JP2003347488A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method

Info

Publication number
JP2003347488A
JP2003347488A JP2002151764A JP2002151764A JP2003347488A JP 2003347488 A JP2003347488 A JP 2003347488A JP 2002151764 A JP2002151764 A JP 2002151764A JP 2002151764 A JP2002151764 A JP 2002151764A JP 2003347488 A JP2003347488 A JP 2003347488A
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor device
groove
conductive material
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002151764A
Other languages
Japanese (ja)
Other versions
JP3791459B2 (en
Inventor
Toshitaka Kanamaru
俊隆 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002151764A priority Critical patent/JP3791459B2/en
Publication of JP2003347488A publication Critical patent/JP2003347488A/en
Application granted granted Critical
Publication of JP3791459B2 publication Critical patent/JP3791459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device wherein heat dissipating performance is improved without obstructing high speed and high level integration of a semiconductor element which are achieved by SOI technique and obstructing miniaturization of a package which is achieved by flip chip mounting, and to provide a method for manufacturing the device. <P>SOLUTION: In the semiconductor device 101 wherein a semiconductor layer 10 is laminated on a retaining substrate 11, semiconductor elements 81-83 are formed on a first surface 70 on a semiconductor layer 10 side, trenches 2 are formed from a second surface 71 on a retaining substrate 11 side toward the semiconductor layer 10, and the insides of the trenches 2 are filled and formed with high thermal conducting material 3 whose thermal conductivity is greater than that of the retaining substrate 11, and heat dissipating performance of the semiconductor device 101 is improved. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放熱性能を向上さ
せた半導体装置およびその製造方法に関するもので、特
に、支持基板上に半導体層が積層されてなる半導体装置
およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having improved heat radiation performance and a method of manufacturing the same, and more particularly to a semiconductor device having a semiconductor layer laminated on a supporting substrate and a method of manufacturing the same. .

【0002】[0002]

【従来の技術】半導体素子の高速化や高集積化のため
に、SOI(Silicon On Insulator)技術が用いられて
いる。SOIは、絶縁性基体上に半導体層を形成し、そ
の半導体層に半導体素子を形成するものである。
2. Description of the Related Art SOI (Silicon On Insulator) technology is used to increase the speed and integration of semiconductor devices. In the SOI, a semiconductor layer is formed on an insulating substrate, and a semiconductor element is formed on the semiconductor layer.

【0003】また、高速化・高集積化が進んだ半導体チ
ップの実装方法として、フリップチップ実装が行われて
いる。フリップチップ実装は、半導体素子を形成した半
導体チップの主面に半田バンプを設け、その半田バンプ
により、半導体チップの主面と当該チップを搭載する配
線基板を向かい合わせて接続する構造である。フリップ
チップ実装は、配線遅延を低減することができ、またパ
ッケージを小型にできるので、前記SOI技術による半
導体チップの高速化・高集積化と相性の良い実装方法で
ある。このフリップチップ実装においては、近年、さら
なる小型化を目的として、前記配線基板の大きさを半導
体チップの大きさにほぼ等しくした、CSP(Chip Siz
e Package)構造の検討が行われている。
[0003] As a method of mounting a semiconductor chip with higher speed and higher integration, flip chip mounting is performed. The flip-chip mounting is a structure in which a solder bump is provided on a main surface of a semiconductor chip on which a semiconductor element is formed, and the main surface of the semiconductor chip and a wiring board on which the chip is mounted face-to-face and connected by the solder bump. Flip chip mounting is a mounting method that is compatible with high-speed and high-integration of a semiconductor chip by the SOI technology, because wiring delay can be reduced and a package can be reduced in size. In this flip-chip mounting, in recent years, for the purpose of further miniaturization, the size of the wiring board has been made substantially equal to the size of a semiconductor chip, and a CSP (Chip Siz
e Package) structure is being studied.

【0004】[0004]

【発明が解決しようとする課題】前記SOI技術により
高速化、高集積化が進められた半導体素子においては、
動作中において発生する熱が、熱伝導性の低い支持基板
の存在により、半導体装置の外に放熱され難いという問
題点がある。
SUMMARY OF THE INVENTION In a semiconductor device whose speed and integration have been advanced by the SOI technology,
There is a problem that heat generated during operation is hard to be radiated outside the semiconductor device due to the presence of the supporting substrate having low thermal conductivity.

【0005】また、フリップチップ実装においても、従
来の半導体チップ裏面を配線基板に貼り付ける実装方法
に比較して、放熱能力は低下しており、特にCSP構造
において厳しくなっている。
Also, in the flip-chip mounting, the heat radiation ability is lower than that of the conventional mounting method in which the back surface of the semiconductor chip is attached to a wiring board, and the CSP structure is particularly severe.

【0006】このため、高速化・高集積化が進められた
前記半導体装置においては、素子特性の変化、配線抵抗
の増大、半田バンプの融解、熱応力による保護膜剥離と
いった問題が発生しやすい。
For this reason, in the semiconductor device which has been advanced in speed and integration, problems such as changes in element characteristics, increase in wiring resistance, melting of solder bumps, and peeling of the protective film due to thermal stress are likely to occur.

【0007】そこで本発明の目的は、SOI技術による
半導体素子の高速化・高集積化と、フリップチップ実装
によるパッケージの小型化を阻害することなく、放熱性
能を向上させた半導体装置およびその製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device having improved heat dissipation performance without impeding high-speed and high-integration of a semiconductor element by SOI technology and miniaturization of a package by flip-chip mounting, and a method of manufacturing the same. Is to provide.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明は、支持基板上に半導体層が
積層されてなる半導体装置において、半導体層側の第1
表面に半導体素子が形成され、支持基板側の第2表面か
ら前記半導体層へ向けて溝が形成され、当該溝内に支持
基板より熱伝導率の大きな高熱伝導材料が埋め込まれる
ことを特徴としている。
According to a first aspect of the present invention, there is provided a semiconductor device in which a semiconductor layer is laminated on a supporting substrate.
A semiconductor element is formed on the surface, a groove is formed from the second surface on the support substrate side toward the semiconductor layer, and a high heat conductive material having a higher thermal conductivity than the support substrate is embedded in the groove. .

【0009】これによれば、支持基板の溝内に埋め込ま
れた高熱伝導材料を介して、半導体素子の動作中に半導
体層側の第1表面で発生した熱が、すばやく支持基板側
の第2表面に伝達し、そこから放熱される。従って、半
導体装置の放熱性能が向上し、動作中の半導体素子の温
度上昇を低減することができるため、温度上昇による素
子の特性変化も低減することができる。
According to this, the heat generated on the first surface on the semiconductor layer side during the operation of the semiconductor element is quickly transferred to the second surface on the support substrate side through the high thermal conductive material embedded in the groove of the support substrate. Transfers to the surface, from which heat is dissipated. Therefore, the heat dissipation performance of the semiconductor device is improved, and the temperature rise of the semiconductor element during operation can be reduced, so that a change in the characteristics of the element due to the temperature rise can be reduced.

【0010】請求項2に記載の発明は、支持基板が、少
なくとも一方の表面に絶縁層が形成された半導体基板で
あり、前記半導体層が当該絶縁層の上に積層されること
を特徴としている。これによれば、半導体基板の内部に
酸化膜等の絶縁層を有する、いわゆるSOI構造の半導
体基板において、半導体素子の温度上昇を防止すること
ができる。
According to a second aspect of the present invention, the support substrate is a semiconductor substrate having an insulating layer formed on at least one surface, and the semiconductor layer is laminated on the insulating layer. . According to this, in a semiconductor substrate having a so-called SOI structure having an insulating layer such as an oxide film inside the semiconductor substrate, a temperature rise of the semiconductor element can be prevented.

【0011】請求項3に記載の発明は、半導体素子が発
熱量の大きな発熱素子であり、前記溝が当該発熱素子の
直下に形成されることを特徴としている。これによれ
ば、発熱素子の発生する熱を、発熱素子の直下に形成し
た溝内に埋め込まれた高熱伝導材料を介して、すばやく
直下の第2表面に伝達することができる。このため、発
熱素子の発生する熱が同じ半導体層内で発熱素子の周囲
に形成された他の素子へ伝達するのを抑制することがで
き、発熱素子の熱の広がりを抑えて他の素子への熱影響
を低減することができる。
The invention according to claim 3 is characterized in that the semiconductor element is a heating element having a large heat value, and the groove is formed immediately below the heating element. According to this, the heat generated by the heating element can be quickly transmitted to the second surface immediately below via the high heat conductive material embedded in the groove formed immediately below the heating element. For this reason, it is possible to suppress the heat generated by the heating element from being transmitted to other elements formed around the heating element in the same semiconductor layer, and to suppress the spread of heat of the heating element to other elements. Can reduce the thermal effect of

【0012】請求項4に記載の発明は、前記溝が、第2
表面に向かって広がる順テーパ形状に形成されることを
特徴としている。これによれば、溝形状を順テーパ形状
にすることで、前記高熱伝導材料の溝内への埋め込み性
を良くすることができるので、熱の伝達性が向上して、
半導体装置の放熱性能が向上する。
[0012] According to a fourth aspect of the present invention, the groove is a second groove.
It is characterized by being formed in a forward tapered shape spreading toward the surface. According to this, by making the groove shape a forward taper shape, the embedding property of the high thermal conductive material in the groove can be improved, so that the heat transfer property is improved,
The heat radiation performance of the semiconductor device is improved.

【0013】請求項5に記載の発明は、高熱伝導材料
が、銅、アルミニウム、銀、金、銅合金、アルミニウム
合金、銀合金、金合金のいずれかであることを特徴とし
ている。これによれば、これらの高熱伝導材料はいずれ
も熱伝導率が大きく、前記の半導体装置において、素子
で発生した熱をすばやく支持基板側の第2表面に伝達
し、放熱することができる。
The invention according to claim 5 is characterized in that the high heat conductive material is any of copper, aluminum, silver, gold, copper alloy, aluminum alloy, silver alloy, and gold alloy. According to this, each of these high heat conductive materials has a high thermal conductivity, and in the above-described semiconductor device, heat generated in the element can be quickly transmitted to the second surface on the support substrate side and radiated.

【0014】請求項6に記載の発明は、高熱伝導材料
が、第2表面上にも連結して形成されることを特徴とし
ている。これによれば、第2表面上に連結して形成され
る高熱伝導材料により、第2表面に伝達された熱の放熱
性能をより高めることができる。
The invention according to claim 6 is characterized in that the high heat conductive material is formed so as to be connected also on the second surface. According to this, the heat dissipation performance of the heat transmitted to the second surface can be further improved by the high heat conductive material formed by being connected on the second surface.

【0015】請求項7に記載の発明は、高熱伝導材料に
当接して、放熱部材が配置されることを特徴としてい
る。これによれば、高熱伝導材料に当接して配置された
放熱部材により、第2表面に伝達された熱の放熱性能
を、さらに高めることができる。
According to a seventh aspect of the present invention, a heat radiating member is disposed in contact with the high heat conductive material. According to this, the heat dissipating member arranged in contact with the high heat conductive material can further enhance the heat dissipating performance of the heat transmitted to the second surface.

【0016】請求項8に記載したように、本発明は、半
導体層側の第1表面に半田バンプが形成され、半田バン
プを配線基板に接続する、いわゆるフリップチップ実装
に適用して効果的である。フリップチップ実装において
は、実装構造上、放熱に対しては不利であるが、本発明
を適用することでその不利を解消することができ、必要
な放熱性能を確保することができる。
The present invention is effective when applied to a so-called flip chip mounting in which a solder bump is formed on a first surface on a semiconductor layer side and the solder bump is connected to a wiring board. is there. In flip-chip mounting, it is disadvantageous for heat radiation due to the mounting structure. However, by applying the present invention, the disadvantage can be solved and necessary heat radiation performance can be secured.

【0017】また請求項9に記載したように、本発明
は、配線基板が支持基板とほぼ同じサイズである、いわ
ゆるCSPに適用して効果的である。配線基板が支持基
板とほぼ同じで、フリップチップ実装の中でも放熱にお
いて非常に厳しい構造となっているCSPにおいても、
本発明により、必要な放熱性能を確保することができ
る。
Further, as described in claim 9, the present invention is effective when applied to a so-called CSP in which the wiring substrate has substantially the same size as the support substrate. Even in CSPs, where the wiring substrate is almost the same as the support substrate and has a very severe structure for heat dissipation in flip chip mounting,
According to the present invention, necessary heat radiation performance can be secured.

【0018】請求項10〜12に記載した発明は、上述
した半導体装置の製造方法に関するものである。
The invention according to claims 10 to 12 relates to a method for manufacturing the above-described semiconductor device.

【0019】その作用効果は同様であるので詳細説明は
省略するが、請求項10に記載した第2表面から半導体
層へ向けて溝を形成する第2工程は、第1表面に半導体
素子を形成する第1工程の前に行ってもよいし、第1工
程の後に行ってもよい。第3工程は第2工程の後に行う
が、高熱伝導材料の耐熱性が低い場合には、第3工程は
第1工程と第2工程の後に行い、耐熱性が高い場合に
は、第2工程と第3工程を第1工程の前に行うこともで
きる。
Since the operation and effect are the same, detailed description is omitted, but the second step of forming a groove from the second surface to the semiconductor layer according to claim 10 forms a semiconductor element on the first surface. May be performed before the first step to be performed, or may be performed after the first step. The third step is performed after the second step. When the heat resistance of the high heat conductive material is low, the third step is performed after the first step and the second step. When the heat resistance is high, the second step is performed. And the third step can be performed before the first step.

【0020】さらに、請求項11に記載したように、半
導体素子が発熱量の大きな発熱素子である場合には、溝
を発熱素子の直下に選択的に形成して、周りの半導体素
子への熱の影響を選択的に抑制することができる。ま
た、請求項12に記載したように、エッチングで溝を順
テーパ形状に形成して、高熱伝導材料の埋め込み性と熱
の伝達性を向上することができる。
Further, when the semiconductor element is a heating element having a large amount of heat generation, the groove is selectively formed directly below the heating element to provide heat to the surrounding semiconductor elements. Can be selectively suppressed. In addition, as described in the twelfth aspect, the grooves are formed in a forward tapered shape by etching, so that the embedding property of the high heat conductive material and the heat transfer property can be improved.

【0021】[0021]

【発明の実施の形態】(第1の実施形態)以下、本発明
の実施形態を、図に基づいて説明する。
(First Embodiment) An embodiment of the present invention will be described below with reference to the drawings.

【0022】図1(a)は、本発明の第1実施形態にお
ける半導体装置を示す断面模式図であり、図1(b)
は、当該半導体装置の配線基板への搭載状態を示す断面
図である。
FIG. 1A is a schematic sectional view showing a semiconductor device according to the first embodiment of the present invention, and FIG.
FIG. 3 is a cross-sectional view showing a state where the semiconductor device is mounted on a wiring board.

【0023】図1(a)に示す半導体装置101は、支
持基板11と、支持基板11上に積層された半導体層1
0からなり、支持基板11と半導体層10が半導体チッ
プ12を構成している。半導体層10側の表面70に
は、半導体素子81,82,83が形成されている。ま
た、支持基板11側の表面71には半導体層10に向か
う複数の溝2が形成され、溝2内には支持基板11より
熱伝導率の大きな高熱伝導材料3が埋め込まれている。
A semiconductor device 101 shown in FIG. 1A has a support substrate 11 and a semiconductor layer 1 laminated on the support substrate 11.
The support substrate 11 and the semiconductor layer 10 constitute a semiconductor chip 12. Semiconductor elements 81, 82, and 83 are formed on the surface 70 on the semiconductor layer 10 side. A plurality of grooves 2 are formed in the surface 71 on the support substrate 11 side toward the semiconductor layer 10, and the high heat conductive material 3 having a higher thermal conductivity than the support substrate 11 is embedded in the grooves 2.

【0024】図1(b)に示す半導体装置101の配線
基板5への搭載では、半導体素子81,82,83を形
成した半導体層10側の表面70に半田バンプ4が形成
されており、半田バンプ4を介して半導体チップ12が
配線基板5に接続されている。図1(b)に示す半導体
チップ12の実装方法は、素子の形成された半導体チッ
プ12の主面70と配線基板5が対向して接続される、
いわゆるフリップチップと呼ばれる実装方法である。
When the semiconductor device 101 is mounted on the wiring board 5 shown in FIG. 1B, the solder bumps 4 are formed on the surface 70 on the side of the semiconductor layer 10 on which the semiconductor elements 81, 82 and 83 are formed. The semiconductor chip 12 is connected to the wiring board 5 via the bump 4. In the mounting method of the semiconductor chip 12 shown in FIG. 1B, the main surface 70 of the semiconductor chip 12 on which elements are formed and the wiring board 5 are connected to face each other.
This is a so-called flip chip mounting method.

【0025】半導体装置101における支持基板11
は、金属や半導体のような導電性基体であってもよい
が、支持基板11が絶縁性基体の場合には、半導体チッ
プ12はSOI(Silicon On Insulator)と呼ばれる。
SOI基板を用いると、半導体層10に形成される各半
導体素子81,82,83を高速化・高集積化すること
ができる。一方、SOI基板に用いられる絶縁性基体1
1は、熱伝導性が良くない。このため、SOIにより半
導体素子が高集積化される程、動作中に発生する熱で各
半導体素子が温度上昇し、素子特性に悪影響が及ぶ。
Support substrate 11 in semiconductor device 101
May be a conductive substrate such as a metal or a semiconductor, but when the support substrate 11 is an insulating substrate, the semiconductor chip 12 is called an SOI (Silicon On Insulator).
When an SOI substrate is used, each of the semiconductor elements 81, 82, and 83 formed in the semiconductor layer 10 can be operated at high speed and with high integration. On the other hand, the insulating substrate 1 used for the SOI substrate
No. 1 has poor thermal conductivity. For this reason, as semiconductor elements are highly integrated by SOI, the temperature of each semiconductor element rises due to heat generated during operation, which adversely affects the element characteristics.

【0026】また、図1(b)に示すフリップチップ実
装は、従来の半導体チップの裏面側71を配線基板5に
貼り付けワイヤボンディングにより配線接続する方法と
比較し、半田バンプ4による接続のみで長いリード線が
不要となるため、配線遅延を低減することができる。ま
たパッケージを小型にできるので、SOIを用いた半導
体チップの高集積化・高速化にも対応した実装方法であ
る。このフリップチップ実装においては、近年、小型化
を目的として、配線基板5の大きさを半導体チップ1
2,16の大きさにほぼ等しくした、CSP(Chip Siz
e Package)の検討が進められている。
The flip-chip mounting shown in FIG. 1B is different from the conventional method in which the back side 71 of the semiconductor chip is attached to the wiring board 5 and connected by wire bonding, and only the connection by the solder bumps 4 is used. Since long lead wires are not required, wiring delay can be reduced. Further, since the package can be reduced in size, it is a mounting method corresponding to high integration and high speed of a semiconductor chip using SOI. In the flip chip mounting, in recent years, the size of the wiring board 5 has been
CSP (Chip Siz) which is almost equal to the size of 2,16
e Package) is under consideration.

【0027】フリップチップ実装は、従来の半導体チッ
プ裏面側71の全体が配線基板5に貼り付けられる実装
方法と比較し、半導体層10において素子の動作中に発
生する熱が配線基板5に伝達しにくいため、構造上は放
熱に対して不利である。
In flip-chip mounting, heat generated during operation of the element in the semiconductor layer 10 is transmitted to the wiring substrate 5 as compared with the conventional mounting method in which the entire back side 71 of the semiconductor chip is attached to the wiring substrate 5. This is disadvantageous for heat radiation because of its difficulty.

【0028】本発明の図1(a),(b)の半導体装置
101においては、半導体素子81,82,83の動作
中に発生する熱を、支持基板11の溝2に埋め込まれた
高熱伝導材料3を介して迅速に支持基板11の表面71
に伝達し、表面71から放熱することができる。高熱伝
導材料3としてはできるだけ熱伝導率が大きな金属が望
ましく、特に、銅(Cu)、アルミニウム(Al)、銀
(Ag)、金(Au)、銅合金、アルミニウム合金、銀
合金、金合金のいずれかの金属が好ましい。このように
して、図1(a),(b)の半導体装置101において
は、SOIにより高集積化され多量の熱が発生する半導
体装置101であっても、半導体素子81,82,83
の温度上昇を抑制することができ、素子特性の変化を低
減することができる。
In the semiconductor device 101 of FIGS. 1A and 1B according to the present invention, the heat generated during the operation of the semiconductor elements 81, 82, 83 is transferred to the high thermal conductivity embedded in the groove 2 of the support substrate 11. The surface 71 of the support substrate 11 is quickly slid through the material 3.
And heat can be dissipated from the surface 71. As the high thermal conductive material 3, a metal having a thermal conductivity as large as possible is desirable. In particular, copper (Cu), aluminum (Al), silver (Ag), gold (Au), copper alloy, aluminum alloy, silver alloy, and gold alloy are preferable. Either metal is preferred. In this manner, in the semiconductor device 101 of FIGS. 1A and 1B, even if the semiconductor device 101 is highly integrated by SOI and generates a large amount of heat, the semiconductor elements 81, 82, 83
Can be suppressed, and a change in element characteristics can be reduced.

【0029】また、本発明の半導体装置101において
は、半導体チップの裏面側である支持基板11の表面7
1を放熱面とし、素子で発生した熱を支持基板11の溝
2に埋め込まれた高熱伝導材料3を介して迅速に表面7
1に伝達している。このため、フリップチップ実装にお
いても、必要な放熱性能を確保することができ、素子特
性の変化、配線抵抗の増大、半田バンプの融解、熱応力
による保護膜剥離といった問題の発生を抑制することが
できる。
Further, in the semiconductor device 101 of the present invention, the front surface 7 of the support substrate 11, which is the back side of the semiconductor chip,
1 is a heat-dissipating surface, and the heat generated by the element is quickly transferred to the surface 7 through the high heat conductive material 3 embedded in the groove 2 of the support substrate 11.
To one. Therefore, even in flip-chip mounting, necessary heat radiation performance can be secured, and the occurrence of problems such as changes in element characteristics, increase in wiring resistance, melting of solder bumps, and peeling of the protective film due to thermal stress can be suppressed. it can.

【0030】以上のように、本発明は、SOIによる半
導体素子の高速化・高集積化と、フリップチップ実装に
よるパッケージの小型化を阻害することなく、放熱性能
を向上させることができる。
As described above, according to the present invention, the heat dissipation performance can be improved without impeding the high speed and high integration of the semiconductor element by the SOI and the miniaturization of the package by the flip chip mounting.

【0031】図2(a)〜(e)は、図1(a),
(b)に示した半導体装置101の製造工程を示す工程
別の断面図である。半導体装置101の製造は、以下の
とおりである。
FIGS. 2A to 2E show FIGS.
FIG. 9 is a cross-sectional view illustrating a manufacturing step of the semiconductor device 101 illustrated in FIG. The manufacture of the semiconductor device 101 is as follows.

【0032】図2(a)に示すように、最初に、シリコ
ン基板(ウェハ)と支持基板11を用意し、加熱により
両者を貼り合わせて、貼り合わせ基板を形成する。その
後、貼り合わされたシリコン基板を研磨して、10μm
厚程度のシリコン半導体層10に加工する。
As shown in FIG. 2A, first, a silicon substrate (wafer) and a support substrate 11 are prepared, and both are bonded by heating to form a bonded substrate. Then, the bonded silicon substrate is polished to 10 μm
It is processed into a silicon semiconductor layer 10 having a thickness of approximately.

【0033】次に、図2(b)に示すように、所定の工
程を用いて、半導体層10の表面70に、半導体素子8
1,82,83を形成する。
Next, as shown in FIG. 2B, the semiconductor element 8 is formed on the surface 70 of the semiconductor layer 10 by using a predetermined process.
1, 82 and 83 are formed.

【0034】次に、図2(c)に示すように、基板を反
転し、支持基板11の表面71に所定の開口部を有する
マスクを配置して、支持基板11を表面71からほぼ垂
直にドライエッチングし、溝2を形成する。溝2の形成
には、ウェットエッチングや機械的なドリル加工を用い
てもよい。
Next, as shown in FIG. 2C, the substrate is turned upside down, a mask having a predetermined opening is arranged on the surface 71 of the support substrate 11, and the support substrate 11 is placed almost vertically from the surface 71. The groove 2 is formed by dry etching. The grooves 2 may be formed by wet etching or mechanical drilling.

【0035】次に、図2(d)に示すように、溝2が形
成された支持基板11に、高熱伝導材料3を埋め込む。
高熱伝導材料3は、前記したように、Cu、Al、A
g、Au、Cu合金、Al合金、Ag合金、Au合金が
好ましい。これら金属による溝3の埋め込みは、スパッ
タ等の物理的気相成長、またはCVD等の化学的気相成
長により行うことができる。高熱伝導材料3により溝2
を埋め込んだ後、表面に残った高熱伝導材料3を化学機
械研磨でエッチバックし、表面を平らにする。
Next, as shown in FIG. 2D, the high heat conductive material 3 is embedded in the support substrate 11 in which the grooves 2 are formed.
As described above, the high thermal conductive material 3 is made of Cu, Al, A
g, Au, Cu alloy, Al alloy, Ag alloy and Au alloy are preferred. The filling of the groove 3 with these metals can be performed by physical vapor deposition such as sputtering or chemical vapor deposition such as CVD. Groove 2 made of high thermal conductive material 3
After embedding, the high heat conductive material 3 remaining on the surface is etched back by chemical mechanical polishing to flatten the surface.

【0036】次に、図2(e)に示すように、半導体層
10側の表面70に半田バンプ4を形成し、基板をカッ
トして半導体チップ12とする。最後に、半導体チップ
12に形成した半田バンプ4を配線基板5に接合して、
半導体装置101が完成する。
Next, as shown in FIG. 2E, the solder bumps 4 are formed on the surface 70 on the semiconductor layer 10 side, and the substrate is cut into semiconductor chips 12. Finally, the solder bumps 4 formed on the semiconductor chip 12 are joined to the wiring board 5,
The semiconductor device 101 is completed.

【0037】尚、図2(a)〜(e)に示した製造工程
では、最初に図2(b)の半導体素子形成工程を行った
後、図2(c)の溝形成工程を行った。しかしながら、
最初に図2(c)の溝形成工程を行った後、図2(b)
の半導体素子形成工程を行ってもよい。特に、高熱伝導
材料3が前記したCu、Al、Ag、Au、Cu合金、
Al合金、Ag合金、Au合金のように耐熱性が低い場
合には、最初に図2(b)の半導体素子形成工程を行っ
た後、図2(c)の溝形成工程と図2(d)の溝埋め込
み工程を行うのがよい。一方、特に、高熱伝導材料3が
タングステン(W)、モリブデン(Mo)、白金(P
t)のように耐熱性が高い場合には、最初に図2(c)
の溝形成工程と図2(d)の溝埋め込み工程を行った
後、図2(b)の半導体素子形成工程を行うこともでき
る。
In the manufacturing steps shown in FIGS. 2A to 2E, first, the semiconductor element forming step of FIG. 2B is performed, and then the groove forming step of FIG. 2C is performed. . However,
After performing the groove forming step of FIG. 2C first, FIG.
May be performed. In particular, when the high heat conductive material 3 is Cu, Al, Ag, Au, Cu alloy,
When the heat resistance is low like Al alloy, Ag alloy and Au alloy, first, the semiconductor element forming step of FIG. 2B is performed, and then the groove forming step of FIG. It is preferable to carry out the groove filling step of ()). On the other hand, particularly, the high thermal conductive material 3 is made of tungsten (W), molybdenum (Mo), platinum (P).
In the case where the heat resistance is high as in t), first, FIG.
After performing the groove forming step and the groove filling step in FIG. 2D, the semiconductor element forming step in FIG. 2B can be performed.

【0038】上述したように、本実施形態では、支持基
板11全体を熱伝導性の優れた材料から構成するのでは
なく、その支持基板11に発熱部である半導体素子8
1,82,83が形成される半導体層10に向けて溝2
を形成し、その溝2内にのみ高熱伝導材料3を埋め込
む。従って、一つの半導体素子が発生した熱は、支持基
板11において横方向に伝えられることなく、速やか
に、高熱伝導材料3を介して、支持基板11の表面から
放熱される。このため、本実施形態における放熱構造に
よれば、半導体層10に複数の半導体素子が形成されて
も、それぞれの発熱の影響が相互に作用しにくくするこ
とができる。
As described above, in the present embodiment, the whole of the support substrate 11 is not made of a material having excellent heat conductivity, and the
Groove 2 toward semiconductor layer 10 where 1, 82 and 83 are formed
Is formed, and the high thermal conductive material 3 is embedded only in the groove 2. Therefore, the heat generated by one semiconductor element is quickly dissipated from the surface of the support substrate 11 via the high heat conductive material 3 without being transmitted laterally in the support substrate 11. For this reason, according to the heat dissipation structure in the present embodiment, even when a plurality of semiconductor elements are formed in the semiconductor layer 10, the influence of each heat generation can be made less likely to interact.

【0039】(第2の実施形態)第1の実施形態では、
絶縁性の支持基板11と半導体層10からSOI基板を
形成した。第2の実施形態は、近年よく用いられる、2
枚の半導体基板を絶縁層を介して貼り合わせ、SOI基
板を形成するものである。以下、本実施形態について図
に基づいて説明する。
(Second Embodiment) In the first embodiment,
An SOI substrate was formed from the insulating support substrate 11 and the semiconductor layer 10. The second embodiment has been widely used in recent years.
In this method, two semiconductor substrates are bonded to each other with an insulating layer interposed therebetween to form an SOI substrate. Hereinafter, the present embodiment will be described with reference to the drawings.

【0040】図3(a)は、本実施形態における半導体
装置102を示す断面模式図であり、図3(b)は、当
該半導体装置102の配線基板5への搭載状態を示す断
面図である。尚、図3(a),(b)において、図1
(a),(b)に示した半導体装置101と同様の部分
については同一の符号を付け、その説明を省略する。
FIG. 3A is a schematic cross-sectional view showing the semiconductor device 102 according to the present embodiment, and FIG. 3B is a cross-sectional view showing a state where the semiconductor device 102 is mounted on the wiring board 5. . 3A and 3B, FIG.
The same parts as those of the semiconductor device 101 shown in (a) and (b) are denoted by the same reference numerals, and description thereof will be omitted.

【0041】2枚の半導体基板を貼り合わせて形成する
SOI基板は、片面を表面酸化した半導体基板と、もう
1枚の表面酸化を行わない半導体基板を準備し、表面酸
化した半導体の酸化表面と表面酸化を行わない半導体基
板を対向させて貼り合わせた後、一方の半導体基板を研
磨して形成される。図3(a)において、半導体層10
は研磨されたほうの半導体基板であり、符号13が研磨
されていないほうの半導体基板である。また符合14は
絶縁層で、表面酸化した半導体基板の表面酸化膜からな
っている。
As an SOI substrate formed by bonding two semiconductor substrates, a semiconductor substrate with one surface oxidized and another semiconductor substrate without surface oxidation are prepared, and the oxidized surface of the oxidized semiconductor is prepared. After the semiconductor substrates that are not subjected to surface oxidation are bonded to each other, they are formed by polishing one of the semiconductor substrates. In FIG. 3A, the semiconductor layer 10
Denotes a polished semiconductor substrate, and reference numeral 13 denotes an unpolished semiconductor substrate. Reference numeral 14 denotes an insulating layer made of a surface oxide film of a semiconductor substrate whose surface has been oxidized.

【0042】図3(a)に示す半導体装置102におい
ては、図1(a)の半導体装置101に対応して、表面
酸化膜14と半導体基板13が支持基板15に相当し、
支持基板15に形成された表面酸化膜からなる絶縁層1
4上に、半導体層10が積層された構造となっている。
従って、図3(a)に示す半導体チップ16は、半導体
基板13と半導体層10の間に絶縁層14が埋め込まれ
た構造になっている。図3(a)の半導体装置102に
おいて、図1(a)の半導体装置101と同様に半導体
層10には半導体素子81,82,83が形成されてい
るが、各半導体素子81,82,83は埋め込み絶縁分
離溝91,92により完全に分離されている。この埋め
込み絶縁分離溝91,92による素子分離により、各半
導体素子81,82,83をより高集積化することがで
き、また高速化することができる。
In the semiconductor device 102 shown in FIG. 3A, the surface oxide film 14 and the semiconductor substrate 13 correspond to the support substrate 15, corresponding to the semiconductor device 101 in FIG.
Insulating layer 1 made of surface oxide film formed on supporting substrate 15
The semiconductor device has a structure in which a semiconductor layer 10 is stacked on the semiconductor device 4.
Accordingly, the semiconductor chip 16 shown in FIG. 3A has a structure in which the insulating layer 14 is embedded between the semiconductor substrate 13 and the semiconductor layer 10. In the semiconductor device 102 of FIG. 3A, semiconductor elements 81, 82, and 83 are formed in the semiconductor layer 10 similarly to the semiconductor device 101 of FIG. Are completely separated by buried insulating separation grooves 91 and 92. By the element isolation by the buried insulating isolation grooves 91 and 92, the semiconductor elements 81, 82 and 83 can be more highly integrated and can be operated at higher speed.

【0043】図3(a)の半導体装置102において
も、図1(a)の半導体装置101と同様に、支持基板
15に溝20が形成され、溝20内には支持基板15を
構成する半導体基板13と絶縁層14の熱伝導率より大
きな高熱伝導材料3が埋め込まれている。尚、図3
(a)の半導体装置102においては、溝20が絶縁層
14に到達する深さまで形成されている。溝20の深さ
は、放熱性能の面で深いほど望ましいが、必ずしも絶縁
層14に到達する必要はなく、必要な放熱性能が得られ
る深さで支持基板15内に形成すればよい。
In the semiconductor device 102 of FIG. 3A, similarly to the semiconductor device 101 of FIG. 1A, a groove 20 is formed in the support substrate 15, and the semiconductor constituting the support substrate 15 is formed in the groove 20. A high thermal conductive material 3 larger than the thermal conductivity of the substrate 13 and the insulating layer 14 is embedded. Note that FIG.
In the semiconductor device 102 of (a), the groove 20 is formed to a depth that reaches the insulating layer 14. The depth of the groove 20 is preferably as deep as possible in terms of heat radiation performance, but it is not always necessary to reach the insulating layer 14 and the groove 20 may be formed in the support substrate 15 at a depth at which the required heat radiation performance is obtained.

【0044】図3(b)に示す半導体装置102の配線
基板5への搭載は、図1(b)に示す半導体装置101
の配線基板5への搭載と同様の、フリップチップ実装で
ある。
The mounting of the semiconductor device 102 shown in FIG. 3B on the wiring board 5 is performed by using the semiconductor device 101 shown in FIG.
This is the same flip chip mounting as the mounting on the wiring board 5.

【0045】図3(a)に示した半導体装置102の製
造は、前記したように、表面酸化したシリコン基板(ウ
ェハ)ともう1枚の表面酸化していないシリコン基板
(ウェハ)を貼り合わせた基板を用いて行う。最初に、
貼り合わせた一方のシリコン基板を研磨して、10μm
厚程度のシリコン半導体層10に加工する。次に、所定
の工程を用いて、半導体層10に埋め込み絶縁分離溝9
1,92とを形成する。次の半導体素子81,82,8
3の形成以後は、図2(b)〜(e)に示した第1実施
形態の半導体装置101の製造工程と同様に行う。
In the manufacture of the semiconductor device 102 shown in FIG. 3A, as described above, a silicon substrate (wafer) whose surface has been oxidized and another silicon substrate (wafer) whose surface has not been oxidized have been bonded together. This is performed using a substrate. At first,
Polish one of the bonded silicon substrates to 10 μm
It is processed into a silicon semiconductor layer 10 having a thickness of approximately. Next, the insulating isolation trench 9 embedded in the semiconductor layer 10 is formed by using a predetermined process.
1, 92 are formed. Next semiconductor elements 81, 82, 8
After the formation of No. 3, it is performed in the same manner as the manufacturing process of the semiconductor device 101 of the first embodiment shown in FIGS. 2B to 2E.

【0046】図3(a)に示す半導体装置102におい
ては、図1(a)に示す半導体装置101と比較し、埋
め込み絶縁分離溝91,92が形成されているため半導
体層10において横方向への熱が逃げにくい構造となっ
ている。本実施形態の図3(a),(b)に示す半導体
装置102においては、第1実施形態と同様に、半導体
素子81,82,83の発生する熱を、溝20に埋め込
まれた高熱伝導材料3を介して表面71からすばやく放
熱することができる。従って、図3(b)に示すフリッ
プチップ実装においても、半導体素子81,82,83
の発熱による相互影響を一層低減できるとともに、各半
導体素子81,82,83の温度上昇を抑制することが
でき、素子特性の変化、配線抵抗の増大、半田バンプの
融解、熱応力による保護膜剥離といった問題の発生を抑
制することができる。
In the semiconductor device 102 shown in FIG. 3A, compared with the semiconductor device 101 shown in FIG. The structure makes it difficult for heat to escape. In the semiconductor device 102 of the present embodiment shown in FIGS. 3A and 3B, similarly to the first embodiment, the heat generated by the semiconductor elements 81, 82, and 83 is transferred to the high thermal conductivity embedded in the groove 20. Heat can be quickly radiated from the surface 71 through the material 3. Accordingly, even in the flip chip mounting shown in FIG.
Of the semiconductor elements 81, 82, 83 can be suppressed, the element characteristics change, the wiring resistance increases, the solder bumps melt, and the protective film peels due to thermal stress. Can be suppressed.

【0047】(第3の実施形態)第2の実施形態では、
貼り合わせ基板に半導体素子を形成し、高熱伝導材料を
埋め込んだ溝により放熱性を高めた半導体装置につい
て、構造およびその製造方法を示した。第3の実施形態
は、複数の半導体素子のうち1つが特に発熱量の大きな
発熱素子である場合に、高熱伝導材料を埋め込んだ溝が
その発熱素子の直下に形成された半導体装置に関する。
以下、本実施形態について図に基づいて説明する。
(Third Embodiment) In the second embodiment,
The structure and manufacturing method of a semiconductor device in which a semiconductor element is formed on a bonded substrate and heat dissipation is improved by a groove in which a high heat conductive material is embedded are described. The third embodiment relates to a semiconductor device in which, when one of a plurality of semiconductor elements is a heating element that generates a particularly large amount of heat, a groove in which a high thermal conductive material is embedded is formed immediately below the heating element.
Hereinafter, the present embodiment will be described with reference to the drawings.

【0048】図4(a)は、本実施形態における半導体
装置103を示す断面模式図であり、図4(b)は、当
該半導体装置103の下面図であり、図3(c)は、当
該半導体装置103の配線基板5への搭載状態を示す断
面図である。尚、図4(a),(b),(c)におい
て、図3(a),(b)に示した半導体装置102と同
様の部分については同一の符号を付け、その説明を省略
する。
FIG. 4A is a schematic sectional view showing a semiconductor device 103 according to the present embodiment, FIG. 4B is a bottom view of the semiconductor device 103, and FIG. FIG. 5 is a cross-sectional view showing a state where the semiconductor device 103 is mounted on the wiring board 5. In FIGS. 4A, 4B, and 4C, the same parts as those of the semiconductor device 102 shown in FIGS. 3A and 3B are denoted by the same reference numerals, and description thereof will be omitted.

【0049】図4(a)に示す半導体装置103におい
ては、図2(a)の半導体装置102と同様に半導体層
10には半導体素子84,85,86が形成されている
が、半導体素子85は他の半導体素子84,86と比べ
て、特に発熱量の大きな発熱素子である。この発熱素子
84に対して、高熱伝導材料3を埋め込んだ溝21が、
発熱素子85の直下に、集中的に形成されている。
In the semiconductor device 103 shown in FIG. 4A, semiconductor elements 84, 85 and 86 are formed in the semiconductor layer 10 as in the semiconductor device 102 of FIG. Is a heat generating element that generates a particularly large amount of heat as compared with the other semiconductor elements 84 and 86. The groove 21 in which the high thermal conductive material 3 is embedded is formed in the heating element 84.
Immediately below the heating element 85, they are formed intensively.

【0050】この様な構造をとることにより、発熱素子
85の発生する熱を、発熱素子85の直下に形成した溝
21内に埋め込まれた高熱伝導材料3を介して、すばや
く表面71に伝達することができる。このため、発熱素
子85の発生する熱が同じ半導体層10内で発熱素子8
5の周囲に形成された他の半導体素子84,86へ伝達
するのを抑制することができ、発熱素子85の熱の広が
りを抑えて他の半導体素子84,86への熱影響を低減
することができる。
By adopting such a structure, the heat generated by the heating element 85 is quickly transmitted to the surface 71 via the high heat conductive material 3 embedded in the groove 21 formed immediately below the heating element 85. be able to. Therefore, the heat generated by the heating element 85 is generated within the same semiconductor layer 10 by the heating element 8.
5 can be suppressed from being transmitted to the other semiconductor elements 84 and 86 formed around the element 5, and the heat spread of the heating element 85 can be suppressed to reduce the thermal influence on the other semiconductor elements 84 and 86. Can be.

【0051】図4(a),(B),(c)に示した半導
体装置103の製造は、前記の第2実施形態と同様であ
るので詳細説明は省略するが、本発明による半導体装置
の製造方法によれば、図4(a),(B),(c)の半
導体装置103で示したように、放熱したい半導体素子
85の直下に集中的に放熱構造を形成できる利点があ
る。
The manufacture of the semiconductor device 103 shown in FIGS. 4A, 4B, and 4C is the same as that of the second embodiment described above, and a detailed description thereof will be omitted. According to the manufacturing method, as shown in the semiconductor device 103 of FIGS. 4A, 4B, and 4C, there is an advantage that a heat radiation structure can be formed intensively immediately below the semiconductor element 85 to which heat is to be radiated.

【0052】また、各素子の発熱量に応じた密度で、高
熱伝導材料を配置してもよい。すなわち、相対的に発熱
量が大きい素子の直下には、高密度に高熱伝導材料を配
置し、相対的に発熱量の小さい素子の直下には、低密度
に高熱伝導材料を配置してもよい。このように各素子の
発熱量に応じた密度で基板に溝を形成して、その内部に
高熱伝導材料を埋め込んだ放熱構造を採用することによ
り、基板各部の放熱特性を任意に調節することができ
る。
Further, a high heat conductive material may be arranged at a density corresponding to the heat value of each element. That is, a high heat conductive material may be disposed at a high density immediately below an element having a relatively large calorific value, and a high thermal conductive material may be disposed at a low density under a relatively small element having a relatively small calorific value. . By adopting a heat dissipation structure in which grooves are formed in the board at a density corresponding to the heat value of each element and a high thermal conductive material is embedded inside, grooves can be arbitrarily adjusted to the heat dissipation characteristics of each part of the board. it can.

【0053】(第4の実施形態)第1の実施形態で示し
た半導体装置は、支持基板の表面からほぼ垂直に溝を形
成し、溝内に高熱伝導材料3を埋め込んだ半導体装置で
あった。第4の実施形態は、溝を順テーパ形状に形成
し、高熱伝導材料を支持基板の表面上にも連結して形成
した半導体装置に関する。以下、本実施形態について図
に基づいて説明する。
(Fourth Embodiment) The semiconductor device shown in the first embodiment is a semiconductor device in which a groove is formed almost vertically from the surface of a supporting substrate, and a high heat conductive material 3 is embedded in the groove. . The fourth embodiment relates to a semiconductor device in which a groove is formed in a forward tapered shape, and a high heat conductive material is also connected to a surface of a supporting substrate. Hereinafter, the present embodiment will be described with reference to the drawings.

【0054】図5は、本実施形態における半導体装置1
04の配線基板5への搭載状態を示す断面図である。
尚、図5において、図1(b)に示した半導体装置10
1と同様の部分については同一の符号を付け、その説明
を省略する。
FIG. 5 shows a semiconductor device 1 according to this embodiment.
FIG. 4 is a cross-sectional view showing a mounting state of the circuit board No. 04 on a wiring board 5.
In FIG. 5, the semiconductor device 10 shown in FIG.
The same parts as those in 1 are denoted by the same reference numerals, and description thereof will be omitted.

【0055】図5に示す半導体装置104においては、
図1(b)の半導体装置101と比較し、溝22が支持
基板11側の表面71に向かって広がる順テーパ形状に
形成されている。また、高熱伝導材料3は、溝22を埋
め込むだけでなく、支持基板11の表面上にも連結して
形成されている。
In the semiconductor device 104 shown in FIG.
As compared with the semiconductor device 101 of FIG. 1B, the groove 22 is formed in a forward tapered shape that extends toward the surface 71 on the support substrate 11 side. The high thermal conductive material 3 is formed not only to fill the groove 22 but also to be connected to the surface of the support substrate 11.

【0056】溝22の形状を順テーパ形状にすること
で、高熱伝導材料3の溝22内への埋め込み性を良くす
ることができるので、熱の伝達性が向上して、半導体装
置104の放熱性能が向上する。また、高熱伝導材料3
を支持基板11の表面上にも連結して形成することで、
表面にも高熱伝導材料3があるため、支持基板11側の
表面71に伝達された熱の放熱をより高めることができ
る。
By forming the groove 22 into a forward tapered shape, the embedding property of the high thermal conductive material 3 into the groove 22 can be improved, so that the heat transfer is improved and the heat dissipation of the semiconductor device 104 is improved. Performance is improved. In addition, high heat conductive material 3
Is also connected to the surface of the support substrate 11 to form
Since the high heat conductive material 3 is also present on the surface, the heat radiation of the heat transmitted to the surface 71 on the support substrate 11 side can be further enhanced.

【0057】図5に示した半導体装置104の順テーパ
形状の溝22形成は、第1実施形態で示した図2(c)
の溝形成工程において、テーパエッチングを用いて行え
ばよい。本発明による半導体装置の製造方法によれば、
図5の半導体装置104で示したように任意の溝形状を
用いることができ、放熱に適した高熱伝導材料の埋め込
み形状とすることができる。また、図2(d)の溝埋め
込み工程において、スパッタやCVDにより高熱伝導材
料3を溝22を埋め込んだ後、化学機械研磨によるエッ
チバックを行わなければ、支持基板11の表面に高熱伝
導材料3を溝22と連結して残すことができる。
The formation of the forward tapered groove 22 of the semiconductor device 104 shown in FIG. 5 is the same as that of the first embodiment shown in FIG.
May be performed using taper etching. According to the method of manufacturing a semiconductor device according to the present invention,
As shown in the semiconductor device 104 of FIG. 5, an arbitrary groove shape can be used, and a buried shape of a high heat conductive material suitable for heat radiation can be obtained. In the groove filling step of FIG. 2D, after the groove 22 is filled with the high thermal conductive material 3 by sputtering or CVD, if the etch back by chemical mechanical polishing is not performed, the high thermal conductive material 3 Can be left in connection with the groove 22.

【0058】(第5の実施形態)第4の実施形態で示し
た半導体装置は、溝を順テーパ形状に形成し、高熱伝導
材料を支持基板の表面上にも連結して形成した半導体装
置であった。第5の実施形態は、さらに、高熱伝導材料
に放熱部材を当接して配置した半導体装置に関する。以
下、本実施形態について図に基づいて説明する。
(Fifth Embodiment) The semiconductor device shown in the fourth embodiment is a semiconductor device in which a groove is formed in a forward tapered shape, and a high heat conductive material is also connected on the surface of a supporting substrate. there were. The fifth embodiment further relates to a semiconductor device in which a heat radiating member is disposed in contact with a high heat conductive material. Hereinafter, the present embodiment will be described with reference to the drawings.

【0059】図6は、本実施形態における半導体装置1
05の配線基板5への搭載状態を示す断面図である。
尚、図6において、図5に示した半導体装置104と同
様の部分については同一の符号を付け、その説明を省略
する。
FIG. 6 shows a semiconductor device 1 according to this embodiment.
FIG. 5 is a cross-sectional view showing a state of mounting on a wiring substrate of No. 05.
In FIG. 6, the same components as those of the semiconductor device 104 shown in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted.

【0060】図6に示すように、高熱伝導材料3に当接
して放熱部材30を配置することにより、半導体素子8
1,82,83で発生し、高熱伝導材料3を介して表面
71に伝達された熱の放熱を、さらに高めることができ
る。
As shown in FIG. 6, by disposing the heat radiating member 30 in contact with the high heat conductive material 3, the semiconductor element 8
The heat radiation of the heat generated at 1, 82, 83 and transmitted to the surface 71 via the high heat conductive material 3 can be further enhanced.

【0061】(他の実施形態)上記各実施形態において
は、フリップチップ実装を行った半導体装置を示した。
これに限らず、本発明の半導体装置の配線基板への実装
は、従来の半導体チップの裏面側を配線基板に貼り付け
る方法と同様に、支持基板側を配線基板に貼り付けても
よい。これによっても、溝に埋め込んだ高熱伝導材料を
介して、半導体素子で発生した熱を配線基板にすばやく
逃がすことができ、本発明は効果的である。
(Other Embodiments) In each of the above embodiments, the semiconductor device on which flip-chip mounting has been performed has been described.
However, the present invention is not limited to this. For mounting the semiconductor device of the present invention on a wiring board, the support substrate may be attached to the wiring board in the same manner as the conventional method of attaching the back surface of a semiconductor chip to the wiring board. This also allows the heat generated in the semiconductor element to be quickly released to the wiring board via the high thermal conductive material embedded in the groove, and the present invention is effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は、本発明の第1実施形態における半導
体装置の断面図であり、(b)は、当該半導体装置の配
線基板への搭載状態を示す断面図である。
FIG. 1A is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention, and FIG. 1B is a cross-sectional view showing a state where the semiconductor device is mounted on a wiring board.

【図2】(a)〜(e)は、本発明の第1実施形態にお
ける半導体装置の製造工程を示す工程別の断面図であ
る。
FIGS. 2A to 2E are cross-sectional views showing a manufacturing process of the semiconductor device according to the first embodiment of the present invention, which are process-specific.

【図3】(a)は、本発明の第2実施形態における半導
体装置の断面図であり、(b)は、当該半導体装置の配
線基板への搭載状態を示す断面図である。
FIG. 3A is a cross-sectional view of a semiconductor device according to a second embodiment of the present invention, and FIG. 3B is a cross-sectional view showing a state where the semiconductor device is mounted on a wiring board.

【図4】(a)は、本発明の第3実施形態における半導
体装置の断面図であり、(b)は、当該半導体装置の下
面図であり、(c)は、当該半導体装置の配線基板への
搭載状態を示す断面図である。
4A is a sectional view of a semiconductor device according to a third embodiment of the present invention, FIG. 4B is a bottom view of the semiconductor device, and FIG. 4C is a wiring board of the semiconductor device; FIG. 4 is a cross-sectional view showing a state of being mounted on a hologram.

【図5】本発明の第4実施形態における半導体装置の配
線基板への搭載状態を示す断面図である。
FIG. 5 is a sectional view showing a state in which a semiconductor device according to a fourth embodiment of the present invention is mounted on a wiring board.

【図6】本発明の第5実施形態における半導体装置の配
線基板への搭載状態を示す断面図である。
FIG. 6 is a sectional view showing a state in which a semiconductor device according to a fifth embodiment of the present invention is mounted on a wiring board.

【符号の説明】[Explanation of symbols]

101〜105 半導体装置 10 半導体層 13 半導体基板 14 絶縁層 11,15 支持基板 12,16 半導体チップ 2,20,21,22 溝 3 高熱伝導材料 4 半田バンプ 5 配線基板 6 放熱部材 101-105 Semiconductor device 10 Semiconductor layer 13 Semiconductor substrate 14 Insulating layer 11,15 Support substrate 12,16 semiconductor chips 2,20,21,22 grooves 3 High thermal conductive materials 4 Solder bump 5 Wiring board 6 Heat dissipation member

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 支持基板上に半導体層が積層されてなる
半導体装置において、 前記半導体層側の第1表面に半導体素子が形成され、 前記支持基板側の第2表面から前記半導体層へ向けて溝
が形成され、 前記溝内に、前記支持基板より熱伝導率の大きな高熱伝
導材料が埋め込まれることを特徴とする半導体装置。
1. A semiconductor device having a semiconductor layer laminated on a support substrate, wherein a semiconductor element is formed on a first surface on the semiconductor layer side, and from a second surface on the support substrate side to the semiconductor layer. A semiconductor device, wherein a groove is formed, and a high thermal conductive material having a higher thermal conductivity than the support substrate is embedded in the groove.
【請求項2】 前記支持基板が、少なくとも一方の表面
に絶縁層が形成された半導体基板であり、前記半導体層
が前記絶縁層の上に積層されることを特徴とする請求項
1に記載の半導体装置。
2. The method according to claim 1, wherein the supporting substrate is a semiconductor substrate having an insulating layer formed on at least one surface, and the semiconductor layer is stacked on the insulating layer. Semiconductor device.
【請求項3】 前記半導体素子が発熱量の大きな発熱素
子であり、前記溝が前記発熱素子の直下に形成されるこ
とを特徴とする請求項1または2に記載の半導体装置。
3. The semiconductor device according to claim 1, wherein said semiconductor element is a heating element having a large amount of generated heat, and said groove is formed immediately below said heating element.
【請求項4】 前記溝が、前記第2表面に向かって広が
る順テーパ形状に形成されることを特徴とする請求項1
乃至3のいずれか1項に記載の半導体装置。
4. The device according to claim 1, wherein the groove is formed in a forward tapered shape extending toward the second surface.
The semiconductor device according to any one of claims 3 to 3.
【請求項5】 前記高熱伝導材料が、銅、アルミニウ
ム、銀、金、銅合金、アルミニウム合金、銀合金、金合
金のいずれかであることを特徴とする請求項1乃至4の
いずれか1項に記載の半導体装置。
5. The high thermal conductive material is any one of copper, aluminum, silver, gold, copper alloy, aluminum alloy, silver alloy, and gold alloy. 3. The semiconductor device according to claim 1.
【請求項6】 前記高熱伝導材料が、前記第2表面上に
も連結して形成されることを特徴とする請求項1乃至5
のいずれか1項に記載の半導体装置。
6. The high thermal conductive material is also formed on the second surface so as to be connected thereto.
The semiconductor device according to claim 1.
【請求項7】 前記高熱伝導材料に当接して、放熱部材
が配置されることを特徴とする請求項1乃至6のいずれ
か1項に記載の半導体装置。
7. The semiconductor device according to claim 1, wherein a heat radiating member is disposed in contact with said high heat conductive material.
【請求項8】 前記第1表面に半田バンプが形成され、
前記半田バンプを配線基板に接続して、 前記半導体装置を前記配線基板に搭載したことを特徴と
する請求項1乃至7のいずれか1項に記載の半導体装
置。
8. A solder bump is formed on the first surface,
The semiconductor device according to claim 1, wherein the solder bump is connected to a wiring board, and the semiconductor device is mounted on the wiring board.
【請求項9】 前記配線基板が、前記支持基板とほぼ同
じサイズであることを特徴とする請求項8に記載の半導
体装置。
9. The semiconductor device according to claim 8, wherein said wiring substrate has substantially the same size as said support substrate.
【請求項10】 支持基板上に半導体層が積層されてな
る半導体装置の製造方法において、 前記半導体層側の第1表面に半導体素子を形成する第1
工程と、 前記支持基板側の第2表面から前記半導体層へ向けて溝
を形成する第2工程と、 前記溝内に、前記支持基板より熱伝導率の大きな高熱伝
導材料を埋め込む第3工程とを有することを特徴とする
半導体装置の製造方法。
10. A method for manufacturing a semiconductor device comprising a semiconductor layer laminated on a supporting substrate, wherein a semiconductor element is formed on a first surface on the semiconductor layer side.
A step of forming a groove from the second surface on the support substrate side toward the semiconductor layer; and a third step of embedding a high heat conductive material having a higher thermal conductivity than the support substrate in the groove. A method for manufacturing a semiconductor device, comprising:
【請求項11】 前記半導体素子が発熱量の大きな発熱
素子であり、前記溝を当該発熱素子の直下に形成するこ
とを特徴とする請求項10に記載の半導体装置の製造方
法。
11. The method according to claim 10, wherein the semiconductor element is a heating element that generates a large amount of heat, and the groove is formed immediately below the heating element.
【請求項12】 前記溝を、エッチングにより、前記第
2表面に向かって広がる順テーパ形状に形成することを
特徴とする請求項10または11に記載の半導体装置の
製造方法。
12. The method of manufacturing a semiconductor device according to claim 10, wherein said groove is formed by etching into a forward tapered shape extending toward said second surface.
JP2002151764A 2002-05-27 2002-05-27 Semiconductor device and manufacturing method thereof Expired - Fee Related JP3791459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002151764A JP3791459B2 (en) 2002-05-27 2002-05-27 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002151764A JP3791459B2 (en) 2002-05-27 2002-05-27 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003347488A true JP2003347488A (en) 2003-12-05
JP3791459B2 JP3791459B2 (en) 2006-06-28

Family

ID=29769246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002151764A Expired - Fee Related JP3791459B2 (en) 2002-05-27 2002-05-27 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3791459B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105910B2 (en) 2003-11-25 2006-09-12 Denso Corporation Semiconductor device having SOI construction
JP2007096279A (en) * 2005-09-02 2007-04-12 Semiconductor Energy Lab Co Ltd Integrated circuit device
JP2007096300A (en) * 2005-09-26 2007-04-12 Samsung Electro Mech Co Ltd Gallium nitride based semiconductor light emitting device and method of manufacturing same
JP2010182958A (en) * 2009-02-06 2010-08-19 Seiko Instruments Inc Semiconductor device and method of manufacturing semiconductor device
JP2013251545A (en) * 2012-05-31 2013-12-12 Freescale Semiconductor Inc Methods and structures for reducing heat exposure of thermally sensitive semiconductor devices
CN107710609A (en) * 2015-07-13 2018-02-16 追踪有限公司 With component derived from improved heat
CN111554586A (en) * 2020-06-12 2020-08-18 厦门通富微电子有限公司 Preparation method of chip packaging body
CN111554644A (en) * 2020-06-12 2020-08-18 厦门通富微电子有限公司 Chip, chip package and wafer
CN111952197A (en) * 2020-08-25 2020-11-17 济南南知信息科技有限公司 Semiconductor device and packaging method thereof
KR102667425B1 (en) * 2015-07-13 2024-05-17 스냅트랙, 인코포레이티드 Components with improved heat dissipation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4973418B2 (en) 2007-09-26 2012-07-11 サンケン電気株式会社 Semiconductor device
CN117751456A (en) * 2021-08-06 2024-03-22 索尼半导体解决方案公司 Semiconductor device, semiconductor module, and wireless communication apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105910B2 (en) 2003-11-25 2006-09-12 Denso Corporation Semiconductor device having SOI construction
JP2007096279A (en) * 2005-09-02 2007-04-12 Semiconductor Energy Lab Co Ltd Integrated circuit device
JP2007096300A (en) * 2005-09-26 2007-04-12 Samsung Electro Mech Co Ltd Gallium nitride based semiconductor light emitting device and method of manufacturing same
JP2009278139A (en) * 2005-09-26 2009-11-26 Samsung Electro Mech Co Ltd Gallium nitride-based semiconductor light emitting device and method of manufacturing the same
JP2010182958A (en) * 2009-02-06 2010-08-19 Seiko Instruments Inc Semiconductor device and method of manufacturing semiconductor device
JP2013251545A (en) * 2012-05-31 2013-12-12 Freescale Semiconductor Inc Methods and structures for reducing heat exposure of thermally sensitive semiconductor devices
JP7000308B2 (en) 2015-07-13 2022-01-19 スナップトラック・インコーポレーテッド Components with improved heat dissipation
JP2018522483A (en) * 2015-07-13 2018-08-09 スナップトラック・インコーポレーテッド Components with improved heat dissipation
CN107710609B (en) * 2015-07-13 2021-03-16 追踪有限公司 Component with improved heat dissipation
CN107710609A (en) * 2015-07-13 2018-02-16 追踪有限公司 With component derived from improved heat
US11303263B2 (en) 2015-07-13 2022-04-12 Qualcomm Incorporated Component with improved heat dissipation
KR102667425B1 (en) * 2015-07-13 2024-05-17 스냅트랙, 인코포레이티드 Components with improved heat dissipation
CN111554586A (en) * 2020-06-12 2020-08-18 厦门通富微电子有限公司 Preparation method of chip packaging body
CN111554644A (en) * 2020-06-12 2020-08-18 厦门通富微电子有限公司 Chip, chip package and wafer
CN111554586B (en) * 2020-06-12 2022-04-01 厦门通富微电子有限公司 Preparation method of chip packaging body
CN111952197A (en) * 2020-08-25 2020-11-17 济南南知信息科技有限公司 Semiconductor device and packaging method thereof
CN111952197B (en) * 2020-08-25 2022-05-27 青岛融合装备科技有限公司 Semiconductor device and packaging method thereof

Also Published As

Publication number Publication date
JP3791459B2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
TWI573223B (en) Integrated circuits protected by substrates with cavities, and methods of manufacture
TWI417990B (en) Metal filled through via structure for providing vertical wafer-to-wafer interconnection
JP4307284B2 (en) Manufacturing method of semiconductor device
KR101387701B1 (en) Semiconductor packages and methods for manufacturing the same
CN109427702A (en) Radiating element and method
US8202801B1 (en) Method of fabricating a semiconductor device with through substrate via
US20130026606A1 (en) Tsv pillar as an interconnecting structure
TW201906025A (en) Heat dissipation method
JP4823676B2 (en) Method for forming heat dissipation material on semiconductor device chip and structure for dissipating heat
JP2005514767A (en) Chip and wafer integration method using vertical connection part
JP2007103413A (en) Semiconductor device and its manufacturing method
TW201234666A (en) Package carrier and manufacturing method thereof
WO2010035375A1 (en) Semiconductor device and method for manufacturing the same
JP2007157844A (en) Semiconductor device, and method of manufacturing same
KR20120112091A (en) Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods
TW201212185A (en) Semiconductor structures and methods of forming the same
JP2004079745A (en) Interposer, manufacturing method therefor, electronic circuit device and manufacturing method therefor
JP3791459B2 (en) Semiconductor device and manufacturing method thereof
JP2006339232A (en) Circuit board and its manufacturing method, and semiconductor device and its manufacturing method
JP5025922B2 (en) Circuit board, method for manufacturing circuit board, and semiconductor device
JP2014170793A (en) Semiconductor device, semiconductor device manufacturing method and electronic apparatus
TW200937574A (en) Semiconductor device and method for manufacturing same
JP6015347B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2007123719A (en) Semiconductor chip and its manufacturing method as well as semiconductor device
JP4511148B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051207

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees