JP2004011019A - Hot-dip metal coated steel material - Google Patents

Hot-dip metal coated steel material Download PDF

Info

Publication number
JP2004011019A
JP2004011019A JP2002170437A JP2002170437A JP2004011019A JP 2004011019 A JP2004011019 A JP 2004011019A JP 2002170437 A JP2002170437 A JP 2002170437A JP 2002170437 A JP2002170437 A JP 2002170437A JP 2004011019 A JP2004011019 A JP 2004011019A
Authority
JP
Japan
Prior art keywords
hot
dip
steel material
metal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002170437A
Other languages
Japanese (ja)
Inventor
Takeo Oki
沖 猛雄
Hideyuki Kanematsu
兼松 秀行
Ryoichi Ichino
市野 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN GALVANIZERS ASS Inc
JAPAN GALVANIZERS ASSOCIATION Inc
Original Assignee
JAPAN GALVANIZERS ASS Inc
JAPAN GALVANIZERS ASSOCIATION Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN GALVANIZERS ASS Inc, JAPAN GALVANIZERS ASSOCIATION Inc filed Critical JAPAN GALVANIZERS ASS Inc
Priority to JP2002170437A priority Critical patent/JP2004011019A/en
Publication of JP2004011019A publication Critical patent/JP2004011019A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot-dip metal coated steel material further improved in corrosion resistance, refractory property and workability. <P>SOLUTION: This improved material is composed of an iron basis material and a hot-dip metal coated layer between which a layer to prevent growth of their intermetallic compound is included. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、溶融金属めっき鋼材、特に加工性、耐火性に優れた溶融金属めっき鋼材に関する。
【0002】
【従来の技術】
亜鉛やアルミニウムの溶融めっきは、めっき層の高い耐食性、密着性のために、また安価であるということから、鉄鋼材料への有効なめっき法として、すでに各種構造物、あるいは機械部品として採用されている。そのめっき鋼材の代表例である溶融亜鉛めっき鋼板は、橋梁、鉄塔など大型構造物に、あるいは自動車、家電製品など多くの大量生産製品にすでに一般的に用いられている。
【0003】
【発明が解決しようとする課題】
以下においては、溶融金属めっきとして溶融亜鉛めっきを例にとり本発明を説明する。
【0004】
溶融亜鉛めっき鋼材は、その優れた作用効果から今日最も多く採用されている耐食性材料であるが、溶融めっき金属が素地の鋼基材と金属間化合物を形成するため、機械的性質の劣化、耐食性の劣化など各種問題が生じてきており、本来の溶融亜鉛めっきの特性を充分に発揮していない。
【0005】
ここに、かかる金属間化合物が生成した層(以下、合金層とも云う)は、溶融亜鉛めっきの場合、Γ(Fe3 Zn10)相、Γ1 (FeZn21)相、δ(FeZn)相、ζ(FeZn13)などから構成されている。当然ながら、これらの金属間化合物層の形成が起こり難い溶融亜鉛めっき法の確立が望まれているが、合金層の制御を温度など処理条件を変更することで行うことは検討されているものの、根本的な金属間化合物層の形成を防ぐ溶融亜鉛めっき法はこれまで提案されていない。
【0006】
本発明が解決しようとする課題は、金属間化合物の生成により生じる問題を回避した溶融金属めっき鋼材を提供することである。
本発明の別の課題は、耐食性はもちろん、機械的性質、加工性および耐火性を溶融金属めっき鋼材が本来有する程度にまで改善した溶融金属めっき鋼材を提供することである。
【0007】
【課題を解決するための手段】
前述したように、従来用いられている亜鉛、アルミニウムなどの溶融金属めっき鋼材では、素地の鋼表面と溶融めっき金属との間での金属間化合物の形成は、程度の差こそあれ、防ぐことは不可避である。このような金属間化合物の形成は、加工性、耐食性、機械的性質の不必要な低下を招き、またクロメート処理のような環境によくない化成処理が必要となる可能性もある。
【0008】
ここに、本発明者らは、鉛、ビスマスなどの金属を予めナノメータのオーダで、あるいは数μm のオーダの厚さで素地にめっきしておき、その上に溶融めっきを行うと、そのような金属間化合物の生成は見られず、その結果、溶融金属めっき鋼材の加工性および耐食性が本来の程度にまで改善され、まためっき被膜の鋼材への合金化を防止することにより耐火強度が向上することを知り、本発明を完成した。
【0009】
ここに、本発明は、次の通りである。
(1) 鋼材と、該鋼材の表面に形成され、前記鋼材と溶融めっき金属との金属間化合物の形成を阻止する阻止層と、該阻止層の上に設けた前記溶融めっき金属から成る溶融金属めっき層とから構成される溶融金属めっき鋼材。
【0010】
(2) 前記溶融金属が、溶融亜鉛もしくはその合金または溶融アルミニウムもしいくはその合金である上記(1) 記載の溶融金属めっき鋼材。
(3) 前記溶融金属が溶融亜鉛であって、前記阻止層が、鉛、ビスマス、アンチモン、およびそれらの合金から成る群から選ばれた金属の被覆層である上記(1) 記載の溶融金属めっき鋼材。
【0011】
(4) 前記阻止層の厚さが、0.01〜10μm である上記(1) ないし(3) のいずれかに記載の溶融金属めっき鋼材。
【0012】
【発明の実施の形態】
本発明の実施の形態について詳細に説明する。
本発明によれば、溶融金属めっきに先立って、あらかじめ鋼材表面に金属間化合物の形成を阻止する阻止層を設けることで、合金層が、素地の鋼材側にも、被覆金属層側にも形成されない。
【0013】
ここに、「金属間化合物の形成を阻止する阻止層」とは、溶融金属めっきを行うときに溶融めっき金属と鉄鋼素地との間に金属間化合物が形成されないように機能する被膜を言い、素地の鉄鋼材料および溶融めっき金属成分と合金化反応しにくい広範囲な金属から選んだ被覆層である。以下、単に「阻止層」と言う。
【0014】
好適態様によれば、上記阻止層は、鉛、ビスマス、アンチモン、およびそれらの合金から成る群から選んだ少なくとも1種の金属を、厚さがナノオーダから数10μm オーダの厚さ、具体的には10nm〜10μm の厚さで種々の方法により設けためっき層である。
【0015】
かかる阻止層の形成方法は、一般には、めっき法であり、例えば、電気めっき、溶融金属めっき、PVD 、CVD などが挙げられ、特に限定されない。重要なのはその後に続く溶融金属めっきを可能にするため、不必要に厚くない数十原子層から数μm オーダーの膜厚を有していることと、阻止層を構成する下地めっきの金属が素地の鉄鋼材料および溶融めっき金属成分と反応しにくいことが重要である。上記阻止層が厚さが0.01μm 未満と余り薄いと所期の効果が発揮されず、一方、10μm 超と厚すぎると、今度は最上層の亜鉛めっき作成時に阻止層が変化する危険性を有する。より好ましくは、10nm〜10μm である。
【0016】
本発明においては、上記各種適正金属を鉄鋼材料上にナノオーダから数μm オーダの厚さにめっきを行って下地めっきとし、その上から溶融金属めっきにより亜鉛、アルミニウムなどを被覆する。
【0017】
あらかじめ上記金属の下地層を設けてからその鉄鋼材料を目的の被覆金属からなる溶融金属浴に浸漬すると、通常は金属間化合物層が溶融めっき金属と素地の鉄鋼材料との間に形成されるが、本発明による溶融金属めっき法では、下地金属めっき層の存在により、これが妨げられ、溶融金属めっき被膜の耐食性劣化を妨げ、機械的性質、加工性、耐火性を向上させることに大きく寄与する。
【0018】
ここに、「耐食性」は、公知の溶融アルミニウムめっき被膜および溶融亜鉛めっき被膜が本来有する耐食性を言い、加工性は溶融めっき後のプレス成形性を言い、そして耐火性は火災時のような加熱を受けた場合にこれらの溶融金属めっき被膜が変化するか否かを言う。
【0019】
下地金属めっき層の存在が溶融金属めっき法による溶融めっき金属と素地の鉄鋼材料との間の合金形成を妨げるメカニズムは次のように考えられる。
鉛、ビスマス、アンチモンに代表される金属成分から阻止層を構成する場合、これらの金属成分は、素地の鉄鋼材料との間で反応が起こりにくく、もともと合金状態図から見ても金属間化合物を形成せず、また相互の間に溶解度もきわめて低いのが特徴である。また同時に亜鉛、アルミニウムなど代表的な溶融金属めっきにより被覆される金属との間にも相互溶解度が極めて低く、金属間化合物を形成せず、また固溶もしあわないのが特徴である。これらの金属が下地めっきとして厚さ0.01〜10μm に被覆される際に、これらの主成分とも相互に反応し合う程度は低く、その結果、金属間化合物の形成が起こらず、金属間化合物から成る合金層を含まないめっき被膜が形成される。
【0020】
本発明にかかる鋼材には、板材、管材、棒材、その他従来より溶融金属めっきを設けて使用される材料一般が包含される。
【0021】
【実施例】
(実施例1)
厚さ0.3mm の純鉄板を、ほうフッ化水素酸(45 %水溶液45ml/L) とほうフッ化鉛 (1〜5g/L)、ほうフッ化ビスマス (1〜5g/L)、およびほうフッ化アンチモン (1〜5g/L)をそれぞれ主成分とする水溶液 (室温) に浸漬し、これをカソードとし、鉛、ビスマス、アンチモンあるいは不溶性陽極をアノードとして、10分間電析を行い、各純鉄板上にそれぞれ鉛めっき、あるいはビスマスめっき、あるいはアンチモンめっきを生成させた。鉛めっき層、あるいはビスマス、アンチモンの各めっき層の厚さは、走査型電子顕微鏡(SEM) の観察から、約5μm であった。これらの試料をそれぞれ450 ℃の亜鉛浴に数十秒浸漬し、亜鉛めっきを施した。
【0022】
同様の条件で、下地の鉛あるいはビスマスやアンチモンの電気めっきを施さなかった試料にも亜鉛めっきを施した。
これら両者の供試材について溶融亜鉛めっき層 (トータルで約70μm 厚さ) をSEM−EDXにより分析した。鉛、ビスマス、あるいはアンチモンの下地めっきが施されていない試料については、亜鉛層の分析により、特に亜鉛層における亜鉛−鉄界面近傍において、数パーセントから30%程度の鉄が検出され、亜鉛−鉄の金属間化合物の生成が推定された。
【0023】
図1に鉄−亜鉛の二元系状態図を示す。鉄と亜鉛は極めてよく反応し化合物を形成する。溶融亜鉛めっき製造プロセスにおいては、亜鉛浴に鉄鋼材料を浸漬すると数秒で鉄と亜鉛の反応が開始されるといわれている。この状態図及びSEM−EDX の結果から、表面近傍にΓ1 、δ1 、ζ相などが生成しているものと推定される。
【0024】
鉛、ビスマス、あるいはアンチモンの下地めっきが施されている試料については、亜鉛層を分析しても、鉄はほとんど検出されず、鉛、ビスマス、アンチモンについても同様であった。鉛層あるいはビスマス、アンチモン層中にも鉄は認められず、鉄が鉛層あるいはビスマス、アンチモン層の存在により、亜鉛層との反応を妨げられたことが推定される。
【0025】
亜鉛と鉛、ビスマスあるいはアンチモンとの状態図からも分かるように亜鉛は鉛あるいはビスマス、アンチモン、鉄のいずれともごくわずかしか反応しあわない。このため、鉄の亜鉛層への移行あるいは亜鉛の鉄層中への移行を妨げ、金属間化合物の形成を妨げたものと思われる。
【0026】
(実施例2)
上記実施例1と同様に、鉛あるいはビスマス、アンチモン、それぞれのめっきを5μm 厚さで純鉄板上に形成させる。これら三種類の試料を700 ℃の溶融アルミニウム浴に数十秒間浸漬し、アルミニウムめっきを施した。これらの試料を、鉛、あるいはビスマス、アンチモンの下地めっきを施していない純鉄板に同様の条件でアルミニウムめっきを施し、それぞれの表面層近傍の断面をSEM−EDX で観察し分析した。鉛、あるいはビスマス、アンチモンの下地めっきが施されている試料については、それぞれ、アルミニウム層中には鉄はほとんど検出されなかった。これは、鉛、あるいはビスマス、アンチモン層中においても同様であった。
【0027】
しかし、下地めっきが施されていないアルミニウムめっき層中においては、鉄との界面近傍において、鉄が数パーセントから数十パーセント存在するのが認められ、鉄がアルミニウムと反応し、金属間化合物を形成したことがわかる。
【0028】
鉄とアルミニウムの状態図からも分かるように、鉄とアルミニウムは多くの金属間化合物を形成するので、これらの層が形成されているものと考えられる。一方、鉛−アルミニウム状態図、ビスマス−アルミニウム状態図、アンチモン−アルミニウム状態図からも分かるように鉛、あるいはビスマス、アンチモンはアルミニウムときわめて固溶しにくいためにこれらの相が鉄のアルミニウム層中への移動あるいはアルミニウムの鉄層中への移動を妨げ、金属間化合物の生成を抑制したものと考えられる。
【0029】
【発明の効果】
以上詳述したように、本発明は、溶融金属めっきに先立って、鉛、ビスマス、アンチモン、およびそれらの合金等の下地金属を施し、その後、溶融金属めっきにより溶融金属めっき被膜を設ける。このとき下地金属の存在により、溶融めっき金属と素地の鉄鋼材料との間で金属間化合物が形成せず、その結果、耐食性に富み、耐火性に優れ、加工処理が可能となる溶融金属めっきが可能となる。
【図面の簡単な説明】
【図1】鉄−亜鉛の二元系状態図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a hot-dip metal-plated steel material, particularly to a hot-dip metal-plated steel material excellent in workability and fire resistance.
[0002]
[Prior art]
Hot-dip galvanizing of zinc and aluminum has already been adopted as an effective plating method for iron and steel materials for various structures and mechanical parts because of the high corrosion resistance and adhesion of the plating layer and its low cost. I have. Hot-dip galvanized steel sheet, which is a representative example of the plated steel material, has already been generally used for large-scale structures such as bridges and steel towers, or for many mass-produced products such as automobiles and home electric appliances.
[0003]
[Problems to be solved by the invention]
Hereinafter, the present invention will be described using hot-dip galvanizing as an example of hot-dip metal plating.
[0004]
Hot-dip galvanized steel is the most widely used corrosion-resistant material today because of its excellent effects.However, the hot-dip galvanized metal forms an intermetallic compound with the base steel base material, resulting in deterioration of mechanical properties and corrosion resistance. Various problems such as deterioration of the hot-dip galvanizing have been caused, and the original properties of hot-dip galvanizing have not been sufficiently exhibited.
[0005]
Here, in the case of hot-dip galvanizing, a layer in which such an intermetallic compound is generated (hereinafter also referred to as an alloy layer) has a Γ (Fe 3 Zn 10 ) phase, a Γ 1 (Fe 5 Zn 21 ) phase, and a δ (FeZn 7 ) phase. ) Phase, ζ (FeZn 13 ) and the like. Naturally, it is desired to establish a hot-dip galvanizing method in which the formation of these intermetallic compound layers is unlikely to occur.However, although control of the alloy layer by changing processing conditions such as temperature has been studied, A hot-dip galvanizing method for preventing formation of a fundamental intermetallic compound layer has not been proposed so far.
[0006]
The problem to be solved by the present invention is to provide a hot-dip metal-plated steel material which avoids the problems caused by the formation of intermetallic compounds.
Another object of the present invention is to provide a hot-dip metal-plated steel material in which not only corrosion resistance but also mechanical properties, workability and fire resistance have been improved to the extent that the hot-dip metal-plated steel material originally has.
[0007]
[Means for Solving the Problems]
As described above, in the conventional hot-dip galvanized steel materials such as zinc and aluminum, the formation of intermetallic compounds between the base steel surface and the hot-dip-coated metal can be prevented to a greater or lesser extent. It is inevitable. The formation of such an intermetallic compound causes an unnecessary decrease in workability, corrosion resistance, and mechanical properties, and may require an environmentally unfriendly chemical conversion treatment such as a chromate treatment.
[0008]
Here, the present inventors have preliminarily plated a metal such as lead, bismuth or the like on the order of nanometers or a thickness of the order of several μm on a substrate, and then performed hot-dip plating thereon. No formation of intermetallic compounds was observed, and as a result, the workability and corrosion resistance of the hot-dip coated steel material were improved to the original level, and the fire resistance was improved by preventing alloying of the plated film with the steel material. Knowing that, the present invention has been completed.
[0009]
Here, the present invention is as follows.
(1) A steel material, a blocking layer formed on the surface of the steel material and configured to prevent the formation of an intermetallic compound between the steel material and the hot-dip metal, and a hot-dip metal formed on the hot-dip coating metal. Hot-dip metal-plated steel consisting of a plating layer.
[0010]
(2) The hot-dip metal-plated steel material according to (1), wherein the molten metal is molten zinc or an alloy thereof, or molten aluminum or an alloy thereof.
(3) The molten metal plating according to (1), wherein the molten metal is molten zinc, and the blocking layer is a coating layer of a metal selected from the group consisting of lead, bismuth, antimony, and alloys thereof. Steel.
[0011]
(4) The hot-dip metal-plated steel material according to any one of (1) to (3), wherein the thickness of the blocking layer is 0.01 to 10 μm.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described in detail.
According to the present invention, prior to the hot-dip metal plating, by providing a blocking layer for preventing the formation of intermetallic compounds on the surface of the steel material in advance, the alloy layer is formed on both the base steel material side and the coated metal layer side. Not done.
[0013]
Here, the “blocking layer that prevents the formation of intermetallic compounds” refers to a film that functions so that no intermetallic compound is formed between the hot-dip metal and the steel base when hot-dip metal plating is performed. This is a coating layer selected from a wide range of metals that are hardly alloyed with the steel material and the hot-dip metal component. Hereinafter, it is simply referred to as a “blocking layer”.
[0014]
According to a preferred embodiment, the blocking layer comprises at least one metal selected from the group consisting of lead, bismuth, antimony, and alloys thereof, having a thickness of the order of nanometers to tens of micrometers, specifically It is a plating layer provided by various methods with a thickness of 10 nm to 10 μm.
[0015]
A method for forming such a blocking layer is generally a plating method, and examples thereof include, but are not particularly limited to, electroplating, hot-dip metal plating, PVD, and CVD. It is important that the metal has a thickness of several tens of atomic layers to several μm on the order of several tens of atomic layers, which are not unnecessarily thick, and that the metal of the base plating constituting the blocking layer is It is important that it does not easily react with steel materials and hot-dip metal components. If the thickness of the blocking layer is too small, less than 0.01 μm, the desired effect is not exhibited. On the other hand, if the thickness is too large, more than 10 μm, the risk of the blocking layer changing during the preparation of the zinc plating on the uppermost layer is reduced. Have. More preferably, it is 10 nm to 10 μm.
[0016]
In the present invention, the above-mentioned various suitable metals are plated on a steel material to a thickness of the order of nanometers to several micrometers to form a base plating, and then zinc, aluminum or the like is coated thereon by molten metal plating.
[0017]
When the steel material is immersed in a molten metal bath made of the target coating metal after providing a base layer of the above metal in advance, an intermetallic compound layer is usually formed between the hot-dip metal and the base steel material. In the hot-dip metal plating method according to the present invention, the presence of the base metal plating layer hinders this, prevents deterioration of the corrosion resistance of the hot-dip metal plating film, and greatly contributes to improving mechanical properties, workability, and fire resistance.
[0018]
Here, "corrosion resistance" refers to the inherent corrosion resistance of known hot-dip aluminum coatings and hot-dip galvanized coatings, workability refers to press formability after hot-dip galvanizing, and fire resistance refers to heating such as during a fire. It indicates whether or not these hot-dip metal plating films change when they are received.
[0019]
The mechanism by which the presence of the base metal plating layer prevents the formation of an alloy between the hot-dip metal and the base steel material by the hot-dip metal plating method is considered as follows.
When the blocking layer is composed of metal components typified by lead, bismuth, and antimony, these metal components are unlikely to react with the base steel material. It is not formed and has a very low solubility between each other. At the same time, it is characterized by extremely low mutual solubility with metals coated by typical hot-dip metal plating such as zinc and aluminum, does not form intermetallic compounds, and does not form a solid solution. When these metals are coated to a thickness of 0.01 to 10 μm as a base plating, the degree of mutual interaction with these main components is low, and as a result, no intermetallic compound is formed and the intermetallic compound is not formed. A plating film that does not include an alloy layer composed of
[0020]
The steel material according to the present invention includes plate materials, pipe materials, rod materials, and other general materials conventionally used with hot-dip metal plating.
[0021]
【Example】
(Example 1)
A pure iron plate having a thickness of 0.3 mm was prepared by adding hydrofluoric acid (45% aqueous solution 45 ml / L), lead borofluoride (1 to 5 g / L), bismuth borofluoride (1 to 5 g / L), Each electrode was immersed in an aqueous solution (room temperature) containing antimony fluoride (1 to 5 g / L) as a main component, and used as a cathode. Electrodeposition was performed for 10 minutes using lead, bismuth, antimony or an insoluble anode as an anode. Lead plating, bismuth plating, or antimony plating was formed on the iron plate, respectively. The thickness of the lead plating layer or each of the bismuth and antimony plating layers was about 5 μm from observation with a scanning electron microscope (SEM). Each of these samples was immersed in a zinc bath at 450 ° C. for several tens of seconds to perform galvanization.
[0022]
Under the same conditions, zinc plating was also applied to a sample which had not been subjected to electroplating of base lead or bismuth or antimony.
The hot-dip galvanized layer (total thickness of about 70 μm) of each of these test materials was analyzed by SEM-EDX. With respect to a sample that has not been plated with lead, bismuth, or antimony, the analysis of the zinc layer reveals that a few percent to about 30% of iron is detected, particularly near the zinc-iron interface in the zinc layer. The formation of an intermetallic compound was estimated.
[0023]
FIG. 1 shows a binary phase diagram of iron-zinc. Iron and zinc react very well to form compounds. In the hot dip galvanizing production process, it is said that the reaction between iron and zinc starts in a few seconds when a steel material is immersed in a zinc bath. From this state diagram and the result of SEM-EDX, it is estimated that Γ 1 , δ 1 , ζ phase and the like are generated near the surface.
[0024]
In the samples on which the underlayer plating of lead, bismuth, or antimony was applied, even when the zinc layer was analyzed, almost no iron was detected, and the same was true for lead, bismuth, and antimony. Iron was not found in the lead layer, the bismuth, or the antimony layer, and it is presumed that the reaction of the iron with the zinc layer was hindered by the presence of the lead layer, the bismuth, or the antimony layer.
[0025]
As can be seen from the phase diagram of zinc with lead, bismuth or antimony, zinc reacts only slightly with any of lead, bismuth, antimony and iron. Therefore, it is considered that transfer of iron to the zinc layer or transfer of zinc into the iron layer was prevented, and formation of an intermetallic compound was prevented.
[0026]
(Example 2)
As in the first embodiment, lead, bismuth, and antimony are plated on a pure iron plate with a thickness of 5 μm. These three samples were immersed in a molten aluminum bath at 700 ° C. for several tens of seconds, and were subjected to aluminum plating. These samples were subjected to aluminum plating on a pure iron plate on which lead, bismuth, or antimony was not plated under the same conditions, and the cross sections near the respective surface layers were observed and analyzed by SEM-EDX. Iron was hardly detected in the aluminum layer of each of the samples on which lead, bismuth, or antimony was plated. This was the same in the lead, bismuth, and antimony layers.
[0027]
However, in the aluminum plating layer where the base plating is not applied, it is recognized that iron is present at several percent to several tens percent in the vicinity of the interface with iron, and iron reacts with aluminum to form an intermetallic compound. You can see that
[0028]
As can be seen from the phase diagrams of iron and aluminum, iron and aluminum form many intermetallic compounds, and it is considered that these layers are formed. On the other hand, as can be seen from the lead-aluminum phase diagram, the bismuth-aluminum phase diagram, and the antimony-aluminum phase diagram, lead, bismuth, and antimony are extremely hard to form a solid solution with aluminum. It is considered that the movement of aluminum or the movement of aluminum into the iron layer was prevented, and the formation of intermetallic compounds was suppressed.
[0029]
【The invention's effect】
As described in detail above, in the present invention, prior to hot-dip metal plating, a base metal such as lead, bismuth, antimony, or an alloy thereof is applied, and then a hot-dip metal plating film is provided by hot-dip metal plating. At this time, due to the presence of the base metal, no intermetallic compound is formed between the hot-dip metal and the base steel material. As a result, hot-dip metal plating that is rich in corrosion resistance, excellent in fire resistance, and capable of processing is performed. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a binary phase diagram of iron-zinc.

Claims (4)

鋼材と、該鋼材の表面に形成され、該鋼材と溶融めっき金属との金属間化合物の形成を阻止する阻止層と、該阻止層の上に設けた前記溶融めっき金属から成る溶融金属めっき層とから構成される溶融金属めっき鋼材。A steel material, a blocking layer formed on the surface of the steel material and for preventing formation of an intermetallic compound between the steel material and the hot-dip metal, a hot-dip metal plating layer provided on the blocking layer and comprising the hot-dip metal; Hot-dip metal-plated steel material. 前記溶融金属が、溶融亜鉛もしくはその合金または溶融アルミニウムもしくはその合金である請求項1記載の溶融金属めっき鋼材。The hot-dip metal-plated steel material according to claim 1, wherein the molten metal is hot-dip zinc or an alloy thereof, or hot aluminum or an alloy thereof. 前記溶融金属が溶融亜鉛であって、前記阻止層が、鉛、ビスマス、アンチモン、およびそれらの合金から成る群から選ばれた金属の被覆層である請求項1記載の溶融金属めっき鋼材。The hot-dip metal-plated steel material according to claim 1, wherein the molten metal is hot-dip zinc, and the blocking layer is a coating layer of a metal selected from the group consisting of lead, bismuth, antimony, and alloys thereof. 前記阻止層の厚さが、0.01〜10μm である請求項1ないし3のいずれかに記載の溶融金属めっき鋼材。The hot-dip metal-plated steel material according to any one of claims 1 to 3, wherein the thickness of the blocking layer is 0.01 to 10 µm.
JP2002170437A 2002-06-11 2002-06-11 Hot-dip metal coated steel material Withdrawn JP2004011019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002170437A JP2004011019A (en) 2002-06-11 2002-06-11 Hot-dip metal coated steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002170437A JP2004011019A (en) 2002-06-11 2002-06-11 Hot-dip metal coated steel material

Publications (1)

Publication Number Publication Date
JP2004011019A true JP2004011019A (en) 2004-01-15

Family

ID=30436696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002170437A Withdrawn JP2004011019A (en) 2002-06-11 2002-06-11 Hot-dip metal coated steel material

Country Status (1)

Country Link
JP (1) JP2004011019A (en)

Similar Documents

Publication Publication Date Title
CN113316664B (en) Alloy coated steel sheet and method for producing same
JP2608569B2 (en) Laminated vapor-deposited steel sheet
KR101615459B1 (en) ZnAl MOLTEN ZNAL ALLOYPLATED STEEL SHEET AND MANUFACTURING METHOD THEREOF
CN104981346A (en) Coated steel suitable for hot-dip galvanising
JP5556186B2 (en) High corrosion resistance hot-dip galvanized steel sheet
JP2001355055A (en) HOT DIP Zn-Al-Mg-Si PLATED STEEL EXCELLENT IN CORROSION RESISTANCE OF UNCOATED PART AND COATED EDGE FACE PART
JPH0518903B2 (en)
KR20190137170A (en) Coated Metal Substrates and Manufacturing Methods
KR101898729B1 (en) Zinc coated steel sheet and a manufacturing method thereof
JP2783453B2 (en) Hot-dip Zn-Mg-Al plated steel sheet and method for producing the same
JP2624272B2 (en) Surface treated steel sheet with excellent press formability
JPH0328359A (en) Production of hot-dip aluminized chromium-containing steel sheet
JP2001020050A (en) HOT DIP Zn-Al-Mg PLATED STEEL EXCELLENT IN CORROSION RESISTANCE IN NONCOATED PART AND COATED EDGE PART AND ITS PRODUCTION
JP2004011019A (en) Hot-dip metal coated steel material
JP3135818B2 (en) Manufacturing method of zinc-tin alloy plated steel sheet
JP2001329354A (en) Hot dip zinc-aluminum alloy plated steel sheet excellent in chemical conversion treatability and its production method
JP2000219950A (en) HOT-DIP Zn-Al-Mg COATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AFTER COATING
JP2756547B2 (en) Hot-dip Zn-based plating of hard-to-plate steel sheet
JP2783457B2 (en) Manufacturing method of hot-dip Zn-Al plated steel sheet
JPH06299312A (en) Surface-treated steel material excellent in corrosion resistance and its production
JP4321123B2 (en) Tin-plated steel sheet with excellent solderability
JPH04333551A (en) Production of hot dip galvanized steel sheet by preliminary ni plating
JPH04274890A (en) Manufacture of zinc-aluminium two layer surface treated steel sheet
JP2009114512A (en) Resin-coated steel sheet and its manufacturing method
JP2002180223A (en) Galvanized steel and its production method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906