operations, the defrost clock function monitors whether the defrost period has ended (S14). When the defrost period has elapsed, the pressure detector 11 detects the refrigerant pressure. It is detected (S15), and it is determined whether the refrigerant pressure has risen to a predetermined value or more (S16). If the refrigerant pressure has risen to a predetermined value or more, the defrost has certainly ended. And outputs a defrost end signal (S17).
[0049]
Finally, the defrost cycle clock function is started (S18), and the process returns to step S1 to shift to the pressure control in FIG.
[0050]
In the above defrosting process, the order of step S14 and steps S15 and S16 is reversed as in S13 → S15 → S16 → S14 → S17, and after detecting the pressure of the refrigerant, it is determined whether or not the defrost period has ended. May be.
[0051]
Further, separately from the above flow, when the maintenance personnel directly checks the state of frost and operates the forced defrost switch 141 as necessary, the flow of the defrosting operation after step S13 is started to execute the defrosting process. I do.
[0052]
According to the present invention, a defrost cycle and a defrost period can be monitored by using a clock function that performs an operation start delay clock function, and accurate defrost processing can be performed.
[0053]
【The invention's effect】
A defrost end signal can be accurately detected and a defrost end signal can be output, and a clock function for measuring the defrost cycle and a clock function for measuring the defrost period are not provided as dedicated clock functions. Therefore, it is possible to provide a pressure switch with a built-in defrosting function that can perform accurate defrosting from pressure and time at low cost.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an outline of a configuration of a refrigeration system.
FIG. 2 is a diagram illustrating a configuration of a showcase that configures a refrigeration system.
FIG. 3 is a block diagram illustrating a functional configuration of a pressure switch having a built-in defrosting function that constitutes a refrigeration system.
FIG. 4 is a flowchart illustrating an operation mode of the refrigeration system.
FIG. 5 is a diagram illustrating a pressure range and an operation mode.
FIG. 6 is a control output logic table.
FIG. 7 is a view for explaining the refrigerant pressure and the operation in the defrosting process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Refrigerator 10 Digital pressure switch with built-in defrost function 11 Pressure detector 12 Control / calculation unit 13 Clock function unit 131 Operation start delay clock function 132 Defrost cycle clock function (timer)
14 Switch operation part 141 Forced defrost switch 15 Compressor control signal output part 16 Defrost control signal output part 17 A / D conversion part 181 Memory part 182 Display part 183 Power supply part 20 Accumulator 30 Compressor 40 Condenser 50 Receiver tank 6 Showcase 61 Solenoid valve 62 Expansion valve 63 Evaporator 64 Temperature detector 65 Temperature detector 66 Defrost control unit 67 Switch 68 Heater 69 Power switch

Claims (4)

並列に接続された複数の蒸発器と、凝縮器と並列に接続された複数の圧縮機とを有する冷凍機を直列に接続した冷凍システムを構成する除霜機能を内臓した圧力スイッチにおいて、
圧縮機の低圧側の冷媒圧力を検出する圧力検出手段と、時計機能とを有し、
時計機能を用いて除霜期間を監視し、除霜期間が終了したことおよび圧縮機の低圧側の冷媒圧力の上昇を条件として、除霜の終了を判断することを特徴とする除霜機能を内蔵した圧力スイッチ。
A plurality of evaporators connected in parallel, and a pressure switch with a built-in defrost function constituting a refrigeration system connected in series with a refrigerator having a plurality of compressors connected in parallel with the condenser,
Having a pressure detecting means for detecting the refrigerant pressure on the low pressure side of the compressor, and a clock function,
The defrosting period is monitored by using a clock function, and the condition of the completion of the defrosting period and an increase in the refrigerant pressure on the low pressure side of the compressor are determined as conditions. Built-in pressure switch.
時計機能を用いて除霜周期を監視し、除霜処理の開始を指示することを特徴とする請求項1に記載の除霜機能を内蔵した圧力スイッチ。The pressure switch having a built-in defrosting function according to claim 1, wherein the defrosting cycle is monitored using a clock function, and the start of the defrosting process is instructed. 強制的に除霜を指令する手段を有し、除霜周期に関係なく除霜処理の開始を指示することを特徴とする請求項1に記載の除霜機能を内蔵した圧力スイッチ。The pressure switch having a built-in defrosting function according to claim 1, further comprising means for forcibly instructing defrosting, and instructing start of defrosting processing regardless of a defrosting cycle. 冷媒圧力信号をデジタルで処理することを特徴とする請求項1ないし請求項3のいずれか1項に記載の除霜機能を内蔵した圧力スイッチ。4. The pressure switch having a built-in defrosting function according to claim 1, wherein the refrigerant pressure signal is digitally processed.
JP2002169527A 2002-06-11 2002-06-11 Pressure switch with built-in defrosting function Pending JP2004012088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002169527A JP2004012088A (en) 2002-06-11 2002-06-11 Pressure switch with built-in defrosting function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002169527A JP2004012088A (en) 2002-06-11 2002-06-11 Pressure switch with built-in defrosting function

Publications (1)

Publication Number Publication Date
JP2004012088A true JP2004012088A (en) 2004-01-15

Family

ID=30436062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002169527A Pending JP2004012088A (en) 2002-06-11 2002-06-11 Pressure switch with built-in defrosting function

Country Status (1)

Country Link
JP (1) JP2004012088A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038109A (en) * 2014-08-05 2016-03-22 株式会社コロナ Composite heat source heat pump device
JP6022058B2 (en) * 2014-02-27 2016-11-09 三菱電機株式会社 Heat source side unit and refrigeration cycle apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143564A (en) * 1990-10-01 1992-05-18 Daikin Ind Ltd Defrosting operation controller for air conditioner
JPH0688662A (en) * 1992-09-07 1994-03-29 Mitsubishi Heavy Ind Ltd Defrosting controller for freezer
JPH08200901A (en) * 1995-01-20 1996-08-09 Hitachi Ltd Defrosting controller for refrigerating plant
JPH1062019A (en) * 1996-08-15 1998-03-06 Sanyo Electric Co Ltd Controller for compressor and refrigerator provided therewith
JPH10220934A (en) * 1997-02-10 1998-08-21 Mitsubishi Electric Corp Defroster
JPH11270936A (en) * 1998-03-24 1999-10-05 Oyo Keisoku Kenkyusho:Kk Refrigerating device
JP2000130871A (en) * 1998-10-30 2000-05-12 Sanyo Electric Co Ltd Refrigerating apparatus
JP2001168701A (en) * 1999-12-08 2001-06-22 Saginomiya Seisakusho Inc Switch device
JP2001243860A (en) * 2000-02-29 2001-09-07 Saginomiya Seisakusho Inc Pressure switch
JP2001272144A (en) * 2000-03-29 2001-10-05 Daikin Ind Ltd Air conditioner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143564A (en) * 1990-10-01 1992-05-18 Daikin Ind Ltd Defrosting operation controller for air conditioner
JPH0688662A (en) * 1992-09-07 1994-03-29 Mitsubishi Heavy Ind Ltd Defrosting controller for freezer
JPH08200901A (en) * 1995-01-20 1996-08-09 Hitachi Ltd Defrosting controller for refrigerating plant
JPH1062019A (en) * 1996-08-15 1998-03-06 Sanyo Electric Co Ltd Controller for compressor and refrigerator provided therewith
JPH10220934A (en) * 1997-02-10 1998-08-21 Mitsubishi Electric Corp Defroster
JPH11270936A (en) * 1998-03-24 1999-10-05 Oyo Keisoku Kenkyusho:Kk Refrigerating device
JP2000130871A (en) * 1998-10-30 2000-05-12 Sanyo Electric Co Ltd Refrigerating apparatus
JP2001168701A (en) * 1999-12-08 2001-06-22 Saginomiya Seisakusho Inc Switch device
JP2001243860A (en) * 2000-02-29 2001-09-07 Saginomiya Seisakusho Inc Pressure switch
JP2001272144A (en) * 2000-03-29 2001-10-05 Daikin Ind Ltd Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6022058B2 (en) * 2014-02-27 2016-11-09 三菱電機株式会社 Heat source side unit and refrigeration cycle apparatus
JPWO2015129080A1 (en) * 2014-02-27 2017-03-30 三菱電機株式会社 Heat source side unit and refrigeration cycle apparatus
JP2016038109A (en) * 2014-08-05 2016-03-22 株式会社コロナ Composite heat source heat pump device

Similar Documents

Publication Publication Date Title
KR100846113B1 (en) Control method of the refrigerator
EP1598610B1 (en) Apparatus and method for controlling heating operation in heat pump system
US5689964A (en) Operation control device for air conditioner
EP2142865B1 (en) Control method of refrigerator
CN110160308B (en) Refrigeration control method, refrigerator and computer readable storage medium
KR960018479A (en) Defroster of refrigerator and control method
CN105135772B (en) Water refrigerating plant and its control method for preventing cold water from freezing
JP4954684B2 (en) How to operate an automatic ice machine
EP3086060B1 (en) Defrosting method and device for refrigerating or air conditioning apparatus
JP4167083B2 (en) Air conditioner and method for controlling defrost of air conditioner
JP2004012088A (en) Pressure switch with built-in defrosting function
JP2009236332A (en) Refrigerant leakage detecting method of refrigerating device
JPH07151432A (en) Insufficient refrigerant detector for refrigerator
JP4236371B2 (en) Control device for refrigeration equipment
JPH0861813A (en) Refrigerating cycle for heat pump
CN110285616B (en) Control method of refrigerator
JP2002267295A (en) Refrigerator
JPH04268179A (en) Device for control of defrosting of air conditioner
JP2003329351A (en) Operation system for inverter refrigerator
JPH06185838A (en) Refrigerant shortage detector for refrigerant circulation cycle
JP2007071514A (en) Freezer
JPH0814455B2 (en) Defrost control device for storage
JPH109752A (en) Refrigerator
KR100292188B1 (en) Separate Refrigerator
KR19990048692A (en) Multi-stage defrosting method of the refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120