JP2004003898A - Measuring instrument for ionic activity - Google Patents

Measuring instrument for ionic activity Download PDF

Info

Publication number
JP2004003898A
JP2004003898A JP2002161006A JP2002161006A JP2004003898A JP 2004003898 A JP2004003898 A JP 2004003898A JP 2002161006 A JP2002161006 A JP 2002161006A JP 2002161006 A JP2002161006 A JP 2002161006A JP 2004003898 A JP2004003898 A JP 2004003898A
Authority
JP
Japan
Prior art keywords
measuring instrument
side frame
ion
ion activity
activity measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002161006A
Other languages
Japanese (ja)
Inventor
Masaaki Terajima
寺嶋 正明
Osamu Seshimoto
瀬志本 修
Fumitada Arai
新井 文規
Shuichi Takahashi
高橋 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002161006A priority Critical patent/JP2004003898A/en
Publication of JP2004003898A publication Critical patent/JP2004003898A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring instrument for ionic activity, capable of stably measuring ionic activities. <P>SOLUTION: In the measuring instrument for ionic activity, a top side frame body made of an insulating material is provided with a drip opening for the liquid to be tested; a drip opening for a reference solution; and a bridge for providing electrical continuity, between the liquid to be tested and the reference solution provided for each drip opening. A bottom side frame body, made of an insulating material, is provided with both a passage for the liquid to be tested and a passage for the reference solution for making them flow, while the liquid to be tested and the reference solution provided for each drip opening are separated from each other. At least a pair of ion-selective electrodes are arranged in between the top side frame body and the bottom side frame body, and a conductive member is provided between the top side frame body and the bottom side frame body, with its part exposed to the outside of the measuring instrument. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水性液体、特に血液、尿などの生物体液中の特定種類のイオンの活量をポテンシオメトリカルに測定するためのイオン活量測定器具に関する。
【0002】
【従来の技術】
液体(水道水、河川水、下水、産業排水など)や生物体液(全血、血漿、血清などの血液、尿、唾液など)の中に含まれる特定種類のイオンの活量(または濃度)を、イオン選択性電極を用いて測定するイオン活量測定器具は知られている。イオン活量測定器具については、特許第1836427号及び特許第1851649号の各公報に詳しく記載されている。
【0003】
図1は、従来のイオン活量測定器具の一例(上記の特許第1836427号公報に記載)を示す斜視図である。図2は、図1に記入したI−I線に沿って切断したイオン活量測定器具の断面図である。そして、図3は、図1のイオン活量測定器具の分解斜視図である。
【0004】
図1〜図3に示すイオン活量測定器具は、被検液の点着口12と参照液の点着口12、そして各点着口12に付与される被検液と参照液とを電気的に導通させるブリッジ19を備えた絶縁性材料からなる頂面側枠体18、そして各点着口12に付与される被検液と参照液とを互いに隔離しながら流通させる被検液通路14と参照液通路14とを備えた絶縁性材料からなる底面側枠体21、そして頂面側枠体18と底面側枠体21との間に配置された三対のイオン選択性電極11a、11b及び11cなどから構成されている。二つの点着口12の一方に被検液が、そして他方に参照液が点着されれば、いずれの点着口に被検液を点着してもよい。二つの通路14のうち、被検液を点着する点着口の下方にある通路14が被検液の通路となり、参照液を点着する点着口の下方にある通路14が参照液の通路となる。
【0005】
三対のイオン選択性電極11a、11b及び11cのそれぞれは、絶縁性材料からなる頂面側枠体18に設けられた溝に固定されている。頂面側枠体18には、点着口12のそれぞれに付与される被検液と参照液とを電気的に導通させるためのブリッジ19が、二つの点着口を横切るように備えられている。ブリッジ19としては、ポリエチレンテレフタレート繊維の撚糸などが用いられている。各イオン選択性電極は、電気絶縁性の高分子フイルムからなる支持体上に、銀層、塩化銀層、電解質層およびイオン選択膜層が積層された構成を有する。イオン選択性電極については、特許第1762307号公報に詳しい記載がある。イオン選択性電極11a、11b及び11cのそれぞれは、イオン選択層の面が下を向いた状態で配置されている。
【0006】
図2及び図3に示すように、被検液と参照液のそれぞれを流通させる通路14には、イオン選択性電極の表面(イオン選択膜の表面)と、被検液と参照液のそれぞれとの接触を容易とするための多孔性部材16が付設されている。多構成部材16の一部は、水不透過性隔壁20の開口部15a、15b及び15cに押し込まれ、多孔性部材の復元力により保持されている。
【0007】
被検液と参照液はそれぞれ、ピペットなどを用いて、頂面側枠体18に設けられた点着口12に付与される。頂面側枠体18に備えられたブリッジ19により、被検液と参照液は電気的に導通する。被検液と参照液のそれぞれは、開口13を通じて底面側枠体21の通路14に到達する。被検液と参照液とは、多孔性部材16を介して、互いに隔離しながら各通路14を流通する。
【0008】
多孔性部材16を介して流通する被検液と参照液のそれぞれが、イオン選択性電極の下方の位置に到達すると、液を吸収した多孔性部材は膨張する。そして被検液と参照液のそれぞれは、各イオン選択性電極の表面(イオン選択膜層の表面)に接触する。被検液中のイオン活量は、各イオン選択性電極(対)に発生する電位差から求めることができる。電位差を測定するために、各イオン選択性電極の電気的接続領域(例えば、イオン選択性電極(対)11aの場合には、電気的接続領域22a)には、底面側枠体21に設けられた開口部23a、23b及び23cを通じて電位差計(図示せず)が接続される。
【0009】
イオン選択性電極のイオン選択性電極膜の種類を変えることにより、水素イオン(H)、リチウムイオン(Li)、ナトリウムイオン(Na)、カリウムイオン(K)、マグネシウムイオン(Mg2+)、カルシウムイオン(Ca2+)、塩素イオン(Cl)、炭酸水素イオン(HCO )、炭酸イオン(CO 2−)などの各種イオンの活量(濃度)を測定することができる。
【0010】
図1〜図3に示すイオン活量測定器具には、三対のイオン選択性電極11a、11b及び11cが備えられているため、各イオン選択性電極(対)に発生する電位差を測定することにより、被検液と参照液を一回点着するのみで、被検液中に含まれる三種類のイオンの活量を測定することができる。このようなイオン活量測定器具は、被検液の必要量が極めて少ないため、多くの量を被検液として採取し難い血液などの生体体液中に含まれるイオン活量の測定に適している。
【0011】
【発明が解決しようとする課題】
前記のイオン活量測定器具を用いて、被検液と参照液が点着された複数個のイオン活量測定器具について順次イオン活量を測定していった場合に、イオン活量が安定に測定できずにず、希に異常値を示す場合(例えば、測定された血液中のイオンの活量が、血液中に含まれるはずのない値を示す場合)がある。
【0012】
本発明者は、イオン活量が異常値を示した場合に、点着された被検液と参照液の量や、点着状態(イオン選択性電極の表面に被検液と参照液が接触しているかなど)を調査したが、特に異常は見られなかった。さらに調査をしたところ、測定環境における湿度が低い場合に、イオン活量が異常値を示す頻度が多いことがわかった。そしてイオン活量の異常値は、イオン活量測定器具の帯電と強い相関があることが判明した。
【0013】
即ち、イオン活量は、イオン活量測定器具のイオン選択性電極の対に発生する電位差から求められる。従って、頂面側枠体に備えられたブリッジ以外の部位で、イオン選択性電極の対が互いに電気的に導通したり、あるいは複数のイオン選択性電極が互いに電気的に導通したりすると、イオン活量の測定ができない。従って、イオン活量測定器具の頂面側枠体と底面側枠体は、樹脂などの絶縁性材料から形成されている。そして前記のイオン活量測定器具の帯電は、測定器具の製造、出荷もしくは測定の際の取扱いによって、主に枠体が帯電することが原因であることも判明した。
【0014】
本発明の目的は、イオン活量を安定に測定できるイオン活量測定器具を提供することにある。
【0015】
【課題を解決するための手段】
本発明者は、帯電したイオン活量測定器具を効果的に徐電する方法について検討した。その結果、イオン活量測定器具の頂面側枠体と底面側枠体との間に導電性部材を配置して、枠体に帯電された電荷を導電性部材を介して測定器具の内部から外部へと導くことが徐電に有効であることがわかった。このような導電性部材を配置することにより、各イオン選択性電極(対)の各電極の間、複数のイオン選択性電極の間の電気的な絶縁状態を保ったまま、枠体の効果的な徐電が可能となる。
【0016】
本発明は、被検液の点着口と参照液の点着口、そして各点着口に付与される被検液と参照液とを電気的に導通させるブリッジを備えた絶縁性材料からなる頂面側枠体、そして各点着口に付与される被検液と参照液とを互いに隔離しながら流通させる被検液通路と参照液通路とを備えた絶縁性材料からなる底面側枠体との間に少なくとも一対のイオン選択性電極が配置されてなるイオン活量測定器具であって、前記の頂面側枠体と底面側枠体との間に、導電性部材が、その一部を測定器具の外側に露出した状態で備えられてなるイオン活量測定器具にある。
【0017】
本発明のイオン活量測定器具の好ましい態様は、下記の通りである。
(1)上記導電性部材が一対のイオン選択性電極と同一の形状とサイズとを有する。
(2)頂面側枠体、底面側枠体、もしくはこれら両枠体の外側表面に、上記導電性部材に接続する補助導電性材料が付設されてなる。
(3)頂面側枠体及び底面側枠体のうちの少なくとも一方が帯電防止剤を含有する。
【0018】
【発明の実施の形態】
本発明のイオン活量測定器具を、添付の図面を用いて説明する。図4は、本発明に従うイオン活量測定器具の一例の構成を示す分解斜視図である。図4のイオン活量測定器具は、被検液の点着口42と参照液の点着口42、そして各点着口42に付与される被検液と参照液とを電気的に導通させるブリッジ49を備えた絶縁性材料からなる頂面側枠体48、各点着口に付与される被検液と参照液とを互いに隔離しながら流通させる被検液通路44と参照液通路44とを備えた絶縁性材料からなる底面側枠体51、そして頂面側枠体48と底面側枠体51との間に配置された二対のイオン選択性電極41a及び41bなどが備えられた基本構成を有する。本発明のイオン活量測定器具の基本構成は、図1から図3に示す従来のイオン活量測定器具と同様である。また、図4のイオン活量測定器具には、被検液と参照液を点着する際に、測定器具内部の空気を追い出すための空気抜き用の開口部54及び55が設けられている。
【0019】
図4のイオン活量測定器具には、さらに頂面側枠体48と底面側枠体51との間に、導電性部材58が、その一部を測定器具の外側に露出した状態で備えられている。導電性部材58は、底面側枠体51に徐電用開口部59を設けることにより、その一部が測定器具の外側に露出した状態にある。この導電性部材58の露出部分を接地することにより、イオン活量測定器具の枠体48及び51を徐電することができる。
【0020】
導電性部材58は、図3に示すように、イオン選択性電極と同一の形状とサイズを有することが好ましい。イオン選択性電極と同一の形状とサイズを有する導電性部材を用いることにより、従来のイオン活量測定器具に備えられていたイオン選択性電極と導電性部材とを交換するのみで、イオン活量測定器具の徐電が可能となる。なお、「イオン選択性電極と同一の形状とサイズ」とは、頂面側枠体48に形成されたイオン選択性電極を固定する溝に収容可能な形状とサイズであることを意味する。従って、導電性部材58は、イオン選択性電極と全く同一の形状とサイズである必要はない。
【0021】
導電性部材58は、公知の導電性材料から形成することができる。導電性材料の例としては、銀、銅、アルミニウムなどの金属や、ステンレススチールなどの合金組成物が挙げられる。導電性部材58の内部は、別の材料(例えば、導電性部材表面とは別の種類の導電性材料もしくは絶縁性材料)から形成されていてもよい。導電性部材58は、頂面側枠体48に蒸着法、スパッタ法、塗布法などの公知の方法により形成された導電性薄膜であってもよい。
【0022】
次に、本発明のイオン活量測定器具の徐電の方法について説明する。イオン活量測定器具の徐電は、徐電用開口部59を通じて導電性部材58の露出部分を接地することにより行われる。導電性部材58の接地時間(導電性部材が接地されている時間)は、30秒以下であることが好ましく、15秒以下であることがより好ましい。
【0023】
本発明のイオン活量測定器具を用いたイオン活量の測定は、従来のイオン活量測定器具と同様である。即ち、イオン活量測定器具の頂面側枠体48の二つの点着孔42に被検液と参照液をそれぞれ点着し、電位差計で測定された各イオン選択性電極(対)に発生する電位差から、被検液中のイオン活量が求められる。電位差計(図示せず)は、底面側枠体51の開口部53a(もしくは53b)を通じて、イオン選択性電極の導電性領域52a(もしくは52b)に接続される。イオン活量測定器具の徐電(導電性部材58の露出部分の接地)は、電位差測定(イオン活量の測定)の前に行われることが好ましい。
【0024】
図5は、本発明に従うイオン活量測定器具の別の一例の構成を示す分解斜視図である。図5のイオン活量測定器具においては、導電性部材58が底面側枠体51の内側表面に備えられ、さらに底面側枠体の外側表面には、導電性部材58に接続する補助導電性材料61が付設されている。導電性部材58と補助導電性材料61とは、導電性材料からなる接続部材62により互いに電気的に接続されている。導電性部材58に接続された補助導電性材料61は、導電性部材の一部である。これ以外の構成は、図4のイオン活量測定器具と同様である。
【0025】
補助導電性材料61及び接続部材62は、導電性材料から形成された導電性薄膜であってもよい。接続部材62としては、金属線などの電気配線を用いることもできる。底面側枠体51の外側表面に付設された補助導電性材料61により、イオン活量測定器具をより効果的に徐電でき、さらに導電性部材58の接地が容易となる。なお、補助導電性材料は、頂面側枠体、底面側枠体、もしくはこれら両枠体の外側表面に付設することができる。
【0026】
本発明のイオン活量測定器具の頂面側枠体48及び底面側枠体51のうちの少なくとも一方は、帯電防止剤を含有していることが好ましい。枠体には、公知の帯電防止剤を添加することができる。好ましい帯電防止剤の例としては、カーボンブラック、界面活性剤などが挙げられる。また、イオン活量測定器具の帯電を防止するためには、イオン風を当てながら測定器具を組み立てること、あるいはイオン風を当てながら測定器具を保管もしくは移動させることも好ましい。
【0027】
【発明の効果】
本発明のイオン活量測定器具は、徐電が可能であるために、取扱いによってイオン活量測定器具が帯電した場合でも、イオン活量を安定に測定することができる。
【図面の簡単な説明】
【図1】従来のイオン活量測定器具の一例の構成を示す斜視図である。
【図2】図1に記入した切断線I−I線に沿って切断したイオン活量測定器具の断面図である。
【図3】図1のイオン活量測定器具の分解斜視図である。
【図4】本発明に従うイオン活量測定器具の一例の構成を示す分解斜視図である。
【図5】本発明に従うイオン活量測定器具の別の一例の構成を示す分解斜視図である。
【符号の説明】
11a、11b、11c イオン選択性電極(対)
12 点着口
13 開口
14 通路
15a、15b、15c 開口部
16 多孔性部材
18 頂面側枠体
19 ブリッジ
20 水不透過性隔壁
21 底面側枠体
22a、22b、22c 電気的接続領域
23a、23b、23c 開口部
40 水不透過性隔壁
41a、41b イオン選択性電極(対)
42 点着口
43 開口
44 通路
45a、45b 開口部
46 多孔性部材
48 頂面側枠体
49 ブリッジ
51 底面側枠体
52a、52b 電気的接続領域
53a、53b 開口部
54 空気抜き用開口部
55 空気抜き用開口部
58 導電性部材
59 徐電用開口部
61 補助導電性材料
62 接続部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ion activity measuring instrument for potentiometrically measuring the activity of a specific type of ions in an aqueous liquid, particularly a biological fluid such as blood and urine.
[0002]
[Prior art]
The activity (or concentration) of specific types of ions contained in liquids (tap water, river water, sewage, industrial wastewater, etc.) and biological fluids (whole blood, plasma, blood such as serum, urine, saliva, etc.) An ion activity measuring instrument for measuring using an ion selective electrode is known. The ion activity measuring instrument is described in detail in Japanese Patent Nos. 1836427 and 1851649.
[0003]
FIG. 1 is a perspective view showing an example of a conventional ion activity measuring instrument (described in the above-mentioned Japanese Patent No. 1836427). FIG. 2 is a cross-sectional view of the ion activity measuring instrument cut along the line I-I entered in FIG. FIG. 3 is an exploded perspective view of the ion activity measuring instrument of FIG.
[0004]
The ion activity measuring instrument shown in FIG. 1 to FIG. 3 electrically connects the test solution spot 12, the reference solution spot 12, and the test solution and reference solution applied to each spot 12. The top side frame 18 made of an insulating material having a bridge 19 to be electrically conducted, and the test liquid passage 14 through which the test liquid and the reference liquid applied to each spotting port 12 are circulated while being isolated from each other. And a reference frame 14 made of an insulating material, and a pair of ion-selective electrodes 11a and 11b disposed between the top frame 18 and the bottom frame 21. And 11c. If the test liquid is spotted on one of the two spotting ports 12 and the reference liquid is spotted on the other, the test liquid may be spotted on any spotting port. Of the two passages 14, the passage 14 below the spot for spotting the test liquid is the path for the test liquid, and the path 14 below the spot for spotting the reference liquid is the reference liquid. It becomes a passage.
[0005]
Each of the three pairs of ion selective electrodes 11a, 11b, and 11c is fixed to a groove provided in the top surface side frame 18 made of an insulating material. The top surface side frame body 18 is provided with a bridge 19 for electrically connecting the test solution and the reference solution applied to each of the spotting ports 12 so as to cross the two spotting ports. Yes. As the bridge 19, a twisted yarn of polyethylene terephthalate fiber or the like is used. Each ion selective electrode has a structure in which a silver layer, a silver chloride layer, an electrolyte layer, and an ion selective membrane layer are laminated on a support made of an electrically insulating polymer film. The ion selective electrode is described in detail in Japanese Patent No. 1762307. Each of the ion selective electrodes 11a, 11b, and 11c is arranged with the surface of the ion selective layer facing downward.
[0006]
As shown in FIGS. 2 and 3, the passage 14 through which each of the test solution and the reference solution is circulated includes the surface of the ion selective electrode (the surface of the ion selective membrane), the test solution and the reference solution, respectively. A porous member 16 is attached to facilitate the contact. A part of the multi-component member 16 is pushed into the openings 15a, 15b and 15c of the water-impermeable partition wall 20 and is held by the restoring force of the porous member.
[0007]
Each of the test solution and the reference solution is applied to the spotting port 12 provided on the top surface side frame 18 using a pipette or the like. The test liquid and the reference liquid are electrically connected by the bridge 19 provided in the top surface side frame 18. Each of the test solution and the reference solution reaches the passage 14 of the bottom frame 21 through the opening 13. The test solution and the reference solution flow through each passage 14 while being separated from each other via the porous member 16.
[0008]
When each of the test liquid and the reference liquid flowing through the porous member 16 reaches a position below the ion selective electrode, the porous member that has absorbed the liquid expands. Each of the test solution and the reference solution is in contact with the surface of each ion selective electrode (the surface of the ion selective membrane layer). The ion activity in the test solution can be determined from the potential difference generated at each ion selective electrode (pair). In order to measure the potential difference, the electrical connection region of each ion selective electrode (for example, the electrical connection region 22a in the case of the ion selective electrode (pair) 11a) is provided on the bottom frame 21. A potentiometer (not shown) is connected through the openings 23a, 23b and 23c.
[0009]
By changing the type of ion selective electrode membrane of the ion selective electrode, hydrogen ions (H + ), lithium ions (Li + ), sodium ions (Na + ), potassium ions (K + ), magnesium ions (Mg 2+) ), Calcium ions (Ca 2+ ), chlorine ions (Cl ), hydrogen carbonate ions (HCO 3 ), carbonate ions (CO 3 2− ), and the like.
[0010]
Since the ion activity measuring instrument shown in FIGS. 1 to 3 includes three pairs of ion selective electrodes 11a, 11b and 11c, the potential difference generated at each ion selective electrode (pair) is measured. Thus, the activity of the three types of ions contained in the test solution can be measured only by spotting the test solution and the reference solution once. Such an ionic activity measuring instrument is suitable for measuring the ionic activity contained in a biological fluid such as blood, which is difficult to collect as a test solution, because the required amount of the test solution is extremely small. .
[0011]
[Problems to be solved by the invention]
When the ion activity is sequentially measured for a plurality of ion activity measuring instruments on which the test solution and the reference solution are spotted using the ion activity measuring instrument, the ion activity is stable. There is a case where it is not possible to measure and rarely shows an abnormal value (for example, a case where the measured activity of ions in blood shows a value that should not be contained in blood).
[0012]
When the ion activity shows an abnormal value, the present inventor determines the amount of the test solution and the reference solution that are spotted or the spotted state (the test solution and the reference solution are in contact with the surface of the ion-selective electrode). Etc.), but no abnormalities were found. Further investigation revealed that when the humidity in the measurement environment is low, the ion activity frequently shows an abnormal value. And it turned out that the abnormal value of ion activity has a strong correlation with the charge of an ion activity measuring instrument.
[0013]
That is, the ion activity is determined from the potential difference generated in the ion selective electrode pair of the ion activity measuring instrument. Therefore, when the ion-selective electrode pair is electrically connected to each other or the plurality of ion-selective electrodes are electrically connected to each other at a portion other than the bridge provided on the top surface side frame, The activity cannot be measured. Therefore, the top surface side frame and the bottom surface side frame of the ion activity measuring instrument are formed of an insulating material such as resin. It has also been found that the charging of the ion activity measuring instrument is mainly caused by the charging of the frame body due to the manufacture, shipment or measurement of the measuring instrument.
[0014]
The objective of this invention is providing the ion activity measuring instrument which can measure an ion activity stably.
[0015]
[Means for Solving the Problems]
The present inventor has studied a method for effectively slowing a charged ion activity measuring instrument. As a result, a conductive member is arranged between the top side frame and the bottom side frame of the ion activity measuring instrument, and the electric charge charged in the frame is transferred from the inside of the measurement instrument via the conductive member. It was found that guiding to the outside is effective for slow electricity. By disposing such a conductive member, it is possible to effectively prevent the frame body while maintaining an electrical insulation state between each of the ion selective electrodes (pairs) and between the plurality of ion selective electrodes. Slow electric charging becomes possible.
[0016]
The present invention comprises an insulating material provided with a spotting port for a test solution, a spotting port for a reference solution, and a bridge that electrically connects the test solution and the reference solution applied to each spotting port. Top side frame, and bottom side frame made of an insulating material provided with a test liquid passage and a reference liquid path for allowing the test liquid and the reference liquid applied to each spot port to flow while being isolated from each other An ion activity measuring instrument in which at least a pair of ion-selective electrodes are arranged between the conductive member and a part of the conductive member between the top-side frame and the bottom-side frame. Is an ion activity measuring instrument provided in a state exposed to the outside of the measuring instrument.
[0017]
Preferred embodiments of the ion activity measuring instrument of the present invention are as follows.
(1) The conductive member has the same shape and size as the pair of ion selective electrodes.
(2) An auxiliary conductive material connected to the conductive member is attached to the top surface side frame, the bottom surface side frame, or the outer surfaces of both the frames.
(3) At least one of the top side frame and the bottom side frame contains an antistatic agent.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The ion activity measuring instrument of the present invention will be described with reference to the accompanying drawings. FIG. 4 is an exploded perspective view showing a configuration of an example of an ion activity measuring instrument according to the present invention. The ion activity measuring instrument of FIG. 4 electrically connects the test solution spotting port 42, the reference solution spotting port 42, and the test solution applied to each spotting port 42 and the reference solution. A top frame 48 made of an insulating material provided with a bridge 49; a test liquid passage 44 and a reference liquid passage 44 through which a test liquid and a reference liquid applied to each spotting port are circulated while being isolated from each other; And a bottom surface side frame body 51 made of an insulating material, and a pair of ion selective electrodes 41a and 41b disposed between the top surface side frame body 48 and the bottom surface side frame body 51, etc. It has a configuration. The basic configuration of the ion activity measuring instrument of the present invention is the same as the conventional ion activity measuring instrument shown in FIGS. Further, the ion activity measuring instrument of FIG. 4 is provided with air vent openings 54 and 55 for expelling the air inside the measuring instrument when the test solution and the reference solution are spotted.
[0019]
The ion activity measuring instrument of FIG. 4 is further provided with a conductive member 58 between the top surface side frame 48 and the bottom surface side frame 51 with a part thereof exposed to the outside of the measurement instrument. ing. The conductive member 58 is in a state where a part of the conductive member 58 is exposed to the outside of the measuring instrument by providing the gradual power opening 59 in the bottom frame 51. By grounding the exposed portion of the conductive member 58, the frames 48 and 51 of the ion activity measuring instrument can be gradually charged.
[0020]
As shown in FIG. 3, the conductive member 58 preferably has the same shape and size as the ion selective electrode. By using a conductive member having the same shape and size as that of the ion selective electrode, the ion selective electrode and the conductive member provided in the conventional ion activity measuring instrument can be exchanged only to replace the ion activity. It is possible to slow down the measuring instrument. Note that “the same shape and size as the ion selective electrode” means that the shape and size can be accommodated in a groove for fixing the ion selective electrode formed on the top surface side frame 48. Therefore, the conductive member 58 does not have to be exactly the same shape and size as the ion selective electrode.
[0021]
The conductive member 58 can be formed from a known conductive material. Examples of the conductive material include metals such as silver, copper, and aluminum, and alloy compositions such as stainless steel. The inside of the conductive member 58 may be made of another material (for example, a different type of conductive material or insulating material from the surface of the conductive member). The conductive member 58 may be a conductive thin film formed on the top frame 48 by a known method such as a vapor deposition method, a sputtering method, or a coating method.
[0022]
Next, a method of slow electricity using the ion activity measuring instrument of the present invention will be described. The grading of the ion activity measuring instrument is performed by grounding the exposed portion of the conductive member 58 through the grading opening 59. The grounding time of the conductive member 58 (the time during which the conductive member is grounded) is preferably 30 seconds or less, and more preferably 15 seconds or less.
[0023]
The measurement of ion activity using the ion activity measuring instrument of the present invention is the same as the conventional ion activity measuring instrument. That is, the test solution and the reference solution are spotted on the two spotting holes 42 of the top surface side frame 48 of the ion activity measuring instrument, and are generated at each ion selective electrode (pair) measured by a potentiometer. The ion activity in the test solution is determined from the potential difference. The potentiometer (not shown) is connected to the conductive region 52a (or 52b) of the ion selective electrode through the opening 53a (or 53b) of the bottom frame 51. The slow current (grounding of the exposed portion of the conductive member 58) of the ion activity measuring instrument is preferably performed before the potential difference measurement (measurement of ion activity).
[0024]
FIG. 5 is an exploded perspective view showing the configuration of another example of the ion activity measuring instrument according to the present invention. In the ion activity measuring instrument of FIG. 5, the conductive member 58 is provided on the inner surface of the bottom surface side frame 51, and the auxiliary conductive material connected to the conductive member 58 on the outer surface of the bottom surface side frame body. 61 is attached. The conductive member 58 and the auxiliary conductive material 61 are electrically connected to each other by a connection member 62 made of a conductive material. The auxiliary conductive material 61 connected to the conductive member 58 is a part of the conductive member. Other configurations are the same as those of the ion activity measuring instrument of FIG.
[0025]
The auxiliary conductive material 61 and the connection member 62 may be a conductive thin film formed from a conductive material. As the connection member 62, an electrical wiring such as a metal wire can be used. With the auxiliary conductive material 61 attached to the outer surface of the bottom frame 51, the ion activity measuring instrument can be more effectively powered down and the grounding of the conductive member 58 is facilitated. The auxiliary conductive material can be attached to the top surface side frame, the bottom surface side frame, or the outer surfaces of these both frames.
[0026]
It is preferable that at least one of the top surface side frame 48 and the bottom surface side frame 51 of the ion activity measuring instrument of the present invention contains an antistatic agent. A known antistatic agent can be added to the frame. Examples of preferable antistatic agents include carbon black and surfactants. In order to prevent the ion activity measuring instrument from being charged, it is also preferable to assemble the measuring instrument while applying the ionic wind, or to store or move the measuring instrument while applying the ionic wind.
[0027]
【The invention's effect】
Since the ion activity measuring instrument of the present invention can be gradually charged, the ion activity can be stably measured even when the ion activity measuring instrument is charged by handling.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the configuration of an example of a conventional ion activity measuring instrument.
FIG. 2 is a cross-sectional view of an ion activity measuring instrument cut along a cutting line I-I entered in FIG. 1;
3 is an exploded perspective view of the ion activity measuring instrument of FIG. 1. FIG.
FIG. 4 is an exploded perspective view showing a configuration of an example of an ion activity measuring instrument according to the present invention.
FIG. 5 is an exploded perspective view showing the configuration of another example of the ion activity measuring instrument according to the present invention.
[Explanation of symbols]
11a, 11b, 11c Ion selective electrodes (pair)
12 Destination port 13 Opening 14 Passage 15a, 15b, 15c Opening 16 Porous member 18 Top surface side frame 19 Bridge 20 Water-impermeable partition wall 21 Bottom side frame 22a, 22b, 22c Electrical connection region 23a, 23b , 23c Opening 40 Water-impermeable partition 41a, 41b Ion selective electrode (pair)
42 Spotting port 43 Opening 44 Passage 45a, 45b Opening 46 Porous member 48 Top side frame 49 Bridge 51 Bottom side frame 52a, 52b Electrical connection region 53a, 53b Opening 54 Air vent opening 55 For air venting Opening 58 Conductive member 59 Gradual opening 61 Auxiliary conductive material 62 Connecting member

Claims (4)

被検液の点着口と参照液の点着口、そして各点着口に付与される被検液と参照液とを電気的に導通させるブリッジを備えた絶縁性材料からなる頂面側枠体、そして各点着口に付与される被検液と参照液とを互いに隔離しながら流通させる被検液通路と参照液通路とを備えた絶縁性材料からなる底面側枠体との間に少なくとも一対のイオン選択性電極が配置されてなるイオン活量測定器具であって、該頂面側枠体と底面側枠体との間に、導電性部材が、その一部を測定器具の外側に露出した状態で備えられてなるイオン活量測定器具。Top side frame made of an insulating material provided with a spot for the test liquid and a spot for the reference liquid, and a bridge for electrically connecting the test liquid and the reference liquid applied to each spot And a bottom-side frame body made of an insulating material provided with a test liquid passage and a reference liquid path for circulating the test liquid and the reference liquid applied to each spot port while separating them from each other An ion activity measuring instrument in which at least a pair of ion-selective electrodes are arranged, wherein a conductive member is disposed between the top surface side frame and the bottom surface side frame, and a part of the ion activity measuring instrument is outside the measuring instrument. An ion activity measuring instrument provided in an exposed state. 上記導電性部材が一対のイオン選択性電極と同一の形状とサイズとを有する請求項1に記載のイオン活量測定器具。The ion activity measuring instrument according to claim 1, wherein the conductive member has the same shape and size as the pair of ion selective electrodes. 頂面側枠体、底面側枠体、もしくはこれら両枠体の外側表面に、上記導電性部材に接続する補助導電性材料が付設されてなる請求項1もしくは2に記載のイオン活量測定器具。The ion activity measuring instrument according to claim 1 or 2, wherein an auxiliary conductive material connected to the conductive member is attached to the top side frame, the bottom side frame, or the outer surfaces of both frames. . 頂面側枠体及び底面側枠体のうちの少なくとも一方が帯電防止剤を含有する請求項1乃至3のうちのいずれかの項に記載のイオン活量測定器具。The ion activity measuring instrument according to any one of claims 1 to 3, wherein at least one of the top side frame and the bottom side frame contains an antistatic agent.
JP2002161006A 2002-06-03 2002-06-03 Measuring instrument for ionic activity Withdrawn JP2004003898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161006A JP2004003898A (en) 2002-06-03 2002-06-03 Measuring instrument for ionic activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161006A JP2004003898A (en) 2002-06-03 2002-06-03 Measuring instrument for ionic activity

Publications (1)

Publication Number Publication Date
JP2004003898A true JP2004003898A (en) 2004-01-08

Family

ID=30430196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161006A Withdrawn JP2004003898A (en) 2002-06-03 2002-06-03 Measuring instrument for ionic activity

Country Status (1)

Country Link
JP (1) JP2004003898A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523837A (en) * 2015-08-14 2018-08-23 ラズベリー インコーポレーテッド SOLID ELECTRODE, METHOD FOR MANUFACTURING THE SAME, AND METHOD OF USE IN SENSING

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523837A (en) * 2015-08-14 2018-08-23 ラズベリー インコーポレーテッド SOLID ELECTRODE, METHOD FOR MANUFACTURING THE SAME, AND METHOD OF USE IN SENSING

Similar Documents

Publication Publication Date Title
TWI283942B (en) Electrochemical cells, and gas sensor and fuel cell devices comprising same
AU638111B2 (en) Polarographic chemical sensor with external reference electrode
ES2340153T3 (en) METHOD OF FORMATION OF AN ELECTRICAL CONNECTION FOR AN ELECTRICOCHEMICAL CELL.
US4772375A (en) Antifouling electrochemical gas sensor
TW200804802A (en) Electrochemical test sensor with reduced sample volume
KR20030038665A (en) Antioxidant sensor
TWI609182B (en) Glucose measuring device andapparatus
US5096549A (en) Dehumidifier and method of using
RU2005136646A (en) HEMOGLOBIN SENSOR
JP2004003898A (en) Measuring instrument for ionic activity
JPH09170998A (en) Reference electrode assembly
CN109765278A (en) Electrochemical in-situ device
CN108139352B (en) Oxygen sensor and method of detecting oxygen
Thompson et al. The bilayer lipid membrane as a basis for a selective sensor for ammonia
US20070227908A1 (en) Electrochemical cell sensor
JP2004053401A (en) pH ELECTRODE
EP0313658B1 (en) Moisture remover
JP3856775B2 (en) Gas sensor
EP0741796B1 (en) Sensor device
JP3432570B2 (en) Flow cell type ion sensor
EP0096117B1 (en) Analyzer for chemical oxidizing or reducing agents
US4202748A (en) Electrochemical measuring cell
JP3708208B2 (en) pH sensor and ion water generator
JP3650919B2 (en) Electrochemical sensor
JPH05281180A (en) Multi-ion sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906