JP2004003871A - 生化学検体の検出方法と検出チップ - Google Patents

生化学検体の検出方法と検出チップ Download PDF

Info

Publication number
JP2004003871A
JP2004003871A JP2001401874A JP2001401874A JP2004003871A JP 2004003871 A JP2004003871 A JP 2004003871A JP 2001401874 A JP2001401874 A JP 2001401874A JP 2001401874 A JP2001401874 A JP 2001401874A JP 2004003871 A JP2004003871 A JP 2004003871A
Authority
JP
Japan
Prior art keywords
probe dna
dna
substrate
detecting
loop structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001401874A
Other languages
English (en)
Other versions
JP2004003871A5 (ja
Inventor
Tadaaki Yabubayashi
薮林 忠顕
Masazumi Tanaka
田中 正純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2001401874A priority Critical patent/JP2004003871A/ja
Publication of JP2004003871A publication Critical patent/JP2004003871A/ja
Publication of JP2004003871A5 publication Critical patent/JP2004003871A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

【課題】標識修飾を用いなくとも目的遺伝子の検出が可能であり、また標識修飾を用いた場合も検出工程を再現性よく簡素化でき、測定者に過度の技量を要求することがない生化学検体の検出方法と検出チップの提供。
【解決手段】ループ構造を形成しているプローブDNAは、目的DNAがある場合にのみハイブリダイゼーションが起こり、ループ構造が解消されてプローブDNAが伸びるため、ハイブリダイゼーションされたプローブDNAと、ループ構造を保持したままのプローブDNAとは基板からの高さに明確な違いを生じ、ハイブリダイゼーションの有無をこの高さの違い、立体的な段差として検出する。ハイブリダイゼーションされたプローブDNAに選択的に種々の標識修飾が可能であり、プローブDNA同士の高さの違いにさらに修飾した標識の大きさを加えてループ構造のプローブDNAとの段差を拡大してこれを検出・識別する。
【選択図】    図2

Description

【0001】
【発明の属する技術分野】
この発明は、ハイブリダイゼーションして2本鎖を形成したプローブDNAとループ構造を取っている1本鎖のプローブDNAとの高さの違いをを検出して目的の生化学検体を検出する方法に係り、基板に配列されたプローブDNAがループ構造を形成して解放末端側が基板側に向くように構成することで、目的DNAがある場合にハイブリダイゼーションが起こり、ループ構造が解消されるため、ハイブリダイゼーションして2本鎖を形成したプローブDNAは他のループ構造のプローブDNAと高さが異なること利用し、顕微鏡観察やX線回折などの手段で容易に目的遺伝子の検出が可能になる生化学検体の検出方法と検出チップに関する。
【0002】
【従来の技術】
DNAチップの基本原理は、DNAが相補的な二重螺旋構造を形成することを利用するものである。A(アデニン)とT(チミン)、C(シトシン)とG(グアニン)が対をなすことから、例えば、AGGTTACのDNA配列を持つ遺伝子を検出するには、プローブとしてTCCAATGの配列を持つDNAを作成し、サンプリング検体遺伝子中に目的遺伝子が存在すると、DNAハイブリダイゼーションによって、プローブDNAの配列にAGGTTACの配列が結合して二重螺旋構造を取るため、これを検出することで検体DNAを容易に選別できることになる。
【0003】
二重螺旋構造のDNAを検出する方法として、検体DNA(サンプリング遺伝子DNA)に蛍光標識の修飾を施しておき、プローブDNAと前記のDNAハイブリダイゼーション操作を行い、二重螺旋構造を呈したDNA、すなわち蛍光シグナルを発する物を検出する、蛍光法が知られている。
【0004】
蛍光標識としては、蛍光色素そのものの他、蛍光色素により直接染色された染色体、糖蛋白や糖脂質から切り出された糖鎖体に修飾したイオン性蛍光物質、あるいはタンパク質、核酸、酵素、細胞等を蛍光色素でタグ化するなど、種々方法並びに物質で蛍光を発する標識が提案されている。
【0005】
そこで、検体DNAに蛍光色素の修飾を行わずに二重螺旋構造のDNAを検出する方法として、屈折率変化を検出するSPR分光法を用いた方法が提案されている。詳述すると、ガラス基板に金属薄膜を形成してこの薄膜上にプローブDNAを固定しておき、これとサンプリング遺伝子をハイブリダイゼーション操作させることにより二重螺旋構造のDNAを形成させ、基板裏面側からの金属薄膜への反射光強度の測定を行い、ハイブリダイゼーション前の金属薄膜の屈折率と二重螺旋構造のDNAを有する場合の屈折率との変化を測定する。
【0006】
【発明が解決しようとする課題】
かかる蛍光法を用いたDNAハイブリダイゼーションの検出には、検体DNAへの蛍光標識の修飾操作が煩雑であること、また、施術者の技量によって前記修飾効果が異なること、種々条件で蛍光色素の光消失が発生すること、未反応吸着物によるバックグラウンドノイズの上昇で検出精度が低下すること等の問題が指摘されている。
【0007】
前記SPR分光法において、前述したハイブリダイゼーション前後の金属薄膜の屈折率の変化を測定するが、基板裏面側からの金属薄膜への入射角度と反射率との関係として解析する際に、当該変化が僅かであるため、さらに高精度に検体DNAを検出するには、SPR応答の増幅を図るなどの改良を施す必要がある。
【0008】
この発明は、バックグラウンドノイズの上昇で検出精度が低下する蛍光法やSPR応答の増幅を図る必要があるSPR分光法など異なり、従来の標識修飾を用いなくとも目的遺伝子の検出が可能であり、また標識修飾を用いた場合も検出工程を再現性よく簡素化でき、測定者に過度の技量を要求することがない、簡単な工程からなる生化学検体の検出方法と検出チップの提供を目的としている。
【0009】
【課題を解決するための手段】
発明者らは、前記蛍光法を用いたDNAハイブリダイゼーション検出に問題を有することから、光退色の懸念がある蛍光法に換えてSPR(Surface Plasmon Resonance)分光法を用いた方法を検討しており、このSPR応答の増幅を目的にプローブDNAへの金微粒子修飾の有効性を検討中に、金薄膜表面に対するプローブDNAの吸着固定量は、DNA塩基数(鎖長)によらずほぼ一定であること、金微粒子修飾量はDNA塩基数に依存することを知見し、これよりプローブDNA塩基数の違いによってプローブDNAの立体的構造が変化していることを知見した。
【0010】
そこで、発明者らは、プローブDNA鎖長の検討を行い、プローブDNAの塩基数の違いによるSPR応答、すなわち金微粒子修飾を行ったプローブDNAに対してハイブリダイゼーションを施し、その後のSPR角度のシフト量についての変化や挙動を検討したところ、塩基数10では金微粒子修飾量が少なく、塩基数30では修飾量が増大するが、いずれも該シフト量の増大効果が少ないこと、塩基数60では金微粒子修飾ができないこと、すなわち塩基数60のプローブDNAでは、ループ構造を形成しているため、金コロイド修飾が行なわれないことを知見した。
【0011】
また、発明者らは、プローブDNA鎖長の検討、特に塩基数60以上の長いプローブDNAにおけるSPR応答の増幅を目的に種々検討した結果、前述のごとく検出チップに吸着固定したプローブDNAに先に金微粒子修飾するのではなく、まず先にサンプルとのハイブリダイゼーションを施すと、検出チップの薄膜上でループ状となって配列していたプローブDNAが伸びて金微粒子修飾が可能となり、ハイブリダイゼーション後に金微粒子修飾を行う工程にて、長いプローブDNAにも修飾が可能となり、ハイブリダイゼーション後の2本鎖を形成したプローブDNAにのみ金微粒子修飾することが可能であることを知見した。
【0012】
さらに、発明者らは、基板に配列させたループ構造を形成しているプローブDNAにおいて、目的DNAがある場合にのみハイブリダイゼーションが起こり、ループ構造が解消されてプローブDNAが伸びることで、ハイブリダイゼーションされたプローブDNAと、ハイブリダイゼーションせずにループ構造を保持したままのプローブDNAとは基板からのその高さに明確な違いを生じることになり、ハイブリダイゼーションの有無をこの高さの違い、すなわち立体的な段差として検出可能であることを知見し、この発明を完成した。
【0013】
すなわち、この発明は、基板表面にプローブDNAを配列する工程、基板表面に固定されない解放端側が基板側に位置するように、ループ構造を形成しているプローブDNAに検体DNAをハイブリダイゼーションする工程、2本鎖を形成したプローブDNAとループ構造を取っている他プローブDNAとを高さの違いで検出・識別する工程を有することを特徴とする生化学検体の検出方法である。
【0014】
また、この発明は、基板表面にプローブDNAを配列する工程、ループ構造を形成している基板上のプローブDNAに検体DNAをハイブリダイゼーションする工程、ハイブリダイゼーションの実行中又は実行後のプローブDNAまたは検体DNAあるいは両方にプローブDNAより大きな標識を修飾する工程、2本鎖を形成したプローブDNAとループ構造を取っている他プローブDNAとを高さの違いで検出・識別する工程を有することを特徴とする生化学検体の検出方法である。なお、プローブDNAより大きな標識とは、プローブDNAの長さなどの寸法あるいはその形態より大きな寸法や形態を有する標識をいう。
【0015】
また、この発明は、プローブDNAにより小さな標識を修飾する工程、基板表面にプローブDNAを配列する工程、ループ構造を形成している基板上のプローブDNAに検体DNAをハイブリダイゼーションする工程、2本鎖を形成したプローブDNAとループ構造を取っている他プローブDNAとを高さの違いで検出・識別する工程を有することを特徴とする生化学検体の検出方法である。なお、プローブDNAより小さな標識とは、プローブDNAの長さなどの寸法あるいはその形態より小さな寸法や形態を有する標識をいう。
【0016】
また、この発明は、基板表面にプローブDNAを配列する工程、ループ構造を形成しているプローブDNAに予め標識修飾した検体DNAをハイブリダイゼーションする工程、2本鎖を形成したプローブDNAとループ構造を取っている他プローブDNAとを高さの違いで検出・識別する工程を有することを特徴とする生化学検体の検出方法である。
【0017】
さらに、この発明は、基板上に配列されたプローブDNAを有し、配列したプローブDNAはその基板表面に固定されない解放端側が基板側に位置するよう、また標識を修飾可能にした部位が基板側に位置するよう、あるいは標識を修飾した部位が基板側に位置するようループ構造を有することを特徴とする生化学検体の検出チップである。
【0018】
【発明の実施の形態】
以下にこの発明の特徴である各プローブDNAがループ構造を形成して解放末端が基板表面側にあるように構成した検出チップ並びにループ構造について説明する。
【0019】
まず、検出チップの作製について説明すると、ガラス基板をアセトン、メタノール、超純水中で超音波洗浄した後、10%フッ酸で表面を20秒間エッチングを行ない、さらに、アセトン、メタノール、超純水中で超音波洗浄した後、窒素ガスで乾燥させた。その後、スパッタ装置(ULVAC)を用いガラス基板にまず約1nm厚みのCr層を設け、さらに約50nm厚みのAu層を設けた。
【0020】
前記基板を濃硫酸中1〜2時間浸漬後、超純水で洗浄した後、プローブの3’端側をSH(チオール)基で、5’端側をビオチンで修飾したプローブDNA−D−BFR溶液(KHPO、KHPO、pH 7.0)を基板上に滴下し、飽和水蒸気中に約15時間放置し、プローブDNAをガラス基板の金薄膜上に付着させて検出チップとなした。なお、プローブDNAには日清紡製を使用した。
【0021】
金コロイド修飾方法は、上記の検出チップをR−BFR溶液(NaCl、Tris−HCl、pH 7.4)で洗浄後、窒素ガスでおだやかに乾燥させ、表面にアビジンをコートした金コロイド(粒径10nm、SIGMA製)を滴下し1〜3時間、飽和水蒸気中で放置することで、ビオチンとアビジンの特異的結合を利用して修飾させた。
【0022】
ハイブリダイゼーションは、R−BFR溶液とH−BFR溶液(NaCl、Tris−HCl、EDTA、pH 7.4)で洗浄後乾燥せずに、検体DNAのH−BFR溶液を所要濃度となるように滴下し、約16時間放置して実施した。
【0023】
SPR測定は、検出チップをR−BFR溶液で洗浄後に窒素ガスで乾燥し速やかにSPR測定を行なった。
【0024】
上記方法で、10〜60の塩基数のプローブDNAをそれぞれ固定した検出チップを作製した。この時、プローブDNAの金薄膜への吸着量をSPR測定により評価した。プローブDNAの塩基数が大きくなるにつれ、SPR角度のシフトが大きくなった。また、SPR角度シフトを分子量で割った値は、吸着量に比例するため、これを求めたところ、プローブDNAの吸着効率は、塩基数10が最もよく、30、60では、大きな変化がないこと、さらに塩基数による吸着効率の変化は、10、100倍と大きく変化するものではなく、塩基長によらずオーダーとしてほぼ一定であることを確認した。なお、ここでは基板への被覆率約25%を達成した。
【0025】
また、10〜60の塩基数のプローブDNAをそれぞれ固定した検出チップを作製し、それぞれ上記金コロイド修飾方法により修飾を行い、塩基数による金コロイド修飾量の変化をAFM(原子間力顕微鏡)で観察し、修飾された金コロイド粒子数を計測したところ、塩基長10では、約400個/μm、塩基長30では、約700個/μmの金コロイドの修飾が観察されたが、塩基長60では、金コロイドの修飾が全く観察されなかった。
【0026】
これを確認するため、SPR法を用いin−situでのDNAプローブに対する金コロイド修飾の挙動を観察した。すなわち、検出チップをプリズム上に接着し、基板表面を上述のR−BFR溶液で満たし、これに、金コロイド溶液を滴下し、ある一定入射角での反射光強度を継時的に観測したところ、金コロイド修飾が行なわれた場合にはSPR角度がシフトし、反射光強度の上昇が観察されるが、塩基数60のDNAでは、反射強度の変化が無くAFMでの観察と同様、金コロイドの修飾が行なわれないことを確認した。
【0027】
検出チップ金薄膜へのプローブDNAの吸着は、プローブDNAの鎖長に依らずオーダー的にほぼ一定であるのに対し、金薄膜に固定化されたプローブDNAに対する金コロイドの修飾効率は、プローブDNAの鎖長に大きく依存することが判明し、塩基数60のプローブDNAでは、全く金コロイド修飾が起こらないことを確認した。
【0028】
前述の合成によるプローブDNAに換えて、実際のO−19 gyrB遺伝子変異部周辺の856bpという長い遺伝子を目的DNA(試験遺伝子)とし、これと相補的に結合する末端30塩基、中央30塩基、中央60塩基の3種類をプローブDNAとし、前述と同様の方法で検出チップを作製した。
【0029】
上記の3種のプローブDNAに対して前述した金コロイド修飾方法を行い、その後実際の長いDNA鎖を用いてハイブリダイゼーションを実施した後、SPR法によるハイブリダイゼーションの検出を実施した。
【0030】
表1のプローブDNA塩基長によるSPR角度シフトの変化を示す表に明らかなように、30塩基のプローブDNAでは、末端、中央、共に、ハイブリダイゼーションによる有意差が小さく、また、塩基数60のプローブDNAでは、全く金コロイドが修飾されず、実際の長い遺伝子を目的遺伝子とした場合、上記の条件では、SPR法によるハイブリダイゼーションの検出は困難であることを確認した。
【0031】
【表1】
Figure 2004003871
【0032】
表1のプローブDNA塩基長によるSPR角度シフトの変化から、856bpの長いDNAを目的遺伝子とした場合、プローブ鎖と比べて、目的遺伝子が約14〜28倍長いため、立体的な制約によりプローブDNAと反応する確率が低いと考えられる。従って、ハイブリダイゼーションしたプローブ鎖に金コロイドが修飾される場合と、ハイブリダイゼーションしていないプローブ鎖に金コロイドが修飾される場合とでSPR角度のシフトにバラツキがみられると推測される。
【0033】
そこで先の工程、すなわち金コロイド修飾方法を行い、その後ハイブリダイゼーションを実施しする工程とは逆に、上記と同じプローブDNAの検出チップに対してハイブリダイゼーションを実施した後、金コロイド修飾方法を行い、その後SPR法による前記ハイブリダイゼーションの検出を実施した。
【0034】
すなわち、塩基数60のプローブDNAでは、ループ構造を形成しているため、金コロイド修飾が行なわれないと推測される。ループ構造をとっている長い1本鎖DNAはハイブリダイゼーションによりそのループ構造が解消された後に、金コロイド修飾を行なえば金コロイド修飾が可能であると推測される。そこで60塩基のDNAプローブにおいても同様の手法を用いれば金コロイド修飾が可能であると考えた。図1A,B参照。
【0035】
換言すれば、目的遺伝子がない場合には、ハイブリダイゼーションは起こらずかつ金コロイド修飾が行なわれない。これに対して、目的遺伝子がある場合には、ハイブリダイゼーションが起こり、ループ構造が解消されることにより、ハイブリダイゼーションしたDNAプローブにのみ選択的に金コロイド修飾が起こり、SPR測定でハイブリダイゼーションによるシフトに金コロイド修飾によるシフトが加わった大きなSPR角度シフトの差が得られると考えた。
【0036】
そこで、実際の長いDNA鎖を目的遺伝子とした検出チップを用い、前述の各工程で、プローブDNAの基板への付着、ハイブリダイゼーション、金コロイド修飾を実施し、水溶液中でのSPR角度シフト並びに空気中でのSPR角度シフトを測定した。
【0037】
プローブDNAのみの場合には、金コロイド修飾を行なってもSPR角度シフトが見られないが、プローブDNAにハイブリダイゼーションが起こった場合には、SPR角度が大きくシフトして金コロイド修飾が行われていることが明らかになった。
【0038】
すなわち、空気中でのSPR角度シフトの測定結果を表2に示すように、30塩基のプローブDNAでは、金コロイド修飾によるSPR角度シフトの増幅作用が小さく、また、サンプル間における偏差も大きかった。それに対して、60塩基のプローブDNAを用いて、ハイブリダイゼーション後に金コロイド修飾した場合には、金コロイド修飾によるSPR角度シフトが約4〜5倍増幅され、かつサンプル間における偏差も小さかった。
【0039】
要するに、ハイブリダイゼーション後に金コロイド修飾を行うことにより、溶液中、空気中ともに、60塩基プローブDNAの金コロイド修飾が可能となった。すなわち、60塩基プローブDNAの立体構造(ループ構造)を利用することにより、ハイブリダイゼーションしたプローブDNAのみに選択的に金コロイド修飾させることが可能であり、その結果、大きなSPR角度シフトの増幅が可能で、サンプル間の偏差を小さくすることが可能であることを確認した。
【0040】
【表2】
Figure 2004003871
【0041】
この発明は、以上の知見に基づきなされたもので、ループ構造を形成しているプローブDNAにおいて、目的DNAがある場合にのみハイブリダイゼーションが起こり、ループ構造が解消されてプローブDNAが伸びることを目的遺伝子の検出に利用するものである。すなわち、前述のようにハイブリダイゼーションされたプローブDNAとハイブリダイゼーションせずにループ構造を保持したままのプローブDNAとは基板からのその高さに明確な違いを生じており、これを公知の方法で検出・識別し、当該高さの違いあるいは立体的な段差をもってハイブリダイゼーションの有無の確認や目的遺伝子の検出が実施できるのである。
【0042】
また、この発明は、ハイブリダイゼーションされたプローブDNAに選択的に種々の標識修飾が可能であることから、プローブDNA同士の高さの違いにさらに修飾した標識の大きさを加えてループ構造を保持したままのプローブDNAとの段差を拡大してこれを検出・識別することが可能であり、標識としてはある程度の大きさがあるものであればいずれのものも利用でき、またハイブリダイゼーション後に2本鎖を形成した目的DNAにも標識修飾して前記の高さの違いを拡大させることも可能である。
【0043】
この発明において、基板には、ガラス基板、樹脂基板、シリコン基板等のプローブDNAの配列が実施可能な基板であればいずれの材質も採用できる。また、基板に貴金属薄膜を成膜する場合は、その表面粗度はできるだけ平坦なものが好ましい。洗浄、乾燥方法としては、実施例に示すごとく、半導体ウエーハや各種デバイスを製造する際に採用される、各種溶剤による洗浄、純水中の超音波洗浄、各種酸溶液による洗浄、ブロー乾燥、スピン乾燥など公知の基板の洗浄、乾燥方法を適宜選択、組合せて採用できる。ガラス基板としては、公知のホウケイ酸ガラス等が利用でき、厚みは厚いほうが取り扱いやすいが、いずれの厚みのものも利用できる。
【0044】
この発明において、プローブDNAの配列を容易にするため、基板上に金、白金、銀などの貴金属薄膜を設けることができる。成膜方法としては膜厚みを一定に制御するため、スパッタリング、イオンプレーティング、CVD等の公知の気相成長による方法が好ましい。なお、基板と薄膜との密着性を向上させるために下地層を適宜成膜することができる。例えば、ガラス基板、石英基板にCr層を設けたり、シラン化合物によって表面改質するなどの手段を採用できる。
【0045】
この発明において、基板上、あるいはさらに貴金属薄膜表面にプローブDNAを配列する工程は、特に限定されるものでなく、公知のいずれの方法も採用でき、例えば薄膜上を酸や純水で洗浄後、プローブDNAと緩衝液を用いて飽和水蒸気雰囲気中で配列させることができる。
【0046】
また、緩衝液としては、例えばKHPOとKHPOを配合して所要pHにした溶液が採用できる。他には、PSBや、NaClとTris−HCl、NaClとTris−HClとEDTAを用いるなど、所要pHにするため公知の薬液を選定配合した溶液等も採用できる。
【0047】
この発明において、プローブDNAは、その末端を一方は基板表面あるいは貴金属薄膜に固定し、他方端あるいはその近傍には後述の標識を修飾するために、各々の前記末端を前記基板表面あるいは標識と接合可能な物質で修飾しておくことが望ましい。
【0048】
この発明において、プローブDNAの塩基数は特に限定しないが、ハイブリダイゼーション後に、目的DNAと2本鎖を形成したプローブDNAにのみ標識を修飾するには、チップ基板上にあるプローブDNAはハイブリダイゼーション前にループ構造を形成して解放末端側あるいは修飾可能な部位が薄膜側にある必要がある。
【0049】
この発明において、プローブDNAは、その製造過程中又は製造後にループ構造を形成していて基板に配列されるか、基板に配列する際にループ構造を形成するか、基板に配列後にループ構造を形成するように構成するか、いずれの構成、方法も採用できる。
【0050】
例えば、図2A,Bに示すごとく、相補的な二重螺旋構造を形成可能な対をなすDNAの配列を予め形成しておき、ループ構造を形成し得るように構成することが可能であり、塩基数は特に限定しないが、比較的長鎖の構成を有するものが望ましく、好ましくは塩基数が60以上である。さらに塩基数が100を超えたり、1000程度の場合であってもこの発明を適用できる。
【0051】
この発明において、基板表面に配列したプローブDNAに検体DNAをハイブリダイゼーションする工程は、特に限定されるものでなく、公知のいずれの方法も採用でき、例えば基板の洗浄後に検体DNAと緩衝溶液を用いてハイブリダイゼーションさせることができる。緩衝溶液としては、例えばNaClとTris−HClを配合して所要pHに保持した溶液が採用できる。また、ガラス基板に金薄膜を設ける場合では、ハイブリダイゼーション時の温度を30〜40℃に保持することが好ましい。
【0052】
この発明において、標識には、金属粒子(Siを含む)、セラミックス粒子、公知の蛍光標識、あるいは生化学検体の検出に利用されている染色体、糖鎖体、タンパク質、核酸、酵素、細胞など、プローブDNA又は検体DNAに修飾してループ構造を形成しているプローブDNAとの高さの差を拡大できるものであればいずれのものも利用できる。
【0053】
金属微粒子標識は、Siを含み、Au、Al、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Moなどの各種金属の微粒子を用いるもので、特に微粒子の形状や粒径寸法や均一性は任意に適宜選択でき、特に必須条件ではないが、DNAの所要部位に修飾可能とすること、微粒子表面に成膜可能なことなどから、5μm以下、さらに1μm以下が好ましく、数nm〜数百nmの範囲で所定粒径が均一でかつ工業安定的に得られる微粒子が好ましい。
【0054】
この発明において、セラミックス微粒子標識には、公知のいずれの形態も採用できるが、微粒子表面に成膜可能なことなどから、5μm以下、さらに1μm以下が好ましく、検出方法に応じて数nm〜数百nmの範囲で所定粒径が均一でかつ工業安定的に得られるSiO、TiO、ZrO、Al、MgOなどのセラミックス微粒子が好ましい。
【0055】
この発明において、蛍光標識には、公知のいずれの形態も採用でき、市販されている蛍光色素によりタグ化された染色体、糖鎖体、タンパク質、核酸、酵素、細胞、微粒子等を標識自体の性質を利用したり後述のごとく抗原−抗体反応を利用して修飾させることが可能である。また、この発明では蛍光自体は必須でないため、蛍光標識等に利用されている染色体、糖鎖体、タンパク質、核酸、酵素、細胞をそのまま利用することも可能である。
【0056】
この発明において、上述の金属微粒子、セラミックス微粒子などの各種標識をプローブDNAに修飾する方法としては、例えば金属微粒子等の粒子自体の性質を利用したり、公知の蛍光標識を修飾する方法などのように抗原−抗体反応を利用して修飾するなど、公知のいずれの方法も採用できる。また、中性のコロイダル液のごとく、金属微粒子を均一分散させた溶液の形態を利用することで修飾が容易になる。
【0057】
また、プローブDNAの末端にビオチンを修飾しておき、ストレプトアビジンをコートした金属微粒子をビオチン−アビジンの高い結合能力を利用して標識となすことができる。さらに、プローブDNAの末端にIgGや抗プロテイン物質を付加することで、タンパクをコートした金属微粒子を抗原−抗体反応を利用して修飾させることが可能である。
【0058】
さらに、検体DNAに前記各種の標識を修飾することも可能で修飾方法は、検体DNAの所要箇所を適宜標識化できればよく、公知のいずれの方法も採用でき、特に末端を修飾するには上述の方法などいずれの方法も採用できる。
【0059】
この発明において、2本鎖を形成したプローブDNAとループ構造を取っている他プローブDNAとを高さの違いで検出・識別する方法には、標識の修飾の有無にかかわらず、例えば半導体ウェーハやデバイスの表面性状や形状、表層部を評価するために採用されている公知の各種計測評価方法並びにその装置を適宜利用することが可能である。
【0060】
例えば、電子線計測評価手法として、電子顕微鏡を用いた視野法、電子回折法など、X線計測評価手法として、X線回折法、X線トポグラフ、表面回折法、X線干渉法など、電界磁界計測評価手法として、走査型トンネル顕微鏡(STM)、走査トンネル分光(STS)、STMファミリーのAFMなど、光学的測評価手法として、光伝導法、光学顕微鏡法などがある。さらに、X線顕微鏡観察法、レーザー顕微鏡観察法も利用できる。雰囲気も上記の評価方法により異なるが、真空中又は所要溶液中のいずれでも評価できる。
【0061】
また、基板に前記手法の検査対象であるシリコンウェーハを用いたり、標識の種類や性質を利用して前記手法の検出対象や信号発生源等にすることもできる。また、前記の各種評価方法において、得られた信号、画像や回折像をさらに画像処理化して3次元画像化する公知の手法や装置を併用して、ハイブリダイゼーション後の2本鎖を形成したプローブDNAとループ構造を取っている他プローブDNAとの高さの違いを検出、識別することができる。
【0062】
【実施例】
実施例1
ガラス基板をアセトン、メタノール、超純水中で超音波洗浄した後、10%フッ酸で表面を20秒間エッチングを行ない、さらに、アセトン、メタノール、超純水中で超音波洗浄した後、窒素ガスで乾燥させた。
その後、スパッタ装置(ULVAC)を用いガラス基板にまず約1nm厚みのCr層を設け、さらに約50nm厚みのAu層を設けた。
【0063】
前記基板を濃硫酸中1〜2時間浸漬後、超純水で洗浄した後、30塩基、60塩基のプローブDNAの3’端側をSH(チオール)基で、5’端側をビオチンで修飾したプローブDNA−D−BFR溶液(KHPO、KHPO、pH 7.0)を基板上に滴下し、飽和水蒸気中に約15時間放置し、プローブDNAをガラス基板の金薄膜上に付着させて検出チップとなした。プローブDNAには日清紡製を使用した。
【0064】
プローブDNAと完全に相補的な60塩基の目的DNAとのハイブリダイゼーションは、R−BFR溶液とH−BFR溶液(NaCl、Tris−HCl、EDTA、pH 7.4)で洗浄後乾燥せずに、検体DNAのH−BFR溶液を所要濃度となるように滴下し、約16時間放置して実施した。
【0065】
プローブDNAの修飾には、前述のごとくビオチンで修飾した5’端側とシリカ粒子とをビオチン−アビジン結合させるため、予めアビジンコートしたシリカ粒子を用いて、pH 7.4のコロイダルシリカとなして実施した。コロイダルシリカとしては粒径が100nmの粒径のものを用いた。
【0066】
ハイブリダイゼーションを検出する方法として、STM、STS、AFMの3種を実施した。30塩基の検出チップでは全てのプローブDNAにシリカ微粒子標識がされているようでハイブリダイゼーション前後で差が見られなかった。
【0067】
塩基数60のプローブDNAにおいては、目的DNAとのハイブリダイゼーション前ではシリカ微粒子標識の修飾が全く実施できず、ハイブリダイゼーション後ではシリカ微粒子標識の修飾が行われたことから、ハイブリダイゼーション前後で100nm〜120nmの段差を確認した。なお、ハイブリダイゼーション後に標識の修飾を行わない場合は、8nm〜20nmの段差を確認した。又、いずれの検出方法でも画像処理化することで、検出チップ表面に段差があるかないかを簡単に確認できた。
【0068】
実施例2
実施例1の合成による目的DNAに換えて、実際のO−19 gyrB遺伝子変異部周辺の856bpという長い遺伝子を目的DNA(試験遺伝子)とし、これらと相補的に結合する中央60塩基をプローブDNAとし、実施例1と同様の方法で検出チップを作製した。
【0069】
上記のプローブDNAに対して実際の長いDNA鎖を用いて実施例1と同様にハイブリダイゼーションを実施した後、Fe微粒子コロイダル修飾方法を行った。すなわち、5’端側とビオチン−アビジン結合させるため、予めアビジンコートした平均粒径が1μm程度のFe微粒子を用いて、pH 7.4のコロイダル液となして実施した。
【0070】
ハイブリダイゼーションを検出する方法として、走査反射電子顕微鏡による観察を実施したところ、1000nm〜1050nmの段差を確認した。
【0071】
また、上記のハイブリダイゼーションを実施する際に、目的遺伝子がある場合と、ない場合を設定して、Fe微粒子コロイダル修飾を行い、その後、微分干渉顕微鏡にて観察を行った結果を図3に示す。図3に明らかなように、目的遺伝子がある場合には、Fe微粒子を多数観察されたが、目的遺伝子がない場合には、Fe微粒子はほとんど観察されず、上記の段差の検出結果と一致した。
【0072】
【発明の効果】
この発明は、例えば、プローブDNAの解放末端側が基板側に向くようにループ構造を取る構成を採用することで、目的検体がある場合にはハイブリダイゼーションが起こり、ループ構造が解消されるため、ハイブリダイゼーションしたプローブDNAにのみ金属やセラミックス微粒子などの標識の修飾が可能になり、この2本鎖を形成して伸びたプローブDNAの解放末端に標識が修飾されると、ループを形成している他のプローブDNAとの高さの差が顕著になり、検出チップ表面にある段差の程度とその密度をみることでハイブリダイゼーションの有無、目的遺伝子の存在の確認が可能になった。
【図面の簡単な説明】
【図1】ハイブリダイゼーションによるループ構造の解消と金コロイド修飾の状況を示す模式図であり、Aは目的遺伝子がない場合、Bは目的遺伝子が有る場合を示す。
【図2】A、Bはこの発明におけるプローブDNAのループ構造の概念を示す説明図である。
【図3】A、Bはこの発明による検出チップを微分干渉顕微鏡にて観察を行った際の顕微鏡写真の模写図であり、Aは目的遺伝子がある場合、Bは目的遺伝子がない場合である。

Claims (17)

  1. 基板表面にプローブDNAを配列する工程、ループ構造を形成しているプローブDNAに検体DNAをハイブリダイゼーションする工程、2本鎖を形成したプローブDNAとループ構造を取っている他プローブDNAとを高さの違いで検出・識別する工程を有する生化学検体の検出方法。
  2. 基板表面にプローブDNAを配列する工程、ループ構造を形成している基板上のプローブDNAに検体DNAをハイブリダイゼーションする工程、ハイブリダイゼーションの実行中又は実行後のプローブDNAまたは検体DNAあるいは両方に標識を修飾する工程、2本鎖を形成したプローブDNAとループ構造を取っている他プローブDNAとを高さの違いで検出・識別する工程を有する生化学検体の検出方法。
  3. プローブDNAに標識を修飾する工程、基板表面にプローブDNAを配列する工程、ループ構造を形成している基板上のプローブDNAに検体DNAをハイブリダイゼーションする工程、2本鎖を形成したプローブDNAとループ構造を取っている他プローブDNAとを高さの違いで検出・識別する工程を有する生化学検体の検出方法。
  4. 基板表面にプローブDNAを配列する工程、ループ構造を形成しているプローブDNAに予め標識修飾した検体DNAをハイブリダイゼーションする工程、2本鎖を形成したプローブDNAとループ構造を取っている他プローブDNAとを高さの違いで検出・識別する工程を有する生化学検体の検出方法。
  5. プローブDNAの塩基数が60以上である請求項1から請求項4のいずれかに記載の生化学検体の検出方法。
  6. 基板表面に貴金属薄膜を有する請求項1から請求項4のいずれかに記載の生化学検体の検出方法。
  7. 基板上の2本鎖を形成したプローブDNAとループ構造を取っている他プローブDNAとの高さの違いを検出する方法が、電子又は光学顕微鏡観察法、X線顕微鏡観察法、レーザー顕微鏡観察法、STM,STS,AFM観察法、電子回折法、X線回折法、X線トポグラフ法、X線表面回折法のいずれかである請求項1から請求項4のいずれかに記載の生化学検体の検出方法。
  8. 標識がプローブDNAより大きい請求項2又は請求項4に記載の生化学検体の検出方法。
  9. 標識がプローブDNAより小さい請求項3に記載の生化学検体の検出方法。
  10. 標識が、金属粒子(Siを含む)、セラミックス粒子、染色体、糖鎖体、タンパク質、核酸、酵素、細胞のいずれかである請求項2から請求項4のいずれかに記載の生化学検体の検出方法。
  11. 基板上に配列されたプローブDNAを有し、配列したプローブDNAはその基板表面に固定されない解放端側が基板側に位置するようループ構造を有する生化学検体の検出チップ。
  12. 基板上に配列されたプローブDNAを有し、配列したプローブDNAはその標識を修飾可能にした部位が基板側に位置するようループ構造を有する生化学検体の検出チップ。
  13. 基板上に配列されたプローブDNAを有し、配列したプローブDNAはその標識を修飾した部位が基板側に位置するようループ構造を有する生化学検体の検出チップ。
  14. プローブDNAの塩基数が60以上である請求項11から請求項13のいずれかに記載の生化学検体の検出チップ。
  15. 基板表面に貴金属薄膜を有する請求項11から請求項13のいずれかに記載の生化学検体の検出チップ。
  16. 標識が、金属微粒子(Siを含む)、セラミックス微粒子、染色体、糖鎖体、タンパク質、核酸、酵素、細胞のいずれかである請求項13に記載の生化学検体の検出チップ。
  17. 基板がガラスまたは半導体シリコンからなり、表面に金薄膜を有する請求項16に記載の生化学検体の検出チップ。
JP2001401874A 2001-12-28 2001-12-28 生化学検体の検出方法と検出チップ Pending JP2004003871A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001401874A JP2004003871A (ja) 2001-12-28 2001-12-28 生化学検体の検出方法と検出チップ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001401874A JP2004003871A (ja) 2001-12-28 2001-12-28 生化学検体の検出方法と検出チップ

Publications (2)

Publication Number Publication Date
JP2004003871A true JP2004003871A (ja) 2004-01-08
JP2004003871A5 JP2004003871A5 (ja) 2005-08-04

Family

ID=30428223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001401874A Pending JP2004003871A (ja) 2001-12-28 2001-12-28 生化学検体の検出方法と検出チップ

Country Status (1)

Country Link
JP (1) JP2004003871A (ja)

Similar Documents

Publication Publication Date Title
JP4146239B2 (ja) オリゴヌクレオチド修飾粒子をベースとするバイオバーコード
US7253277B2 (en) Nanoparticle polyanion conjugates and methods of use thereof in detecting analytes
EP0744028B1 (fr) Surfaces hautement specifiques pour reactions biologiques, procede pour leur preparation et procede pour leur utilisation
JP5260339B2 (ja) 核酸分析デバイス、及び核酸分析装置
JP2005524849A (ja) ラマン分光分析のフィンガープリントを備えた分析物質検出用のナノ粒子プローブ
JP2007171158A (ja) 生体分子検出素子とその製造方法及び生体分子検出方法
JP2004510968A (ja) バイオチップ、生物材料を特定する光ルミネセンス方法並びにそれら方法およびバイオチップに使用する装置。
Tessier et al. Improved surface sensing of DNA on gas-etched porous silicon
JP2004003871A (ja) 生化学検体の検出方法と検出チップ
JP4233807B2 (ja) 生化学反応体の検出方法とバイオチップ
JP5097495B2 (ja) 生体分子検出素子及び生体分子検出素子の製造方法
JP3824309B2 (ja) 生化学検体の検出方法と検出チップ
JP4022400B2 (ja) 生化学検体の検出方法
JP2007178439A (ja) 生化学反応体の検出方法とバイオチップ
JP3847623B2 (ja) 生化学検体の検出方法と検出チップ
JP3998977B2 (ja) 生化学検体の検出方法
JP4050540B2 (ja) 生化学反応体の検出方法とバイオチップ
CN113215222A (zh) 一种免扩增核酸检测方法
JP4194794B2 (ja) 生化学反応体の検出方法
JP2003329676A (ja) 生化学検体の検出方法と検出チップ
Freeman et al. Detection of biomolecules using nanoparticle surface enhanced Raman scattering tags
JP2005017233A (ja) 生化学反応体の検出方法とバイオチップ
US20090311699A1 (en) Method of surface plasmon resonance (spr) to detect genomic aberrations in patients with chronic lymphocytic leukemia
US20060100787A1 (en) Synthesis of nanocodes, and imaging using scanning probe microscopy
US20100279422A1 (en) Method of surface plasmon resonance (spr) technology to detect genomic disorders for prenatal diagnosis

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041228

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051011

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070419