KR101898729B1 - Zinc coated steel sheet and a manufacturing method thereof - Google Patents

Zinc coated steel sheet and a manufacturing method thereof Download PDF

Info

Publication number
KR101898729B1
KR101898729B1 KR1020110144238A KR20110144238A KR101898729B1 KR 101898729 B1 KR101898729 B1 KR 101898729B1 KR 1020110144238 A KR1020110144238 A KR 1020110144238A KR 20110144238 A KR20110144238 A KR 20110144238A KR 101898729 B1 KR101898729 B1 KR 101898729B1
Authority
KR
South Korea
Prior art keywords
steel sheet
plating layer
alloy
layer
alloy plating
Prior art date
Application number
KR1020110144238A
Other languages
Korean (ko)
Other versions
KR20130075918A (en
Inventor
이경황
박종원
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020110144238A priority Critical patent/KR101898729B1/en
Publication of KR20130075918A publication Critical patent/KR20130075918A/en
Application granted granted Critical
Publication of KR101898729B1 publication Critical patent/KR101898729B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

강판 표면에 건식 증착 공정을 이용하여 Zn-Mg 합금도금층을 형성하는 단계와, 상기 Zn-Mg 합금도금층의 표면을 급속 열처리하여 상기 Zn-Mg 합금도금층의 표면에 MgZn2 합금층을 형성하는 단계를 포함하는 아연도금강판의 제조방법을 개시한다. 발명에 따른 급속 열처리 공정을 통해 종래의 건식 증착 공정에 의해 형성된 Zn-Mg 합금도금층과 강판 사이의 경계부에서 도금층의 조직을 안정화시킴으로써 밀착력을 향상시킬 수 있고, 나아가 합금도금층 표면에 MgZn2 합금층을 형성함으로써 흑변 발생을 억제할 수 있다.Forming a Zn-Mg alloy plating layer on the surface of a steel sheet by a dry deposition process; and rapidly heat-treating the surface of the Zn-Mg alloy plating layer to form a MgZn 2 alloy layer on the surface of the Zn-Mg alloy plating layer A method for producing a galvanized steel sheet comprising It is possible to improve the adhesion by stabilizing the structure of the plating layer at the interface between the Zn-Mg alloy plating layer formed by the conventional dry deposition process and the steel sheet through the rapid thermal annealing process according to the present invention. Further, the MgZn 2 alloy layer is formed on the surface of the alloy plating layer It is possible to suppress the generation of black color.

Description

아연도금강판 및 그 제조방법{ZINC COATED STEEL SHEET AND A MANUFACTURING METHOD THEREOF}[0001] DESCRIPTION [0002] ZINC COATED STEEL SHEET AND A MANUFACTURING METHOD THEREOF [0003]

본 발명은 아연도금강판에 관한 것으로서, 더 자세하게는 냉연강판의 내식성을 확보하기 위한 아연합금 도금층의 밀착력을 향상시키고 나아가 흑변을 억제할 수 있는 아연도금강판 및 그 제조방법에 관한 것이다.The present invention relates to a zinc-plated steel sheet, and more particularly, to a zinc-plated steel sheet capable of improving adhesion of a zinc-plated layer for securing corrosion resistance of a cold-rolled steel sheet and further suppressing blackening, and a method for manufacturing the same.

표면처리 코팅기술은 모재인 철강재료가 갖지 못하는 물성을 부여하기 위해 적용되고 있다. 철강의 표면처리기술 분야에서는 전기도금과 용융도금으로 대표되는 습식 표면처리기술이 주로 적용되어 왔으나, 80년대 초부터 CVD(CHEMICAL VAPOR DEPOSITION), PVD(PHYSICAL VAPOR DEPOSITION) 등의 건식 증착 기술을 응용하여 철강에 건식 표면처리기술을 적용하려는 연구가 진행되고 있다. 기존의 CVD, PVD 등의 건식 증착 기술은 도금 및 피막 형성 속도와 관련된 작업성 및 생산성 측면을 고려할 때, 철강 분야에 적용되기 어렵다고 알려져 왔으나, 최근에는 선진 철강사를 중심으로 생산성을 확보할 수 있는 원가 경쟁력이 있는 고속 도금 기술 개발이 추진되고 있다.Surface coating technology has been applied to impart properties that steel materials, which are the base material, do not have. In the field of surface treatment of steel, wet surface treatment techniques such as electroplating and hot-dip coating have been mainly applied, but since the early 1980's, dry deposition techniques such as CVD (Chemical Vapor Deposition) and PVD (PHYSICAL VAPOR DEPOSITION) Research is underway to apply dry surface treatment technology to steel. Conventional dry deposition techniques such as CVD and PVD have been known to be difficult to apply to the steel industry in view of workability and productivity related to plating and film forming speeds. Recently, however, Development of competitive high-speed plating technology is being promoted.

자동차용 강판으로 주로 사용되는 강판은, 전기아연도금 강판, 용융아연도금 강판 및 합금화 용융아연도금 강판으로 나눌 수 있다. 여기서, 전기 아연도금강판은 표면외관이 우수하여 자동차용 외판으로 사용되고 있으나, 후도금 작업시의 작업성, 제조원가 및 환경측면에서 유리하지 못하여 전반적으로 그 사용량이 줄고 있다. 그리고, 용융아연도금 강판은 제조원가 측면에서 전기아연도금 강판과 대비할 때 더 저렴하지만, 후도금으로 인해 기계적 성질 및 도금 밀착성의 성형성, 연속타점시의 전극수명의 용접성 등이 전기아연도금 강판과 비교하여 유리하지 못하다. 또한 합금화 용융아연도금 강판은 소지철과 아연의 합금화 반응으로 Fe-Zn계 금속간 화합물의 형성으로 도막 밀착성의 도장성 및 전극수명의 용접성이 우수하지만, 강판 가공시 도금층이 떨어지는 파우더링(POWDERING) 특성 때문에 가공성이 떨어진다.Steel plates mainly used for automotive steel sheets can be classified into electro-galvanized steel sheets, hot-dip galvanized steel sheets, and galvannealed galvanized steel sheets. Here, the galvanized steel sheet has excellent surface appearance and is used as an outer panel for an automobile, but the amount of the galvanized steel sheet to be used is generally decreased due to the inferior workability, manufacturing cost, and environment in back plating. The hot-dip galvanized steel sheet is cheaper when compared with the galvanized steel sheet in terms of manufacturing cost, but the mechanical properties and the formability of the plating adhesion due to the back plating and the weldability of the electrode life at the continuous hot spot are comparable to those of the galvanized steel sheet It is not advantageous. In addition, the galvannealed galvanized steel sheet is excellent in weldability of coating adhesion and electrode life due to the formation of an Fe-Zn based intermetallic compound due to the alloying reaction between iron and zinc, but the powdering process (powdering) Due to the characteristics, workability is poor.

이러한 문제를 극복하고자, 진공 증착 방식 즉 건식 표면처리기술을 도입하여 박도금의 물질을 코팅한 후 이를 합금화하는 기술이 개발되고 있다. 특히, 건식 표면처리기술은 종래의 습식 표면처리기술에 비하여 도금층의 두께를 줄일 수 있어서 제조원가 측면에서 유리하다. 그러나, 건식 표면처리기술에 의해 아연도금층의 두께를 줄이는 경우 내식성이 저하되므로, 내식성 향상을 위하여 Mg를 첨가함으로써 Zn-Mg 합금도금 강판을 얻는 방법이 개발되었다. 그러나, 이와 같이 건식 표면처리기술을 통해 얻어진 Zn-Mg 합금도금층은 공정 특성상 도금층의 밀착력이 떨어지고, 또한 합금도금층 표면에 흑변이 발생하는 문제가 있다. 이를 해결하기 위해 부가적인 코팅층을 형성하는 등 다양한 시도가 있으나, Zn-Mg 합금도금층의 밀착성을 향상시키고 동시에 흑변 발생을 억제하기 위한 해결책이 아직까지 개발되지 못하고 있다.In order to overcome this problem, there is developed a technique of coating a material of the thin plating by applying a vacuum deposition method, that is, a dry surface treatment technique, and alloying it. Particularly, the dry surface treatment technique can reduce the thickness of the plating layer as compared with the conventional wet surface treatment technique, which is advantageous in manufacturing cost. However, when the thickness of the zinc plated layer is reduced by the dry surface treatment technique, corrosion resistance is lowered. Therefore, a method of obtaining a Zn-Mg alloy plated steel sheet by adding Mg to improve the corrosion resistance has been developed. However, the Zn-Mg alloy plating layer obtained by such a dry surface treatment technique has a problem in that the adhesion of the plating layer is deteriorated due to the process characteristic, and also blackening occurs on the surface of the alloy plating layer. In order to solve this problem, various attempts have been made such as forming an additional coating layer, but a solution for improving the adhesion of the Zn-Mg alloy plating layer and suppressing the occurrence of blackening has not yet been developed.

본 발명은 상술한 종래 기술의 문제점을 해결하기 위한 것으로서, 종래의 건식 증착 공정에 의해 형성한 Zn-Mg 합금도금층의 흑변 발생을 억제하고 나아가 강판과의 밀착력을 향상시킬 수 있는 아연도금강판 및 그 제조 방법을 제공하는 것을 목적으로 한다.Disclosure of Invention Technical Problem [8] The present invention has been made to solve the problems of the prior art described above, and it is an object of the present invention to provide a zinc-plated steel sheet capable of suppressing the occurrence of blackness of a Zn-Mg alloy plating layer formed by a conventional dry deposition process, And a method for producing the same.

본 발명에 따른 아연도금강판의 제조방법은, 강판 표면에 건식 증착 공정을 이용하여 Zn-Mg 합금도금층을 형성하는 단계와, 상기 Zn-Mg 합금도금층의 표면을 급속 열처리하여 상기 Zn-Mg 합금도금층의 표면에 MgZn2 합금층을 형성하는 단계를 포함하여 달성된다.A method of manufacturing a galvanized steel sheet according to the present invention includes the steps of forming a Zn-Mg alloy plating layer on a surface of a steel sheet using a dry deposition process, and subjecting the surface of the Zn-Mg alloy plating layer to a rapid heat treatment, to the surface it is achieved, including the step of forming the alloy layer MgZn 2.

여기서, 상기 급속 열처리는 1,000℃ 이상의 화염을 이용하여 복수회 반복하여 실시하는 방식으로 행해질 수 있다. 그리고, 상기 건식 증착 공정은 CVD, PVD, 스퍼터링, 열증발법, 유도가열 증발법, 이온플레이팅 중 어느 하나일 수 있다. Here, the rapid thermal annealing may be performed by repeating a plurality of times using a flame of 1,000 ° C or more. The dry deposition process may be one of CVD, PVD, sputtering, thermal evaporation, induction heating evaporation, and ion plating.

본 발명에 따른 아연도금강판은 상술한 제조방법에 의해 제조되며, 강판; 상기 강판 표면에 건식 증착 공정에 의해 형성된 Zn-Mg 합금도금층; 및 상기 Zn-Mg 합금도금층 표면에 형성된 MgZn2 합금층;을 포함할 수 있다.The galvanized steel sheet according to the present invention is manufactured by the above-described manufacturing method, and comprises a steel sheet; A Zn-Mg alloy plating layer formed on the surface of the steel sheet by a dry deposition process; MgZn 2, and an alloy layer formed on the Zn-Mg alloy plating layer surface, may comprise a.

발명에 따른 급속 열처리 공정을 통해 종래의 건식 증착 공정에 의해 형성된 Zn-Mg 합금도금층과 강판 사이의 경계부에서 도금층의 조직을 안정화시킴으로써 밀착력을 향상시킬 수 있고, 나아가 합금도금층 표면에 MgZn2 합금층을 형성함으로써 흑변 발생을 억제할 수 있다.It is possible to improve the adhesion by stabilizing the structure of the plating layer at the interface between the Zn-Mg alloy plating layer formed by the conventional dry deposition process and the steel sheet through the rapid thermal annealing process according to the invention, and furthermore, the MgZn 2 alloy layer is formed on the surface of the alloy plating layer It is possible to suppress the generation of black color.

도 1a 및 도 1b는 본 발명에 따라 제조된 실시예 및 비교예 각각의 시험편에 대한 SEM-EDS를 이용하여 성분분석을 행한 결과를 나타낸다.
도 2는 본 실시예에 따라 제조된 샘플 표면에 MgZn2 합금층이 형성됨을 보여주는 XRD 회절분석 결과를 나타낸다.
도 3은 본 실시예에 따라 제조된 샘플 표면에 MgZn2 결정립이 형성되어 있음을 보여주는 SEM(배율 50K) 사진이다.
도 4a 및 도 4b는 본 실시예의 샘플에 대한 비등수 평가 결과를 나타낸다.
도 5a 및 도 5b는 비교예의 샘플과 실시예의 샘플에 대해 각각 밀착력을 테스트를 행한 결과를 나타낸다.
도 6은 본 실시예에 따른 샘플에 대하여 순환부식시험(Cyclic Corrosion Test) 방식으로 내식성을 평가한 결과를 나타낸다.
도 7은 본 발명에 따라 제조된 실시예 샘플의 단면을 주사전자현미경(SEM)으로 관찰한 사진이다.
Figs. 1A and 1B show the results of component analysis using SEM-EDS for the test pieces of the examples and comparative examples prepared according to the present invention, respectively.
2 shows XRD diffraction analysis results showing that a MgZn 2 alloy layer is formed on a sample surface prepared according to this embodiment.
3 is a SEM (magnification: 50K) photograph showing that MgZn 2 crystal grains are formed on a sample surface prepared according to this embodiment.
4A and 4B show the boiling water evaluation results for the sample of this embodiment.
5A and 5B show the results of the adhesion test for the sample of the comparative example and the sample of the example, respectively.
6 shows a result of evaluating the corrosion resistance of the sample according to the present embodiment by a cyclic corrosion test method.
FIG. 7 is a photograph of a section of a sample prepared according to the present invention with a scanning electron microscope (SEM). FIG.

이하에서는 본 발명에 따른 아연도금강판 및 그 제조방법에 대한 바람직한 실시예를 자세히 설명한다.Hereinafter, preferred embodiments of a galvanized steel sheet and a method of manufacturing the same according to the present invention will be described in detail.

본 발명에 따른 아연도금강판의 제조방법은, 강판 표면에 건식 증착 공정을 이용하여 Zn-Mg 합금도금층을 형성하는 단계와, 상기 Zn-Mg 합금도금층의 표면을 급속 열처리하여 상기 Zn-Mg 합금도금층의 표면에 MgZn2 합금층을 형성하는 단계를 포함할 수 있다. 여기서, 강판은 철(Fe)을 주성분으로 하는 냉연 강판일 수 있다. 또한, Zn-Mg 합금도금층은 CVD, PVD, 스퍼터링, 열증발법, 유도가열 증발법, 이온플레이팅 등과 같은 건식 증착 공정을 이용하여 형성될 수 있다. 여기서, Zn-Mg 합금도금층을 형성하기 위한 건식 증착 공정은 종래의 건식 표면처리기술을 이용할 수 있으며, 따라서 여기서는 이에 대한 자세한 설명은 생략하기로 한다.A method of manufacturing a galvanized steel sheet according to the present invention includes the steps of forming a Zn-Mg alloy plating layer on a surface of a steel sheet using a dry deposition process, and subjecting the surface of the Zn-Mg alloy plating layer to a rapid heat treatment, And forming a MgZn 2 alloy layer on the surface of the MgZn 2 alloy layer. Here, the steel sheet may be a cold rolled steel sheet containing iron (Fe) as a main component. In addition, the Zn-Mg alloy plating layer can be formed using a dry deposition process such as CVD, PVD, sputtering, thermal evaporation, induction heating evaporation, ion plating and the like. Here, the dry deposition process for forming the Zn-Mg alloy plating layer can use the conventional dry surface treatment technique, and therefore, a detailed description thereof will be omitted here.

한편, 건식 증착 공정을 통해 형성한 Zn-Mg 합금도금층에는 급속 열처리를 통해 그 표면에 MgZn2 합금층이 형성된다. 여기서, 급속 열처리는 1,000℃ 이상의 화염을 이용하여 복수회 반복하여 실시함으로써 수행될 수 있다. 이와 같은 급속 열처리를 통해, Zn-Mg 합금도금층의 표면에 형성한 MgZn2의 합금층을 표면층으로 가진 아연도금강판에는 흑변이 발생하지 않는다. 또한, Zn-Mg 합금도금층과 기재인 강판의 경계부에 형성되는 Fe-Zn계의 합금상 구조가 형성되어 Zn-Mg 합금도금층과 강판의 밀착성이 더욱 향상될 수 있다.On the other hand, the Zn-Mg alloy plating layer formed through the dry deposition process forms a MgZn 2 alloy layer on its surface through rapid thermal annealing. Here, the rapid thermal annealing can be performed by repeating a plurality of times using a flame of 1,000 ° C or more. Through such rapid thermal annealing, no blackening occurs on the galvanized steel sheet having the alloy layer of MgZn 2 formed on the surface of the Zn-Mg alloy plating layer as the surface layer. Further, an Fe-Zn-based alloy phase structure formed at the interface between the Zn-Mg alloy plating layer and the base steel sheet can be formed, and the adhesion between the Zn-Mg alloy plating layer and the steel sheet can be further improved.

이하에서는, 화학기상증착법(CVD) 중 하나인 촉매화학기상증착(Catalytic Chemical Vapor Deposition; CCVD)에 의해 강판 표면에 Zn-Mg 합금도금층을 형성한 예(이하, 비교예)와, 본 발명에 따라 급속 열처리를 통해 Zn-Mg 합금도금층 표면에 MgZn2를 형성한 예(이하, 실시예)에 대한 물성평가결과를 비교하여 설명한다. 특히, 실시예에서는 토치를 이용하여 CCVD에 의해 형성한 Zn-Mg 합금도금층을 급속 열처리하였으며, 구체적으로는 비교예 ZMC와 같은 샘플에 대하여 20회 반복하여 화염처리를 행하였고, 화염의 순간 최고 온도는 1,000℃ 이상이었다.Hereinafter, examples in which a Zn-Mg alloy plating layer is formed on the surface of a steel sheet by a catalytic chemical vapor deposition (CCVD), which is one of chemical vapor deposition (CVD) methods (hereinafter referred to as comparative examples) The results of evaluating the physical properties of MgZn 2 formed on the surface of the Zn-Mg alloy plating layer through the rapid thermal annealing (hereinafter, Examples) will be described in comparison. Particularly, in the embodiment, the Zn-Mg alloy plating layer formed by CCVD using a torch was subjected to rapid thermal annealing. More specifically, a sample similar to that of the comparative example ZMC was subjected to flame treatment for 20 times, and the maximum instantaneous temperature Lt; / RTI >

도 1a 및 도 1b에는 실시예와 비교예 각각의 시험편에 대한 SEM-EDS를 이용하여 성분분석을 행한 결과를 나타내었다. 도 1a에서 보듯이, 실시예에서 전체 Zn-Mg 합금도금층은 약 2㎛ 정도로 형성되어 있으며, 그 중 "A"로 표시된 영역(약 0.5㎛ 두께의 표면층)에서의 Zn과 Mn의 성분비를 고려할 때 MgZn2 합금층이 형성되어 있음을 볼 수 있다. 반면에, 도 1b에서 보듯이, 화염처리되지 않은 비교예에서는 약 1㎛ 정도의 두께 내에서 Zn과 Mg의 성분비로 나타났으며, 이를 고려하면 Mg2Zn11 구조의 표면층이 형성되어 있음을 알 수 있다. 아울러, 도 1b에서 Fe의 성분곡선을 살펴보면, 영역 "B"와 같은 불연속선이 발생하는 것으로 미루어, Zn-Mg 합금도금층과 기재인 강판 사이의 경계면의 밀착성이 떨어지는 것으로 관측되었다. 그러나, 도 1a의 Fe 성분 곡선에서는 이와 같은 불연속선이 발생하지 않았다. 이러한 결과를 통해, 건식 증착 공정을 통해 강판 표면에 형성된 Zn-Mg 합금도금층은 본 발명에 따른 급속 열처리 공정을 거치면서 그 표면에 MgZn2 합금층이 소정의 두께로 형성되고, 또한 Zn-Mg 합금도금층과 기재인 강판 사이에 균일한 Fe-Zn계 합금상의 형성으로 그 밀착성이 향상되는 것으로 분석되었다.Figs. 1A and 1B show the results of the component analysis using SEM-EDS for the test pieces of the examples and comparative examples, respectively. 1A, in the embodiment, the entire Zn-Mg alloy plating layer is formed to have a thickness of about 2 mu m. Considering the composition ratios of Zn and Mn in the region indicated by "A" (surface layer about 0.5 μm thick) MgZn < 2 > alloy layer is formed. On the other hand, as shown in Fig. 1B, in the comparative example without flame treatment, the composition ratio of Zn and Mg in the thickness of about 1 탆 was shown. Considering this, the surface layer of Mg 2 Zn 11 structure was formed . In addition, the component curve of Fe in FIG. 1B shows that the adhesion between the interface between the Zn-Mg alloy plating layer and the base steel sheet is lowered because a discontinuity such as region "B" is generated. However, such a discontinuous line did not occur in the Fe component curve of Fig. As a result, the Zn-Mg alloy plating layer formed on the surface of the steel sheet through the dry deposition process has a MgZn 2 alloy layer formed on the surface of the Zn-Mg alloy plating layer by a rapid thermal annealing process according to the present invention, It was analyzed that the adhesion between the plated layer and the base steel sheet was improved by forming a uniform Fe-Zn based alloy phase.

본 실시예에서 표면에 MgZn2 합금층이 형성된 것은 도 2에 도시한 XRD 회절분석을 통해 확인할 수 있었다. 여기서, "CR"은 강판 자체에 대한 분석곡선을 나타내며, T1, T2는 본 실시예에 따라 제조된 2개의 샘플에 대한 분석곡선을 나타낸다. 도 2에서 보듯이, 본 실시예에 따른 샘플들의 표면층은 MgZn2 합금층이 균일하게 형성됨을 알 수 있고, 비교예의 Mg2Zn11는 관측되지 않았다. 아울러, SEM(배율 50K)으로 관측한 결과, 본 실시예의 표면에는 도 3에서와 같이, MgZn2 결정립이 형성되어 있음을 확인할 수 있었다.The formation of the MgZn 2 alloy layer on the surface in the present example can be confirmed by the XRD diffraction analysis shown in Fig. Here, "CR" represents an analysis curve for the steel sheet itself, and T1 and T2 represent an analysis curve for two samples manufactured according to this embodiment. As shown in FIG. 2, the surface layer of the samples according to the present example shows that the MgZn 2 alloy layer is uniformly formed, and Mg 2 Zn 11 of the comparative example is not observed. As a result of observing with an SEM (magnification: 50K), it was confirmed that MgZn 2 crystal grains were formed on the surface of this example as shown in Fig.

다음으로, 도 4a 및 도 4b에는 실시예의 샘플에 대하여 비등수를 이용하여 내수성을 평가한 결과를 나타내었다. 여기서, 비등수 평가는 끊는 물에 각 샘플을 20분간 침지하는 방식으로 행하였고, 도 4a는 비등수 침지 전의 실시예 샘플의 표면 상태를 보여주며, 도 4b는 비등수 침지 후의 실시예 샘플의 표면 상태를 보여준다. 도 4a 및 도 4b를 통해 알 수 있듯이, 본 실시예에 따른 샘플은 비등수 평가 결과 흑변이 발생하지 않았고, 이는 Zn-Mg 합금도금층 표면에 균일하게 형성된 MgZn2 합금층으로 인해 내식성이 향상된 것으로 평가되었다.Next, Figs. 4A and 4B show the results of evaluating the water resistance of the samples of the examples using boiling water. 4A shows the surface state of the sample before the boiling water immersion, and FIG. 4B shows the surface state of the sample after boiling water immersion. Fig. Show status. As can be seen from FIGS. 4A and 4B, the sample according to the present embodiment showed no blackening as a result of evaluation of the boiling water number, and it was found that MgZn 2 formed uniformly on the surface of the Zn- It was evaluated that the corrosion resistance was improved due to the alloy layer.

다음으로, 도 5a 및 도 5b에는 비교예의 샘플과 실시예의 샘플에 대해 각각 밀착력을 테스트를 행한 결과를 나타내었다. 여기서, 밀착력 테스트는 각 샘플을 180도로 구부린 후 굽힘부에 테이프-필-테스트(Tape Peel Test) 방식으로 수행하였다. 도 5a에서 보듯이, 비교예의 경우 영역 A로 표시한 바와 같은 합금도금층의 벗겨짐 현상이 관찰되었다. 그러나, 실시예의 경우, 도 5b에서 보듯이, 이러한 합금도금층의 벗겨짐이 관찰되지 않았다. 따라서, 본 실시예는 합금도금층의 밀착력이 향상된 것으로 평가되었고, 이는 건식 증착 공정에 의해 형성된 Zn-Mg 합금도금층에 대한 급속 열처리를 통해 기재인 Fe와의 밀착력이 향상된 것으로 분석되며 이는 도 1a의 성분 분석을 통해 뒷받침된다.Next, Figs. 5A and 5B show the results of the adhesion test for the sample of the comparative example and the sample of the example, respectively. Here, the adhesion test was carried out by bending the sample at 180 degrees in a tape peel test method. As shown in Fig. 5A, in the comparative example, peeling of the alloy plating layer as indicated by region A was observed. However, in the case of the embodiment, as shown in Fig. 5B, peeling of such an alloy plating layer was not observed. Therefore, it was evaluated that the adhesion of the alloy plating layer was improved in this example, and it was analyzed that the adhesion strength to the substrate Fe was improved through the rapid heat treatment for the Zn-Mg alloy plating layer formed by the dry deposition process, .

다음으로, 도 6에는 본 실시예에 따른 샘플에 대하여 순환부식시험(Cyclic Corrosion Test) 방식으로 내식성을 평가한 결과를 나타낸다. 시험조건은, 5%의 NaCl 내에 실온에서 2시간 동안 침지, 60℃에서 4시간 건조(Dry) 및 50℃에서 2시간 습윤(Wet)의 방식으로 행하였다. 그 결과, 도 6에서 보듯이, 본 실시예에 따른 샘플은 양호한 내식성을 보였다.Next, FIG. 6 shows the result of evaluating the corrosion resistance of the sample according to this embodiment by a cyclic corrosion test method. The test conditions were as follows: immersing in 5% NaCl at room temperature for 2 hours, drying at 60 ° C for 4 hours, and wet at 50 ° C for 2 hours. As a result, as shown in FIG. 6, the sample according to the present example showed good corrosion resistance.

도 7은 본 발명에 따라 제조된 실시예 샘플의 단면을 주사전자현미경(SEM)으로 관찰한 사진이다. 도 7에서 보듯이, 기재인 강판(100) 위에는 Zn-Mg 합금도금층(110)이 형성되어 있고, 그 위에는 MgZn2 합금층(120)이 형성되어 있다. 여기서, 건식 증착 공정에 의해 형성된 Zn-Mg 합금도금층(110)의 표면 급속 열처리를 통해, 그 표면에 MgZn2 합금층(120)이 형성되어 흑변 발생이 억제될 수 있었다. 또한 급속 열처리 과정에서 기재인 강판(100)의 "Fe"가 Zn-Mg 합금도금층(110) 내로 확산될 수 있었다. 그리하여, 합금도금층(110)과 강판(100)의 경계부 내에 연속적인 Fe 성분 프로파일을 보여줌에 따라 경계부의 Fe-Zn계 합금상이 연속적으로 형성됨으로써, 합금도금층(110)과 강판(100)의 밀착력이 향상되는 것으로 분석되었다.FIG. 7 is a photograph of a section of a sample prepared according to the present invention with a scanning electron microscope (SEM). FIG. As shown in FIG. 7, a Zn-Mg alloy plating layer 110 is formed on a base steel sheet 100, and a MgZn 2 alloy layer 120 is formed thereon. Here, the MgZn 2 alloy layer 120 was formed on the surface of the Zn-Mg alloy plating layer 110 formed by the dry deposition process through the surface rapid thermal annealing process, thereby suppressing the generation of blackness. Also, in the rapid thermal annealing process, "Fe" of the steel sheet 100 as a base material could be diffused into the Zn-Mg alloy plating layer 110. As a result, the Fe-Zn alloy phase of the boundary portion is continuously formed as a continuous Fe component profile is displayed in the boundary between the alloy plating layer 110 and the steel sheet 100, so that the adhesion strength between the alloy plating layer 110 and the steel sheet 100 .

이와 같이, 본 발명에 따른 급속 열처리 공정을 통해 종래의 건식 증착 공정에 의해 형성된 Zn-Mg 합금도금층과 강판 사이의 경계부에서 도금층의 조직을 안정화시킴으로써 밀착력을 향상시킬 수 있고, 나아가 합금도금층 표면에 MgZn2 합금층을 형성함으로써 흑변 발생을 억제할 수 있다.As a result, the structure of the plating layer is stabilized at the interface between the Zn-Mg alloy plating layer formed by the conventional dry deposition process and the steel sheet through the rapid thermal annealing process according to the present invention, 2 alloy layer is formed.

지금까지 본 발명의 바람직한 실시예에 대해 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 본질적인 특성을 벗어나지 않는 범위 내에서 변형된 형태로 구현할 수 있을 것이다. 그러므로 여기서 설명한 본 발명의 실시예는 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 하고, 본 발명의 범위는 상술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함되는 것으로 해석되어야 한다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention. It is therefore to be understood that the embodiments of the invention described herein are to be considered in all respects as illustrative and not restrictive, and the scope of the invention is indicated by the appended claims rather than by the foregoing description, Should be interpreted as being included in.

Claims (4)

강판 표면에 건식 증착 공정을 이용하여 Zn-Mg 합금도금층을 형성하는 단계와,
상기 Zn-Mg 합금도금층의 표면을 급속 열처리함으로서, 상기 Zn-Mg 합금도금층의 표면에 MgZn2 합금층을 형성함과 아울러, 상기 강판과 Zn-Mg 함금도금층 사이에 Fe-Zn계 합금층을 형성하는 단계를 포함하고,
상기 MgZn2 합금층은 상기 급속 열처리에 의해 상기 Zn-Mg 층으로부터 형성된 것이며,
상기 급속 열처리는 1,000℃ 이상의 화염을 이용하여 복수회 반복하여 실시하는 것을 특징으로 하는 아연도금강판의 제조방법.
Forming a Zn-Mg alloy plating layer on a surface of a steel sheet using a dry deposition process;
The surface of the Zn-Mg alloy plating layer is subjected to rapid thermal annealing to form a MgZn 2 alloy layer on the surface of the Zn-Mg alloy plating layer and an Fe-Zn alloy layer is formed between the steel sheet and the Zn-Mg gold plating layer ; And
The MgZn 2 alloy layer is formed from the Zn-Mg layer by the rapid thermal annealing,
Wherein the rapid thermal annealing is repeated a plurality of times using a flame of 1,000 ° C or more.
삭제delete 제1항에 있어서,
상기 건식 증착 공정은 CVD, PVD, 스퍼터링, 열증발법, 유도가열 증발법, 이온플레이팅 중 어느 하나인 것을 특징으로 하는 아연도금강판의 제조방법.
The method according to claim 1,
Wherein the dry deposition process is one of CVD, PVD, sputtering, thermal evaporation, induction heating evaporation, and ion plating.
강판;
상기 강판 표면에 형성된 Fe-Zn계 합금층;
상기 Fe-Zn계 합금층상에 형성된 Zn-Mg 합금도금층; 및
상기 Zn-Mg 합금도금층 표면에 형성된 MgZn2 합금층;을 포함하는 제1항 또는 제3항에 따른 제조방법에 의해 제조된 아연도금강판.
Steel plate;
An Fe-Zn alloy layer formed on the surface of the steel sheet;
A Zn-Mg alloy plating layer formed on the Fe-Zn alloy layer; And
And a MgZn 2 alloy layer formed on the surface of the Zn-Mg alloy plating layer. The zinc-coated steel sheet produced by the manufacturing method according to claim 1 or 3.
KR1020110144238A 2011-12-28 2011-12-28 Zinc coated steel sheet and a manufacturing method thereof KR101898729B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110144238A KR101898729B1 (en) 2011-12-28 2011-12-28 Zinc coated steel sheet and a manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110144238A KR101898729B1 (en) 2011-12-28 2011-12-28 Zinc coated steel sheet and a manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20130075918A KR20130075918A (en) 2013-07-08
KR101898729B1 true KR101898729B1 (en) 2018-09-14

Family

ID=48989622

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110144238A KR101898729B1 (en) 2011-12-28 2011-12-28 Zinc coated steel sheet and a manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101898729B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498877A (en) * 2014-12-15 2015-04-08 中国钢研科技集团有限公司 Zinc-magnesium alloy coating and preparation method thereof
CN104911554B (en) * 2015-04-10 2017-07-25 中国钢研科技集团有限公司 A kind of industrialization Total continuity type PVD production technologies of zinc-magnesium alloy coating steel band
CN105925936B (en) * 2016-07-08 2018-04-20 武汉钢铁有限公司 A kind of production method of top grade door and window light metal composite deposite steel band
KR102175582B1 (en) * 2018-12-19 2020-11-06 주식회사 포스코 Heterogeneous plated steel sheet having excellent workbility and corrosion resistance, and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080309A (en) 1998-09-07 2000-03-21 Nippon Steel Chem Co Ltd Corrosion resistant paint and corrosion resistant steel material coated with same
JP2010100897A (en) 2008-10-23 2010-05-06 Nippon Steel Corp Zn-Al-Mg-PLATED STEEL SHEET, AND METHOD FOR MANUFACTURING THE SAME

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2560030C (en) * 2005-11-24 2013-11-12 Sulzer Metco Ag A thermal spraying material, a thermally sprayed coating, a thermal spraying method an also a thermally coated workpiece
KR100961371B1 (en) * 2007-12-28 2010-06-07 주식회사 포스코 ZINC ALLOY COATED STEEL SHEET HAVING GOOD SEALER ADHESION and CORROSION RESISTANCE AND PROCESS OF MANUFACTURING THE SAME

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080309A (en) 1998-09-07 2000-03-21 Nippon Steel Chem Co Ltd Corrosion resistant paint and corrosion resistant steel material coated with same
JP2010100897A (en) 2008-10-23 2010-05-06 Nippon Steel Corp Zn-Al-Mg-PLATED STEEL SHEET, AND METHOD FOR MANUFACTURING THE SAME

Also Published As

Publication number Publication date
KR20130075918A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
US11905587B2 (en) Alloy coated steel sheet
JP6346972B2 (en) Zn-Mg alloy plated steel sheet and method for producing the same
US20180119263A1 (en) High-strength hot-dip galvanized steel sheet having excellent plating surface quality and adhesion, and method of manufacturing the same
JP2608569B2 (en) Laminated vapor-deposited steel sheet
US20130186524A1 (en) Al PLATING LAYER/Al-Mg PLATING LAYER MULTI-LAYERED STRUCTURE ALLOY PLATED STEEL SHEET HAVING EXCELLENT PLATING ADHESIVENESS AND CORROSION RESISTANCE, AND METHOD OF MANUFACTURING THE SAME
EP2527493B1 (en) Galvanized steel sheet
US20200180272A1 (en) Alloy-coated steel sheet and manufacturing method therefor
KR101898729B1 (en) Zinc coated steel sheet and a manufacturing method thereof
KR20160077455A (en) Coated steel sheet having excellent adhesion and method for manufacturing the same
KR101536453B1 (en) Anti-corrosive coating steel sheet having excellent adhesion and method for preparing thereof
KR101789725B1 (en) Alloy-coated steel sheet and method for manufacturing the same
KR101829766B1 (en) Alloy-coated steel sheet and method for manufacturing the same
KR101829763B1 (en) Alloy-coated steel sheet and method for manufacturing the same
US11608556B2 (en) Alloy-coated steel sheet and manufacturing method thereof
KR101829764B1 (en) Alloy-coated steel sheet and method for manufacturing the same
KR20170117847A (en) Alloy-coated steel sheet and method for manufacturing the same
US11731397B2 (en) Alloy-coated steel sheet and manufacturing method therefor
JPH05320946A (en) Manufacture of alloyed galvanized steel sheet and galvannealed steel sheet
KR20130119782A (en) Manufacturing method of aluminum plated steel sheet and aluminum plated steel sheet manufactured thereby
JPH04187751A (en) Production of hot-dip zn-al plated steel sheet
KR20200076830A (en) Alloy-coated steel sheet and manufacturing method of the same
JPH02290961A (en) Production of vapor-deposition aluminized steel sheet excellent in workability
JPH0639686B2 (en) Alloyed vacuum-deposited zinc plated steel plate with excellent workability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
AMND Amendment
X701 Decision to grant (after re-examination)