JP2004011811A - Antifriction bearing - Google Patents

Antifriction bearing Download PDF

Info

Publication number
JP2004011811A
JP2004011811A JP2002167633A JP2002167633A JP2004011811A JP 2004011811 A JP2004011811 A JP 2004011811A JP 2002167633 A JP2002167633 A JP 2002167633A JP 2002167633 A JP2002167633 A JP 2002167633A JP 2004011811 A JP2004011811 A JP 2004011811A
Authority
JP
Japan
Prior art keywords
diameter member
outer diameter
inner diameter
damping
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002167633A
Other languages
Japanese (ja)
Inventor
Yasushi Tamaki
玉城 康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002167633A priority Critical patent/JP2004011811A/en
Publication of JP2004011811A publication Critical patent/JP2004011811A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3831Ball cages with hybrid structure, i.e. with parts made of distinct materials

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a holder for an antifriction bearing having excellent damping performance and excellent resistance against wear. <P>SOLUTION: This holder 10 for the antifriction bearing holding a plurality of balls so as to roll them freely is provided with an outside diameter member 11 arranged on an outer peripheral side, an inside diameter member 12 arranged on an inner peripheral side in a non-contact manner with the outside diameter member 11, and a damping member 13 connected with the outside diameter member 11 and the inside diameter member 12. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば工作機械用スピンドル等、高速で運転される回転体を支持する転がり軸受に関する。
【0002】
【従来の技術】
従来の転がり軸受は、例えば実開昭62−6532号公報や特開2000−240659号公報に開示されている。
【0003】
図7は、実開昭62−6532号公報に開示の転がり軸受の保持器を示す。転がり軸受用保持器80は、合成樹脂製であって、玉軸受81に用いられており、外輪82と内輪83との間の軸受空間内に配されている。玉軸受81では、外輪82の軌道面84と内輪83の軌道面85との間に玉86が配されている。玉86は、転がり軸受用保持器80の円周方向に間隔を置いて形成されたポケット87に回転自在に保持されている。ポケット87は、玉86の直径よりもわずかに大きい直径を有する。
【0004】
また、特開2000−240659号公報に開示された転がり軸受用保持器は、転動体である玉との接触面に表面処理を施したマグネシウム合金を用いており、保持器の耐熱性、耐摩耗性、強度、および耐食性などの性能を向上させている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記公報に記載された転がり軸受用保持器は、転がり軸受用保持器の材質や形状に依存して共振周波数が決まる。そのため、幅広い使用条件下において、この共振周波数が運転時に発生する工作機械用スピンドルの振動周波数や軸受自体の振動周波数と合致しないとは言い難い。一般に、保持器の共振周波数が、工作機械用スピンドルの振動周波数や軸受自体の振動周波数と合致した場合、運転時に共振が発生し、軸受に大きな機械振動が発生することがあり、使用上好ましくない。
【0006】
また、上記公報に記載された転がり軸受用保持器で、一体形状であって、そのボリュームが大きいため、重量が大きくなる。それによって、運転中に大きな遠心力が発生して摩耗し易いという問題点もある。
【0007】
本発明は、上記事情に鑑みてなされたもので、その目的は、減衰性能及び耐摩耗性に富む転がり軸受用保持器を備えた転がり軸受を提供することにある。
【0008】
【課題を解決するための手段】
本発明の目的は、下記構成により達成される。
(1)相対的に回転する外輪および内輪と、前記外輪と前記内輪との間に配置される転動体と、前記外輪と前記内輪との間に配置され、前記転動体を転動自在に保持するポケットを有する保持器と、を有する転がり軸受において、
前記保持器は、外輪側に配置される外径部材と、該外径部材と別体にされ、前記外径部材に非接触にして内輪側に配置される内径部材と、前記外径部材及び前記内径部材との間に配置される減衰部材と、を有することを特徴とする転がり軸受。
(2)前記減衰部材は、前記外径部材及び内径部材の少なくとも一方と減衰係数が異なる(1)の転がり軸受。
【0009】
上記構成の転がり軸受によれば、保持器は、それぞれ別体とされた外径部材と、内径部材と、減衰部材とから構成され、非接触に組み付けられた外径部材と内径部材との間に減衰部材が配置され外形部材と内径部材を結合している。
したがって、外径部材または内径部材に与えられた振動が、減衰部材によって減衰されて、内径部材または外径部材に直接伝わらない。例え、工作機械用スピンドル等の回転体の振動周波数や軸受自体の振動周波数と合致したとしても、外径部材と内径部材と減衰部材とが別体にされて外径部材と内径部材とが非接触に組み付けられているため、共振することがない。よって、大きな機械振動を発生することなく運転を行うことができる。また、外径部材と内径部材と減衰部材とが別体にされているため、それらのボリュームが小さくなって重量が少なくなっており、運転中に発生する遠心力も小さくなって耐摩耗性を向上することができる。
【0010】
また、減衰部材の減衰係数が、外径部材または内径部材の少なくとも一方と減衰係数が異なるように選ばれれば、振動の減衰比が更に大きくなる。
したがって、外径部材または内径部材に与えられた振動が、減衰部材によって減衰される際に、より大きな減衰率で減衰されて内径部材または外径部材に対し更に伝わり難くなり、単振動、減衰振動、無周期運動等を発生することなく静粛な運転を行うことができる。
【0011】
【発明の実施の形態】
以下、本発明の実施形態を図1〜図6に基づいて詳細に説明する。
本発明は、相対的に回転する外輪および内輪と、前記外輪と前記内輪との間に配置される転動体と、前記外輪と前記内輪との間に配置され、前記転動体を転動自在に保持するポケットを有する保持器と、を有する転がり軸受において用いられる保持器に関するものである。
【0012】
図1は、本発明の第1実施形態の転がり軸受用保持器10を示す。
転がり軸受用保持器(以下、保持器と称す。)10は、単一の外径部材11と、外径部材11の内周側に配置される一対の内径部材12と、外径部材11及び内径部材12の間に配置される一対の減衰部材13とから構成されている。
【0013】
外径部材11は、断面視T字形状をなす円環形状にされており、黄銅系合金、鉄系合金、マグネシウム合金、アルミニウム合金、合成樹脂等を素材として成形されている。
外径部材11の中央部に配置された外径部材本体部14には、柱部15を介して円周方向に間隔を置いて配置された複数のポケット16が形成されている。ポケット16には、図示しない転動体である玉が挿入される。
【0014】
外径部材本体14の外周側には、一対の外周板部17が形成される。外周板部17は、外径部材本体14から薄板状にしてフランジ状に突出している。
外径部材11は、ポケット16を有する外径部材本体14と、一対の薄板状の外周板部17とからなるため軽量化が図られている。
【0015】
内径部材12は、断面視L字形状をなす円環形状を有し、外径部材11と同様にして、黄銅系合金、鉄系合金、マグネシウム合金、アルミニウム合金、合成樹脂等を素材として成形されている。
内径部材12は、その内周側に薄板状をなす内周板部18を有し、その外方側に薄板状をなす側板部19を有する。
内径部材12は、薄板状をなす内周板部18と、薄板状をなす側板部19とからなり軽量化が図られている。
【0016】
減衰部材13は、ゴムや可撓性のある樹脂等の弾性材を素材として断面視四角形の円環形状に形成されており、外径部材11及び内径部材12のもつ減衰係数と異なる減衰係数をもつ。
減衰部材13は、外径部材11の外径部材本体14と外周板部17、および内径部材12の内周板部18と側板部19に囲まれて形成される四角形の空間に収容されて、外径部材11及び内径部材12に一体的に結合されている。
【0017】
ここで、外径部材11の外周板部17と内径部材12の側板部19との間及び、外径部材11の外径部材本体14と内径部材12の内周板部18との間には、隙間aが形成されている。隙間aは、外径部材11と内径部材12とを非接触に隔てている。
【0018】
図2に示すように、減衰部材13の径方向の幅寸法L1は、外径部材11の外径部材本体14の内径幅寸法L2よりも小さく、内径部材12の側板部19の内径幅寸法L3よりも大きい。そのため、外径部材11の外周板部17と内径部材12の側板部19との間に隙間aが形成される。
【0019】
また、減衰部材13の高さ寸法h1は、外径部材11の外周側板17の内径高さ寸法h2よりも小さく、内径部材12の内周板部18の内径高さ寸法h3よりも大きい。そのため、外径部材11の外径部材本体14と内径部材12の内周板部18との間に隙間aが形成される。その結果、外径部材11と内径部材12とが非接触に配置される。
【0020】
このような構造の保持器10では、減衰部材13を介して、外径部材11と内径部材12は、接着、溶接、或いは機械加工等による係り代の設置により結合される。
【0021】
減衰部材13としては、オーリングや油性ダンパーに使用される油等の高い減衰性能をもったものを用いても良い。そして、減衰部材13の減衰係数は、外径部材11及び内径部材12の少なくとも一方の減衰係数と異なるようにしても良い。
【0022】
第1実施形態の保持器10によれば、外径部材11と内径部材12と減衰部材13とが別体にされ、減衰部材13の減衰係数が、外径部材12及び内径部材12の減衰係数と異なるように選ばれ、非接触に組み付けられた外径部材11と内径部材12とに減衰部材13が結合される。
【0023】
したがって、外径部材11または内径部材12に与えられた振動が、減衰部材13によって減衰されて、内径部材12または外径部材11に直接伝わらない。ここで、減衰部材13の減衰係数は、外径部材11及び内径部材12の減衰係数と異なるように選ばれているため、外径部材11または内径部材12に与えられた振動が減衰部材13によって減衰される際に、大きな減衰率で減衰される。よって、内径部材12または外径部材11に振動が伝わり難くなり、単振動、減衰振動、無周期運動等を発生することがない。
【0024】
そして、例え、工作機械用スピンドル等の回転体の振動周波数や軸受自体の振動周波数と合致したとしても、外径部材11と内径部材12と減衰部材13とが別体にされて外径部材11と内径部材12とが非接触に組み付けられているため、共振が抑制され、大きな機械振動を発生することなく静粛な運転を行うことができる。
【0025】
また、外径部材11と内径部材12と減衰部材13とが別体にされているため、それらのボリュームの減少にともない重量が小さくなって軽量化が図られている。その結果、運転中に発生する遠心力も小さくなって耐摩耗性を向上することができる。
【0026】
図3は、本発明の第2実施形態の保持器を示す。なお、以下に説明する実施形態において、既に説明した部材等と同様な構成・作用を有する部材等については、図中に相当符号を付すことにより、説明を簡略化或いは省略する。
図3に示す保持器20は、一対の外径部材21と、外径部材21の内周側に配置される単一の内径部材22と、外径部材21及び内径部材22の間に配置される一対の減衰部材23とから構成されている。
【0027】
外径部材21は、断面視L字形状をなす円環形状を有し、黄銅系合金、鉄系合金、マグネシウム合金、アルミニウム合金、合成樹脂等を素材として成形されている。
外径部材21は、その外周側に薄板状をなす外周板部24を有し、その外方側に薄板状をなす側板部25を有する。
外径部材21は、薄板状をなす外周板部24と、薄板状をなす側板部25とからなり軽量化が図られている。
【0028】
内径部材22は、断面視T字形状をなす円環形状を有し、外径部材21と同様にして、黄銅系合金、鉄系合金、マグネシウム合金、アルミニウム合金、合成樹脂等を素材として成形されている。
内径部材22の中央部に配置された内径部材本体26には、柱部27を介して円周方向に間隔を置いて配置された複数のポケット28が形成されている。ポケット28には、図示しない転動体である玉が挿入される。
【0029】
内径部材本体26の内周側には、一対の内周板部29が形成されている。内周板部29は、内径部材本体26から薄板状にしてフランジ状に突出している。
内径部材22は、ポケット28を有する外径部材本体26と、一対の薄板状の内周板部29とからなり軽量化が図られている。
【0030】
減衰部材23は、ゴムや可撓性のある樹脂等の弾性材を素材として断面視四角形の円環形状に形成されており、外径部材21及び内径部材22のもつ減衰係数と異なる減衰係数をもつ。
減衰部材23は、外径部材21の外周板部24と側板部25、および内径部材22の内径部材本体26と内周板部29に囲まれて形成される四角形の空間に収容されて、外径部材21及び内径部材22に一体的に結合されている。
【0031】
ここで、減衰部材23の径方向の幅寸法L4は、内径部材22の内径部材本体26の内径幅寸法L5よりも小さく、外径部材21の側板部25の内径幅寸法L6よりも大きい。そのため、外径部材21の側板部25と内径部材22の内周板部29との間に隙間aが形成される。
【0032】
また、減衰部材23の高さ寸法h4は、内径部材22の内径部材本体26の内径高さ寸法h5よりも小さく、外径部材21の外周板部24の内径高さ寸法h6よりも大きい。そのため、内径部材22の内径部材本体26と外径部材21の外周板部24との間に隙間aが形成される。その結果、外径部材21と内径部材22とが非接触に配置される。
【0033】
第2実施形態の保持器20によれば、外径部材21と内径部材22と減衰部材23とが別体にされ、減衰部材23の減衰係数が、外径部材22及び内径部材22の減衰係数と異なるように選ばれ、非接触に組み付けられた外径部材21と内径部材22とに減衰部材23が結合される。
【0034】
したがって、外径部材21または内径部材22に与えられた振動が、減衰部材23によって減衰されて、内径部材22または外径部材21に直接伝わらない。ここで、減衰部材23の減衰係数が、外径部材21及び内径部材22の減衰係数と異なるように選ばれているため、外径部材21または内径部材22に与えられた振動が減衰部材23によって減衰される際に、大きな減衰率で減衰される。よって、内径部材22または外径部材21に振動が伝わり難くなり、単振動、減衰振動、無周期運動等を発生することがない。
【0035】
そして、例え、工作機械用スピンドル等の回転体の振動周波数や軸受自体の振動周波数と合致したとしても、外径部材21と内径部材22と減衰部材23とが別体にされて外径部材21と内径部材22とが非接触に組み付けられているため、共振が抑制され、大きな機械振動を発生することなく静粛な運転を行うことができる。
【0036】
また、外径部材21と内径部材22と減衰部材23とが別体にされているため、それらのボリュームが小さくなって軽量化が図られている。その結果、運転中に発生する遠心力も小さくなって耐摩耗性を向上することができる。
【0037】
図4は、本発明の第3実施形態の保持器を示す。
図4に示す保持器30は、単一の外径部材31と、外径部材31の内周側に配置される単一の内径部材32と、外径部材31及び内径部材32の間に配置される一対の減衰部材33とから構成されている。
【0038】
外径部材31は、断面視L字形状をなす円環形状を有し、黄銅系合金、鉄系合金、マグネシウム合金、アルミニウム合金、合成樹脂等を素材として成形されている。
外径部材31の中央部に配置された外径部材本体34には、図示しない柱部を介して円周方向に間隔を置いて配置された複数の外径部材側ポケット36aが形成されている。
【0039】
外径部材本体34の外周側には、一対の外周板部37を有する。外周板部37は、外径部材本体34から薄板状にしてフランジ状に突出している。
外径部材31は、外径部材側ポケット36aを有する外径部材本体34と、一対の薄板状の外周板部37とからなり、軽量化が図られている。
【0040】
内径部材32は、断面視I字形状をなす円環形状にされており、外径部材31と同様にして、黄銅系合金、鉄系合金、マグネシウム合金、アルミニウム合金、合成樹脂等を素材として成形されている。
内径部材32には、外径部材本体34の外径部材側ポケット36aと同一位置であって、柱部35を介して円周方向に間隔を置いて配置された複数の内径部材側ポケット36bが形成されている。内径部材側ポケット36bと、外径部材31の外径部材側ポケット36aとに、図示しない玉が挿入される。
内径部材32は、薄板状をなし、軽量化が図られている。
【0041】
減衰部材33は、ゴムや可撓性のある樹脂等の弾性材を素材として断面視円形の円環形状に形成されており、外径部材31及び内径部材32のもつ減衰係数と異なる減衰係数をもつ。
減衰部材33は、外径部材31の外径部材本体34と外周板部37、および内径部材32に囲まれて形成される四角形の空間に収容されて、外径部材31及び内径部材32に一体的に結合されている。
【0042】
ここで、減衰部材33の径d1は、外径部材31の外径部材本体34の内径幅寸法L7よりも大きい。そのため、外径部材31の外径部材本体34と内径部材32との間に隙間aが形成される。その結果、外径部材31と内径部材32とが非接触に配置される。
【0043】
第3実施形態の保持器30によれば、外径部材31と内径部材32と減衰部材33とが別体にされ、減衰部材33の減衰係数が、外径部材31及び内径部材32の減衰係数と異なるように選ばれ、非接触に組み付けられた外径部材31と内径部材32とに減衰部材33が結合される。
【0044】
したがって、外径部材31または内径部材32に与えられた振動が、減衰部材33によって減衰されて、内径部材32または外径部材31に直接伝わらない。ここで、減衰部材33の減衰係数が、外径部材31及び内径部材32の減衰係数と異なるように選ばれているため、外径部材31または内径部材32に与えられた振動が減衰部材33によって減衰される際に、大きな減衰率で減衰される。よって、内径部材32または外径部材31に振動が伝わり難くなり、単振動、減衰振動、無周期運動等を発生することがない。
【0045】
そして、例え、工作機械用スピンドル等の回転体の振動周波数や軸受自体の振動周波数と合致したとしても、外径部材31と内径部材32と減衰部材33とが別体にされて外径部材31と内径部材32とが非接触に組み付けられているため、共振することがない。よって、大きな機械振動を発生することなく静粛な運転を行うことができる。
【0046】
また、外径部材31と内径部材32と減衰部材33とが別体にされているため、それらのボリュームの減少にともない重量が小さくなって軽量化が図られている。その結果、運転中に発生する遠心力も小さくなって耐摩耗性を向上することができる。
【0047】
図5に、本発明第4実施形態の保持器を示す。
図5に示す保持器40は、単一の外径部材41と、外径部材41の内周側に配置される単一の内径部材42と、外径部材41及び内径部材42の間に配置される一対の減衰部材43とから構成されている。
【0048】
外径部材41は、円環形状にされており、黄銅系合金、鉄系合金、マグネシウム合金、アルミニウム合金、合成樹脂等を素材として成形されている。
外径部材41の中央部には、図示しない柱部を介して円周方向に間隔を置いて配置された複数の外径部材側ポケット46aが形成されている。
【0049】
外径部材41の外径部材側ポケット46aの両外側には、一対の減衰部材収容部41aが形成されている。減衰部材収容部41aは、外径部材41の内周面から外周に向けて四角形に切除した凹溝状をなし、周方向に連続している。
外径部材41は、内周側に凹溝状に切除した減衰部材収容部41aが形成されているため、全体的に薄肉になっており軽量化が図られている。
【0050】
内径部材42は、外径部材41と同様にして、黄銅系合金、鉄系合金、マグネシウム合金、アルミニウム合金、合成樹脂等を素材として円環形状に形成されている。
内径部材42の中央部には、柱部45を介して円周方向に間隔を置いて配置された複数の内径部材側ポケット46bが形成されている。内径部材側ポケット46bと外径部材41の外径部材側ポケット46aとに、図示しない玉が挿入される。
【0051】
内径部材42の内径部材側ポケット46bの両外側には、一対の減衰部材収容部42aが形成されている。減衰部材収容部42aは、内径部材42の外周面から内周に向けて四角形に切除した凹溝状をなし、周方向に連続している。
内径部材42は、外周側に凹溝状に切除した減衰部材収容部42aが形成されているため、全体的に薄肉になっており軽量化が図られている。
【0052】
減衰部材43は、ゴムや可撓性のある樹脂等の弾性材を素材として断面視四角形の円環形状に形成されており、外径部材41及び内径部材42のもつ減衰係数と異なる減衰係数をもつ。
減衰部材43は、外径部材41の減衰部材収容部41aと、内径部材42の減衰部材収容部42aに囲まれて形成される四角形の空間に収容されて、外径部材41及び内径部材42に一体的に結合されている。
【0053】
ここで、減衰部材43の径方向の幅寸法L8は、外径部材41の減衰部材収容部41aの深さ寸法L9と内径部材42の減衰部材収容部42aの深さ寸法L10との合算値よりも大きい。そのため、外径部材41と内径部材42との間に隙間aが形成される。その結果、外径部材41と内径部材42とが非接触に配置される。
【0054】
第4実施形態の保持器40によれば、外径部材41と内径部材42と減衰部材43とが別体にされ、減衰部材43の減衰係数が、外径部材41及び内径部材42の減衰係数と異なるように選ばれ、非接触に組み付けられた外径部材41と内径部材42とに減衰部材43が結合される。
【0055】
したがって、外径部材41または内径部材42に与えられた振動が、減衰部材43によって減衰されて、内径部材42または外径部材41に直接伝わらない。ここで、減衰部材43の減衰係数が、外径部材41及び内径部材42の減衰係数と異なるように選ばれているため、外径部材41または内径部材42に与えられた振動が減衰部材43によって減衰される際に、大きな減衰率で減衰する。よって、内径部材42または外径部材41に対し伝わり難くなり、単振動、減衰振動、無周期運動等を発生することがない。
【0056】
そして、例え、工作機械用スピンドル等の回転体の振動周波数や軸受自体の振動周波数と合致したとしても、外径部材41と内径部材42と減衰部材43とが別体にされて外径部材41と内径部材42とが非接触に組み付けられているため、共振することがない。よって、大きな機械振動を発生することなく静粛な運転を行うことができる。
【0057】
また、外径部材41と内径部材42と減衰部材43とが別体にされているため、それらのボリュームの減少にともない重量が小さく軽量化が図られている。その結果、運転中に発生する遠心力も小さくなって耐摩耗性を向上することができる。
【0058】
図6に、本発明第5実施形態の保持器を示す。
図6に示す保持器50は、単一の外径部材51と、外径部材51の内周側に配置される単一の内径部材52と、外径部材51及び内径部材52の間に配置される単一の減衰部材53とから構成されている。
【0059】
外径部材51は、円環形状にされており、黄銅系合金、鉄系合金、マグネシウム合金、アルミニウム合金、合成樹脂等を素材として成形されている。
外径部材51には、図示しない柱部を介して円周方向に間隔を置いて配置された複数の外径部材側ポケット56aが形成されている。
外径部材51の内周面には、減衰部材結合部51aが形成されている。
外径部材51は、全体的に薄肉になっており軽量化が図られている。
【0060】
内径部材52は、外径部材51と同様にして、黄銅系合金、鉄系合金、マグネシウム合金、アルミニウム合金、合成樹脂等を素材として円環形状に形成されている。
内径部材52には、柱部55を介して円周方向に間隔を置いて配置された複数の内径部材側ポケット56bが形成されている。
【0061】
内径部材52の外周面には、減衰部材結合部52aが形成されている。
内径部材52は、全体的に薄肉になっているため、重量が少ない。
【0062】
減衰部材53は、ゴムや可撓性のある樹脂等の弾性材を素材として、外径部材53及び内径部材54と同様な円環形状に形成されており、外径部材51及び内径部材52のもつ減衰係数と異なる減衰係数をもつ。
減衰部材53には、図示しない柱部を介して円周方向に間隔を置いて配置された複数の減衰部材側ポケット56cが形成されている。減衰部材側ポケット56cと外径部材側ポケット56aと内径部材側ポケット56bとに、図示しない玉が挿入される。
【0063】
減衰部材53は、外径部材51の減衰部材結合部51aと、内径部材52の減衰部材結合部52aとの間に挟まれて、外径部材51及び内径部材52に一体的に結合されている。減衰部材53によって、外径部材51及び内径部材52が非接触に結合される。
【0064】
第5実施形態の保持器50によれば、外径部材51と内径部材52と減衰部材53とが別体にされている。そして、減衰部材53の減衰係数が、外径部材51及び内径部材52の減衰係数と異なるように選ばれ、非接触に組み付けられた外径部材51と内径部材52とに減衰部材53が結合される。
【0065】
したがって、外径部材51または内径部材52に与えられた振動が、減衰部材53によって減衰されて、内径部材52または外径部材51に直接伝わらない。ここで、減衰部材53の減衰係数が、外径部材51及び内径部材52の減衰係数と異なるように選ばれているため、外径部材51または内径部材52に与えられた振動が減衰部材53によって減衰される際に、振動は大きな減衰率で減衰する。よって、内径部材52または外径部材51に対し伝わり難くなり、単振動、減衰振動、無周期運動等を発生することがない。
【0066】
そして、例え、工作機械用スピンドル等の回転体の振動周波数や軸受自体の振動周波数と合致したとしても、外径部材51と内径部材52と減衰部材53とが別体にされて外径部材51と内径部材52とが非接触に組み付けられているため、共振することがない。したがって、大きな機械振動を発生することなく静粛な運転を行うことができる。
【0067】
また、外径部材51と内径部材52と減衰部材53とが別体にされているため、それらのボリュームの減少にともない重量が小さくなって軽量化が図られている。その結果、運転中に発生する遠心力も小さくなって耐摩耗性を向上することができる。
【0068】
なお、本発明は、上述した実施形態に限定されるものではなく、適宜な変形、改良等が可能である。
例えば、ポケット部分にのみ、金属製や樹脂製を素材として成形した円筒形の部材を嵌入しても良い。特に、第5実施形態に用いるのが好ましい。その場合、ポケットに装着される玉から受ける振動の減衰率を更に向上させることができる。
そして、保持器の形状は、軸受の内輪、外輪または玉により案内されるものとして適宜変更される。
【0069】
【発明の効果】
以上説明したように、本発明の転がり軸受によれば、外径部材と内径部材と減衰部材とが別体にされ、非接触に組み付けられた外径部材と内径部材とに減衰部材が結合される。
したがって、外径部材または内径部材に与えられた振動が、減衰部材によって減衰されて、内径部材または外径部材に直接伝わらない。例え、工作機械用スピンドル等の回転体の振動周波数や軸受自体の振動周波数と合致したとしても、外径部材と内径部材と減衰部材とが別体にされて外径部材と内径部材とが非接触に組み付けられているため、共振することがない。よって、大きな機械振動を発生することなく運転を行うことができる。
【0070】
また、外径部材と内径部材と減衰部材とが別体にされているため、それらのボリュームが小さくなって重量が少なくなっている。その結果、運転中に発生する遠心力も小さくなって耐摩耗性を向上することができる。以上の結果、減衰性能及び耐摩耗性に富む転がり軸受用保持器を提供することができる。
【0071】
また、減衰部材の減衰係数が、外径部材または内径部材の少なくとも一方と減衰係数が異なるように選ばれるので、振動の減衰比が大きくなる。
したがって、外径部材または内径部材に与えられた振動が、減衰部材によって減衰される際に、より大きな減衰率で減衰されて内径部材または外径部材に対し更に伝わり難くなり、単振動、減衰振動、無周期運動等を発生することなく静粛な運転を行うことができる。
【図面の簡単な説明】
【図1】第1実施形態の一部断面外観図である。
【図2】図1の断面図である。
【図3】第2実施形態の断面図である。
【図4】第3実施形態の断面図である。
【図5】第4実施形態の断面図である。
【図6】第5実施形態の断面図である。
【図7】従来の保持器の断面図である。
【符号の説明】
10,20,30,40,50 転がり軸受用保持器(保持器)
11,21,31,41,51 外径部材
12,22,32,42,52 内径部材
13,23,33,43,53 減衰部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rolling bearing that supports a high-speed rotating body such as a spindle for a machine tool.
[0002]
[Prior art]
Conventional rolling bearings are disclosed in, for example, Japanese Utility Model Application Laid-Open No. Sho 62-6532 and Japanese Patent Application Laid-Open No. 2000-240659.
[0003]
FIG. 7 shows a cage of a rolling bearing disclosed in Japanese Utility Model Laid-Open Publication No. Sho 62-6532. The roller bearing retainer 80 is made of a synthetic resin, is used for the ball bearing 81, and is disposed in a bearing space between the outer ring 82 and the inner ring 83. In the ball bearing 81, a ball 86 is arranged between a raceway surface 84 of the outer ring 82 and a raceway surface 85 of the inner ring 83. The balls 86 are rotatably held in pockets 87 formed at intervals in the circumferential direction of the roller bearing retainer 80. The pocket 87 has a diameter slightly larger than the diameter of the ball 86.
[0004]
The rolling bearing retainer disclosed in Japanese Patent Application Laid-Open No. 2000-240659 uses a magnesium alloy whose surface is in contact with a ball that is a rolling element and is subjected to surface treatment. Improves performance such as strength, strength, and corrosion resistance.
[0005]
[Problems to be solved by the invention]
However, in the rolling bearing cage described in the above publication, the resonance frequency is determined depending on the material and shape of the rolling bearing cage. Therefore, under a wide range of operating conditions, it is difficult to say that this resonance frequency does not match the vibration frequency of the machine tool spindle or the vibration frequency of the bearing itself generated during operation. In general, when the resonance frequency of the cage matches the vibration frequency of the spindle for machine tools or the vibration frequency of the bearing itself, resonance occurs during operation, and large mechanical vibration may occur in the bearing, which is not preferable in use. .
[0006]
Further, the rolling bearing retainer described in the above-mentioned publication has an integral shape and a large volume, so that the weight increases. As a result, there is also a problem that a large centrifugal force is generated during the operation and wear is likely.
[0007]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a rolling bearing provided with a rolling bearing retainer having excellent damping performance and wear resistance.
[0008]
[Means for Solving the Problems]
The object of the present invention is achieved by the following configurations.
(1) An outer ring and an inner ring that rotate relatively, a rolling element disposed between the outer ring and the inner ring, and a rolling element disposed between the outer ring and the inner ring to hold the rolling element rotatably. And a cage having a pocket that performs
The retainer is an outer diameter member disposed on the outer ring side, and is separated from the outer diameter member, and an inner diameter member disposed on the inner ring side in non-contact with the outer diameter member, and the outer diameter member and A damping member disposed between the inner diameter member and the inner diameter member.
(2) The rolling bearing according to (1), wherein the damping member has a different damping coefficient from at least one of the outer diameter member and the inner diameter member.
[0009]
According to the rolling bearing having the above-described configuration, the retainer includes the outer diameter member, the inner diameter member, and the damping member that are separately formed, and is provided between the outer diameter member and the inner diameter member that are assembled in a non-contact manner. A damping member is disposed on the outside of the housing to connect the outer member and the inner member.
Therefore, the vibration applied to the outer diameter member or the inner diameter member is attenuated by the damping member and is not directly transmitted to the inner diameter member or the outer diameter member. For example, even if the vibration frequency of a rotating body such as a spindle for a machine tool or the vibration frequency of the bearing itself is matched, the outer diameter member, the inner diameter member, and the damping member are separated from each other, and the outer diameter member and the inner diameter member are not separated. Because it is mounted on the contact, it does not resonate. Therefore, operation can be performed without generating large mechanical vibration. In addition, since the outer diameter member, inner diameter member and damping member are separated, their volume is reduced and their weight is reduced, and the centrifugal force generated during operation is also reduced, improving wear resistance. can do.
[0010]
Further, if the damping coefficient of the damping member is selected to be different from that of at least one of the outer diameter member and the inner diameter member, the vibration damping ratio is further increased.
Therefore, when the vibration applied to the outer diameter member or the inner diameter member is attenuated by the damping member, the vibration is attenuated at a larger damping rate, and is more difficult to be transmitted to the inner diameter member or the outer diameter member. In addition, quiet operation can be performed without generating aperiodic motion or the like.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS.
The present invention provides an outer ring and an inner ring that rotate relatively, a rolling element disposed between the outer ring and the inner ring, and a rolling element disposed between the outer ring and the inner ring to allow the rolling element to roll freely. The present invention relates to a retainer having a holding pocket and a retainer used in a rolling bearing having the retainer.
[0012]
FIG. 1 shows a rolling bearing retainer 10 according to a first embodiment of the present invention.
Roller bearing retainer (hereinafter, referred to as retainer) 10 includes a single outer diameter member 11, a pair of inner diameter members 12 arranged on the inner peripheral side of outer diameter member 11, and outer diameter members 11 and 11. And a pair of damping members 13 arranged between the inner diameter members 12.
[0013]
The outer diameter member 11 is formed in an annular shape having a T-shaped cross section, and is formed using a brass alloy, an iron alloy, a magnesium alloy, an aluminum alloy, a synthetic resin, or the like as a material.
A plurality of pockets 16 are formed in the outer diameter member main body portion 14 arranged at the center of the outer diameter member 11 with a column portion 15 arranged at intervals in the circumferential direction. A ball, which is a rolling element (not shown), is inserted into the pocket 16.
[0014]
A pair of outer peripheral plate portions 17 are formed on the outer peripheral side of the outer diameter member main body 14. The outer peripheral plate portion 17 is formed in a thin plate shape from the outer diameter member main body 14 and protrudes in a flange shape.
The outer diameter member 11 is composed of an outer diameter member main body 14 having a pocket 16 and a pair of thin plate-shaped outer peripheral plate portions 17, so that the weight is reduced.
[0015]
The inner diameter member 12 has an annular shape having an L-shaped cross section, and is formed of a brass-based alloy, an iron-based alloy, a magnesium alloy, an aluminum alloy, a synthetic resin, or the like in the same manner as the outer diameter member 11. ing.
The inner diameter member 12 has a thin plate-shaped inner peripheral plate portion 18 on its inner circumferential side, and a thin plate-shaped side plate portion 19 on its outer side.
The inner diameter member 12 is composed of an inner peripheral plate portion 18 having a thin plate shape and a side plate portion 19 having a thin plate shape, so that the weight is reduced.
[0016]
The damping member 13 is formed of an elastic material such as rubber or a flexible resin into a ring shape having a rectangular shape in cross section, and has a damping coefficient different from that of the outer diameter member 11 and the inner diameter member 12. Have.
The damping member 13 is housed in a rectangular space formed by the outer diameter member main body 14 and the outer peripheral plate portion 17 of the outer diameter member 11 and the inner peripheral plate portion 18 and the side plate portion 19 of the inner diameter member 12. The outer diameter member 11 and the inner diameter member 12 are integrally connected.
[0017]
Here, between the outer peripheral plate portion 17 of the outer diameter member 11 and the side plate portion 19 of the inner diameter member 12, and between the outer diameter member body 14 of the outer diameter member 11 and the inner peripheral plate portion 18 of the inner diameter member 12. , A gap a is formed. The gap a separates the outer diameter member 11 and the inner diameter member 12 in a non-contact manner.
[0018]
As shown in FIG. 2, the radial width L1 of the damping member 13 is smaller than the inner diameter width L2 of the outer diameter member main body 14 of the outer diameter member 11, and the inner diameter width L3 of the side plate 19 of the inner diameter member 12 is reduced. Greater than. Therefore, a gap a is formed between the outer peripheral plate 17 of the outer diameter member 11 and the side plate 19 of the inner diameter member 12.
[0019]
Further, the height h1 of the damping member 13 is smaller than the inner diameter height h2 of the outer peripheral side plate 17 of the outer diameter member 11, and is larger than the inner diameter height h3 of the inner peripheral plate portion 18 of the inner diameter member 12. Therefore, a gap a is formed between the outer diameter member main body 14 of the outer diameter member 11 and the inner peripheral plate portion 18 of the inner diameter member 12. As a result, the outer diameter member 11 and the inner diameter member 12 are arranged in a non-contact manner.
[0020]
In the cage 10 having such a structure, the outer diameter member 11 and the inner diameter member 12 are connected to each other through the damping member 13 by bonding, welding, or setting a buckle by machining.
[0021]
As the damping member 13, a material having high damping performance such as oil used for an O-ring or an oil damper may be used. The damping coefficient of the damping member 13 may be different from at least one of the outer diameter member 11 and the inner diameter member 12.
[0022]
According to the retainer 10 of the first embodiment, the outer diameter member 11, the inner diameter member 12, and the damping member 13 are separated, and the damping coefficient of the damping member 13 is smaller than that of the outer diameter member 12 and the inner diameter member 12. The damping member 13 is connected to the outer diameter member 11 and the inner diameter member 12 which are selected so as to be in a non-contact manner.
[0023]
Therefore, the vibration applied to the outer diameter member 11 or the inner diameter member 12 is attenuated by the damping member 13 and is not directly transmitted to the inner diameter member 12 or the outer diameter member 11. Here, since the damping coefficient of the damping member 13 is selected so as to be different from the damping coefficient of the outer diameter member 11 and the inner diameter member 12, the vibration given to the outer diameter member 11 or the inner diameter member 12 is reduced by the damping member 13. When it is attenuated, it is attenuated at a large attenuation rate. Therefore, the vibration is hardly transmitted to the inner diameter member 12 or the outer diameter member 11, and a simple vibration, a damped vibration, an aperiodic motion and the like are not generated.
[0024]
And, even if the vibration frequency of a rotating body such as a spindle for a machine tool or the vibration frequency of the bearing itself is matched, the outer diameter member 11, the inner diameter member 12, and the damping member 13 are separated and the outer diameter member 11 is formed. Because the and the inner diameter member 12 are assembled in a non-contact manner, resonance is suppressed, and quiet operation can be performed without generating large mechanical vibration.
[0025]
Further, since the outer diameter member 11, the inner diameter member 12, and the damping member 13 are provided separately, the weight is reduced and the weight is reduced with the decrease in the volume. As a result, the centrifugal force generated during operation is reduced, and the wear resistance can be improved.
[0026]
FIG. 3 shows a cage according to a second embodiment of the present invention. In the embodiments described below, members having the same configurations and operations as the members and the like already described are denoted by corresponding reference numerals in the drawings, and description thereof will be simplified or omitted.
The retainer 20 shown in FIG. 3 includes a pair of outer diameter members 21, a single inner diameter member 22 disposed on the inner peripheral side of the outer diameter member 21, and is disposed between the outer diameter member 21 and the inner diameter member 22. And a pair of damping members 23.
[0027]
The outer diameter member 21 has an annular shape having an L-shaped cross section, and is formed using a brass alloy, an iron alloy, a magnesium alloy, an aluminum alloy, a synthetic resin, or the like as a material.
The outer diameter member 21 has a thin plate-shaped outer peripheral plate portion 24 on its outer peripheral side, and has a thin plate-shaped side plate portion 25 on its outer side.
The outer diameter member 21 is composed of a thin plate-shaped outer peripheral plate portion 24 and a thin plate-shaped side plate portion 25 to reduce the weight.
[0028]
The inner diameter member 22 has an annular shape having a T-shape in cross section, and is formed from a brass-based alloy, an iron-based alloy, a magnesium alloy, an aluminum alloy, a synthetic resin, or the like as the outer diameter member 21. ing.
A plurality of pockets 28 are formed in the inner diameter member main body 26 disposed at the center of the inner diameter member 22 at intervals in the circumferential direction via a column 27. A ball, which is a rolling element (not shown), is inserted into the pocket 28.
[0029]
A pair of inner peripheral plate portions 29 are formed on the inner peripheral side of the inner diameter member main body 26. The inner peripheral plate portion 29 is formed in a thin plate shape from the inner diameter member main body 26 and protrudes in a flange shape.
The inner diameter member 22 is composed of an outer diameter member main body 26 having a pocket 28 and a pair of thin plate-shaped inner peripheral plate portions 29 to reduce the weight.
[0030]
The damping member 23 is formed in an annular shape having a rectangular shape in cross section using an elastic material such as rubber or a flexible resin as a material, and has a damping coefficient different from the damping coefficient of the outer diameter member 21 and the inner diameter member 22. Have.
The damping member 23 is housed in a quadrangular space formed by being surrounded by the outer peripheral plate portion 24 and the side plate portion 25 of the outer diameter member 21 and the inner diameter member main body 26 and the inner peripheral plate portion 29 of the inner diameter member 22. The diameter member 21 and the inner diameter member 22 are integrally connected.
[0031]
Here, the radial width L4 of the damping member 23 is smaller than the inner diameter width L5 of the inner diameter member body 26 of the inner diameter member 22 and larger than the inner diameter width L6 of the side plate 25 of the outer diameter member 21. Therefore, a gap a is formed between the side plate portion 25 of the outer diameter member 21 and the inner peripheral plate portion 29 of the inner diameter member 22.
[0032]
The height dimension h4 of the damping member 23 is smaller than the inner diameter height dimension h5 of the inner diameter member main body 26 of the inner diameter member 22 and larger than the inner diameter height dimension h6 of the outer peripheral plate portion 24 of the outer diameter member 21. Therefore, a gap a is formed between the inner diameter member main body 26 of the inner diameter member 22 and the outer peripheral plate portion 24 of the outer diameter member 21. As a result, the outer diameter member 21 and the inner diameter member 22 are arranged in a non-contact manner.
[0033]
According to the retainer 20 of the second embodiment, the outer diameter member 21, the inner diameter member 22, and the damping member 23 are separated from each other, and the damping coefficient of the damping member 23 is smaller than that of the outer diameter member 22 and the inner diameter member 22. The damping member 23 is coupled to the outer diameter member 21 and the inner diameter member 22 which are selected so as to be in a non-contact manner.
[0034]
Therefore, the vibration applied to the outer diameter member 21 or the inner diameter member 22 is attenuated by the damping member 23 and is not directly transmitted to the inner diameter member 22 or the outer diameter member 21. Here, since the damping coefficient of the damping member 23 is selected so as to be different from the damping coefficient of the outer diameter member 21 and the inner diameter member 22, the vibration given to the outer diameter member 21 or the inner diameter member 22 is reduced by the damping member 23. When it is attenuated, it is attenuated at a large attenuation rate. Therefore, the vibration is not easily transmitted to the inner diameter member 22 or the outer diameter member 21, and a simple vibration, a damped vibration, an aperiodic motion, and the like do not occur.
[0035]
And, even if the vibration frequency of the rotating body such as a spindle for a machine tool or the vibration frequency of the bearing itself is matched, the outer diameter member 21, the inner diameter member 22, and the damping member 23 are separated and the outer diameter member 21 is formed. Since the and the inner diameter member 22 are assembled in a non-contact manner, resonance is suppressed, and quiet operation can be performed without generating large mechanical vibration.
[0036]
Further, since the outer diameter member 21, the inner diameter member 22, and the damping member 23 are formed separately, their volumes are reduced, and the weight is reduced. As a result, the centrifugal force generated during operation is reduced, and the wear resistance can be improved.
[0037]
FIG. 4 shows a cage according to a third embodiment of the present invention.
4 includes a single outer diameter member 31, a single inner diameter member 32 disposed on the inner peripheral side of the outer diameter member 31, and a single outer diameter member 31 disposed between the outer diameter member 31 and the inner diameter member 32. And a pair of attenuation members 33.
[0038]
The outer diameter member 31 has an annular shape having an L-shape in cross section, and is formed using a brass-based alloy, an iron-based alloy, a magnesium alloy, an aluminum alloy, a synthetic resin, or the like as a material.
A plurality of outer diameter member side pockets 36a are formed in the outer diameter member main body 34 arranged at the central portion of the outer diameter member 31 and arranged at intervals in the circumferential direction via a column (not shown). .
[0039]
On the outer peripheral side of the outer diameter member main body 34, a pair of outer peripheral plate portions 37 is provided. The outer peripheral plate portion 37 is formed as a thin plate from the outer diameter member main body 34 and protrudes in a flange shape.
The outer diameter member 31 is composed of an outer diameter member main body 34 having an outer diameter member side pocket 36a and a pair of thin outer peripheral plate portions 37, so that the weight is reduced.
[0040]
The inner diameter member 32 is formed in an annular shape having an I-shaped cross section, and is formed of a brass-based alloy, an iron-based alloy, a magnesium alloy, an aluminum alloy, a synthetic resin, or the like in the same manner as the outer diameter member 31. Have been.
The inner diameter member 32 has a plurality of inner diameter member side pockets 36b at the same positions as the outer diameter member side pockets 36a of the outer diameter member main body 34 and arranged at intervals in the circumferential direction via the pillar portions 35. Is formed. A ball (not shown) is inserted into the inner diameter member side pocket 36b and the outer diameter member side pocket 36a of the outer diameter member 31.
The inner diameter member 32 has a thin plate shape, and is lightened.
[0041]
The damping member 33 is formed of an elastic material such as rubber or flexible resin into a circular shape having a circular cross section, and has a damping coefficient different from that of the outer diameter member 31 and the inner diameter member 32. Have.
The damping member 33 is accommodated in a square space formed by the outer diameter member main body 34 and the outer peripheral plate portion 37 of the outer diameter member 31 and the inner diameter member 32, and is integrated with the outer diameter member 31 and the inner diameter member 32. Are combined.
[0042]
Here, the diameter d1 of the damping member 33 is larger than the inner diameter width L7 of the outer diameter member main body 34 of the outer diameter member 31. Therefore, a gap a is formed between the outer diameter member main body 34 of the outer diameter member 31 and the inner diameter member 32. As a result, the outer diameter member 31 and the inner diameter member 32 are arranged in a non-contact manner.
[0043]
According to the cage 30 of the third embodiment, the outer diameter member 31, the inner diameter member 32, and the damping member 33 are separated, and the damping coefficient of the damping member 33 is smaller than the damping coefficient of the outer diameter member 31 and the inner diameter member 32. The damping member 33 is coupled to the outer diameter member 31 and the inner diameter member 32 which are selected so as to be in a non-contact manner.
[0044]
Therefore, the vibration applied to the outer diameter member 31 or the inner diameter member 32 is attenuated by the damping member 33 and is not directly transmitted to the inner diameter member 32 or the outer diameter member 31. Here, since the damping coefficient of the damping member 33 is selected so as to be different from the damping coefficient of the outer diameter member 31 and the inner diameter member 32, the vibration given to the outer diameter member 31 or the inner diameter member 32 is When it is attenuated, it is attenuated at a large attenuation rate. Therefore, it is difficult for the vibration to be transmitted to the inner diameter member 32 or the outer diameter member 31, and a simple vibration, a damped vibration, an aperiodic motion, or the like does not occur.
[0045]
And, even if the vibration frequency of the rotating body such as a spindle for a machine tool or the vibration frequency of the bearing itself is matched, the outer diameter member 31, the inner diameter member 32, and the damping member 33 are separated and the outer diameter member 31 is formed. Because the and the inner diameter member 32 are assembled in a non-contact manner, no resonance occurs. Therefore, quiet operation can be performed without generating large mechanical vibration.
[0046]
In addition, since the outer diameter member 31, the inner diameter member 32, and the damping member 33 are provided separately, the weight is reduced and the weight is reduced as their volume is reduced. As a result, the centrifugal force generated during operation is reduced, and the wear resistance can be improved.
[0047]
FIG. 5 shows a cage according to a fourth embodiment of the present invention.
The retainer 40 shown in FIG. 5 includes a single outer diameter member 41, a single inner diameter member 42 disposed on the inner peripheral side of the outer diameter member 41, and a single outer diameter member 41 disposed between the outer diameter member 41 and the inner diameter member 42. And a pair of damping members 43.
[0048]
The outer diameter member 41 is formed in an annular shape, and is formed of a material such as a brass alloy, an iron alloy, a magnesium alloy, an aluminum alloy, or a synthetic resin.
In the center of the outer diameter member 41, a plurality of outer diameter member side pockets 46a are formed at intervals in the circumferential direction via a column (not shown).
[0049]
On both outer sides of the outer diameter member-side pocket 46a of the outer diameter member 41, a pair of damping member housing portions 41a are formed. The damping member accommodating portion 41a has a concave groove shape cut in a rectangular shape from the inner peripheral surface of the outer diameter member 41 toward the outer periphery, and is continuous in the circumferential direction.
Since the outer diameter member 41 is formed with an attenuating member accommodating portion 41a cut in a concave groove shape on the inner peripheral side, the outer diameter member 41 is thin as a whole, and the weight is reduced.
[0050]
Like the outer diameter member 41, the inner diameter member 42 is formed in an annular shape using a material such as a brass alloy, an iron alloy, a magnesium alloy, an aluminum alloy, or a synthetic resin.
At the center of the inner diameter member 42, a plurality of inner diameter member-side pockets 46b are formed at intervals in the circumferential direction via the column portion 45. A ball (not shown) is inserted into the inner diameter member side pocket 46b and the outer diameter member side pocket 46a of the outer diameter member 41.
[0051]
On both outer sides of the inner diameter member side pocket 46b of the inner diameter member 42, a pair of attenuation member accommodating portions 42a are formed. The damping member accommodating portion 42a has a concave groove shape cut in a rectangular shape from the outer peripheral surface of the inner diameter member 42 toward the inner periphery, and is continuous in the circumferential direction.
Since the inner diameter member 42 is formed with a damping member accommodating portion 42a cut into a concave groove shape on the outer peripheral side, the inner diameter member 42 is thinner as a whole, and the weight is reduced.
[0052]
The damping member 43 is formed in an annular shape having a rectangular shape in cross section by using an elastic material such as rubber or flexible resin as a material, and has a damping coefficient different from that of the outer diameter member 41 and the inner diameter member 42. Have.
The damping member 43 is accommodated in a rectangular space formed by being surrounded by the damping member accommodating portion 41a of the outer diameter member 41 and the damping member accommodating portion 42a of the inner diameter member 42. They are integrally connected.
[0053]
Here, the radial width L8 of the damping member 43 is calculated from the sum of the depth L9 of the damping member housing portion 41a of the outer diameter member 41 and the depth L10 of the damping member housing portion 42a of the inner diameter member 42. Is also big. Therefore, a gap a is formed between the outer diameter member 41 and the inner diameter member 42. As a result, the outer diameter member 41 and the inner diameter member 42 are arranged in a non-contact manner.
[0054]
According to the retainer 40 of the fourth embodiment, the outer diameter member 41, the inner diameter member 42, and the damping member 43 are separated from each other, and the damping coefficient of the damping member 43 is smaller than that of the outer diameter member 41 and the inner diameter member 42. The damping member 43 is connected to the outer diameter member 41 and the inner diameter member 42 which are selected so as to be in a non-contact manner.
[0055]
Therefore, the vibration applied to the outer diameter member 41 or the inner diameter member 42 is attenuated by the damping member 43 and is not directly transmitted to the inner diameter member 42 or the outer diameter member 41. Here, since the damping coefficient of the damping member 43 is selected so as to be different from the damping coefficients of the outer diameter member 41 and the inner diameter member 42, the vibration given to the outer diameter member 41 or the inner diameter member 42 is When it is attenuated, it attenuates at a large rate. Therefore, the vibration is not easily transmitted to the inner diameter member 42 or the outer diameter member 41, and a simple vibration, a damped vibration, an aperiodic motion or the like does not occur.
[0056]
And, even if the vibration frequency of a rotating body such as a spindle for a machine tool or the vibration frequency of the bearing itself is matched, the outer diameter member 41, the inner diameter member 42, and the damping member 43 are separated and the outer diameter member 41 is formed. Since the and the inner diameter member 42 are assembled in a non-contact manner, resonance does not occur. Therefore, quiet operation can be performed without generating large mechanical vibration.
[0057]
In addition, since the outer diameter member 41, the inner diameter member 42, and the damping member 43 are provided separately, the weight is reduced and the weight is reduced as the volume is reduced. As a result, the centrifugal force generated during operation is reduced, and the wear resistance can be improved.
[0058]
FIG. 6 shows a cage according to a fifth embodiment of the present invention.
The retainer 50 shown in FIG. 6 includes a single outer diameter member 51, a single inner diameter member 52 disposed on the inner peripheral side of the outer diameter member 51, and a single outer diameter member 51 disposed between the outer diameter member 51 and the inner diameter member 52. And a single damping member 53.
[0059]
The outer diameter member 51 is formed in an annular shape, and is formed using a brass-based alloy, an iron-based alloy, a magnesium alloy, an aluminum alloy, a synthetic resin, or the like as a material.
The outer diameter member 51 is formed with a plurality of outer diameter member side pockets 56a which are arranged at intervals in the circumferential direction via a column (not shown).
On the inner peripheral surface of the outer diameter member 51, a damping member coupling portion 51a is formed.
The outer diameter member 51 is thinner as a whole, and its weight is reduced.
[0060]
Like the outer diameter member 51, the inner diameter member 52 is formed in an annular shape using a material such as a brass alloy, an iron alloy, a magnesium alloy, an aluminum alloy, or a synthetic resin.
The inner diameter member 52 is formed with a plurality of inner diameter member side pockets 56b arranged at intervals in the circumferential direction via the column portion 55.
[0061]
On the outer peripheral surface of the inner diameter member 52, a damping member coupling portion 52a is formed.
Since the inner diameter member 52 is entirely thin, it has a small weight.
[0062]
The damping member 53 is made of an elastic material such as rubber or flexible resin, and is formed in the same annular shape as the outer diameter member 53 and the inner diameter member 54. It has a different damping coefficient from that of
The damping member 53 is formed with a plurality of damping member side pockets 56c arranged at intervals in the circumferential direction via a not-shown column. A ball (not shown) is inserted into the damping member side pocket 56c, the outer diameter member side pocket 56a, and the inner diameter member side pocket 56b.
[0063]
The damping member 53 is sandwiched between the damping member connecting portion 51a of the outer diameter member 51 and the damping member connecting portion 52a of the inner diameter member 52, and is integrally connected to the outer diameter member 51 and the inner diameter member 52. . The outer diameter member 51 and the inner diameter member 52 are connected by the damping member 53 in a non-contact manner.
[0064]
According to the retainer 50 of the fifth embodiment, the outer diameter member 51, the inner diameter member 52, and the damping member 53 are formed separately. Then, the damping coefficient of the damping member 53 is selected so as to be different from the damping coefficient of the outer diameter member 51 and the inner diameter member 52, and the damping member 53 is joined to the outer diameter member 51 and the inner diameter member 52 which are assembled in a non-contact manner. You.
[0065]
Therefore, the vibration applied to the outer diameter member 51 or the inner diameter member 52 is attenuated by the damping member 53, and is not directly transmitted to the inner diameter member 52 or the outer diameter member 51. Here, since the damping coefficient of the damping member 53 is selected to be different from the damping coefficient of the outer diameter member 51 and the inner diameter member 52, the vibration given to the outer diameter member 51 or the inner diameter member 52 is reduced by the damping member 53. When damped, the vibration is damped at a large rate. Therefore, the vibration is not easily transmitted to the inner diameter member 52 or the outer diameter member 51, and a simple vibration, a damped vibration, an aperiodic motion, and the like are not generated.
[0066]
And, even if the vibration frequency of the rotating body such as a spindle for a machine tool or the vibration frequency of the bearing itself is matched, the outer diameter member 51, the inner diameter member 52, and the damping member 53 are separated and the outer diameter member 51 is formed. Since the and the inner diameter member 52 are assembled in a non-contact manner, resonance does not occur. Therefore, quiet operation can be performed without generating large mechanical vibration.
[0067]
Further, since the outer diameter member 51, the inner diameter member 52, and the damping member 53 are formed separately, the weight is reduced and the weight is reduced as the volume is reduced. As a result, the centrifugal force generated during operation is reduced, and the wear resistance can be improved.
[0068]
Note that the present invention is not limited to the above-described embodiment, and appropriate modifications and improvements can be made.
For example, a cylindrical member molded from metal or resin may be fitted only in the pocket portion. In particular, it is preferably used for the fifth embodiment. In that case, the attenuation rate of the vibration received from the ball mounted on the pocket can be further improved.
Then, the shape of the cage is appropriately changed so as to be guided by the inner ring, the outer ring or the ball of the bearing.
[0069]
【The invention's effect】
As described above, according to the rolling bearing of the present invention, the outer diameter member, the inner diameter member, and the damping member are separated from each other, and the damping member is connected to the outer diameter member and the inner diameter member assembled in a non-contact manner. You.
Therefore, the vibration applied to the outer diameter member or the inner diameter member is attenuated by the damping member and is not directly transmitted to the inner diameter member or the outer diameter member. For example, even if the vibration frequency of a rotating body such as a spindle for a machine tool or the vibration frequency of the bearing itself is matched, the outer diameter member, the inner diameter member, and the damping member are separated from each other, and the outer diameter member and the inner diameter member are not separated. Because it is mounted on the contact, it does not resonate. Therefore, operation can be performed without generating large mechanical vibration.
[0070]
Further, since the outer diameter member, the inner diameter member, and the damping member are formed separately, their volumes are reduced, and the weight is reduced. As a result, the centrifugal force generated during operation is reduced, and the wear resistance can be improved. As a result, it is possible to provide a cage for a rolling bearing having excellent damping performance and wear resistance.
[0071]
Further, since the damping coefficient of the damping member is selected so that the damping coefficient is different from that of at least one of the outer diameter member and the inner diameter member, the vibration damping ratio is increased.
Therefore, when the vibration applied to the outer diameter member or the inner diameter member is attenuated by the damping member, the vibration is attenuated at a larger damping rate, and is more difficult to be transmitted to the inner diameter member or the outer diameter member. In addition, quiet operation can be performed without generating aperiodic motion or the like.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional external view of a first embodiment.
FIG. 2 is a sectional view of FIG.
FIG. 3 is a sectional view of a second embodiment.
FIG. 4 is a sectional view of a third embodiment.
FIG. 5 is a sectional view of a fourth embodiment.
FIG. 6 is a sectional view of a fifth embodiment.
FIG. 7 is a sectional view of a conventional cage.
[Explanation of symbols]
10,20,30,40,50 Rolling bearing cage (cage)
11, 21, 31, 41, 51 Outer diameter member
12, 22, 32, 42, 52 Inner diameter member
13,23,33,43,53 Damping member

Claims (2)

相対的に回転する外輪および内輪と、前記外輪と前記内輪との間に配置される転動体と、前記外輪と前記内輪との間に配置され、前記転動体を転動自在に保持するポケットを有する保持器と、を有する転がり軸受において、
前記保持器は、外輪側に配置される外径部材と、該外径部材と別体にされ、前記外径部材に非接触にして内輪側に配置される内径部材と、前記外径部材及び前記内径部材との間に配置される減衰部材と、を有することを特徴とする転がり軸受。
An outer ring and an inner ring that rotate relatively, a rolling element disposed between the outer ring and the inner ring, and a pocket that is disposed between the outer ring and the inner ring and holds the rolling element so as to roll freely. And a rolling bearing having:
The retainer is an outer diameter member disposed on the outer ring side, and is separated from the outer diameter member, and an inner diameter member disposed on the inner ring side in non-contact with the outer diameter member, and the outer diameter member and A damping member disposed between the inner diameter member and the inner diameter member.
前記減衰部材は、前記外径部材及び内径部材の少なくとも一方と減衰係数が異なることを特徴とする請求項1に記載の転がり軸受。The rolling bearing according to claim 1, wherein the damping member has a different damping coefficient from at least one of the outer diameter member and the inner diameter member.
JP2002167633A 2002-06-07 2002-06-07 Antifriction bearing Pending JP2004011811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002167633A JP2004011811A (en) 2002-06-07 2002-06-07 Antifriction bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002167633A JP2004011811A (en) 2002-06-07 2002-06-07 Antifriction bearing

Publications (1)

Publication Number Publication Date
JP2004011811A true JP2004011811A (en) 2004-01-15

Family

ID=30434827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002167633A Pending JP2004011811A (en) 2002-06-07 2002-06-07 Antifriction bearing

Country Status (1)

Country Link
JP (1) JP2004011811A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2522324A (en) * 2013-11-29 2015-07-22 Snecma Bearing cage with a peripheral vibration damping ring
US10906085B2 (en) * 2016-05-20 2021-02-02 Bowman International Limited Rolling element bearing cage with supporting frame and reinforcing frame

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2522324A (en) * 2013-11-29 2015-07-22 Snecma Bearing cage with a peripheral vibration damping ring
GB2522324B (en) * 2013-11-29 2020-03-11 Snecma Bearing cage with a peripheral vibration damping ring
US10906085B2 (en) * 2016-05-20 2021-02-02 Bowman International Limited Rolling element bearing cage with supporting frame and reinforcing frame
US11203051B2 (en) 2016-05-20 2021-12-21 Bowman International Limited Rolling element bearing cage with supporting frame and reinforcing frame

Similar Documents

Publication Publication Date Title
RU2381392C2 (en) Guiding device of shaft with oscillatory movement
US9803718B2 (en) Torsional vibration reducing device
EP1945959A4 (en) Support device for bearing assemblies
JPS6124819A (en) Bearing made of synthetic resin
JP2006226400A (en) Shaft device
US20060238051A1 (en) Electric actuator
JPWO2002046641A1 (en) Balancer
JP2002327736A (en) Precision spindle unit
US9739341B2 (en) Torsional vibration reducing device
JP2004011811A (en) Antifriction bearing
JP2017026027A (en) Rolling bearing
JP5130989B2 (en) Eccentric cam unit
JP2006170420A (en) Outer ring for half-split bearing and half-split bearing provided therewith
JP2008157268A (en) Roller bearing
JP2009216154A (en) Differential device and its differential case, and differential case machining method
JP5045456B2 (en) Spindle device
JP4084824B2 (en) Balancer
JP2014105806A (en) Torsional vibration attenuation device
JP2005023997A (en) Roller and roller bearing
JP4715410B2 (en) Motor equipment
JP2004108539A (en) Rolling bearing
JP2016176546A (en) Rolling bearing device
KR100228898B1 (en) Union structure of bearing for reducing vibration
JP2005308032A (en) Vibration-damping bearing
JP2014058932A (en) Vacuum pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050606

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Effective date: 20060324

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Effective date: 20071116

Free format text: JAPANESE INTERMEDIATE CODE: A971007

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081022